
Evolutionary Design of Generic Combinational

Multipliers Using Development

Michal Bidlo

Brno University of Technology, Faculty of Information Technology
Božetěchova 2, 61266 Brno, Czech republic

bidlom@fit.vutbr.cz

Abstract. Combinational multipliers represent a class of circuits that
is usually considered to be hard to design by means of the evolution-
ary techniques. However, experiments conducted under the previous re-
search demonstrated (1) a suitability of an instruction-based develop-
mental model to design generic multiplier structures using a parametric
approach, (2) a possibility of the development of irregular structures by
introducing an environment which is considered as an external control of
the developmental process – inspired by the structures of conventional
multipliers and (3) an adaptation of the developing structures to the
different environments by utilizing the properties of the building blocks.
These experiments have represented the first case when generic multi-
pliers were designed using an evolutionary algorithm combined with the
development. The goal of this paper is to present an improved develop-
mental model working with the simplified building blocks based on the
concept of conventional generic multipliers, in particular, adders and ba-
sic AND gates. We show that this approach allows us to design generic
multiplier structures which exhibit better delay in comparison with the
classic multipliers, where adder represents a basic component.

1 Introduction

The design of combinational multipliers has been often concerned as a non-trivial
task for demonstrating the capabilities of evolutionary systems. Gate-level rep-
resentation has been usually utilized whose search space is typically rugged and
hard to explore using the evolutionary algorithms. In case of applying a direct
encoding (a non-developmental genotype–phenotype mapping) it is extremely
difficult to achieve scalability of the evolved solutions, i.e. to obtain larger in-
stances of the circuits, for example, when the traditional Cartesian Genetic Pro-
gramming (CGP) is utilized [1]. Therefore, more effective representations have
been investigated in order to overcome these issues and, in general, improve the
scalability and evolvability of digital circuits, as summarized in the following
paragraph.

Miller et al outlined the principles in the evolutionary design of digital circuits
and showed some results of evolved combinational arithmetic circuits, including
multipliers, in [2]. A detailed study of the fitness landscape in case of the evolu-
tionary design of combinational circuits using Cartesian Genetic Programming



is proposed in [3]. 3 × 3 multipliers constitute the largest and most complex
circuits designed by means of traditional CGP in these papers. Vassilev et al
utilized a method based on CGP which exploits redundancy contained in the
genotypes. Larger (up to 4 × 4 bits) and more efficient multipliers were evolved
by means of this approach in comparison with the conventional designs [4]. Vas-
silev and Miller studied the evolutionary design of 3× 3 multipliers by means of
evolved functional modules rather than only two-input gates [5]. Their approach
is based on Murakawa’s method of evolving sub-circuits as the building blocks of
the target design in order to speed up and improve the scalability of the design
process [6]. Torresen applied the partitioning of the training vectors and the par-
titioning of the training set approach (so-called increased complexity evolution
or incremental evolution) for the design of multiplier circuits. His approach was
focused on improving the evolution time and evolvability rather than optimizing
the target circuit. 5 × 5 multipliers were evolved using this method [7]. Stomeo
et al devised a decomposition strategy for evolvable hardware which allows to
design large circuits [8]. Among others, 6× 6 multipliers were evolved by means
of this approach. Aoki et al introduced an effective graph-based evolutionary
optimization technique called Evolutionary Graph Generation [9]. The poten-
tial capability of this method was demonstrated through experimental synthesis
of arithmetic circuits at different levels of abstraction. 16 × 16 multipliers were
evolved using word-level arithmetic components (such as one-bit full adders or
one-bit registers).

An instruction-based developmental system was introduced in [10] for the
design of arbitrarily large multipliers. Genetic algorithm was utilized to evolve a
program for the construction of generic multipliers using a parametric approach.
Basic AND gates and higher building blocks based on one-bit adder were utilized.
A concept of environment (an external control of the developmental process) was
introduced in order to design irregular structures. An interesting phenomenon of
adaptation to different environments was observed. The results presented in [10]
pose the first case when generic multipliers were evolved using the development.

In this paper an improved developmental model is presented that is based on
the system introduced in [10]. Simplified building blocks are utilized in order to
clarify the circuit structure and not to restrict the search space (only basic AND
gates and pure half and full adders are considered). The adaptation is exploited
(as discussed in [10]) for the design of different circuit structures depending on
the environment chosen. In particular, the experiments are devoted to the design
of carry-save multipliers which exhibit shorter delay in comparison with the
classic multipliers as described in [11]. Note that the evolutionary development
of classic generic multipliers was introduced in [10].

2 Biologically Inspired Development

In nature, the development is a biological process of ontogeny representing the
formation of a multicellular organism from a zygote. It is influenced by the ge-



netic information of the organism and the environment in which the development
is carried out.

In the area of computer science and evolutionary algorithms in particular,
the computational development has been inspired by that biological phenomena.
Computational development is usually considered as a non-trivial and indirect
mapping from genotypes to phenotypes in an evolutionary algorithm. In such
case the genotype has to contain a prescription for the construction of a target
object. While the genetic operators work with the genotypes, the fitness calcu-
lation (evaluation of the candidate solutions) is applied on phenotypes created
by means of the development. The utilization of environment in the computa-
tional development may be understood as an external information (in addition
to the genetic information included in the genotype) and as an additional control
mechanism of the development. The principles of the computational development
together with a brief biological background are summarized in [12].

3 Development of Efficient Generic Multipliers

The method of the development is inspired by the construction of conventional
combinational multipliers for which generic algorithms exist. Figure 1 shows two
typical designs of a 4 × 4 multiplier constructed by means of the conventional
approach [11]. It is evident that the circuits contain parts which differ from the
rest of the circuit, i.e. they represent a kind of irregularity. In particular, it is
a case of the first level (“row”) of AND gates occuring in both multipliers in
Fig. 1a,b and the last level of adders occuring in the carry-save multiplier (Fig.
1b). However, the rest of the circuit structure exhibits a high level of regularity
that can be expressed by means of an iterative algorithm utilizing variables and
parameters related to a given instance of the multiplier. For example, the number
of bits of the operands determines the number of AND gates and adders in the
appropriate circuit level or the number of levels of the multiplier. Theferore, this
concept is assumed to be convenient for the design of generic multipliers using
the development and an evolutionary algorithm.

Experiments were conducted under the previous research dealing with the
evolutionary design of generic multipliers using an instruction-based develop-
mental model [10]. The building blocks utilized in that method include an adder
put together with a basic AND gate which, however, may pose an unsuitable
approach preventing the evolution from finding better solutions. Nevertheless,
general programs were evolved for the construction of multipliers whose struc-
ture corresponds to that of the classic combinational multiplier shown in Fig.
1a. The obtained results showed the possibility of designing generic multipliers
using an evolutionary algorithm with the development which gave rise an in-
teresting area deserving of future investigation. Therefore, new features of the
developmental model will be introduced in this paper in order to design more ef-
ficient multipliers than that were evolved in [10]. The approach presented herein
is based on the structure of the carry-save multiplier (see Fig. 1b) which exhibit
shorter delay in comparison with the classic multiplier shown in Fig. 1a [11].



FA HA

FA FA

a0 1a 2a 3a

a0 1a 2a 3a

a0 1a 2a 3a

b0 b0 b0 b0

b1 b1 b1 b1

b2 b2 b2 b2

b3 b3 b3 b3

0p 1p 2p 3p 4p 5p 6p 7p

HA FA

HA FA

HA FA FA FA

a0 1a 2a 3a

HA

FAFA

HA HA

FA

FA FA FA

FAHA FA

a0 1a 2a 3a

a0 1a 2a 3a

a0 1a 2a 3a

a0 1a 2a 3a

b0 b0 b0 b0

b1 b1 b1 b1

b2 b2 b2 b2

b3 b3 b3 b3

0p 1p 2p 3p 4p 5p 6p 7p

(a) (b)

Fig. 1. 4 × 4 conventioanl multipliers: (a) classic combinational multiplier, (b) more
efficient carry-save multiplier. a0, . . . , a3, respective b0, . . . , b3 denote the bits of the
first, respective the second operand, p0, . . . , p7 represent the bits of the product.

In particular, simplified building blocks will be introduced including only basic
AND gates and pure one-bit adders and an enhanced instruction for creating the
circuit structure will be presented that is able to generate two building blocks
at a time — in addition to the single-block generative instruction introduced in
[10] — due to the increased complexity of the construction algorithm needed for
the design of generic multiplier structure using the simplified building blocks.

4 Instruction-Based Developmental System

A simple two-dimensional grid consisting of a given number of rows and columns
was chosen as a suitable structure for the development of the target circuits. The
building blocks are placed into this grid by means of a developmental program.
In order to handle irregularities, an external control of the developmental process
has been introduced that is called an environment.

A building block represents a basic component of the circuit to be developed.
The general structure of the block is shown in Figure 2a. Each building block
contains three inputs from which one or two may be unused depending on the
type of the block. There are two outputs at each building block from which one
may be meaningless, i.e. permanently set to logic 0, depending on the block
type. The outputs are denoted symbolically as out0 and out1. In case of the
block containing only one output, out0 represents the effective output and out1
is permanently set to logic 0. The circuit is developed inside a grid (rectangular
array) which proved to be a suitable structure for the the design of combinational
multipliers (see Figure 2b). Figure 3 shows the set of building blocks utilized for



the experiments presented in this paper. For the interconnection of the blocks the
position (row, col) in the grid is utilized. The inputs of the blocks are connected
to the outputs of the neighboring blocks by referencing the symbolic names of the
outputs or via indices to the primary inputs of the circuit, depending on the block
type. Feedback is not allowed. For example, out1(row, col − 1) means that the
input of the block at the position (row, col) in the grid is connected to the output
denoted out1 of the block on its left-hand side. The connections to the primary
inputs are determined by the indices v0 and v1. Let A = a0a1a2, B = b0b1b2

represent the primary inputs (operands A and B) of a 3 × 3 multiplier. For
instance, an AND gate with v0 = 1 and v1 = 2 has its inputs connected to the
second bit (a1) of operand A and the third bit (b2) of operand B. In case of the
building blocks at the borders of the grid (when row = 0 or col = 0), where no
blocks with valid outputs occur (for row − 1 or col − 1), the appropriate inputs
of the blocks at (row, col) are set to logic 0.

position in the grid
(row, col)

block type

ro
w

colinputs

outputs

out0 out1

(0,0)

(m−1,n−1)

(a) (b)

Fig. 2. (a) Structure of a building block. (row, col) determines the position of the
block in the grid – see part (b). The connection of the inputs depends on the type and
position of the block. (b) A grid of the building blocks with m rows and n columns for
the development of generic multipliers.

(row, col)
ID−1

out0

out0(row−1, col)

(row, col)
ID−2

ou
t1

(r
ow

, c
ol

−1
)

out0

v1v0

out0
sum cout

out0 out1

(row, col)
HA−1

out0(row−1, col)
out0(row−2, col)

sum cout
out0 out1

(row, col)
HA−2

ou
t1

(r
ow

, c
ol

−1
)

out0(row−1, col)

sum cout

ou
t1

(r
ow

, c
ol

−1
)

out0 out1

out0(row−1, col)
out0(row−2, col)

(row, col)
FA−1 FA−2

(row, col)

sum cout
out0 out1

out0(row−1, col)
out0(row−2, col)

ou
t1

(r
ow

−2
, c

ol
−1

)

FA−3
(row, col)

sum cout
out0 out1

out1(row−1, col−1)
out0(row−1, col)

ou
t1

(r
ow

, c
ol

−1
)

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3. Building blocks for the development of generic multipliers. (a, b) buffers –
identity functions, (c) AND gate, (d, e) half adders, (f, g, h) full adders. (row, col)
denotes the position in the grid. v0 and v1 determine indices of primary input bits.
Connection of different inputs of the blocks are shown. Unused inputs and outputs are
not depicted (set to logic 0). Note that the full adders (g, h) are new to this paper and
are inspired by and intended for the design of carry-save multipliers.



The development of the circuit is performed by means of a developmental

program. This program, which is the subject of evolution, consists of simple
application-specific instructions. The instructions make use of numeric literals
0, 1, . . . ,max value, where max value is specified by the designer at the begin-
ning of evolution. In addition to the numeric literals, a parameter and some
variables of the developmental system can be utilized. The parameter represents
the width (the number of bits) of the operands – inputs of the multiplier. The
parameter is referenced by its symbolic name w, whose value is specified by the
designer at the beginning of the evolutionary process. For example, in case of
designing a 4 × 4 multiplier, the parameter possesses this value, i.e. w = 4. The
value of the parameter is invariable during the evolutionary process. There are
four variables integrated into the developmental system denoted v0, v1, v2 and v3,
whose values are altered by the appropriate instructions during the execution of
the program (developmental process). Table 1 describes the instruction set uti-
lized for the development. The SET instruction assigns a value determined by
a numeric literal, parameter or another variable to a specified variable. Instruc-
tions INC, respective DEC are intended for increasing, respective decreasing the
value of a given variable. The difference can be specified only by a numeric lit-
eral. Simple loops inside the developmental program are provided with the REP
instruction whose first argument determines the repetition count and the sec-
ond argument states the number of instructions after the REP instruction to be
repeated. Inner loops are not allowed, i.e. REP instructions inside the repeated
code are interpreted as NOP (no operation) instructions. The GEN instruction
generates one or two building blocks of the type specified by its arguments. If
(row, col) do not exceed the grid boundaries, the block is generated at that posi-
tion. In case of generating two blocks, the second one is placed to (row+1, col). If
the grig boundary exceeds, no block is generated out of the grid. The possibility
of generating two building blocks during an execution of the GEN instruction
represents a new feature introduced in this paper in comparison with the system
presented in [10], where only one block could be generated. This variant has been
chosen in order to reduce the complexity of the developmental process when the
simplified building blocks have been introduced. Note that this approach does
nowise restrict the capabilities of the construction algorithm because the number
and types of the blocks to be generated are determined independently by means
of the evolutionary algorithm. In case of generating an AND gate, its inputs are
connected to the primary inputs indexed by the actual values of variables v0, v1

as shown in Figure 3c. If v0 or v1 exceeds the bit width of the operands, the
appropriate input of the AND gate is connected to logic 0. The inputs of the
other building blocks are determined by the position (row, col) in the grid they
are generated to. After executing GEN, col is increased by one.

In fact, the developmental program may consist of several parts, which may
consist of different number of instructions. Let us define the length of a program
(or a part of a program) as the number of instructions it is composed of. These
parts are executed on demand with respect to an environment. A single execu-
tion of a part of program is referred to as a developmental step. The meaning



Instruction Arguments Description

0: SET variable, value Assign value to variable. variable ∈ {v0, v1, v2, v3},
value ∈ {0, 1, . . . , max value, w, v0, v1, v2, v3}.

1: INC variable, value Increase variable by value. variable ∈ {v0, v1, v2, v3},
value ∈ {0, 1, . . . , max value}.

2: DEC variable, value If variable ≥ value, then decrease variable by value.
variable ∈ {v0, v1, v2, v3}, value ∈ {0, 1, . . . , max value}.

3: REP count, number Repeat count-times number following instructions. All
REP instructions in number following ones are interpre-
ted as NOP instructions (inner loops are not allowed).

4: GEN block1, block2 Generate block1 to the actual position (row, col). If
block2 is non-emty block, generate block2 to (row + 1,
col). Increase col by 1.

5: NOP An empty operation.
Table 1. Instructions utilized for the development

of the environment is to enable the system to develop more complex structures
which may not be fully regular. The environment is represented by a finite se-
quence of values specified by the designer at the beginning of the evolution, e.g.
env = (0, 1, 2, 2). The number of different values in the environment corresponds
to the number of parts of the developmental program. In addition, there is an
environment pointer (let us denote it e) determining a particular value in the
environment during the development time. Each part of the program is executed
deterministically, sequentially and independently on the others according to the
environment values. However, the parameter and the variables of the develop-
mental system are shared by all the parts of program.

At the beginning of the evolutionary process the value of the parameter w and
the form of the environment env are defined by the designer. The developmental
program, whose number of parts and their lengths are also specified a priori by
the designer, is intended to operate over these data in order to develop multiplier
of a given size. As evident, the different sizes of multipliers are created by setting
the parameter and adjusting the environment. Hence the circuit of a given size is
always developed from scratch; it is a case of parametric developmental design.
The following algorithm will be defined in order to handle the developmental
process.

1. Initialize row, col, v0, v1, v2, v3 and e to 0.

2. Execute env(e)-th part of program.

3. If a GEN instruction was executed, increase row by 2 in case of generat-
ing two building blocks simultaneously or by 1 if only single blocks were
generated. Increase e by one and set col to 0.

4. If neither e, nor row exceed, go to step 2.

5. Evaluate the resulting circuit.



5 Evolutionary System Setup

A chromosome consists of a linear array of the instructions, each of which is
represented by the operation code and two arguments (the utilization of the
arguments depends on the type of the instruction). The array contains n parts
of the developmental program stored in sequence, whose lengths (the number of
instructions) correspond to l0, l1, . . . , ln−1. The number of the parts and their
lengths are determined by the designer. In general, the structure of a chromosome
can be expressed as i0,0i0,1 . . . i0,l0−1; . . . ; in−1,0in−1,1 . . . in−1,ln−1−1, where ij,k
denotes the k-th instruction of j-th part of program for k = 0, 1, . . . , lj − 1
and j = 0, 1, . . . , n − 1. During the application of the genetic operators the
parts of the program are not distinguished, i.e. the chromosome is handled as a
single sequence of instructions. The chromosomes possess constant length during
the evolution. The population consists of 32 chromosomes which are generated
randomly at the beginning of evolution. Tournament selection operator of base
2 is utilized.

Mutation of a chromosome is performed by a random selection of an instruc-
tion followed by a random choice of a part of the instruction (operation code
or one of its arguments). If the operation code is to be mutated, entire new
instruction will replace the original one, otherwise one argument is mutated.
The mutation algorithm ensures proper values of arguments depending on the
instruction type (see Table 1). The mutation is performed with the probability
0.03, only one instruction per chromosome is mutated.

A special crossover operator has been applied with probability 0.9, working
as follows. Two parent chromosomes are selected and an instruction is selected
randomly in each of them (i1, i2). A position (index) is chosen randomly in each
of the two offspring (c1, c2). After the crossover, the first, respective the second
offspring contains the original instructions from the first, respective the secont
parent with the exception of i1, respective i2, which is put at the position c2 in
the second offspring, respective c1 in the first offspring.

The fitness function is calculated as the number of bits processed correctly
by the multiplier developed by means of the program stored in the chromosome.
The experiments were conducted with the evolution of programs for the con-
struction of 4 × 4 multipliers, i.e. the parameter w = 4. There are 24+4 = 256
possible test vectors and the multipliers produce 8-bit results. Therefore, the
maximum fitness representing a working solution equals 256 · 8 = 2048. After
the evolution the resulting program is verified in order to determine whether it is
able to create larger multipliers, typically up to the size 14×14 bits. This size of
circuit was determined experimentally, allowing to perform a sufficient number
of developmental steps for demonstrating the correctness of the evolved program
and keeping a reasonable verification time. If a program shows this ability, it will
be considered as general.



6 Experimental Results and Discussion

The experiments were devoted to the design of carry-save multipliers which
exhibit better properties in comparison with the classic multipliers. In [10] an
external information called an environment was introduced into the development
for additional control of the developmental process. Moreover, an ability of adap-
tation of the design to different environments was observed allowing to create
different multiplier structures. This feature was utilized in the experiments pre-
sented herein in order to investigate the ability of the evolutionary design system
to construct carry-save multipliers. The selection of the evolved programs and
circuits presented in this paper is based on their generality (i.e. the ability to
construct generic multipliers) and the resemblance to the carry-save multiplier
structure with respect to the circuit delay and the number of building blocks the
developed multipliers are composed of.

In the first sort of experiments a subset of the bulding blocks from Fig. 3
was chosen for the design of the carry-save multipliers (see Fig. 1b). Therefore,
only the blocks (a, b, c, d, g, h) were involved in the design process. Consider-
ing the irregular structure of the conventional carry-save multiplier, a program
consisting of four parts is to be evolved. The parts of the program are executed
according to the environment env = (0, 1, 2, 2, 3), which is specified a priori with
respect to the structure of carry-save multiplier. Therefore, the construction of
the circuit is performed as follows. Considering Fig. 1b, the first level of the AND
gates is created using part 0. The second level of AND gates together with the
following level of adders are constructed by means of part 1. According to the
environment, the next levels of AND gates and adders are created by means of
double application of part 2. Finally, part 3 is utilized to design the last level of
adders. Two hundreds of independent runs of the evolutionary algorithm were
conducted from which 18% evolved a correct program for the construction of
4 × 4 multipliers. 60% of the evolved programs were classsified as general, i.e.
able to create arbitrarily large multiplier. Figure 4 shows (a) one of the best
evolved general program and (b) a 4×4 multiplier constructed by means of that
program.

At the beginning of the development, the system is initialized: the variables
are set to 0, the parameter is set to 4, row and column positions are initialized to
0 and the number of rows and columns is limited to 8 – no gate may be generated
behind the grid boundaries. According to the first element of the environment
(0), part 0 of the evolved program is executed. (see Fig. 4a) The first REP
instruction initiates a loop repeating 4 times (for w = 4 – designing a 4 × 4
multiplier) two instructions after the REP instruction. In each pass, an AND
gate (code 2 in the argument of GEN instructions at line 2) is generated with
its inputs connected to the primary inputs of the circuit indexed by the values
of variables v0, v1. Moreover, v0 is increased by 1 (line 3) so that the AND gates
generated in different passes possess the different first input. After executing a
GEN instruction, the column position is increased by 1. After finishing part 0, the
row position is increased by 1 and the column position is set to 0. According to
the next element of the environment (1), part 1 will be executed. Note, however,



FAFAFA

FA FA FA

FA

a0 1a 2a 3a

a0 1a 2a 3a

a0 1a 2a 3a

a0 1a 2a 3a

b0 b0 b0 b0

b1 b1 b1 b1

b2 b2 b2 b2

b3 b3 b3 b3

FA

FA

FA

FA

FA FA

FA

FA

FA

FA

FA

0p 1p 2p 3p 4p 5p 6p 7p

FA FA

FAFA FA

FA

FA

FA

0

0

0 0

0

0 0

0

0

0

0

0 0 0 0 0

0

0

0

0 0 00

0

0

0

0 0

0

0

0
0

(a) (b)

Fig. 4. (a) An evolved general program, (b) 4 × 4 multiplier exhibiting the carry-save
structure created by means of this program. Note that blank rectangles represent empty
blocks (not generated by any instruction) whose outputs are considered as logic 0.

that the GEN instruction at line 2 of part 1 generates two building blocks into
the actual column, the second block “under” the first one: full adder is generated
into the second row of the first column (code 5 in the first GEN argument) and
the identity function is generated into the third row of the first column (code 0 in
the second argument). Since there have been building blocks generated into two
rows, the row position is increased by 2 after finishing part 1. In case of executing
part 3, only the full adders are generated (code 5 of the GEN instructions at
lines 4 and 5) as there is no space left in the grid for the second level of blocks
specified by the second argument of the GEN instructions – the number of rows
of the grid was limited to 8 for this experiment.

It is evident that the multiplier shown in Fig. 4 could be optimized with
respect to the inputs of some building blocks (e.g. adders possessing only one
non-zero input could be replaced by the identity functions as demonstrated in
[10]). After this optimization the circuit corresponds to the carry-save multiplier
shown in Fig. 1b.

The second sort of experiments was devoted to the design of multipliers using
the full set of building blocks shown in Fig. 3 and the same form of environment
like in the previous experiment. Therefore, this setup corresponds to both vari-
ants of the multipliers from Fig 1. The prefix (0, 1, 2, 2) of the environment may
be utilized for the evolution of classic multiplier structures shown in Fig. 1a.
Again, 200 independent experiments were conducted from which 37% of work-
ing programs were obtained and 54% of them were classified as general. However,
the experiments showed that the evolution of efficient carry-save multipliers is
extremely difficult using this setup. Although there is all the resources available
as in the first sort of experiments, no valid carry-save structure was obtained.
The evolution generated the carry-save components very rarely and not to the
positions at which they could be usefully utilized during the circuit operation.



The classic structures (Fig. 1a) were evolved instead. An example of a general
program together with a 4× 4 multiplier is shown in Fig. 5 which represents the
same type of the classic multiplier structure that was evolved in [10].

FA

FA

FA

FA

FA FA

0p 1p 2p 3p 4p 5p 6p 7p

FA FAFA

FA

FA

FA FA

FA

HA

FA

FA

FA

HA

FA

FA

FA

FA FA

FA

a0 a0 a0a0b0

a1 a1 a1 a1

a2 a2 a2 a2 a2

a3 a3 a3 a3 a3

0

0

0 0

0 0 0

0

0

0 0 0

0

0

0

0

0

0 0

0

0

0 0 0

b1 b2 b3

b0 b1 2 b3

b b1 b2 b3

b b1 b2 b3

b

0

0 0

0 0

(a) (b)

Fig. 5. (a) An evolved general program, (b) a 4 × 4 multiplier based on the structure
of the classic combinational multiplier. Blank rectangles represent empty blocks with
the outputs possessing logic 0.

The experiments presented in this section represent a continuation of the
successful research in the field of the evolutionary design of generic multipliers
using development. The phenomenon of adaptation of the developmental pro-
cess to different environments during the evolution introduced in [10] enabled
us to design various multiplier structures. In particular, the carry-save structure
was rediscovered in this paper, exhibiting shorter delay in comparison with the
classic multiplier, which was the main goal in the new sorts of our experiments.
Although the carry-save multipliers showed to be very hard to evolve, the evo-
lutionary developmental system demonstrated the ability to design this class of
multipliers using a reduced set of building blocks. Moreover, simplified building
blocks were introduced in this paper together with an improved developmental
model in comparison with [10]. Therefore, there is a smaller limitation of the
evolutionary process which, however, leads to more difficult evolution because
of lower level of abstraction in the circuit representation. The success of the
evolution of carry-save multipliers demonstrates an ability of the experimental
system to design different circuit structures with more complex interconnection
of their components which represents a promising area for the next research.

7 Conclusions

In view of the successful experiments, there is a big potential for the application
of this model to other classes of well-scalable circuits, e.g. adders, median and



sorting networks etc. Therefore, the future research will be focused on adjusting
the existing system to the specific circuit structures in order to investigate the
evolution in the designs involving other building blocks and environments with
respect to the construction of generic combinational circuits.

Acknowledgements. This work was supported by the Grant Agency of the
Czech Republic under contract No. 102/07/0850 Design and hardware imple-

mentation of a patent-invention machine, No. 102/05/H050 Integrated Approach

to Education of PhD Students in the Area of Parallel and Distributed Systems

and the Research Plan No. MSM 0021630528 Security-Oriented Research in In-

formation Technology.

References

1. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proc. of the 3rd Eu-
ropean Conference on Genetic Porgramming, Lecture Notes in Computer Science,
vol 1802, Berlin Heidelberg New York, Springer (2000) 121–132

2. Miller, J.F., Job, D.: Principles in the evolutionary design of digital circuits – part
I. Genetic Programming and Evolvable Machines 1(1) (April 2000) 8–35

3. Miller, J.F., Job, D.: Principles in the evolutionary design of digital circuits – part
i. Genetic Programming and Evolvable Machines 3(2) (July 2000) 259–288

4. Vassilev, V., Job, D., Miller, J.: Towards the automatic design of more efficient dig-
ital circuits. In: Proc of the Second NASA/DoD Workshop on Evolvable Hardware,
Palo Alto, CA, IEEE Computer Society (2000) 151–160

5. Vassilev, V., Miller, J.F.: Scalability problems of digital circuit evolution. In: Proc.
of the 2nd NASA/DoD Workshop of Evolvable Hardware, Los Alamitos, CA, US,
IEEE Computer Society (2000) 55–64

6. Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., Higuchi, T.:
Hardware evolution at function level. In: Proc. of the 4th International Conference
on Parallel Problem Solving from Nature, PPSN 1996, Lecture Notes in Computer
Science, volume 1141, London, UK, Springer-Verlag (1996) 206–217

7. Torresen, J.: Evolving multiplier crcuits by training set and training vector parti-
tioning. In: Proc. of the 5th International Conference on Evolvable Systems: From
Biology to Hardware, ICES 2003, Lecture Notes in Computer Science, volume 2606,
Springer-Verlag (2003) 228–237

8. Stomeo, E., Kalganova, T., Lambert, C.: Generalized disjunction decomposition
for evolvable hardware. IEEE Transactions on Systems, Man and Cybernetics –
Part B 36 (2006) 1024–1043

9. Aoki, T., Homma, N., Higuchi, T.: Evolutionary synthesis of arithmetic circuit
structures. Artificial Intelligence Review 20 (2003) 199–232

10. Bidlo, M.: Evolutionary development of generic multipliers: Initial results. In:
Proc. of The 2nd NASA/ESA Conference on Adaptive Hardware and Systems,
AHS 2007, IEEE Computer Society (2007)

11. Wakerly, J.F.: Digital Design: Principles and Practice. Prentice Hall, New Jersey,
US (2001)

12. S. Kumar (ed.), P. J. Bentley (ed.): On Growth, Form and Computers. Elsevier
Academic Press (2003)


