
A Developmental Method for Construction of Arbitrarily
Large Sorting Networks and Adders

Michal Bidlo
Faculty of Information Technology, Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic

bidlom@fit.vutbr.cz

ABSTRACT
The paper deals with a non-traditional design method in-
spired by natural ontogenesis (an embryonic approach) for
construction of combinational logic circuits. The general
principle of the technique is based on a set of proper in-
structions known beforehand that are repeatedly applied on
the embryo (a trivial instance of a problem) to construct
more complex system. Genetic algorithm is used to find
a suitable sequence of instructions – a prescription for the
growth of the embryo. We will focus on the design of ar-
bitrarily large sorting networks and adders because these
circuits have shown to be good candidates for employing
development. The system complexity can increase contin-
ually and infinitely. It is shown that by employing of this
approach the genetic algorithm is able to (1) rediscover the
principle of already known method and (2) find a novel al-
gorithm, by means of which we can obtain better solutions
in comparison with a conventional method.

Keywords
Genetic algorithm, development, digital circuits design, sort-
ing network, binary adder

1. INTRODUCTION
Nowadays, biologically-inspired algorithms are widely used
to solve many complex problems in computer science. Evo-
lutionary design belongs to an emerging field, in which a
lot of interesting results have been gained up to now [25].
Boolean circuits [21], artificial neural networks [30], com-
puter programs [15] are the typical representatives, which
were successfully evolved in the past years. Although sev-
eral modifications of evolutionary algorithms were utilized
(depending on a particular domain), only relatively small
instances of the problem were obtained.

For instance, the problem of scale is probably the most re-
stricting issue of the evolutionary design. As the system
complexity increases (e.g. a number of inputs and outputs

or a number of components needed for the implementation),
the length of the genotypes increases in the case of the evo-
lutionary approach. In consequence of this the search spaces
become very large and then it is usually extremely difficult
to design an effective search algorithm.

However, several methods have been developed in order to
overcome the scaling problem, which may be divided in
three classes: evolution at the functional level (for instance,
see [20]), incremental evolution (e.g. Torreses’s divide-and-
conquer approach [28]) and development (an embryonic ap-
proach, e.g. [8, 10]). We will deal with development in this
paper.

The objective of this paper is to propose a developmental
method for the design of arbitrarily large combinational logic
circuits and show that by employing of this approach we can
obtain better solutions in comparison with a conventional
algorithm or rediscover the principle of an already known
technique (e.g. for sorting networks and adders).

The organization of the paper is as follows. Section 2 gives
a more detailed view to the development and discusses com-
mon results obtained in the area of the evolutionary design
by means of a developmental process. An outline of the
circuits to be designed (sorting networks and adders) with
commonly used construction methods and preceding results
obtained by the evolutionary design with development is in
section 3. In section 4 we describe the system employed for
the developmental evolutionary design of sorting networks
and adders. Experimental results of the research are given
in section 5. Finally, in section 6 we evaluate the obtained
results and give some conclusion remarks.

2. DEVELOPMENT
Let’s now briefly describe the basic principles of develop-
ment. Development is in its original form a biological pro-
cess that in essence “emerges an organized structures from
an initially very simple group of cells” [29]. It is a process of
construction that emerges from the interplay between pro-
teins, genes, cells and the environment, resulting in the for-
mation of an organism. Central to development is construc-
tion and self-organization. All cellular behaviour is con-
trolled by proteins, which are produced by genes. Cleavage
divisions, pattern formation, morphogenesis, cellular differ-
entiation and growth are the main processes involved in bi-
ological development [26].



Considering the evolutionary design in the computer science,
development is usually understood as a genotype–phenotype
mapping by means of some (complex) rules. We will utilize
development mainly for the “growth” of the system com-
plexity to overcome the problem of scale in the evolutionary
design of combinational logic circuits. In such a case the
genotype has to contain a prescription for the construnction
of the system from a simple initial instance of the problem
– an embryo.

Models of development were surveyed in Chapter 2 of [19]
and [26]. Here we will briefly recall only a class of models
related (in some way) to our work – the evolutionary design
of arbitrarily large combinational circuits.

In bioinspired hardware and software systems the genotype–
pheno-type mapping is often implemented by means of re-
writing systems. The first rewriting developmental (neuro)
system was investigated by Kitano [17]. Later, among oth-
ers, Boers and Kuiper have utilized L-systems to create the
architecture of feed-forward artificial neural networks [4].
Haddow et al. have adopted L-system in order to evolve
scalable digital circuits [11]. Three-dimensional mechanical
objects have been designed by evolution that also utilized a
variant of L-system in its genotype–phenotype map [13].

John Koza introduced an original method in which novel
analog circuits have been constructed according to the in-
structions produced by genetic programming [15]. Among
others activities Koza’s team employed this technique for
routine duplication of many patented inventions (see the list
at [27]).

In another approach, Gordon and Bentley have utilized the
interaction of artificial genes and proteins to model the de-
velopment in digital circuits [8]. CAM Brain machine [9]
and POEtic platform [6] are examples of those systems that
use cellular automata-based development.

Miller and Thomson have invented a developmental method
for growing graphs and circuits using Cartesian genetic pro-
gramming in order to evolve similar constructors to ours
(referred to as iterators in [24]). Because they worked at a
very low level of abstraction (as configuration bits of a hy-
pothetical reconfigurable hardware) no general constructor
has been found for their task, i.e. the design of large even
parity circuits. However, other researchers have success-
fully evolved completely general solutions to the even-parity
problem; for instance Huelsbergen, who has worked at the
machine code level [14].

In order to evolve 3D shape and form Kumar has used com-
plex and so realistic models of development inspired by ge-
netic regulatory networks [19]. Bentley has invented fractal
proteins for the same purpose. A fractal protein is a finite
square subset of Mandelbrot set, defined by three artificial
codons that form the coding region of a gene in the genome
of a cell [3].

These methods have illustrated various approaches to the
development, however, only a few of them were successful
with designing large real-world systems.

Figure 1: (a) A 3-input sorting network consists
of 3 comparators, each of which contains compo-
nents for computing minumim and maximum. (b)
Alternative symbol. The sorting network may be
described by a sequence of pairs containing the in-
dices of inputs of individual comparators, for this
example: (0,1)(1,2)(0,1).

Figure 2: An example of 3-delay sorting net-
work. The groups of independent comparators are
(0,1)(2,3), (0, 2)(1, 3) and (1, 2)(0, 3). Comparator
(0, 3) is redundant, so it can be removed.

3. CONSIDERED TARGET CIRCUITS
We are considering the design of arbitrarily large sorting
networks and adders because these types of combinational
logic circuits have shown to be good candidates for employ-
ing development.

3.1 Sorting Networks
The concept of sorting networks was introduced in 1954;
rigorous theory is summarized in [18]. Consider a compare–
swap operation that compares and possibly swaps the values
of its two operands (a, b), so that we obtain a pair (a, b)
satisfying a ≤ b after execution. A sorting network is a
sequence of compare–swap operations that depends only on
the number of elements to be sorted [18]. Let’s call the
compare–swap operation as a comparator. An advantage of
sorting networks against the classical sorting algorithms is
that the number of comparators is fixed for a given number
of inputs. Thus they can be easily implemented in hardware.
Figure 1 shows an example of a three-input sorting network
and its alternative symbol.

The two main aspects determining the quality of sorting net-
work are the number of comparators (the fewer comparators,
the lower implementation cost) and delay (the lower delay,
the faster sorting). Let’s define the delay of a sorting net-
work as the number of groups of independent comparators
(i.e. the groups of comparators, whose input indices are mu-
tually different). Such the comparators may be performed
in parallel. We denote a comparator of a sorting network as
redundant if it does not swap any input values during the



Figure 3: Methods for creating larger sorting net-
works from smaller structures: (a) straight inser-
tion, (b) selection

Figure 4: Construction of arbitrarily large binary
adders by means of full adders as the building
blocks. Logic structure of the full adder is shown.

complete test of the sorting network. Such a comparator
can be removed from the sorting network without any loss
of functionality. For instance, the sorting network in Figure
2 possesses the delay value 3 and the comparator (0, 3) is
redundant.

We will focus on optimizing of these properties of resulting
sorting networks. Table 1 summarizes the properties of cur-
rently best-known structures. The (13–16)-sorting networks
were discovered using evolutionary algorithms [5, 12, 16, 15].
Because of the scaling problem, the direct evolutionary de-
sign of larger sorting networks is very difficult today. The
two methods shown in Figure 3 may be considered as the
conventional approaches to the construction of larger sorting
network from the smaller one.

3.2 Adders
In general, an adder may be considered as an abstract com-
ponent with n inputs and m outputs. Usually n comprises
2w bits of the numbers to be added and one input carry and
m equals w + 1 in boolean logic. Then w denotes the width
of the adder. The common implementations of adders (e.g.
carry-propagate adders, ripple-carry adders etc.) constitute
a class of well-scalable combinational logic circuits and hence
they might be suitable for the developmental method de-
scribed in Section 4.

As an example we give some references dealing with digital

circuits design which (at least partially) showed an ability
of the evolutionary algorithm to design adders. First of all,
Miller et al. utilized Cartesian genetic programming [23] for
the evolutionary design of digital circuits (including adders
and multipliers) at the gate level [21, 22]. Gordon modelled
autocatalytic gene networks for pattern formation which is
subsequently mapped to the circuit synthesis (a developmen-
tal approach) [8, 7]. Shanthi et al. showed in [1] that when
the Developmental cartesian genetic programming approach
[24] is applied to partitioned digital circuits, it is possible to
evolve 8x8 adders or multipliers for example.

All the methods mentioned above create the digital circuits
with a given number of inputs. However, in the next section
we propose the approach to the construction of arbitrarily
large circuits by means of an evolved program. Figure 4
shows one of the common approaches to the construction of
arbitrarily large binary adders (the carry-propagate adders
in this case).

4. THE DEVELOPMENTAL METHOD
As noted above, the main goal of this paper is to propose a
method, which enables us to construct arbitrarily large com-
binational logic circuits. The sorting networks and adders
showed to be the proper candidates for demonstrating the
functionality of the designed approach.

We employ genetic algorithm to evolve a sequence of in-
structions (a program), by means of which an initial simple
instance of the problem (an embryo) will grow continually
and infinitely. The program represents the rules of the de-
velopment. Let’s call the sequence of instructions as a con-
structor. As the size of the circuit grows (i.e. the number
of inputs and outputs), its complexity grows too (i.e. the
number of components needed for the implementation of a
desired function and their interconnections). The general
format of an instruction is of the form (opcode arg1 arg2),
where opcode represents operational code of the instruction,
arg1 and arg2 are its arguments. The meaning of arguments
depends on the type of the instruction (instructions with no
operands are allowed; then both arg1 and arg2 arrays can
be arbitrary). The form of instruction set is an application-
specific problem and it showed to be one of the most crucial
matter of the algorithm. We are interested mainly in such
the constructors that are able to build combinational logic
circuits of arbitrary size (i.e. by applying the constructor
repeatedly on the embryo, we gain a fully functional circuit
with all the functionality occuring in the precursor). Such
the constructor is referred to as a general constructor. In
this paper, we require the general constructor to be able
build fully functional circuits with at least 28 input bits. A
developmental step is understood as an application of the
constructor on the embryonal structure to construct more
complex system. After its application the number of input
bits of the circuit increases of the size of the developmental
step.

4.1 Sorting Networks
Let’s consider the sorting networks at the compare–swap op-
eration level, i.e. the comparator is the basic building block
for the evolutionary design. The initial configuration of the
developmental system for the sorting networks is shown in
Figure 5. The embryo pointer (ep) denotes the comparator



Sorting networks designed individually
N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Delay 0 1 3 3 5 5 6 6 7 8 8 9 10 10 10 10
Number of
comparators

0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

Table 1: Properties of currently best-known sorting networks

Figure 5: Initialization of the development: (a)
growing sorting network (an embryo), (b) construc-
tor represented by a chromozome of the genetic al-
gorithm

that is actually processed by the instruction pointed by the
instruction pointer (cp). The new comparator will be placed
on the position denoted by the next-position pointer (np).
At the beginning of each developmental step (an application
of the constructor), the next-position pointer (np) is initial-
ized by the index of the first free position of the embryo.
The instructions in the constructor are executed serially un-
til the last instruction is applied or the end of the embryo is
reached. After executing of an instruction the pointers ep,
cp and np are updated.

The function of the comparator is fixed, so only its inputs
may be modified. With respect to that a suitable instruc-
tion set has to be chosen. The copy and copy-and-modify
instructions have shown to be suitable for the sorting net-
work design. Each of theses types of instruction is used in
two variants in the developmental system. The variation of
these types lies in updating of the embryo pointer (ep). Ta-
ble 2 shows the instruction set of the developmental system
for the sorting networks.

4.2 Adders
Binary adders constitute a class of combinational logic cir-
cuits, which are, for instance, in comparison with the sorting
networks, easier to design (e.g. adders have smaller number
of output bits). As we are representing the building block
of the sorting network by a comparator (which can be un-
derstood as the elementary 2-input sorting network), the
building block of a general adder might be represented by
the one-bit full adder. However, such an element haven’t
shown to be suitable enough (even at gate level) for the evo-
lutionary design of adders because the construction of larger
circuits is then very easy and does not lead to non-trivial
results. Therefore, our goal is to minimize the amount of
knowledge provided by the building blocks and embryo and

Figure 6: The form of the building block at the gate
level: (a) logic structure, (b) symbolic notatin. This
circuit can be represented by a 4-tuple (i, j, f1, f2),
where i and j are the indices of inputs, f1 and f2

represent functions. One-input functions are also
allowed.

Symbol Meaning
• f = i1 AND i2
◦ f = i1 OR i2
⊕ f = i1 XOR i2
− f = i1(i2)

Table 3: Symbols of the logic functions utilized for
the adder design. i1 and i2 are the inputs, f repre-
sents the result of the function.

let the genetic algorithm evolve the most of the circuit struc-
ture (more exactly, the prescription for its construction) au-
tomatically.

Let’s consider all the parts of adders to be logic gates, i.e.
the construction program will operate at the gate level. Note
that only two-input gates are utilized. The general form of
a building block is shown in Figure 6. The combinational
logic circuit is described by a sequence of the building blocks.
Table 3 shows the logic functions and their symbols utilized
for the construction of adders.

The evolving program processes the building blocks of the
circuit in the same manner as in the case of the sorting net-
works. In addition, “empty” embryo is allowed for fully au-
tomatic design using evolutionary algorithm. For instance,
such the embryo is encoded in a 4-tuple (0, 0,−,−).

The instruction set has to be adjusted to the building blocks
and circuit to be designed. Besides the input indices, the
building block contains two functions and there are instruc-
tions in the instruction set, which are able to set or change
these functions. Table 4 shows the instruction set utilized
for the developmental rules in the evolutionary design of
adders at the gate level.



Op. code Name Arg1 Arg2 Meaning
0 ModifyS p q i1 = (i1 + p) mod w, i2 = (i2 + q) mod w, cp = cp + 1,

np = np + 1
1 ModifyN p q i1 = (i1 + p) mod w, i2 = (i2 + q) mod w, cp = cp + 1,

ep = ep + 1, np = np + 1
2 CopyS p − copy w − p comparators, cp = cp + 1, np = np + w − p
3 CopyN p − copy w − p comparators, cp = cp + 1, ep = ep + w − p,

np = np + w − p

Table 2: The instruction set of the developmental system for the sorting networks. p and q represent the
arguments of the instruction, i1 and i2 denote the indices of the inputs of the comparator and w is the number
of inputs of the sorting network being created.

Op. code Name Arg1 Arg2 Meaning
0 COPYS − − copy the gates from ep to np; np = np + 1
1 COPYN − − copy the gates from ep to np; np = np + 1, ep = ep + 1
2 CPMIS p q copy the gates from ep to np and do

i1 = w − p, i2 = w − q, cp = cp + 1, np = np + 1
3 CPMIN p q copy the gate from ep to np and do

i1 = w − p, i2 = w − q, cp = cp + 1, np = np + 1, ep = ep + 1
4 CPMFS p q copy the gates from ep to np and do

f1 = p, f2 = q, cp = cp + 1, np = np + 1
5 CPMFN p q copy the gates from ep to np and do

f1 = p, f2 = q, cp = cp + 1, np = np + 1, ep = ep + 1
6 MODIS p q modify inputs of the gates at ep

as follows: i1 = w − p, i2 = w − q; cp = cp + 1
7 MODIN p q modify inputs of the gates at ep

as follows: i1 = w − p, i2 = w − q; cp = cp + 1, ep = ep + 1
8 MODFS p q modify functions of the gates at ep

as follows: f1 = p, f2 = q; cp = cp + 1
9 MODFN p q modify functions of the gates at ep

as follows: f1 = p, f2 = q; cp = cp + 1, ep = ep + 1

Table 4: The instruction set of the developmental system for the construction of adders at the gate level. p
and q represent the arguments of the instruction, i1 and i2 denote the indices of inputs of the gates, f1 and
f2 are the functions of the gates and w is the number of inputs of the circuit being created.



Figure 7: Sorting networks constructed by means of
constructor A

Figure 8: Sorting networks constructed by means of
constructor B

5. OBTAINED RESULTS
Some interesting results were obtained in the construction
of combinational logic circuits using the development in the
evolutionary design. The genetic algorithm was employed
to find a constructor representing the developmental rules.
In all the cases initial population is seeded randomly using
fixed-length chromozomes. A tournament selection mecha-
nism with base 4 is utilized. The length of the chromozome
equals the number of instructions in the constructor, i.e. the
chromozome consists of a triple number of integers.

5.1 Sorting Networks
Various embryos and various developmental steps were ap-
plied for the construction of sorting networks. For a detailed
survey of all the results obtained in the sorting network de-
sign see [2]. Here we mention some interesting results either
rediscovering an already known method or improving it. In
this case genetic algorithm works with crossover probability
pc = 70%, mutation probability pm = 2% and population
size sp = 60. The developmental system performs 4 steps for
the fitness calculation. Table 5 shows some of the most in-
teresting constructors and properties of the sorting networks
they produce.

The sorting networks produced by constructor A are the
same as the sorting networks for the conventional straight
insertion algorithm (see Figure 3a). Thus we have rediscov-
ered the principle of this method. Constructor B creates
sorting networks with even number of inputs, whose proper-
ties (the number of comparators and delay) were improved
in comparison with the conventional approach (e.g. straight
insertion algorithm). Therefore, the implementation cost
and the time needed for the sorting are reduced. Figures
7 and 8 show the resulting sorting networks. The bounded
elements represent the embryos. Thin vertical lines indicate
the developmental steps. Both the sorting networks contain
no redundant comparators [2].

5.2 Adders

Figure 9: Adder constructed by means of the con-
structor [MODFS 2 0] [CPMIS 1 0] [CPMIN 2 1]
[CPMIS 0 1]. The bounded part is repeated regu-
larly during development.

Figure 10: Adder constructed by means of the con-
structor [MODFS 2 0] [CPMIS 3 2] [CPMIS 4 3]
[CPMIS 2 3] [CPMIS 1 0] [CPMIS 2 1] [CPMIS 0
1]. The bounded part is repeated regularly during
development.

We were interested in the construction of arbitrarily large
binary adders. The most crucial part of the process was to
find a suitable representation for increasing the evolvability
of the circuit. The following schema showed to be a good so-
lution for the evolutionary design. The developmental step
takes only even values (2 and 4 are reasonable). In each
step the number of inputs increases of a given value. In
this case genetic algorithm works with crossover probabil-
ity pc = 2/1000, mutation probability pm = 16/1000 and
population size sp = 400. Such the low GA-parameters (pc

and pm) may be curious in comparison with the other evo-
lutionary design techniques utilizing genetic algorithms. We
assume that the reason for these settings is a rugged fitness
landscape of the problem. The developmental system per-
forms 2 or 3 steps for the fitness calculation depending on
the size of the developmental step.

Figure 9 shows the resulting adder constructed by means
of the constructor involving the development with the step
of size 2, i.e. adders produced in each developmental step
are able to add up two 2–, 3–, 4–bit numbers, etc. An
adder constructed by means of the development of step 4 is
shown in Figure 10. As obvious, many parts of the presented
circuit correspond to the structure of the carry-propagate
adder, though it is not rediscovering of the principle. It is
probably due to the fact that we are not interested in values



N 16 17 18 19 20 21 22 23 24 25 26
Constructor A (ModifyS 2 2) (ModifyS 1 1) (CopyN 3 2)
Num. of comp. 120 136 153 171 190 210 231 253 276 300 325
Delay 29 31 33 35 37 39 41 43 45 47 49
Constructor B (0 2 2) (0 1 2) (0 0 1) (1 1 1) (3 1 2) (3 1 1)
Num. of comp. 92 - 117 - 145 - 176 - 210 - 247
Delay 27 - 31 - 35 - 39 - 43 - 47

Table 5: The examples of constructors for the construction of sorting networks: Constructor A builds ar-
bitrarily large sorting networks, constructor B generates the sorting networks with even number of inputs.
The properties of some chosen sorting networks are given under each constructor.

of initial carry-in as shown in Figures 9 and 10.

5.3 Discusion
The result presented for the sorting networks of even size is
efficient in view of both the number of comparators and de-
lay in comparison with a conventional method (e.g. straight
insertion sort). The larger sorting network, the larger vari-
ation of the number of comparisons in favour of the sorting
network built by the evolved constructor. Even if the sorting
networks presented are not competitive to the best known
structures (see Table 1), nowadays it is extremely difficult
to design very large and efficient sorting networks directly.
Sorting networks can be utilized as a basis for calculating of
medians, so these results may contribute to median circuits
too.

In the case of binary adders, we have not been able to dis-
cover a novel principle yet. The main problem might be
in relatively restricting representation, which on the other
hand offers a good level of evolvability. However, it is very
interesting to observe that genetic algorithm is able to find
a program for the construction of arbitrarily large adders
at the gate level completely from scratch, i.e. no particular
information about the embryo is known a priori. Moreover,
the instruction set (see Table 4) and the set of the logic gates
(see Table 3) have shown to be redundant. The evolutionary
process have selected only 3 instructions of 10 and 2 logic
functions of 4.

Although all the produced results can construct very large
circuits, which are fully functional, the question of usability
in real-world applications remains unanswered. A number
of developmental systems have been proposed to make the
evolutionary design scalable but only a few of them have
been applied to design objects more complex than we can
do without development. Besides that, our approach offers
a substantial improvement in the case of sorting networks.

6. CONCLUSIONS
A non-traditional method for automatic design of arbitrarily
large combinational logic circuits was presented. We have fo-
cused on the sorting networks and adders, which have shown
to be suitable for the developmental process. A simple in-
struction set was utilized to represent the rules of the devel-
opment. The experimental results showed the ability of the
genetic algorihm to (1) rediscover the principle of an already
known method and (2) improve the construction algorithm,
especially for the large sorting networks. Moreover, this is
the first case when the development was applied for the de-
sign of fully functional arbitrarily large logic circuits at the

gate level.

Still, the open questions are, for instance, whether it is pos-
sible to evolve general constructors for more efficient adders
(e.g. rediscovering the principe of carry-look-ahead adder)
or other arithmetic circuits. Is it necessary the constructed
circuit to be fully functional during development? How does
consideration of a suitable form of environment impact the
evolution? All these questions form a direction for our future
research. We do believe that application-specific evolution-
ary algorithms endowed with application-specific develop-
mental system will allow designers to discover novel design
principles for constructing other complex systems in near
future.

7. ACKNOWLEDGMENTS
The research was performed with the support of the Grant
Agency of the Czech Republic under No. 102/04/0737 Mod-
ern Methods of Digital Systems Design.

8. REFERENCES
[1] A. P. Shanthi et al. Development based evolution for

scalable, fault tolerant digital circuits. In Workshop on
Soft Computing (WoSCo 03), International
Conference on High Performance Computing (HiPC
03), pages 165–176, 2003.

[2] Anonymous. Technical report.

[3] P. J. Bentley. Fractal proteins. Genetic Programming
and Evolvable Machines, 5(1):71–101, March 2004.

[4] E. J. W. Boers and H. Kuiper. Biological metaphors
and the design of artificial neural networks, master
thesis. Technical report, Departments of Computer
Science and Experimental and Theoretical Psychology,
Leiden University, 1992.

[5] S.-S. Choi and B. R. Moon. More effective genetic
search for the sorting network problem. In Proc. of the
Genetic and Evolutionary Computation Conference
GECCO 2002, pages 335–342, New York, US, 2002.
Morgan Kaufmann.

[6] G. Tempesti et al. Ontogenetic development and fault
tolerance in the poetic tissue. In Proc. of the 5th Conf.
on Evolvable Systems: From Biology to Hardware
(ICES 2003), Lecture Notes in Computer Science, vol.
2606, pages 141–152, Berlin, DE, 2003.
Springer–Verlag.



[7] T. G. W. Gordon. Exploring models of development
for evolutionary circuit design. In 2003 Congress on
Evolutionary Computation, pages 2050–2057. IEEE
Press, 2003.

[8] T. G. W. Gordon and P. J. Bentley. Towards
development in evolvable hardware. In Proc. of the
2002 NASA/DoD Conference on Evolvable Hardware,
pages 241–250, Washington D.C., US, 2002. IEEE
Computer Society Press.

[9] H. de Garis et al. Atr’s artificial brain (cam-brain)
project: A sample of what individual “codi-1 bit”
model evolved neural net modules can do with digital
and analog i/o. In Proc. of the 1st NASA/DoD
Workshop on Evolvable Hardware, pages 102–110.
IEEE Computer Society Press, 1999.

[10] P. Haddow and G. Tufte. Bridging the
genotype–phenotype mapping for digital fpgas. In
Proc. of the 3rd NASA/DoD Workshop on Evolvable
Hardware, pages 109–115, Los Alamitos, CA, US,
2001. IEEE Computer Society.

[11] P. Haddow, G. Tufte, and P. van Remortel. Shrinking
the genotype: L-systems for ehw? In Proc. of the 4th
International Conference on Evolvable Systems: From
Biology to Hardware, Lecture Notes in Computer
Science, vol. 2210, pages 128–139. Springer–Verlag,
2001.

[12] W. D. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. Physica D,
42(1–3):228–234, June 1990.

[13] G. S. Hornby and J. B. Pollack. The advantages of
generative grammatical encodings for physical design.
In Proc. of the 2001 Congress on Evolutionary
Computation, pages 600–607. IEEE Computer Society
Press, 2001.

[14] L. Huelsbergen. Finding general solutions to the
parity problem by evolving machine-language
representations. In Proc. of the Genetic Programming
1998 Conference, pages 158–166, San Francisco, CA,
1998. Morgan Kaufmann.

[15] J. R. Koza et al. Genetic Programming III: Darwinian
Invention and Problem Solving. Morgan Kaufmann,
San Francisco, 1999.

[16] H. Juillé. Evolution of non-deterministic incremental
algorithms as a new approach for search in state
spaces. In Proc. of 6th Int. Conference on Genetic
Algorithms, pages 351–358. Morgan Kaufmann, 1995.

[17] H. Kitano. Designing neural networks using genetic
algorithms with graph generation system. Complex
Systems, 4(4):461–475, 1990.

[18] D. E. Knuth. The Art of Computer Programming:
Sorting and Searching (2nd ed.). Addison Wesley,
1998.

[19] S. Kumar. Investigating computational models of
development for the construction of shape and form,
phd thesis. Technical report, Department of Computer
Science, University College London, 2004.

[20] M. Murakawa et al. Evolvable hardware at function
level. In Proc. of the Parallel Problem Solving from
Nature IV, Lecture Notes in Computer Science, vol.
1141, pages 62–71, Berlin Heidelberg New York, 1996.
Springer.

[21] J. F. Miller and D. Job. Principles in the evolutionary
design of digital circuits – part i. Genetic
Programming and Evolvable Machines, 1(1):8–35,
April 2000.

[22] J. F. Miller and D. Job. Principles in the evolutionary
design of digital circuits – part i. Genetic
Programming and Evolvable Machines, 3(2):259–288,
July 2000.

[23] J. F. Miller and P. Thomson. Cartesian genetic
programming. In Proc. of the 3rd European
Conference on Genetic Porgramming, Lecture Notes in
Computer Science, vol 1802, pages 121–132, Berlin
Heidelberg New York, 2002. Springer.

[24] J. F. Miller and P. Thomson. A developmental
method for growing graphs and circuits. In Proc. of
the 5th Conf. on Evolvable Systems: From Biology to
Hardware (ICES 2003), Lecture Notes in Computer
Science, vol. 2606, pages 93–104, Berlin, DE, 2003.
Springer–Verlag.

[25] P. J. Bentley (ed.). Evolutionary Design by
Computers. Morgan Kaufmann, San Francisco, 1999.

[26] S. Kumar (ed.) and P. J. Bentley (ed.). On Growth,
Form and Computers. Elsevier Academic Press, 2003.

[27] M. J. Streeter, M. A. Keane, and J. R. Koza. Routine
duplication of post-2000 patented inventions by means
of genetic programming. In Proc. of the 5th European
Conference on Genetic Programming, Lecture Notes in
Computer Science, vol. 2278, pages 26–36, Kinsale,
Ireland, 2002. Springer-Verlag.

[28] J. Toressen. A scalable approach to evolvable
hardware. Genetic Programming and Evolvable
Machines, 3(3):259–282, September 2002.

[29] L. Wolpert. The Principles of Development. Oxford
University Press, Oxford, UK, 1998.

[30] X. Yao. Evolving artificial neural networks.
Proceedings of the IEEE, 87(9):1423–1447, September
1999.


