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Abstract. In this paper two fundamental approaches to the computa-
tional development are introduced in connection with the evolutionary
design: the infinite development and the finite development. Both the
principles are defined formally and, moreover, two practical applications
are presented demonstrating the abilities of these non-traditional tech-
niques to design digital circuits. Finally, some key features of the pro-
posed approaches are highlighted.

1 Introduction

Nowadays the evolutionary algorithms are widely used to solve many complex
problems of the current science and engineering covering various fields (e.g. com-
puter science, electronics, mechanical engineering, physics etc.). Two basic ap-
plications of the evolutionary algorithms can be distinguished: (1) the evolution-
ary optimization and (2) the evolutionary design. While the first case usually
considers a working system for which a set of parameters are identified and
subsequently optimized using an evolutionary algorithm, the second case uses
evolutionary algorithms to explore the state space of designs related to a given
problem, i.e. the solution is constructed “from scratch” using the components
(building blocks) specified by the designer. Considering the diversity of the tar-
get structures (for example, electronic circuits, computer programs, buildings
etc.), the representation of the candidate solutions plays a big part.

In general, the problem is that as the task to be solved by means of an evolu-
tionary algorithm gets more complex, the amount of information increases that
is needed to encode the candidate solutions in the chromosome. Therefore, the
length of the chromosome increases, the search space becames enoumously large
and the evolutionary algorithm is not able to explore it effectively. This issue
is referred to as the problem of scale. This is particularly the difficulty in the
traditional evolutionary algorithms as typically there is a one-to-one relationship
between the genotype and the corresponding solution description. The standard
answer to such issues has been the addition of problem-specific knowledge into
the genetic representations. For example, we can do this by telling the computer



that subroutines, loops, symmetry, regularity or subdesigns are necessary. How-
ever, for very complex solutions we may not have any knowledge about the best
way how to solve the problem. And even if we do, by adding our own ideas about
how solutions should be constructed, we constrain evolution and prevent it from
finding alternatives [10].

Three major approaches have been developed so far to overcome the problem
of scale: functional level evolution [7], incremental evolution [12, 13] and the
embryonic approach (usually referred to as the development).

This paper deals with the development. Although it does not deal directly
with the techniques of the evolutionary algorithms themselves, the topic is im-
portant for both theory and practice of the evolutionary computation since it
enables us to investigate the features of the evolutionary algorithms in connec-
tion with a non-traditional mechanisms — the developmental models — in the
applications of the evolutionary design. The objective is to introduce a new clas-
sification of the developmental systems in the area of the evolutionary design:
the infinite development and the finite development. Both the approaches are
defined formally considering a general evolutionary algorithm in which a form of
development is applied. Considering the existing applications of the traditional
evolutionary design (without using the development), many innovative solutions
have been discovered so far in comparison with the conventional approaches (for
instance, see [4]). According to this fact, we could expect similar abilities in the
applications of the evolutionary design utilizing the development. Therefore, the
following hypothesis can be formulated.

Hypothesis The evolutionary design utilizing a form of development is able to
discover solutions which are unreachable using the traditional evolutionary de-
sign, possibly solutions which have not been known yet.

The paper is organized as follows. Section 2 briefly summarizes the basic
principles of the development. Section 3 introduces two fundamental approaches
to the computational development in connection with the evolutionary design:
the infinite development and the finite development. These techniques are de-
scribed in terms of theoretical computer science. The applications demonstrating
the abilities of both the approaches are presented in Section 4. Finally, the dis-
cussion of the features of the proposed principles and concluding remarks are
stated in Section 5.

2 Computational Development

In nature, the process of development is influenced by the genetic information of
the organism and the environment in which the process is carried out. Cells use
the mechanism of transcription and translation to read each gene and produce
the string of amino acids that makes up a protein. Proteins activate or suppress
synthesis of other genes, work as signals among cells, influence internal functions
of the cells and perform many other important roles. Therefore, they control the
growth, position and behavior of all cells [2].



In evolutionary algorithms (EA), the process of development (more precisely,
computational development [5]) is usually considered as a non-trivial genotype–
phenotype mapping. While genetic operators work with genotypes, the fitness
calculation is applied on phenotypes created by means of a developmental sys-
tem.

The utilization of the computational development is primarily motivated by
the fact that natural development is one of the phenomena which is primarily
responsible for the extraordinary diversity and sophistication of living creatures.
It is assumed that the computational development (inspired by natural develop-
ment) in connection with an evolutionary algorithm might be utilized to achieve
the evolution of complex artificial objects and other objectives desired by evolu-
tionary design systems, including adaptation, compacting genotypes, reduction
of search space, regulation, regeneration, repetition, robustness, evolvability, par-
allel construction, emergent behavior and decentralized control (as discussed in
[5]).

Computer science offers a number of suitable methods for modeling the de-
velopment. Probably the most popular are cellular automata [15], Lindenmayer
systems (L systems) [6], general rewriting systems (grammars) or application-
specific computer programs. These techniques can be considered as a basis for
the construction of more complicated developmental models.

For instance, Sekanina and Bidlo have created an instruction-based develop-
mental mapping for the evolutionary design of arbitrarily large sorting networks
using an iterative process – repeated application of an evolved program (a con-
structor) [11]. Haddow et al have applied the principles of L systems to the de-
velopment of digital circuits and presented an implementation platform enabling
on-chip evaluation of grown solutions [3]. Tufte and Haddow have presented the
evolutionary design of cellular computing machines implemented inside a FPGA
for the investigation of structural and functional properties generated by the
development of a cellular automaton [14].

3 Evolutionary Design Using Development

In classical evolutionary design the chromosomes (genomes) of the evolutionary
algorithm directly encode the candidate solutions of a given problem. For the
purposes of the fitness calculation the chromosome (genotype) is decoded in
order to obtain the candidate solution (phenotype) which is evaluated using the
fitness function. The process of decodig the genomes usually represents a one-
to-one mapping between the genotype (representation) space and the phenotype
(solution) space. For example, Miller’s Cartessian Genetic Programming directly
encodes the candidate solutions into the genome representation [9].

The development has been introduced into the artificial evolutionary process
in order to overcome the problem of scale. It usually represents a prescription
encoded in the chromosome (genotype) for the construction of a target object
(phenotype) from a trivial instance of the problem – an embryo. This type of
representation is referred to as the developmental encoding. Note that the embryo



can but need not be included in the chromosome, i.e. it can be either evolved
or it can be created by the designer as a constant part of the developmental
system. It is evident that this approach puts emphasis on the process of the
construction of the target object rather than the structure of the target ob-
ject itself which represents the main difference in comparison with the classical
evolutionary design.

3.1 Basic Approaches to the Development

During the investigation of existing models of the development, the following
objectives have been identified:

1. The development is utilized in order to overcome the problem of scale.
2. Various properties of a specific developmental model are investigated in solv-

ing a particular problem.

In the first case, we can require the target system to “grow” (develop) for a
(theoretically infinite) number of iterations and to be fully functional at each
moment of the development. It means that the system can develop continually
and infinitely. The second case includes the systems in which we are usually
interested in the “final object” which emerges by applying the developmental
rules, or the systems in which we do not require endless development.

According to this features, two basic approaches to the computational de-
velopment can be introduced: (1) the infinite development and (2) the finite
development. Since this is a new concept presented in the area of the evolu-
tionary design, more research is required to investigate it in more detail and
determine particular relations when applied in a specific developmental model.
In this paper the crucial definition will be introduced and, moreover, some ini-
tial features will be summarized which emerged from the experimental results
obtained so far.

Before introducing the formal definition of the concept, some basic elements
of an evolutionary algorithm and development need to be stated. Let C be a
representation space containing the chromosomes (genotypes) utilizing a form of
developmental encoding. In order to apply the embryonic approach described in
the second paragraph of this section, we will consider the representation space
C ⊆ S ×D, where S denotes a solution space containing the candidate solutions
(phenotypes) of a given problem and D represents a space of developmental
algorithms related to the selected developental encoding and the problem to be
solved. Note that the concept of the chromosome structure enables the embryo to
be evolved together with the developmental algorithm or it can be fixed (designed
a priori by the designer) depending on the genetic operators of the utilized
evolutionary algorithm. A chromosome actually comprises a pair (e,∆), where
e ∈ S denotes an embryo and ∆ ∈ D represents a developmental algorithm which
we will define formally as ∆ : S → S and for every si ∈ S: si+1 = ∆(si), where
si+1 ∈ S and ∆(si) denotes a developmental step. If s0 ∈ S, s1 = ∆(s0), s2 =
∆(s1), . . . , si = ∆(si−1) for arbitrary i > 0, then we define i-th iteration of ∆:



si = ∆i(s0) and call it the i-th developmental step, where s0 = e is an embryo
and si is called the i-th stage of the development of e. Finally, let F be the
space of fitness values. Then Φ : S → F denote a fitness function performing
the evaluation of the candidate solutions. The proposed concept is illustrated in
Figure 1.
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Fig. 1. The concept of genotype–phenotype mapping using the development

The description of the infinite and finite development is based on the fitness
function determining how the object under development fulfils the requirements
specified by the designer and utilizes the terms introduced in the previous para-
graph.

Definition 1 (The infinite development, the finite development). Let
(e,∆) ∈ C be a chromosome involving a developmental encoding. ∆ is said to
have been performing the infinite development, if and only if there is NO
finite integer k > 0, such that Φ(∆d(e)) < Fd for all d > k, where Fd represents
a fitness value by which the d-th stage of e (i.e. the candidate solution ∆d(e))
fulfils the requirements specified by the designer. Otherwise, ∆ is said to have
been performing the finite development.

The definition can be explained as follows:

1. If the target object stops working after a finite number of developmental
steps (it can continue the development but its functionality is not satisfac-
tory anymore in order to solve a given problem), then the development is
considered to be finite. In this case we are usually interested in the latest
working solution such that Φ(∆k(c)) ≥ Fk.

2. In case of the infinite development the target object can grow for unlimited
number of developmental steps preserving the ability to solve a given problem
in defined states of its development. It is evident that the target system need
not necessarily work properly after each developmental step. For example,
the developmental system can produce correct solutions after each second
developmental step, gradually in the steps d = 1, 3, 6, 10, 15, . . . or even in
each tenth stage after the hundredth stage depending on the developmental



encoding, the problem to be solved and the requirements specified by the
designer.

Note that the particular developmental models can be adapted to perform
either the infinite or the finite development. For instance, cellular automata can
develop endlessly or can perform only a given finite number of developmen-
tal steps, computer programs can be executed repeatedly and iteratively etc.
Therefore, the terms infinite development and finite development relates to the
functionality of the objects being developed rather than to the utilized develop-
mental encoding.

4 Applications of the Infinite and Finite Development

In this section two applications of the basic approaches to the development will
be presented from the area of the evolutionary design of digital circuits. First,
an application of the evolutionary design of arbitrarily large sorting networks
will be proposed (the infinite development). The second application deals with
the evolutionary design of combinational circuits with a given number of inputs
(the finite development).

4.1 Evolutionary Design of Arbitrary Even-Input Sorting Networks
Using the Infinite Development

A genetic algorithm has been used to design a constructor (a program) that
is able to create a larger sorting network from a smaller sorting network (the
smallest one is called the embryo). The constructor — directly represented by the
chromosome — is a finite sequence of instructions, each of which is encoded as
three integers: operation code, arg. 1 and arg. 2. The instruction set is described
in Tab. 1.

Table 1. Instruction set utilized in the development. Let [c; d] be a comparator. By
applying an instruction to it, a new comparator [c′; d′] is created. Experiments have
shown to be useful to put [c′; d′] into the newly created sorting network only if c′ <

d′
∧ c′ < N ∧d′

≤ N . N denotes the number of inputs of the emerging sorting network,
ip, ep and np represent instruction pointer, embryo pointer and next-position pointer
respectively.

Instruction Arg1 Arg2 Description

0: ModS a b c′ = c + a, d′ = d + b, ip = ip + 1, np = np + 1
1: ModM a b c′ = c + a, d′ = d + b, ip = ip + 1, np = np + 1, ep = ep + 1
2: CpS k − copy N − k comparators, ip = ip + 1, np = np + N − k

3: CpM k − copy N − k comparators, ip = ip + 1, np = np + N − k,

ep = ep + N − k



Table 2. The number of comparators and delay of the sorting networks created by
means of the evolved constructor in comparison with the conventional algorithm

#inputs 6 8 10 12 14 16 18 20 22 24 26 28

Evolved #comp. 12 22 35 51 70 92 117 145 176 210 247 287
Conv. #comp. 15 28 45 66 91 120 153 190 231 276 325 378
Evolved delay 6 9 12 15 18 21 24 27 30 33 36 39
Conv. delay 9 13 17 21 25 29 33 37 41 45 49 53

First, the constructor is applied to the embryo in order to build a larger sort-
ing network. Then the same constructor is applied to this sorting network and
larger circuit emerges again. This approach can be repeated so that the sorting
network “grows” continually and infinitely (see Fig. 2). The goal is to obtain a
valid sorting network after each constructor application. The constructor pos-
sessing this ability is said to be a general constructor. A single application of the
constructor represents a developmental step. The difference between the number
of inputs of two neighbouring sorting networks during the development denotes
the size of the developmental step. Note that the sorting network resulted from
the application of the constructor contains all the comparators of its predeces-
sor. Fintess value is computed as the sum of the number of test vectors sorted
correctly using the resulting SN after each developmental step. Since it is not
possible to verify all the sorting networks, only three developmental steps are
considered for the fitness calculation. For instance, using a 4-input embryo and
the developmental step of size 2, Fitness = F (6) + F (8) + F (10), where F (i) is
the number of test vectors sorted correctly by the developed i-input sorting net-
work. The generality of the evolved constructors is verified for the construction
of up to 28-input sorting networks.
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Fig. 2. The principle of designing larger sorting networks from smaller sorting networks
by means of a constructor. The growth of the SN is illustrated using the best evolved
constructor Γ=(ModS 2 2)(ModS 4 4)(ModS 3 4)(ModM 2 3)(ModM 2 0)(CpM 4
2)(ModS 2 2)(CpM 4 4). The initial configuration of pointers is shown.



Figure 2 shows the principle of the developmental method and the growth of
the sorting network using the best evolved constructor. A 4-input embryo was
utilized. The embryo was designed a priory by the designer and is not the subject
of evolution. The instructions are exetuted sequentially; the instruction pointed
by instruction pointer (ip) processes the comparator pointed by embryo pointer
(ep) and the resulting comparator is placed to the first free position pointed by
next-position pointer (np). After executing an instruction, the pointers are up-
dated according to Tab. 1. A developmental step is finished if the last instruction
of the constructor is executed or the end of embryo is reached (ep = ee). At the
beginning of the developmental process, ep and ip are initialized to 0, ee and np

are set to the first free position. After each developmental step, ip is initialized
to 0, ep and np keep their values resulted from the last developental step and ee

is set to the first free position.
The constructors were evolved as variable-length chromosomes. The following

setting of the evolutionary system was determined experimentally to solve the
given task. A simple genetic algorithm was utilized with population size 60,
crossover 0.7 and mutation 0.023. Using this setting 100 independent experiments
were conducted from which 40 general constructors were evolved.

The sorting networks produced by the best evolved constructor contain re-
dundant comparators (in Fig. 2, the marked comparators at positions 5 and
13). However, these comparators can be removed from the SN without any loss
of functionality. After their removal, the delay of sorting networks is reduced
substantially and, moreover, they require less comparators in comparison with
conventional SNs. Table 2 survey the properties of the evolved sorting networks
in comparison with the conventional insertion/selection principle. Note that this
constructor has been proved to be general, i.e. able to create theoretically in-
finitely large sorting network [1].

4.2 Evolutionary Design of Combinational Circuits Using the Finite
Development

As an example of developmental encoding realizing the finite development, a
generative cellular automaton will be introduced. Generative cellular automaton
(GCA) has been devised in order to generate various structures by means of a
cellular automaton. GCA comprises an ordinary cellular automaton (CA) whose
each rule of the local transition function is associated with symbol to be generated
by a cell which applys the rule in order to determine its next state. Since the cells
of the automaton operate synchronously (in parallel), one symbol is generated by
each cell at each developmental step of the CA. The symbols can be interpreted
in an arbitrary manner depending on a particular application.

For the purposes of generating digital circuits, the following settings of the
developmental system was chosen. The generative one-dimensional cellular au-
tomaton consisting of a linear structure of z cells (z ≥ 1) is intended to generate
a combinational circuit of z inputs. The next state of each cell depends on the
state of itself and the states of its two immediate neighbors. The symbols of
the form (F i1 i2) generated by the cells represent logic gates, where F denotes



the logic function, 1 ≤ i1 ≤ z and 1 ≤ i2 ≤ z denote the indices determining
the connection of inputs of the gate. Only basic one-input and two-input logic
gates and wires are considered, each of them contains just one output. Every
cell generates just one gate in each developmental step of the GCA, i.e. z inde-
pendent components (one level of the circuit) is created in each developmental
step. Therefore, the number of developmental steps determines delay of the cir-
cuit. In case of the first developmental step (d = 1) the inputs of the gates
being generated are connected to the primary inputs of the circuit, otherwise
(for d = i, i > 1) they are connected to the outputs of the gates generated in the
previous developmental step (d = i− 1). Feedback is not allowed. Note that this
developmental model does not explicitly use any embryo. The target circuit is
created “from scratch” according to the development of the cellular automaton
whose cells generate the logic gates. Figure 3 shows the principle of the GCA on
an example of the development of 2-bit multiplier.

Fig. 3. The development of the best evolved 2-bit multiplier using a generative cellular
automaton and the finite development. Note that zero boundary conditions are applied,
i.e. the upper neighbor of the top cell and the lower neighbor of the bottom cell possess
the states 0. For example, the NAND gate in the first level of the circuit is generated
using the rule 010 of the local transition function determining the next state of the
bottom cell to be 1, the XOR gate in the second level of the circuit is generated using
the rule 012 determining the next state of the second cell to be 2 and so on.

An evolutionary algorithm was utilized for searching the initial configuration
of the generative cellular automaton and the rules of the local transition function
together with the gates to be generated. Since uniform cellular automaton is
considered, the local transition function is identical for all the cells. The number
of states of the automaton and the number of developmental steps for a circuit
to be developed were determined experimentally. The chromosome consists of z

state fields representing the initial configuration of the GCA followed by |Q|3

fields of the local transition function of the form (qt+1, F, i1, i2) successively for
every combination of states in the 3-cell neighborhood. |Q| denotes the number
of states, qt+1, F , i1 and i2 denote the next cell state, logic function of the
gate and indices of its two inputs, respectively. The setting of the evolutionary
agorithm was determined experimentally as follows. A simple genetic algorithm
was utilized working over a population of 100 chromosomes using the tournament
selection operator of base 4. Each chromosome was mutated with the probability



0.98. The crossover operator was not applied since it showed to slow down finding
a solution. This is probably due to the complicated structure of the chromosomes
containing both the initial state of the cellular automaton and the local transition
function.

This developmental method succeeded in the design of many classes of digital
circuits. While the best known conventional and evolved 2-bit multipliers possess
delay 3 (see [8]), the best solution developed by means of the evolved GCA
possesses delay 2 thereby the best solution known so far was improved (see
Figure 3). Other circuits developed successfully using this method include 4-
bit full adders, 6-bit sorters, 7-bit median networks or 14-bit parity circuits.
Properties of these circuits are comparable with the respective best conventional
solutions.

Unfortunately, this approach is not scalable since the time needed for the
circuit evaluation increases exponentially with its number of inputs. Moreover,
circuits with complex internal structure were more difficult to develop by means
of this method. Although cellular automata, in general, are able to perform the
infinite development, there is a question of suitable circuit representation in order
to be able to grow infinitely.

5 Conclusions

In this paper an ongoing research has been presented related to the utilization of
developmental mapping in the evolutionary algorithms. Two basic approaches to
the development in the area of the evolutionary design have been identified: the
infinite development and the finite development. This concept has been defined
formally and, moreover, two sample applications for the evolutionary design of
digital circuits have been presented.

Since the development has been intended as a possible technique for improv-
ing scalability in the evolutionary design, the new classification presented in this
paper can outline some of the abilities and limits of this method. These features
can be summarized as follows:

1. The applications of both the infinite and finite development have shown
the ability to discover novel solutions which have not been known yet and
improve some conventional solutions in chosen area (in this case the evolu-
tionary design of digital circuits).

2. The infinite development is able to solve types of problems which are out of
the scope of the traditional evolutionary design (without the development).
The application of the evolutionary design of arbitrary even-input sorting
networks has demonstrated this feature. The evolution has been able to find
the solution not only for one instance but for all the instances of the problem.
This is unreachable by means of the traditional evolutionary design because
of the infinite hierarchy of the sorting networks which is impossible to encode
in a finite-length chromosome.

3. In general, the solutions discovered using the infinite development exhibit
a high degree of regularity (see Figure 2 and [11]), which is a significant



feature enabling the target object to develop continually and theoretically
infinitely according to a finite prescription. However, it usually constrains
the evolutionary process and prevents it from finding effective solutions.

4. There have not been any real-world results yet demonstrating the ability of
the finite development to overcome the problem of scale in a significant way.
The existing experiments have shown the quality of the developed solutions
comparable with the traditional evolutionary design. However, the evolution-
ary process utilizing a form of finite development still exhibit a substantial
impact of the problem of scale.

Despite the problems and restrictions highlighted in the previous paragraph,
the utilized techniques of development have shown a potential to solve various
engineering problems. Considering the ability of discovering novel solutions (see
item 1) and the solutions which are impossible to find without the infinite devel-
opment (see item 2), we can state the confirmation of the hypothesis formulated
in the Introduction which poses a significant contribution to the theory and prac-
tice of this field. In particular, the applications of the evolutionary computation
for solving all the instances of a given problem is still a rare case in contemporary
science. Therefore, the next research will be focused on the developmental en-
codings suitable for the infinite development, applications of the developmental
techniques in other fields (e.g. computer graphics, iterative computations, math-
ematics and so on) and investigation of the theoretical aspects of the proposed
concept.
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