
Providing Information from the Environment for Growing
Electronic Circuits Through Polymorphic Gates

Michal Bidlo
Faculty of Information Technology

Brno University of Technology
Bozetechova 2, 612 66 Brno, Czech Republic

bidlom@fit.vutbr.cz

Lukas Sekanina
Faculty of Information Technology

Brno University of Technology
Bozetechova 2, 612 66 Brno, Czech Republic

sekanina@fit.vutbr.cz

ABSTRACT
This paper deals with the evolutionary design of programs
(constructors) that are able to create (n+2)-input circuits
from n-input circuits. The growing circuits are composed of
polymorphic gates considered as building blocks. Therefore,
the growing circuit can specialize its functionality according
to environment which is sensed through polymorphic gates.
The work was performed using a simple circuit simulator.
We evolved constructors that are able to create arbitrarily
large polymorphic even/odd parity circuits and polymorphic
sorting networks.

Categories and Subject Descriptors
B.6.1 [Logic Design]: Design Styles—Combinational logic;
B.6.3 [Logic Design]: Design Aids—Automatic synthesis;
I.2.m [Artificial Intelligence]: Miscellaneous

General Terms
Experimentation, Design

Keywords
Genetic algorithm, development, digital circuits design, poly-
morphic circuit

1. INTRODUCTION
During development, a multicellular organism is formed

from the zygote in a process of cellular division and cellu-
lar differentiation. Pattern formation depends on positional
information, which instructs competent cells to differentiate
in ways characteristic of their position in the structure. Po-
sitional information is not only provided by the environmen-
tal trigger but also is usually understood to be imparted by
the concentration of one or more morphogens emitted from
spatially distinct organizers [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

The concept of development was adopted by evolution-
ary algorithms community in order to realize non-trivial
genotype-phenotype mappings which are necessary to over-
come the scalability problem of evolutionary design. Various
approa-ches have been investigated (see survey in [9]). In
the context of evolutionary algorithms, computational de-
velopment might be utilized to achieve diverse objectives,
including: adaptation, compacting genotypes, reduction of
search space, allowing more complex solutions in solution
space, regulation, regeneration, repetition, robustness, scal-
ability, evolvability, parallel construction, emergent behavior
and decentralized control [9].

The utilization of the developmental process in electronic
hardware is a challenging task. The approach is extremely
interesting for hardware design because it could provide a
solution via the concept of self-organization to the design
of electronic circuits of a complexity beyond current lay-
out techniques and introduce into electronics some fault-
tolerance and self-repair mechanisms. The following list only
summarizes some of the most interesting results presented
in this area: Embryonics [11], POEtic [20], CAMBrain [4]
and CellMatrix [10] projects deal with new reconfigurable
platforms inspired at the level of embryology. Haddow et
al. have adopted L-system in order to evolve scalable digi-
tal circuits [5]. John Koza introduced an original method in
which novel analog circuits have been constructed accord-
ing to the instructions produced by genetic programming
[7]. In another approach, Gordon and Bentley have utilized
the interaction of artificial genes and proteins to model de-
velopment in digital circuits [3]. Miller and Thomson have
invented a developmental method for growing graphs and
circuits using Cartesian genetic programming [13].

The concept of protein gradients has been examined in
detail for electronic circuits in many publications, e.g. [20,
12]. Essentially, gradient-based systems consist of a set of
diffusers that release a given protein into the system. Func-
tionality of a cell depends on proteins concentration, i.e. on
the distance from the proteins diffusers. As the environ-
ment (including proteins) influences development (i.e. pro-
vides the positional information), it is possible to control
development by means of proper proteins concentrations.

The main feature of all the electronic developmental sys-
tems utilizing some information from the environment (e.g.
positional information) is that this information is consid-
ered as one of many digital inputs to the system, typically
obtained through a couple of wires.

In this paper we show that there are other options for pro-

viding information for growing digital circuits. For instance,
positional information will not be provided in the digital
form; rather it will influence the system in an analogue (and
perhaps non-electrical) form, for example, as temperature,
light, radiation, specific voltage etc. The motivation for this
approach is that every electronic circuit operates in a real
physical environment and “good” physical environment is
crucial for correct behavior of the resulting system (sim-
ilarly, cells survive and divide only in a “good” environ-
ment). The proposed approach should allow the developing
system to interact with the environment much closely and
to differentiate according to specific real-world situations.
For example, one can imagine that a growing circuit could
generate some heat, which, in turn, could automatically be
reflected by the circuit to regulate its developmental process
and so its behavior.

Of course, we do not want to build special sensors. The
growing circuits should inherently interact with the phys-
ical environment. Technology, which, in principle, allows
engineers to build such systems, is called polymorphic elec-
tronics [17, 18, 19]. It was shown that it is possible to cre-
ate digital gates whose functionally can be controlled in a
non-traditional way: by temperature, power supply voltage
(Vdd), some external signals etc. For example, the polymor-
phic (i.e. multifunctional) NAND/NOR gate operates as
NOR in the case that Vdd=1.8V and as NAND in the case
that Vdd=3.3V. No conventional design is available with
this logic function controlled by Vdd [17].

If some gates of a growing circuit are polymorphic then
the process of development can be controlled by the men-
tioned external signals (in addition to controls derived from
expressed genetic information). The objective of this paper
is to propose a simple example of a developmental electronic
system which consists of polymorphic gates and so which can
be influenced by external analogue signals. The proposed re-
search is based on our previous work in which we evolved ar-
bitrarily large sorting networks using an application specific
model of development [14, 16]. We evolved a program (con-
structor) which is able to create a larger instance of a prob-
lem (e.g. 5-input sorting network) from a smaller one (e.g.
a 3-input sorting network). In general we evolved a con-
structor which is able to create (n+2)-input solution from
the n-input solution. In this paper, we present constructors
that are able to work with polymorphic gates (considered as
building blocks in growing circuits). Therefore, the growing
circuit can specialize its functionality according to the envi-
ronment which is sensed through polymorphic gates. We as-
sume that arbitrary polymorphic gates exist; however, only
bi-functional (polymorphic) are considered in the current
version of our program. The results are presented on grow-
ing even/odd parity circuits and sorting/median networks.

2. POLYMORPHIC ELECTRONICS
Polymorphic circuits, introduced by Stoica’s team at JPL,

are in fact multifunctional circuits. The change of their be-
havior comes from modifications in the characteristics of
components (e.g. in the transistor’s operation point) in-
volved in the circuit in response to controls such as temper-
ature, power supply voltage, light, etc. [18]. Polymorphic
circuits are able to work in several modes of operation corre-
sponding to different operational conditions. Table 1 gives
examples of the polymorphic gates reported in literature.
Most of them have been designed by means of evolutionary

Table 1: Examples of existing polymorphic gates
Gate control values control method ref.

AND/OR 27/125C temperature [19]
AND/OR/XOR 3.3/0.0/1.5V external voltage [19]

AND/OR 3.3/0.0V external voltage [19]
AND/OR 1.2/3.3V Vdd [18]

NAND/NOR 3.3/1.8V Vdd [17]

techniques. The mentioned NAND/NOR gate is the most
famous example [17]. The circuit consists of 6 transistors
and was fabricated in a 0.5-micron CMOS technology. The
circuit is stable for ±10% variations of Vdd and for temper-
atures in the range 20C – 200C.

Potential applications are discussed in [18]. Polymorphic
electronics should allow engineers to build inherently adapt-
able digital circuits. By changing the temperature, Vdd or
some other conditions a circuit can change its functionality
immediately, with no reconfiguration overhead. The poten-
tial applications include: special circuits that are able to de-
crease resolution of digital/analog converters or speed/reso-
lution of a data transmission when a battery voltage de-
creases, circuits with a hidden/secret function that can be
used to ensure security, intelligent sensors and novel solu-
tions for reconfigurable cells and function generators in re-
configurable devices (such as FPGA and CPLD) [18].

The design of polymorphic circuits is considered as main
problem because these circuits typically utilize normally un-
used characteristics of electronic devices and working envi-
ronment; conventional design techniques are not able to deal
with that. A. Thompson has shown that unconstrained evo-
lutionary design is able to produce innovative designs that
effectively utilize these characteristics [21]. Sekanina has
proposed a method for the evolutionary design of gate-level
digital polymorphic circuits in which polymorphic gates are
considered as building blocks [15]. For instance, a circuit
was evolved operating as 2-bit adder in environment E1.
This circuit can also work as 2-bit multiplier in environment
E2. A typical feature of polymorphic gate-level circuits is
that their topology (i.e. connection of components) is fixed;
however, the components can change the functionality.

3. THE PROPOSED APPROACH
All the approaches to development of digital circuits, men-

tioned in Introduction, can be enriched by using polymor-
phic gates. In particular, the use of polymorphic gates en-
ables us to implement more complex developmental schemes.
Therefore, the growing circuit and environment can interact
in more complex ways which, in result, leads to more com-
plex target circuits.

In case that an electronic digital platform contains poly-
morphic gates then the behavior of a growing circuit (em-
bodied in the platform), in addition to the approaches men-
tioned in Introduction, can be influenced in two ways:

• Polymorphic gates influence the physical structure of
the circuit. For instance, for some environments (e.g.
for low temperatures), a functional unit, say X, is cre-
ated, for other environments (e.g. for high temper-
atures) functional unit X is not created. Unit X is
created because a special mode of polymorphic gate
is activated in which a corresponding control digital

Code Gate Code Gate Code Gate Code Gate Code Gate
0 AND/I 4 I/AND 8 OR/XOR 12 XOR/OR 16 NOT/NOT
1 AND/AND 5 OR/I 9 I/OR 13 XOR/XOR 17 I/NOT
2 AND/OR 6 OR/AND 10 XOR/I 14 I/XOR 18 I/I
3 AND/XOR 7 OR/OR 11 XOR/AND 15 NOT/I

Table 2: List of gates. Some of them are polymorphic. “I” denotes the identity function (buffer).

signal is enabled. Otherwise, the control signal is not
enabled and unit X is not created.

• Polymorphic gates do not influence the physical struc-
ture of the growing circuit, i.e. circuit topology is inde-
pendent of the environment. However, because the cir-
cuit contains polymorphic gates, its behavior depends
on the environment. For instance, the growing circuit
operates as adder in low temperatures and as sorter in
high temperatures.

This paper deals with the second option.

3.1 Polymorphic Circuits Considered for De-
velopment

In our previous research we have used development to
evolve arbitrarily large sorting and median networks, parity
circuits and adders [16, 14, 22]. In some cases we discovered
a new design principle for creating large circuits. Huelsber-
gen discovered general constructors for parity circuits [6]. In
this work we combine our method with polymorphic gates to
design arbitrarily large polymorphic circuits, in particular:

• Polymorphic odd/even parity circuits and

• Polymorphic sorting networks (with increasing/decrea-
sing order of the sorted sequences).

3.2 The Developmental Method
We employ genetic algorithm to evolve a sequence of in-

structions (a program), by means of which an initial simple
instance of the problem (an embryo) will grow to form a
more complex circuit [16]. In our case each instruction of
the program consists of three integers (opcode arg1 arg2),
where opcode represents the operational code of the instruc-
tion and arg1 and arg2 are its arguments. The meaning of
arguments depends on the type of the instruction (instruc-
tions with no operands are allowed; then arg1 and arg2 are
not interpreted). A developmental step is understood as an
application of the constructor on a circuit to construct more
complex circuit. After its application the number of circuit
inputs increases according to the size of the developmental
step. The circuit grows from top-left corner to down-right
corner.

Figure 1 shows the structure of a basic building block uti-
lized in the developmental system. Each building block con-
sists of two gates – g1 and g2 represent logic functions per-
formed in the gates. i1 and i2 denote the input indices. Each
building block is then encoded using a 4-tuple (i1, i2, g1, g2).
The target circuit is represented as a sequence of building
blocks. Table 2 shows the list of gates we utilized. Some of
them are standard (e.g. 1 – AND/AND) and some polymor-
phic (2 – AND/OR). We also included some buffers (e.g. 18
– I/I). The polymorphic gates are bifunctional, i.e. function
AND is performed in environment E1 and function OR is

g1

g2

g1

g2

i1

i2

(b)(a)

Figure 1: The basic building block: (a) logic struc-
ture, (b) symbolic notation. g1 and g2 represent
logic functions performed in the gates. i1 and i2
denote the input indices.

The constructor

ep np cp

0

1

2

3

4

Figure 2: Configuration of development: a growing
circuit (left) and constructor which is represented
by a chromosome (right).

performed in environment E2 in case of polymorphic gate
AND/OR.

A sample configuration of the proposed developmental
system is shown in Figure 2. The embryo pointer (ep) in-
dicates the building block that is actually processed by the
instruction selected through the instruction pointer (cp). As
the result of application of instruction new gates will be
placed on the position denoted by the next-position pointer
(np). This pointer denotes the first empty position where
the circuit will grow to. The instructions of constructor are
processed sequentially. The process of construction termi-
nates when either all the instructions of the constructor are
executed or the end of embryo is reached. After executing
an instruction the pointers ep, cp and np are updated. We
are using an “empty” embryo at the beginning of the devel-
opmental process, i.e. no particular information is known
about the structure of the initial circuit, which is, therefore,
considered as a 4-tuple (0, 0, I/I, I/I). Considering that,
there must be instructions in the instruction set that are able
to set the input signals of the polymorphic gates and their
functions (e.g. instruction MODIS and MODFS). These so-
called modify-instructions only modify the gates denoted by
the embryo pointer (ep) without copying them and hence the
next-position pointer (np) remains unchanged after their ex-
ecution. The instructions which are responsible for growing
the circuit are of the types copy or copy-and-modify (e.g.
instructions CPOS or CPMIS). Every instruction is used in
two variants (e.g. CPMIS and CPMIN), whose difference
lies in updating strategy of the embryo pointer (ep) after
execution of the instruction. Table 3 lists all the utilized in-
structions. For example, CPOS copies a pair of gates from
position given by ep to the position given by np; the em-
bryo pointer remains unchanged in this case. The position
(indices of inputs) of the newly created or modified gates
depends on the position of the gates being processed and
the number of inputs of currently constructed circuit (w).

3.3 Experimental Setup
A simple genetic algorithm is utilized to find a constructor

whose repeated application on an existing circuit will create
a larger circuit. All the experiments were performed with
the following settings: standard crossover with the proba-
bility 0.55, the probability of mutation 0.04, population size
40, tournament selection mechanism with the base 3, the
maximal number of generations 20,000.

The length of the chromosome remains constant during
an experiment. We determined this value experimentally in
[14]. Note, that all the evolved constructors work only with
either even or odd number of inputs.

The objective is to develop arbitrarily large circuits; how-
ever, only four developmental steps are considered in the
fitness calculation in order to make the time of evolution
reasonable. For a single environment the fitness value is de-
termined as f = f(2) + f(4) + f(6) + f(8) for even-input
circuits and f = f(3) + f(5) + f(7) + f(9) for odd-input
circuits, where f(i) is the number of correctly processed
testing sequences by the circuit with i inputs. Therefore,
the maximum fitness value that we can reach is fmax =
22 + 24 + 26 + 28 = 340 for even-input circuits and fmax =
23 + 25 + 27 + 29 = 680 for odd-input circuits. For the sec-
ond environment the fitness value is calculated in the same
way. At the end of evolution we have to verify whether the
resulting constructors are general, i.e. able to produce arbi-

Figure 3: Polymorphic even/odd parity circuit cre-
ated by means of constructor [MODIS 4 3] [MODFS
13 17] [CPMIS 0 1] [MODIS 0 2] [CPOS 3 1] (a 5-
instruction constructor, even number of inputs)

trarily large circuits (typically we verify the functionality of
circuits up to 28 inputs).

4. THE OBTAINED RESULTS

4.1 Polymorphic Parity Circuits
Some constructors were successfully evolved for the poly-

morphic even/odd parity circuits. According to the envi-
ronment the circuits calculate either even or odd parity.
The solution is usually based on the conventional XOR gate
(no. 13 in Table 2) and a polymorphic NOT switch (no.
17 in Table 2). Its structure is not surprising; however,
the structure was designed fully automatically without any
supporting domain knowledge (we started with the empty
embryo (0, 0, I/I, I/I)). Figures 3 and 4 show two poly-
morphic circuits calculating even/odd parity functions. We
have gained 35 general constructors out of 200 independent
runs of the evolutionary design process for a five-instruction
chromosome. 42 constructors consisting of six instructions
were evolved out of 200 independent runs of the evolutionary
process from which 36 were recognized as general.

4.2 Median and Sorting Networks
The evolutionary process has succeeded in the design of

structurally variable median circuits. These circuit struc-
tures, considered as polymorphic circuits, do not compute
different functions in different environments. However, the
way in which the median is calculated depends on the envi-
ronment. Therefore, the environment determines, through

Op. code Name Arg1 Arg2 Meaning
0 CPOS − − copy the pair of gates from ep to np; cp = cp + 1, np = np + 1
1 CPON − − copy the pair of gates from ep to np; cp = cp + 1, np = np + 1, ep = ep + 1
2 CPNS p − copy w − p pairs of gates; cp = cp + 1, np = np + w − p
3 CPNN p − copy w − p pairs of gates; cp = cp + 1, np = np + w − p, ep = ep + w − p
4 CPMIS p q copy the pair of gates from ep to np and do

i1 = (i1 + p) mod w, i2 = (i2 + q) mod w, cp = cp + 1, np = np + 1
5 CPMIN p q copy the pair of gates from ep to np and do

i1 = (i1 + p) mod w, i2 = (i2 + q) mod w, cp = cp + 1, np = np + 1, ep = ep + 1
6 CPMFS p q copy the gates from ep to np and do

f1 = p, f2 = q, cp = cp + 1, np = np + 1
7 CPMFN p q copy the gates from ep to np and do

f1 = p, f2 = q, cp = cp + 1, np = np + 1, ep = ep + 1
8 MODIS p q modify inputs of the gates at ep

as follows: i1 = (i1 + p) mod w, i2 = (i2 + q) mod w, cp = cp + 1
9 MODIN p q modify inputs of the gates at ep

as follows: i1 = (i1 + p) mod w, i2 = (i2 + q) mod w, cp = cp + 1, ep = ep + 1
10 MODFS p q modify functions of the gates at ep

as follows: f1 = p, f2 = q; cp = cp + 1
11 MODFN p q modify functions of the gates at ep

as follows: f1 = p, f2 = q; cp = cp + 1, ep = ep + 1
12 NOP − − an empty instruction: cp = cp + 1

Table 3: The instruction set. p and q represent the arguments of the instruction; i1 and i2 denote the indices
of inputs of the polymorphic gates; f1 and f2 are functions of the gates and w is the number of inputs of the
circuit being created.

Figure 4: Polymorphic even/odd parity circuit
created by means of constructor [MODFS 17 13]
[MODIS 2 3] [CPMIS 2 2] [CPMIS 2 0] [CPMIN
1 2] [MODIN 0 3] (a 6-instruction constructor, even
number of inputs)

Figure 5: Polymorphic median and sorting network
created by means of the constructor [MODFS 2 6]
[CPMIS 2 2] [CPMIS 1 2] [CPMIS 3 2] [CPMIS 0 1]
[CPMIN 1 1] [CPNN 0 2] (a 7-instruction construc-
tor, odd number of inputs)

polymorphic gates, physical implementation of median cir-
cuit.

In addition, the mentioned polymorphic circuits can also
work as sorting networks. It is interesting that they sort the
input sequences in increasing or decreasing order according
to the environment. Figure 5 shows the polymorphic me-
dian and sorting network circuit built by means of a seven-
instruction constructor. However, this constructor is not
general. Median networks can be constructed only up to 13
inputs and sorting networks only up to 11 inputs. However,
these circuits exhibit better properties (the number of com-
parators) than the conventionally constructed circuits (e.g.
bubble-sort network) [8]. The evolutionary process has suc-
ceeded 68 times in 200 independent runs, from which eight
constructors are able to build fully functional median cir-
cuits up to 13 inputs.

Figures 6 and 7 show polymorphic median and sorting

Figure 6: Polymorphic median and sorting network
created by means of the constructor [CPMIS 2 2]
[MODFS 2 6] [CPMIS 1 2] [CPMIS 3 2] [CPMIS
0 1] [CPMIS 1 1] [CPNN 2 4] [CPNN 4 4] (a 8-
instruction general constructor, odd number of in-
puts)

Figure 7: Polymorphic median and sorting network
created by means of the constructor [MODFS 2 6]
[CPMIS 2 2] [CPMIS 1 2] [CPMFS 6 2] [CPMIS
0 1] [CPNN 3 0] [CPMIS 4 2] [CPNN 1 2] (a 8-
instruction general constructor, odd number of in-
puts)

networks created by means of a seven- and eight-instruction
constructor. These constructors are general. We gained 45
constructors out of 200 independent runs of the evolutionary
process, from which 5 constructors are general.

The evolved circuits use gate 2 (AND/OR) and 6 (OR/AND)
which means that they sort the input sequences in increasing
order in the first environment and in decreasing order in the
second environment. As the median value is taken from the
middle output, it does not depend on signals coming from
the environment.

5. DISCUSSION
In case of sorting networks, evolution has discovered that

by exchanging AND–OR gates for OR–AND gates, the or-
dering of sorted sequence can be changed. There is no in-
novation; human designer would construct the circuit in the
same way. Although the evolution could use many types of
gates, it has utilized the same gates as a human designer
uses. The implementation of AND as well as OR gate costs
6 transistors in the standard CMOS technology. Surpris-
ingly, the cost of polymorphic AND/OR gate controlled by
temperature is also 6 transistors [19]. If one were able to
build OR/AND gate with the same cost, the resulting poly-
morphic sorting network would consist of the same number
of transistors as the original one whose behavior cannot be
changed!

Despite we put effort into evolution of other types of large
polymorphic circuits (such as adder/sorting network and
parity/Boolean symmetry circuits etc.) we have not ob-
tained any functional result yet. The explanation could be
as follows: The number of correct suitable topologies which

perform the required behavior is very limited with the pro-
posed encoding. Therefore, the probability is very low that
a single topology can represent two different behaviors (e.g.
n-bit adder and n-bit multiplier) in two different environ-
ments.

Of course, because of the utilized representation, it is al-
ways possible to manually merge two different circuits into
a single working polymorphic circuit. The method is as fol-
lows: Construct the resulting circuit from left to right. If
the first circuit requires logic function L1, create polymor-
phic gate L1/I. If the second circuit requires logic function
L2, create polymorphic gate I/L2. Then the resulting cir-
cuit (consisting of polymorphic gates) will perform the first
function in the first environment and the second function in
the second environment. However, we are not interested in
this type of solution, since there is no innovation visible.

In real biological systems as well as in some artificial de-
velopmental systems (e.g. in [2]) the interplay between a
growing solution and its environment is very complex. In
our system the interplay practically does not exist. We are
planning to develop more complex models of development
and combine them with polymorphic gates to create inno-
vative arbitrarily large polymorphic circuits.

6. CONCLUSIONS
We evolved programs (constructors) that are able to cre-

ate arbitrarily large polymorphic even/odd parity circuits
and polymorphic sorting networks. According to control
signals (environment) the evolved circuits perform one of
two possible functions in every step of development. Poly-
morphic gates were considered as building blocks. The work
was performed using a simple circuit simulator. Future re-
search will be oriented to designing more complex models
of development combined with polymorphic gates to create
more complicated arbitrarily large polymorphic circuits.

7. ACKNOWLEDGMENTS
The research was performed with the support of the Grant

Agency of the Czech Republic under No. 102/04/0737 Mod-
ern Methods of Digital Systems Design and No. 102/03/P004
Evolvable Hardware Based Application Design Methods. M.
Bidlo was partially supported from J. Hlavka foundation.

8. REFERENCES
[1] B. Alberts et al. Essential Cell Biology – An

Introduction to the Molecular Biology of the Cell.
Garland Publishing, New York, 1998

[2] T. G. W. Gordon. Exploring models of development
for evolutionary circuit design. In 2003 Congress on
Evolutionary Computation, pp. 2050–2057. IEEE
Press, 2003.

[3] T. G. W. Gordon and P. J. Bentley. Towards
development in evolvable hardware. In Proc. of the
2002 NASA/DoD Conference on Evolvable Hardware,
pp. 241–250, Washington D.C., US, 2002. IEEE
Computer Society Press.

[4] H. de Garis et al. Atr’s artificial brain (Cam-Brain)
project: A sample of what individual “codi-1 bit”
model evolved neural net modules can do with digital
and analog i/o. In Proc. of the 1st NASA/DoD
Workshop on Evolvable Hardware, pp. 102–110. IEEE
Computer Society Press, 1999.

[5] P. Haddow, G. Tufte, and P. van Remortel. Shrinking
the genotype: L-systems for ehw? In Proc. of the 4th
International Conference on Evolvable Systems: From
Biology to Hardware, Lecture Notes in Computer
Science, vol. 2210, pp. 128–139. Springer–Verlag, 2001.

[6] L. Huelsbergen. Finding general solutions to the
parity problem by evolving machine-language
representations. In Proc. of the Genetic Programming
1998 Conference, pages 158–166, San Francisco, CA,
1998. Morgan Kaufmann.

[7] J. R. Koza et al. Genetic Programming III: Darwinian
Invention and Problem Solving. Morgan Kaufmann,
San Francisco, 1999.

[8] D. E. Knuth. The Art of Computer Programming:
Sorting and Searching (2nd ed.). Addison Wesley,
1998.

[9] S. Kumar. Investigating computational models of
development for the construction of shape and form.
PhD thesis. Department of Computer Science,
University College London, 2004.

[10] N. Macias. The PIG Paradigm: The Design and Use of
a Massively Parallel Fine Grained Self-Reconfigurable
Infinitely Scalable Architecture. In EH’99: Proc. of the
1st NASA/DoD Workshop on Evolvable Hardware, ed
by Stoica, A. et al., Pasadena, CA, USA, 1999 (IEEE
Computer Society, Los Alamitos 1999) pp. 175–180

[11] D. Mange et al. Towards robust integrated circuits:
The embryonics approach. Proc. of IEEE. Vol. 88, No.
4, 2000, pp. 516–541

[12] J. F. Miller. Evolving developmental programs for
adaptation, morphogenesis, and self-repair. In Proc. of
the Seventh European Conference on Artificial Life,
Lecture Notes in Computer Science, vol 2801, pp.
256–265, Berlin Heidelberg New York, 2003. Springer.

[13] J. F. Miller and P. Thomson. A developmental
method for growing graphs and circuits. In Proc. of
the 5th Conf. on Evolvable Systems: From Biology to
Hardware (ICES 2003), Lecture Notes in Computer
Science, vol. 2606, pp. 93–104, Berlin, DE, 2003.
Springer–Verlag.

[14] L. Sekanina. Evolving Constructors for Infinitely

Growing Sorting Networks and Medians. In Proc. of
the Conference on Current Trends in Theory and
Practice of Computer Science SOFSEM 2004. LNCS
2932, Springer Verlag, 2004, pp. 314–323

[15] L. Sekanina. Evolutionary Design of Gate-Level
Polymorphic Digital Circuits. In Applications of
Evolutionary Computing, Lausanne, LNCS 3449,
Springer Verlag, 2005, pp. 185-194

[16] L. Sekanina and M. Bidlo. Evolutionary Design of
Arbitrarily Large Sorting Networks Using
Development. Genetic Programming and Evolvable
Machines. Vol. 6, 2005 (to appear)

[17] A. Stoica et al. Taking Evolutionary Circuit Design
From Experimentation to Implementation: Some
Useful Techniques and a Silicon Demonstration. IEE
Proc.-Comp. Digit. Tech. Vol. 151, No. 4, 2004, pp.
295–300

[18] A. Stoica et al. On Polymorphic Circuits and Their
Design Using Evolutionary Algorithms. In Proc. of
IASTED International Conference on Applied
Informatics (AI2002), Innsbruck, Austria 2002

[19] A. Stoica and R. Zebulum and D. Keymeulen.
Polymorphic Electronics. In Proc. of International
Conference on Evolvable Systems: From Biology to
Hardware, LNCS 2210, Springer Verlag, 2001, pp.
291–302

[20] G. Tempesti et al. Ontogenetic development and fault
tolerance in the poetic tissue. In Proc. of the 5th Conf.
on Evolvable Systems: From Biology to Hardware
(ICES 2003), Lecture Notes in Computer Science, vol.
2606, pp. 141–152, Berlin, DE, 2003. Springer–Verlag.

[21] A. Thompson and P. Layzell and R. Zebulum.
Explorations in design space: Unconventional
electronics design through artificial evolution. IEEE
Trans. on Evolutionary Computation. Vol. 3, No. 3,
1999, pp. 167-196

[22] M. Bidlo. A Developmental Method for Construction
of Arbitrarily Large Sorting Networks and Adders.
Technical report, Department of Computer Systems,
Faculty of Information Technology, Brno University of
Technology, CZ, 2005

