
EVOLUTIONARY DESIGN USING DEVELOPMENT

Michal Bidlo
Information Technology, 2nd year, full-time study

Supervisor: Lukáš Sekanina

Faculty of Information Technology, Brno University of Technology
Božetěchova 2, 612 66 Brno, Czech republic

bidlom@fit.vutbr.cz

Abstract. The first part of this paper introduces a new classification of developmental
systems used in the evolutionary design: (1) the infinite development and (2) the finite
development. Two sample applicaions are presented demonstrating the ability of this
approach to discover novel solutions in the area of the design of digital circuits. In
the second part, a formal model of a general developmental system is proposed and the
impact of environment on the complexity of the developing objects is investigated.

Keywords. Evolutionary design, development, environment, program, cellular automa-
ton, digital circuit, rewriting system, string complexity.

1 Introduction

In the recent years, biology-inspired design methods were utilized to solve many complex problems in
various engineering and scientific areas. The main advantages of these methods are: (1) the designer
designs the evolutionary algorithm, problem encoding and the evaluation function and the evolution-
ary design system executes autonomously in order to find the target solution and (2) the evolutionary
algorithm may discover totally new and innovative solutions which are out of the scope of the con-
ventional design techniques. The areas, in which the bio-inspired techniques have succeeded, include
mathematics, physics, mechanical engineering, electronics, computer science and others.

This paper deals with the the artificial systems, whose operation is inspired by the biological
principles of phylogeny, ontogeny and embryogeny, for the design of digital circuits. Phylogeny
concerns the temporal evolution of a genetic program, the hallmark of which is the evolution of a
species. The emergence of living organisms in nature is based upon the reproduction of the program
(genotype), subject to an extremely low error rate at the individual level. The evolutionary algorithm
is a basic computational model inspired by this process [1]. Ontogeny and embryogeny deal with the
development of multicellular organisms that is based on the successive division of the mother cell,
with each newly formed cell possessing a copy of the original genome, followed by a specialization
of the daughter cells in accordance with their environment. In the area of computer science and
engineering the term computational development (or development in short) is usually used to cover
both the processes of ontogeny and embryogeny. Typical computational models inspired by these
principles are cellular automata [8] and Lindenmayer systems [5]. With respect to the processes by
which our artificial design systems are inspired, we call them the evolutionary developmental systems.

The objective is to study various approaches to modeling the development in the area of computer
science. In Section 2 the common features of the existing developmental models are identified, an

original classification of the developmental systems is proposed and sample applications demonstrat-
ing the abilities of the evolutionary design of digital circuits are presented. Section 3 introduces a
formal concept of a general developmental system in which the environment can influence the devel-
opment of the target object and investigates the properties of the proposed approach with respect to
the theoretical computer science and computer engineering.

2 Classification of Developmental Systems

The problem of scale is probably the most limiting issue in the evolutionary design. It can be ex-
pressed as follows. As the complexity of the target system increases, the length of the chromosome
of the evolutionary algorithm increases entailing the search space to become enormously large and
the evolutionary algorithm is not able to explore it effectively.

In general, the aim of the development in the evolutionary design is to improve scalability of
evolution in order to obtain more complex designs. Moreover, adaptation, reproduction and self-
repair are the issues often involved in the artificial developmental process.

Considering the existing models of the development published so far, the following objectives
can be identified: (1) the developmental model is utilized in order to overcome the problem of scale
and (2) various properties of a specific developmental model are investigated in solving a particular
problem. In the first case, we can require the target system to “grow” (develop) for a (theoretically
infinite) number of iterations and to be fully functional in the defined iterations (developmental steps).
It means that the system can develop continually and infinitely. The second case includes the systems
in which we are usually interested in the “final object” that emerged by applying the developmental
rules or in the systems in which we do not require the endless development.

According to this classification, two basic approaches to the computational development can be
introduced, which represent the first main contribution of this work to the theory of the computational
development: (1) the infinite development and (2) the finite development. Note that the term infinite
development relates to the objects being developed rather than to the utilized developmental encoding.
This concept will be defined formally. The description of the infinite and finite development is based
on the fitness function which determines how the object under development fulfils the requirements
specified by the designer.

Definition 1 (infinite and finite development) Let (e, ∆) ∈ C be a chromosome of an evolution-
ary algorithm, where e ∈ S denotes an embryo, ∆ : S → S denotes a developmental algorithm, C
represents the space of chromosomes and S represents the space of candidate solutions. ∆ is said to
have been performing the infinite development, if and only if there is no finite integer k > 0, such
that Φ(∆d(e)) < Fd for all d > k, where Φ denotes a fitness function, d denotes the number of ap-
plications of ∆ and Fd represents a fitness value by which the solution ∆d(e) fulfils the requirements
specified by the designer. Otherwise, ∆ is said to have been performing the finite development.

With respect to the results obtained so far in the area of the evolutionary design, we can formulate
the following hypothesis related to the evolutionary design of digital circuits using the development.

Hypothesis 1 An evolutionary developmental system utilizing a form of the infinite or finite devel-
opment is able to discover innovative solutions in the area of the design of digital circuits.

In the following subsections, two sample applications will be presented utilizing the proposed
concept of the infinite and finite development. The first model intended to perform the infinite de-
velopment is based on repeated application of a program consisting of simple application-specific
instruction for the design of arbitrarily large well-scalable digital circuits. In the case of the finite
development a cellular automaton-based model was devised for the design of small combinational

circuits of various classes. The best experimental results will be presented demonstrating the validity
of the proposed hypothesis.

2.1 Experiments and Results of the Infinite Development

A special developmental encoding was devised for the evolutionary design of arbitrarily large well-
scalable combinational circuits at the gate level. Sorting and median networks, adders and parity
circuits were successfully designed. Moreover, polymorphic increasing/decreasing sorting networks
and odd/even parity circuits were evolved [3].

A trivial instance of the circuit is utilized at the beginning of the developmental process that rep-
resents the embryo. The developmental encoding utilizes a set of simple application-specific instruc-
tions which are intended to manipulate the building blocks of the circuit (copy the gates or modify
their input indices). A finite sequence of instructions represents a program (constructor) for the de-
velopment of the embryo. After a single application of the constructor on the embryo, a larger circuit
emerges. Then the constructor is applied on the result of the previous application and, again, larger
circuit is created and so on. The objective is to design (using the evolutionary algorithm) constructors,
which are able to create theoretically infinitely large circuit.

A perfect constructor was evolved for the sorting networks, whose properties are substantially
better in comparison with the conventional algorithms of the same class (insertion or selection prin-
ciple). The developed sorters possess lower number of comparative operations which imply lower
production cost, and shorter delay entailing faster sorting (see Figure 1) [7]. This result was classi-
fied as human-competitive in the international competition 2005 Human-Competitive Awards which
was held together with the Genetic and Evolutionary Computation conference (GECCO 2005) in
Washington D.C., US. Moreover, the evolved algorithm was proved to be general [2].

ev
en

−i
np

ut
 s

or
tin

g
ne

tw
or

k

N−1

N

N+1

N+2

4

3

2

1

 0 0

 100
 5000

 200
 10000

 300

 15000

 400

 20000

 500

 25000

 600

 30000

 50

 35000

 100 0 150 50 200 100 250 150

de
la

y
(#

pa
ra

lle
l l

ay
er

s)

 200
#inputs

conventional insertion/selection sorting networks

 250

optimized evolved sorting networks

#c
om

pa
ra

to
rs

#inputs

conventional insertion/selection sorting networks
optimized evolved sorting networks

(a) (b) (c)

Figure 1: (a) The principle of the best evolved constructor for even-input sorting networks, (b) the
number of comparators, (c) delay of these networks in comparison with the conventional approach.

2.2 Experiments and Results of the Finite Development

In contrast to the infinite development, in some cases we require (usually a single) target object to be
developed in a finite number of developmental steps without any interest in its functionality in the next
developmental steps. We were interested in the design of digital circuits in this case. For example,
2-bit multipliers, 6-input sorting networks or 14-bit parity circuits were successfully developed.

For the experiment of the finite development, a generative cellular automaton has been intro-
duced. This model works in the same way as the ordinary cellular automaton but the difference is that
the generative cellular automaton introduces a symbol associated with each rule of the local transition
function to be generated by the cells which apply these rules in order to determine the next state. For

the purposes of generating digital circuits, the number of cells of the automaton equals the number of
primary inputs of the target circuit. The symbols represent logic gates which are generated by each
cell during the development of the automaton. The inputs of the gates being generated are connected
to the primary inputs of the circuit to be designed in case of the first developmental step, otherwise
they are connected to the outputs of the gates generated in the previous developmental step.

Evolutionary algorithm was utilized to search the initial configuration of the generative cellular
automaton and the rules of the local transition function together with the gates to be generated. Since
uniform cellular automaton has been considered, the local transition function is identical for all the
cells. The number of states of the automaton and the number of developmental steps determining the
delay of the circuit to be developed were determined experimentally. Figure 2 shows the development
of the best evolved 2-bit multiplier possessing delay 2τ (the best currently known 2-bit multiplier
possesses delay 3τ [6]).

Figure 2: The development of the best evolved 2-bit multiplier using a generative cellular automaton
and the finite development. The cellular automaton with the initial configuration (1101) develops
according to the local transition function with each cell generating a logic gate as described in the left
side of the figure. The expression u v w → x represents the combination of the states of the cells
in the defined neighborhood followed by the new state of the middle cell. Note that zero-boundary
conditions are applied, i.e. the upper neighbor of the top cell and the lower neighbor of the bottom
cell are treated as zero-state cells.

3 Formal Concept of a General Developmental System

Many developmental models have been introduced in the area of computer science. However, only a
fraction of them considers an interaction of genotype or phenotype with an environment surrounding
the developmental system as usual in nature. Moreover, no formal concept of development has been
proposed yet.

We will introduce an original approach to the formal description of a general developmental sys-
tem which is intended as a basis for investigating various developmental models and their properties.
An environment surrounding the developing object and an algorithm determining rigorously the de-
velopmental process with respect to the environment will be introduced. The definition constitutes
the second main contribution of this work to the theory of the computational development.

Definition 3 (developmental system) A developmental system is a foursome ∆ = (D, E, e, M),
where D is a rewriting system (called D system – see [4]), E is a finite environment alphabet, e ∈ E∗

is an environment, where E∗ is the set of all strings over E, and M is a developmental algorithm. If
E = ∅, then e, in fact, does not exist and the system does not interact with the environment, otherwise
the system is said to have been developing in the environment e.

In fact, the D system can be expressed as a type-0 grammar which is able to represent an arbitrary
algorithm-based model. The developmental algorithm can be, for example, represented by a Turing

machine which is a general computational model, i.e. an arbitrary control of the developmental
process and the interaction with the environment can be established.

4 The Impact of Environment on the Complexity of Developed Objects

Our experience from nature and the experiments performed so far in this area suggest that the utiliza-
tion of the environment must lead to generating much more complex structures in comparison with
the case when no environment is considered. Therefore, the following hypothesis can be formulated.

Hypothesis 2 If an evolutionary developmental system utilizes a piece of information from the
chromosome (i.e. the genetic information) and another piece of information from environment (i.e.
an external information), then more complex entities can be evolved in comparison with the situation
when no environment is utilized and only the genetic information is considered for the development.

The evolutionary algorithm was utilized to design the rewriting rules of the D system and a finite
binary environment pattern repeating periodically along the string generated by the D system. The
developmental algorithm was determined a priori that controls deterministically the developmental
process and involves the environment whose symbol 0, respective 1 forbid, respective permit the
application of the rewriting rules at the given positions of the developed string. The objective was to
design such developmental system that generates as complex strings as possible from a single starting
symbol. The complexity is measured as the number of symbols (bytes) of the compressed string using
a LZW-based algorithm.

Experiments were conducted with the developmental system without the environment increasing
the number of rewriting rules. Then the evnironment was involved in the developmental process and
only two developmental rules were considered. The experimental results are shown in Figure 3 [4].

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 2 4 6 8 10 12 14 16

co
m

pl
ex

ity
 o

f d
ev

el
op

ed
 s

tri
ng

number of rewriting rules of D system

average string comlexity
minimal and maximal value

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70

co
m

pl
ex

ity
 o

f d
ev

el
op

ed
 s

tri
ng

length of environment pattern

average string comlexity
minimal and maximal value

(a) (b)

Figure 3: The dependence of the developed string complexity on (a) the number of rewriting rules of
the D system when no environment is considered and (b) the length of the binary environment pattern
when only two rewriting rules are considered.

5 Objectives of the Future Dissertation

On the basis of the previous research, I have decided to focus on the following issues related to
the area of the computational development: (1) To classify the developmental systems according to

the summary of the properties of existing developmental models. (2) To create a formal model of
a general developmental system. (3) To investigate various properties of developmental systems by
means of the formal model, especially the impact of environment on the complexity of developed
objects. (4) To investigate the properties and abilities of the formal model of development, especially
in the applications of the infinite development. (5) To demonstrate the contribution of the proposed
approach on selected problems utilizing the knowledges obtained in the previous objectives.

At this point, items 1, 2 and 3 have been finished. Item 5 has been partially solved and item 4 will
be investigated in the near future.

6 Conclusion

As obvious from section 2.1 and 2.2, both the approaches to the computational development (the in-
finite and the finite development) have shown to be able to construct the circuits that improve some
current conventional approaches, which confirms the hypothesis 1. Moreover, the experiments have
shown that the environment influences substantially the complexity of the developed objects. There-
fore, hypothesis 2 has been confirmed too.

Acknowledgment

The research was performed with the support of the Grant Agency of the Czech Republic in the
projects under No. 102/04/0737 Modern Methods of Digital System Synthesis and No. 102/05/H050
Integrated Approach to Education of PhD Students in the Area of Parallel and Distributed Systems.

References

[1] Bäck, T. , Fogel, D. B., Michalewicz, Z. (eds.): Evolutionary Computation, part 1 and 2, Institute
of Physics Press, Bristol UK, 2000.

[2] Bidlo, M., Bidlo, R., Sekanina, L.: Designing a Novel General Sorting Network Constructor
Using Articial Evolution, Proc. of the International Conference on Computational Intelligence,
2006 (submitted).

[3] Bidlo, M., Sekanina, L.: Providing Information From the Environment for Growing Electronic
Circuits Through Polymorphic Gates, Proc. of Genetic and Evolutionary Computation Confer-
ence – Workshops 2005, Association for Computing Machinery, pp. 242–248, 2005.

[4] Bidlo, M., Sekanina, L.: On Impact of Environment on the Complexity of Developed Objects,
Genetic Programming and Evolvable Machines, 2007 (submitted).

[5] Lindenmayer, A.: Mathematical Models for Cellular Interaction in Development, parts I and II,
Journal of Theoretical Biology, No. 18, pp. 280–315, 1968.

[6] Miller, J. F., Job, D.: Principles in the Evolutionary Design of Digital Circuits – part I, Genetic
Programming and Evolvable Machines, Vol. 1, No. 1, pp. 8–35, 2000.

[7] Sekanina, L., Bidlo, M.: Evolutionary Design of Arbitrarily Large Sorting Networks Using De-
velopment, Genetic Programming and Evolvable Machines, Vol. 6, No 3, pp. 319–347, 2005.

[8] von Neumann, J.: The Theory of Self-Reproducing Automata, A. W. Burks (ed.), University of
Illinois Press, 1966.

