
A Benchmark for the Sorting Network Problem

Michal Bidlo
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, 612 66 Brno, Czech Republic

bidlom@fit.vutbr.cz

Categories and Subject Descriptors
B.2.2 [Arithmetic and Logic Structures]: Performance
Analysis and Design Aids; B.8.0 [Performance and Reli-
ability]: General; B.6.1 [Logic Design]: Design Styles

General Terms
Design, Performance

Keywords
Sorting network, benchmark

1. SORTING NETWORKS CONCEPT
Consider a compare–swap operation that compares and

possibly swaps the values of its two operands (a, b), so that
we obtain a pair (a, b) satisfying a ≤ b after execution. A
sorting network is a sequence of compare–swap operations
that depends only on the number of elements to be sorted
[1]. Let’s call the compare–swap operation as a comparator.
An advantage of sorting networks against the classical sort-
ing algorithms is that the number of comparators is fixed
for a given number of inputs. Thus they can be easily im-
plemented in hardware. Figure 1 shows an example of a
three-input sorting network and its alternative symbol.

The two main aspects determining the quality of sorting
network are the number of comparators (the fewer compara-
tors, the lower implementation cost) and delay (the lower
delay, the faster sorting). Let’s define the delay of a sorting
network as the number of groups of independent compara-
tors (i.e. the groups of comparators, whose input indices
are mutually different). Such the comparators may be per-
formed in parallel. We denote a comparator of a sorting
network as redundant if it does not swap any input values
during the complete test of the sorting network. Such a com-
parator can be removed from the sorting network without
any loss of functionality.

2. BENCHMARK SORTING NETWORKS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

min

max
min

max

min

max

in0

in1

in2

(a) (b)

Figure 1: (a) A 3-input sorting network consists of 3
comparators, each of which contains components for
computing minumim and maximum. (b) Alternative
symbol.

We gained a program using evolutionary algorithm for
the construction of arbitrarily large sorting networks from
a simple instance of the problem (an embryo). The evolved
program creates sorting networks with only even number of
inputs. The number of comparators of the sorting networks
built by means of this program is substantially lower than
the number of comparators of conventionally-constructed
sorting networks (e.g. bubble-sort networks). Although the
evolved program creates sorting networks with some redun-
dant comparators, after removing them we gain sorting net-
works with substantially better properties (both the number
of comparators and delay) in comparison with a conventional
solution.

Table 1 contains the number of comparators and Table
2 contains delay values of selected even-input sorting net-
works. Table 3 summarizes the properties of resulting sort-
ing networks (after removing the redundant comparators).
We determined the number of comparators and delay of the
conventional sorting networks by analyzing bubble-sort net-
works published in [1]. Figure 2 shows the structure of the
proposed sorting networks.

Note, that after removing the bottom input line of the
sorting network with all the comparators connected to that
input line we obtain a valid sorting network with odd num-
ber of inputs. Although the sorting networks constructed
using the evolved program were tested only up to 28 inputs,
we believe the program is able to construct arbitrarily large
networks (formal proof is the objective of our future work).
In addition, the proposed circuits can be also considered as
median networks.

N 6 8 10 12 14 16 18 20 22 24 26 28
conventional 15 28 45 66 91 120 153 190 231 276 325 378
evolved 13 24 38 55 75 98 124 153 185 220 258 299

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Table 1: The number of comparators of even-input sorting networks created by means of the evolved program
in comparison with conventional sorting networks. Numbers in parentheses denote the number of redundant
comparators of the sorting networks.

N 6 8 10 12 14 16 18 20 22 24 26 28
konv. 9 13 17 21 25 29 33 37 41 45 49 53
evolved 6 9 14 19 23 26 31 36 41 46 51 56

(6) (9) (12) (15) (18) (21) (24) (27) (30) (33) (36) (39)

Table 2: Delay of even-input sorting networks created by means of the evolved program in comparison with
conventional sorting networks. Numbers in parentheses denote the delay of the resulting sorting networks
(after removing the redundant comparators).

N 6 8 10 12 14 16 18 20 22 24 26 28
conventional 15 28 45 66 91 120 153 190 231 276 325 378

(9) (13) (17) (21) (25) (29) (33) (37) (41) (45) (49) (53)
evolved 12 22 35 51 70 92 117 145 176 210 247 287

(6) (9) (12) (15) (18) (21) (24) (27) (30) (33) (36) (39)

Table 3: Summary of the properties of resulting even-input sorting networks in comparison with conven-
tional sorting networks. Numbers without parentheses denote the humber of comparators and numbers in
parentheses denote the delay of resulting sorting networks. These sorting networks do not contain redundant
comparators.

Figure 2: Structure of the sorting networks with 6, 8 and 10 inputs created by means of the evolved program.
These sorting networks contain some redundant comparators.

3. ACKNOWLEDGMENTS
The research was performed with the support of the Grant

Agency of the Czech Republic under No. 102/04/0737 Mod-
ern Methods of Digital Systems Design. M.Bidlo was par-
tially supported from J. Hlavka foundation.

4. REFERENCES
[1] D. E. Knuth. The Art of Computer Programming: Sorting

and Searching (2nd ed.). Addison Wesley, 1998.

