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Abstract

Evolutionary techniques provide powerful tools to design novel solutions for hard problems in
different areas. However, the problem of scale (i.e. how to create a large, complex solution) represents
a significant obstacle for the evolution of complex extensive systems. The computational development
represents one of the approaches in the evolutionary design techniques that tries to overcome the
problem of scale. In this paper an instruction-based developmental method is presented for the
evolutionary design of generic structures of digital circuits. The developmental system involves a set
of application-specific instructions constituting programs in order to solve a given task. In particular,
the goal is to construct generic structures of combinational circuits. An evolutionary algorithm
is utilized for the design of these programs that represent a mapping from the genotypes to the
phenotypes during the evolutionary process, i.e. the prescription for the construction of target circuits.
Two case-studies are presented in order to demonstrate the successfulness of this approach: (1) the
evolutionary design of generic combinational multipliers and (2) the evolutionary design of generic
sorting networks.

1 Introduction

In conventional design of electronic circuits, various algorithms exist that are usually based on an appro-
priate model created by engineers (for example, Boolean algebra in case of the design of digital circuits or
models of electronic components and their relations when an analog circuit should be created). In recent
yaars, evolutionary design techniques have widely been used to solve many complex problems of in differ-
ent scientific and engineering areas, including the design of electronic circuits. The main advantage of the
application of evolutionary approaches in the design of circuits is that engineer specifies components the
circuit should be composed of (i.e. building blocks), creates a suitable evolutionary algorithm, including
a proper evaluation function, and the artificial evolutionary process searches automatically for a solution
with respect to the specified criteria. Moreover, the engineer usually needs not to specify the whole model
according to which he would synthesize the target circuit “by hand”, using the conventional approach.
The evolution explores the search space that is restricted only by the criteria specified by the designer
and, during the evolutionary process based on the evaluation function, the target solution emerges. In
fact, there may be less restrictions in the evolutionary design process than in the conventional design
based on an engineering model. Therefore, the evolution may, in some cases, discover a totally new and
innovative solution which is hard to analyze and which would usually not be possible to achieve using
conventional approaches. For example, Thompson utilized an evolutionary algorithm for the design of a
tone discriminator in the reconfigurable array FPGA XC6216 [18]. The goal was to maximize the differ-
ence of average output voltage for two different input signals (1kHz and 10kHz). The evolved solution
was verified in other FPGA of the same type, however, the original function of the circuit in this FPGA



was not achieved. It means that the evolution involved internal physical properties of the FPGA that was
used for evaluation of the evolving solutions. In other experiment, Sekanina and Růžička. presented an
evolutionary design of image filters at the level of functional blocks using a software simulator [17]. The
results they obtained exhibit better properties (considering the filtered image quality or implementation
cost) in comparison with the best conventional solutions.

In general, the problem is that as the task to be solved by means of an evolutionary algorithm gets more
complex, the amount of information that is needed to encode the candidate solutions in the chromosome
increases. Therefore, the length of the chromosome increases, the search space becomes enormously
large and the evolutionary algorithm is not able to explore it effectively. This issue is referred to as the
problem of scale. This is particularly the difficulty in the traditional evolutionary algorithms as there
is typically a one-to-one relationship between the genotype and the corresponding solution description.
The development, a technique inspired by the biological phenomena of ontogeny, represents an approach
to overcome the problem of scale, which is the objective of this paper.

In nature, the process of development is influenced by the genetic information of the organism and the
environment in which the process is carried out. Cells use the mechanism of transcription and translation
to read each gene and produce the string of amino acids that makes up a protein. Proteins activate or
suppress synthesis of other genes, work as signals among cells, influence internal functions of the cells
and perform many other important roles. Therefore, they control the growth, position and behavior of
all cells [5].

In the area of the evolutionary design, the process of development (more precisely, computational
development [14]) is usually considered as a non-trivial genotype–phenotype mapping in an evolutionary
algorithm (EA). While genetic operators of the EA work over genotypes, the fitness calculation is applied
on the phenotypes created by means of the developmental process.

In recent years various developmental systems were utilized in the area of the evolutionary design.
For example, Kitano applied a rewriting developmental system combined with genetic algorithm for the
design of neural networks [12]. Three-dimensional mechanical objects have been designed by evolution
that utilized a variant of Lindenmayer system in its genotype–phenotype mapping [9]. Koza introduced
an original method in which novel analog circuits have been constructed according to the instructions
produced by genetic programming [10]. Gordon and Bentley utilized the interaction of artificial genes
and proteins to model development in digital circuits [6]. Gruau proposed a genetic encoding scheme
networks based on a cellular duplication and differentiation for the design of neural networks [7]. Miller
and Thomson invented a developmental method for growing graphs and circuits using Cartesian genetic
programming [15]). In order to evolve 3D shape and form Kumar used complex models of development
inspired by genetic regulatory networks [14]. Tufte and Haddow presented the evolutionary design of
cellular computing machines implemented inside a FPGA for the investigation of structural and functional
properties generated by the development of a cellular automaton that are, in addition to the inter- and
intra-cellular interaction, dependent on an external environmental information [19]. Sekanina and Bidlo
created an instruction-based developmental mapping for the evolutionary design of growing generic sorting
networks using an iterative process of repeated application of an evolved program [16].

In this paper an application-specific developmental model is proposed that is based on the approach
introduced in [16]. A general instruction-based developmental system is presented for the design of
digital circuits. The goal is to evolve programs consisting of application-specific instructions by means
of which generic circuits structures could be constructed. Two case-studies are presented in order to
demonstrate the successfulness of this approach: (1) the evolutionary design of generic multipliers and
(2) the evolutionary design of generic sorting networks. The results obtained by means of this method
are compared with the traditional solutions and the solutions obtained during our previous research.

The paper is structured as follows. Section 2 introduces the concept of the proposed instruction-
based developmental system. The evolutionary system setup by means of which the experiments were
conducted is described in Section 3. The development of generic multipliers using the proposed devel-
opmental method is depicted in detail in Section 4 together with the experimental results obtained by
the evolutionary algorithm for this class of circuits. Section 5 contains a detailed description of the de-
velopment of generic sorting networks and the results obtained in this category of experiments. Finally,
concluding remarks are summarized in Section 6.

2 Concept of the Developmental System

For the experiments presented in the next sections the following setup of the developmental system
was utilized. The construction of the circuit is performed by means of a developmental program. This
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program, which is the subject of evolution, consists of simple instructions. The instructions are exe-
cuted sequentially according to the program pointer (pp). The instructions make use of numeric literals
0, 1, . . . ,max value, where max value is specified by the designer at the beginning of the evolutionary
process. In addition to the numeric literals, a set of variables and parameters integrated into the devel-
opmental system may be utilized. The variables are denoted symbolically v0, v1, v2, . . . and their values
are altered by the appropriate instructions during the execution of the program (developmental process).
The parameters are denoted as p0, p1, . . . and their values — usually relating in some way to the size
(e.g. number of inputs) of the circuit being developed — are specified by the designer at the beginning
of the evolutionary process, during which they are invariable. Note, that the number of variables and
parameters, initial values of the variables as well as the utilization of parameters for the development are
determined specifically for a given application.

Table 1 describes the instruction set utilized for the development. The SET instruction assigns a
value determined by a numeric literal, parameter or another variable to a specified variable. Instructions
INC/DEC are intended for increasing/decreasing the value of a given variable (specified in first argument)
by given numeric literal (specified in second argument). Simple loops inside the developmental program
are provided by the REP instruction whose first argument determines the repetition count and the second
argument states the number of instructions after the REP instruction to be repeated. Inner loops are
not allowed, i.e. REP instructions inside the repeated code are interpreted as NOP (no operation)
instructions. The GEN instruction generates a building block of the type specified in its argument.

Instruction Arguments Description
0: SET variable, value Assign numeric literal value to variable.
1: INC variable, value Increase variable by numeric literal value.
2: DEC variable, value If variable ≥ value, then decrease variable by numeric literal value.
3: REP count, number Repeat count-times number following instructions.

count is variable and number is numeric literal. All REP
instructions in the following code are interpreted as NOP
instructions (inner loops are not allowed).

4: GEN block Generate block of type block on the actual position (row, col);
increase col by 1.

5: NOP An empty operation.

Table 1: Instructions utilized for the development

In general, the developmental program may be interpreted as a set of subprograms, i.e. sequences
of instructions that are executed independently. Each subprogram is identified by a unique index. The
execution of a given subprogram during the developmental process is determined by a vector containing
a sequence of indices corresponding to the subprograms identification. This vector can be considered as
external (environmental) information for an additional control of the developmental process. We denote
prog(j) the j-th subprogram of the developmental program an env(k) the k-th value of the environmental
vector. Let us define a developmental step as a single execution of a program (subprogram). While the
developmental program is stored in the chromosome of an evolutionary algorithm, the environmental
vector may be specified by the designer with respect to the requirements of a given application. The
principle of this concept is illustrated in Fig. 1.

(a) (b)

subprogram 1 subprogram 2 subprogram k

1 3 k 1

epip

Figure 1: The concept of instruction-based developmental encoding controlled by the environment: (a) A
set of subprograms, each of which is identified by a unique index. The instructions of a subprogram are
executed sequentially according to the instruction pointer ip. (b) The environmental vector of subprogram
indices for the additional control of the development. The environment is scanned sequentially according
to the environment pointer ep.

In the next sections we present two different applications involving the proposed concept: Section 4
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is devoted to the design of generic multipliers by means of the development driven by the environmental
information and Section 5 introduces a novel developmental model for the construction of arbitrarily
large sorting networks which does not utilize the environment.

3 Evolutionary System Setup

For the experiments presented in this paper a simple genetic algorithm was utilized in combination with
the developmental system described in Section 2.

A chromosome consists of a constant-length linear array of the instructions, each of which is repre-
sented by the operation code and two arguments (the utilization of the arguments depends on the type
of the instruction). The array contains the developmental program (or a set of subprograms stored in
sequence). The utilization of a single developmental program or a set of subprograms depends on the
application. Note, however, that the subprograms are not distinguished during the evolution, i.e. the
chromosomes are handled as a uniform sequence of instructions during application of genetic operators.
The population consists of 32 chromosomes which are generated randomly at the beginning of evolution.
Tournament selection operator of base 2 is utilized.

Mutation of a chromosome is performed by a random selection of an instruction followed by a random
choosing a part of the instruction (operation code or one of its arguments). If the operation code is
mutated, entire new instruction will replace the original one and new arguments are randomly generated,
otherwise one of arguments is mutated. Note that the mutation algorithm ensures proper arguments
(variable or numeric literal) depending on the instruction type (see Table 1). Only one instruction per
chromosome is mutated with the probability 0.04.

A special crossover operator was applied which exhibits a significant positive influence on the evolu-
tionary process in comparison with standard one-point or uniform crossover or with the case when no
crossover is utilized. Two parent chromosomes are selected and an instruction is selected randomly in
each of them (i1, i2). A position (index) is chosen randomly in each of the two offspring (c1, c2). After
the crossover, the first, respective the second offspring contains the original instructions from the first,
respective the second parent with the exception of i1, respective i2, which is put at the position c2 in the
second offspring, respective c1 in the first offspring. The crossover occurs with the probability 0.9 and is
illustrated in Figure 2.
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Figure 2: Crossover of two chromosomes. i1, i2 denote the instructions to be crossed, c1, c2 pose the
offspring positions the instructions will be placed to.

Since the evaluation of candidate solutions is performed differently depending on the trait of a partic-
ular application, the fitness function will be described separately in the following section related to the
design of generic multipliers and sorting networks. All experiments were conducted on a common PC
equipped with a 2.0 GHz processor, 512 MB RAM and running Gentoo Linux, kernel 2.6.18-r6.

4 Development of Generic Multipliers

The development of generic multipliers is inspired by the construction of conventional combinational
multipliers for which generic algorithms exist. Figure 3 shows a typical 4 × 4 combinational multiplier
designed by means of the conventional approach [20]. It is evident that the first level of AND gates and
the following sequence of adders are specific in comparison with the rest of the circuit, which poses a kind
of irregularity. However, the rest of the circuit exhibits highly regular structure which can be created by
means of an iterative algorithm utilizing variables. Moreover, the whole design can be easily parametrized
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by the number of bits (width) of the operands. Therefore, this concept is assumed to be convenient for
the design of generic multipliers using the development and the genetic algorithm.

FA FA

0 1 2 3 0 1 2 3

0 1 2 3P P P P 4 5 6 7P P PP

FA FA

FA

FA FA FA

A A A B B B BA

HA HA

HA

HA

Figure 3: A 4 × 4 conventional combinational multiplier. A0 . . . A3, B0 . . . B3 represent the bits of the
operands, P0 . . . P7 denote the bits of the product.

A building block represents a basic component of the circuit to be developed. The general structure
of the block is shown in Figure 4a. Each building block contains three inputs from which one or two may
be unused depending on the type of the block. There are two outputs at each building block from which
one may be meaningless, i.e. permanently set to logic 0, depending on the block type. The outputs are
denoted symbolically as out0 and out1. In case of the block containing only one output, out0 represents
the effective output and out1 is permanently set to logic 0. The circuit is developed inside a grid (a
rectangular array) which proved to be a suitable structure for the design of combinational multipliers
(see Figure 4b). Figure 5 shows the set of building blocks utilized for the experiments presented in this
section. The gate-level logic structures of the adders are illustrated in Figure 6 and 7 (marked by dotted
rectangles). For the interconnection of the blocks the position (row, col) in the grid is utilized. The
inputs of the blocks are connected to the outputs of the neighboring blocks or to the primary inputs of
the circuit, determined by the references associated with the inputs of the blocks. Specifically, the inputs
of the adders are connected to the appropriate neighbouring outputs in the grid and the inputs of the
AND gates are connected to the primary inputs of the circuit via indices determined by the variables v0

and v1 (see Figure 5). For example, out1(row, col − 1) means that the input of the block at the position
(row, col) in the grid is connected to the output denoted out1 of the block on its left-hand side. Let
A = a0a1a2, B = b0b1b2 represent the primary inputs (operands A and B) of a 3 × 3 multiplier. For
instance, an AND gate with v0 = 1 and v1 = 2 has its inputs connected to the second bit (a1) of operand
A and the third bit (b2) of operand B. In case when v0 or v1 of an AND gate being generated exceeds
the correct values, the appropriate input of that gate is set to logic 0. If (row, col) do not exceed the
grid boundaries when generating a block, the block is generated at that position, otherwise no block
is generated. After generating a block, col is increased by one. Considering the building blocks at the
borders of the grid (for row = 0 or col = 0), where no blocks with valid outputs occur (for row − 1 or
col − 1), the appropriate inputs of the blocks at (row, col) are set to logic 0. In this way, for example,
full adder (Fig. 5f) at (0, 0) is degraded to AND gate, the buffer (Fig. 5b) at (1, 0) becomes the source
of logic 0 etc.

The basic approach to the development of generic multipliers involves the developmental program
consisting of a set of subprograms that are executed on demand with respect to the environmental vector
(or environment) as introduced in Section 2. The meaning of the environment is to enable the system to
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Figure 4: (a) Structure of a building block. (row, col) determines the position of the block in the grid –
see part (b). The connection of the inputs depends on the type and position of the block. (b) Grid of
the building blocks with m rows and n columns for the development of generic multipliers.
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Figure 5: Building blocks for the development of combinational multipliers. (a, b) buffers, (c) AND gate,
(d, e) half adders, (f) full adder. (row, col) denotes position in the grid. v0 and v1 determine indices of
primary input bits. Connection of different inputs of the blocks is shown. Unused inputs and outputs
are not depicted (they are considered as logic 0).

develop more complex structures which need not be fully regular. For example it is possible to construct
the circuit in figure 3 by usage of 3 various subprograms (algorithms). First row (AND gates) can be
constructed by algorithm 0, second row by algorithm 1 and all subsequent rows by algorithm 2. While the
subprograms are executed independently, the variables and the parameter of the developmental system
are shared by all the subprograms.

At the beginning of the evolutionary process the value of the parameter p0 and the form of the
environment env are specified by the designer. By the inspiration from the conventional multipliers the
number of developmental steps needed for creating a working multiplier and the length of the environment
will correspond to p0. The developmental program is intended to operate over these data in order to
develop a multiplier of a given size. The number of subprograms and the number of instructions they
are composed of, are also specified a priori by the designer. The different sizes of multipliers are created
by setting the parameter and adjusting the environment. Hence the circuit of a given size is always
developed from scratch, i.e. the grid for generating the building blocks is empty before the development
starts; it is a case of parametric developmental design. The following algorithm will be defined in order
to handle the developmental process.

1. Initialize row, col, v0, v1, v2, v3 and e to 0.

2. Execute env(e)-th part of program.

3. Increase e and row by 1, set col to 0.

4. If neither e, nor row exceed, go to step 2.

5. Evaluate the resulting circuit.

In case of the development of the multipliers the parameter p0 specifies the size of the multiplier to
be developed and evaluated by the fitness function. The fitness function is computed as the number of
output bits possessing the correct value after the circuit simulation. The experiments were conducted
with the evolution of programs for the construction of 4× 4 multipliers, i.e. the parameter p0 = 4. There
are 24+4 = 256 possible test vectors and the multipliers produce 8-bit results. Therefore, the maximum
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fitness representing a working solution equals 256 ·8 = 2048. Note, however, that the building blocks from
Figure 5 represent the elementary components of the circuit, only their function is involved during the
fitness evaluation and no delay, fan-in or fan-out parameters of the target circuit are optimized during the
development with respect to the properties of the building blocks. Two sorts of experiments have been
performed (see chapter 4.1). If a working solution is not evolved in two millions of generations in case
of the first sort, possibly in one million of generations in the second sort of experiments, the evolution
is restarted with a new population. After the evolution the resulting program is verified in order to
determine whether it is able to create larger multipliers, typically up to the size 14 × 14 bits. This size
of circuit was determined experimentally, allowing to perform a sufficient number of developmental steps
for demonstrating the correctness of the evolved program and keeping a reasonable verification time. If
a program shows this ability, it will be considered as general.

4.1 Experimental Results and Discussion

In the first sort of experiments 3-part programs (6+12+12 instructions) were evolved utilizing the envi-
ronment env = (0, 1, 2, 2) for controlling the development. 1000 independent experiments were conducted
from which 67 % working solutions (i.e. the programs for constructing 4 × 4 multipliers) were evolved
and 18 % of them were classified as general programs. Figure 6 shows a multiplier together with detailed
logic schemes of the building blocks (half adder from Fig. 5e and full adder from Fig. 5f) involved by the
evolutionary algorithm. This multiplier was constructed by means of one of the most efficient programs
that were evolved in this sort of experiments. The program is shown in Table 2. Let us go through the
program in order to understand the developmental process.

04
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FA FA FAFA

04

0 1 2 3 0 1 2 3

0 1 2 3P P P P 4 5 6 7P P PP Cout
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Sum

M1 M2 B
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0
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Figure 6: A 4 × 4 multiplier created by means of evolved program shown in Table 2 using the environment
env = (0, 1, 2, 2). A0 . . . A3, B0 . . . B3 represent the bits of the operands, P0 . . . P7 denote the bits of the
product. Logic schemes of the half adder and full adder-based building blocks utilized by the evolved
program are shown. M1 and M2 denote the multiplicands whose partial product represents the first
operand of the full adder, B denotes the second operand, Cin poses the input carry, Sum and Cout

represent the resulting sum and output carry.

At the beginning of the development, the following setup is specified by the designer: p0 = 4, env =
(0, 1, 2, 2). The following initialization is performed by the system: v0 = 1, v1 = 0, v2 = 0, v3 = 0, row =
0, col = 0, e = 0.

At this point env(e) = 0, therefore Part 0 of the program will be executed. The instruction 0 should
repeat zero times instructions 1 and 2 (because v1 = 0), therefore, this code has no effect. Instruction
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Line Part 0 Part 1 Part 2
0: REP v1 2 GEN FA REP v1 2
1: GEN FA SET v3 0 REP v0 2
2: INC v0 1 SET v0 v3 GEN ID-1
3: REP p0 2 INC v1 1 GEN ID-1
4: GEN HA-2 REP p0 2 INC v0 1
5: INC v0 1 GEN FA INC v1 1
6: INC v0 1 REP p0 1
7: SET v1 0 SET v0 v2

8: GEN FA REP p0 2
9: DEC v1 0 GEN FA
10: INC v1 1 INC v0 1
11: REP v0 2 GEN FA

Table 2: Evolved general program by means of which the multiplier from Figure 6 was created. In this
case p0 = 4, the program consists of 3 parts executed according to the environment env = (0, 1, 2, 2).

3 will repeat four times (because p0 = 4) instructions 4 and 5 which create row 0 of the multiplier
(blocks HA-2) with the inputs of AND gates of these blocks connected to the primary inputs (operands
of the multiplier) specified by the actual values of v0 and v1. While v1 retains 0, v0 is increased by 1
by instruction 5 and col is increased by 1 automatically by the system in each pass (in general, after
executing a GEN instruction). Since there are no more instructions to be executed in Part 0, the system
increases row and e by 1 and the construction of row 0 of the circuit is finished. Note that the variables
hold their actual values, i.e. v0 = 4 and the others equal 0.

Now, env(e) = 1 for e = 1, therefore, Part 1 of the program will be executed in order to develop
row 1 of the multiplier. Instruction 0 of Part 1 generates full adder (FA block), where the inputs of
AND gate of this block should be connected to bits 4 and 0 of the operands (according to the variables
v0 = 4, v1 = 0). Note, since v0 exceeds the operand width, the first input of AND gate of this FA block
will be considered as logic 0 causing permanent logic 0 at the output of the AND gate, i.e. the AND gate
of this block is meaningless (see Fig. 6). Instructions 1 and 2 actually set v0 to 0. Then, v1 is increased
by 1 by instruction 3. Instructions 4, 5 and 6 generate four FA blocks with the inputs of AND gates of
these blocks connected to the appropriate operand bits. Note that instruction 7 sets v1 to 0 which, in
fact, voids the result of instruction 3. An FA block is generated by instruction 8 (again, its AND gate is
meaningless). Instruction 9, decreasing v1 by 0, has no effect, v1 is increased by 1 by instruction 10 and
instruction 11 is meaningless since there is no instructions to repeat. Row 1 is completed with the actual
values of v0 = 4, v1 = 1 and other variables possessing zeros.

The row 2 of the circuit will be constructed using Part 2 of the program according to the next
environment value env(e) = 2 for e = 2. Instruction 0 initiates a loop repeating once instructions 1
and 2. Instruction 1 is interpreted as no operation because inner loops are not allowed and instruction 1
generates an ID-1 block. In addition, instruction 3 creates one more ID-1 block in the next column. Value
of v0, respective v1 is increased by one by instruction 4, respective 5. In fact, the only effect of the loop
initiated by instruction 6, repeating instruction 7, is to set v0 to 0 (according to v2 which equals 0). This
operation actually voids the result of instruction 4. Four FA blocks are generated by instruction 9 inside
the loop started by instruction 8. Instruction 9, which is also a part of the loop body, determines the
connection of the inputs of AND gates generated inside these blocks. The last instruction 11 generates
an FA block with a redundant AND gate. Now row 2 is finished. The variables v0 = 4, v1 = 2 and the
other ones equal 0.

According to env(e) = 2 for e = 3 the last row of the circuit will be generated by executing Part
2 of the program. The development proceeds in the same way as described in the previous paragraph,
considering the values of variables resulted from the previous developmental step.

This program showed the ability to construct generic multipliers. Note that, in general, for p0-bit
operands the environment would have the form env = (0, 1, 2, . . . , 2) containing p0 − 2 twos and p0

developmental steps would be needed to construct a working multiplier.
It is evident that the multiplier shown in Fig. 6 could be optimized considering the inputs of the

building blocks. For instance, half adders in row 0 of the circuit can be replaced by simple AND gates
since the first input of these adders are permanently connected to logic 0. Similarly, full adders at
positions (1, 1), (1, 4), (2, 2) and (3, 3) actually represents half adders and full adders at positions (1,
0), (1, 5), (2, 6) and (3, 7) can be replaced by identity functions. In fact, the circuit corresponds to the
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conventional multiplier after this optimization (compare with Figure 3).
The second sort of experiments was devoted to evolutionary design of 1-part developmental program

consisting of 10 instructions. A new form of the environment was specified in order to demonstrate the
adaptation of the program being evolved to the new conditions of creating generic multipliers. Again, 1000
independent experiments were conducted from which 97 % working solutions were obtained. 85 % of the
evolved programs were classified as general. An evolved 4× 4 multiplier adapted to the new environment
env = (0, 0, 0, 0) is shown in Figure 7. Table 3 shows the appropriate developmental program. This
program showed the ability to construct generic multipliers. Note that, in general, for p0-bit operands
the environment would have the form env = (0, . . . , 0) containing p0 twos and p0 developmental steps
would be needed to construct a working multiplier.
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Figure 7: A 4 × 4 multiplier created by means of evolved program shown in Table 3 adapted to the
environment env = (0, 0, 0, 0). A0 . . . A3, B0 . . . B3 represent the bits of the operands, P0 . . . P7 denote
the bits of the product. Logic scheme of the fundamental full adder-based building block (see Fig. 5f)
utilized by the evolved program is shown. M1 and M2 denote the multiplicands whose partial product
represents the first operand of the full adder, B denotes the second operand, Sum and Cout represent the
sum and output carry of the full adder.

0: REP v1 1 4: INC v0 1 8: SET v0 v2

1: GEN ID-1 5: INC v3 0 9: GEN ID-2
2: REP p1 2 6: INC v1 1
3: GEN FA 7: SET v3 v0

Table 3: Evolved general program by means of which the multiplier from Figure 7 was created. In this
case p0 = 4, there is only one program part operating in the environment env = (0, 0, 0, 0).

Experiments for the evolution of 3 × 3 multipliers were conducted, however, no general solution was
obtained. Although basic AND gates and ID functions were available in the set of building blocks, they
were rarely used in the design and adders were generated instead. This behavior could be explained by
predominating occurence of adders which pushes the evolution to design regular structures, utilizing the
properties of the building blocks and their interconnection. The evolved programs exhibit certain degree
of redundancy, which is caused by the determination of the program length based on the conventional
design. Therefore, there is an additional possibility for reducing the search space. A very good success rate

9



in1

in2

in3

Figure 8: (a) A three-input sorting network consists of three comparators. The blocks marked by rect-
angles represent the comparators. (b) Alternative symbol of the sorting network.

Inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Delay 0 1 3 3 5 5 6 6 7 8 8 9 10 10 10 10

Comparators 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

Table 4: The number of comparators and delay of the best currently known sorting networks

was observed both in the case of the evolution of initial solutions and the occurence of general programs
among these solutions after verification especially in the second sort of experiments, which indicates the
suitability of the proposed representation to evolve generic structures. However, the selection of building
blocks represents a crucial issue for successful evolution of this kind of circuits. Both the programs
presented herein showed the ability to construct generic multipliers, which has never been seen before in
the field of the evolutionary design.

An environment was integrated into the developmental model in order to allow the system to construct
irregular structures (inspired by the conventional multipliers). The system demonstrated a capability of
adaptation to another environment that allowed designing generic multipliers exhibiting a high level of
regularity in their structures using a program consisting of only one part. Moreover, the adaptation
was observed to many other irregular environments and even to random binary environments (i.e. the
environments consisting only of values 0 and 1), retaining the ability of the system to develop generic
multipliers by means of a single program, whose parts are executed according to the environment. Note
that this feature is significantly influenced by the grid chosen for representing the circuits and by the
general structure and properties of a building block, particularly the facility of degradation of more
complex blocks (e.g. full adders) to simpler blocks (e.g. AND gates, ID functions etc.) according to the
inputs of the blocks. However, this is significant information with respect to the future research. For
example, the development of generic combinational multipliers possessing exactly that structure shown
in Figure 3 would not be possible without applying the environment. A variety of building blocks exist
which could be involved in the design process in order to develop more complex generic circuits exhibiting
irregularities. Therefore, the approach utilizing a form of environment suggests a big space deserving of
the subsequent investigation.

5 Development of Generic Sorting Networks

A sorting network is defined as a sequence of compare–swap operations (comparators) that depends only
on the number of elements to be sorted, not on the values of the elements. A compare–swap of two
elements (a, b) compares and exchanges a and b so that we obtain a ≤ b after the operation.

The main advantage of the sorting network is that the sequence of comparisons is fixed. Thus it is
suitable for parallel processing and hardware implementation, especially if the number of sorted elements
is small. Figure 8 shows an example of a 3-input sorting network and the structure of the comparator.

The number of compare–swap components and delay are two crucial parameters of any sorting net-
work. By delay we mean the minimal number of groups of compare–swap components that must be
executed sequentially. Designers try to minimize the number of comparators, delay or both parame-
ters. A sorting network is possible to optimize by removing redundant comparators. The redundant
comparators does not swap its input values during the complete test of the sorting network, therefore
these comparators can be removed from the network without the loss of functionality. Table 4 shows the
number of comparators and delay of some of the best currently known sorting networks. Some of these
networks were designed (or rediscovered) using evolutionary techniques [2, 4, 3, 8, 11, 10].
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Figure 9: Making (N+1)-sorters from N -sorters: (a) insertion and (b) selection principle

Sorting networks are usually designed for a fixed number of inputs. It is also valid for the mentioned
evolutionary approaches. Note, however, that the evolutionary approach is not scalable. Some conven-
tional approaches exist for designing arbitrarily large sorting networks. Figure 9 shows two principles for
constructing a sorting network for N + 1 inputs when an N -input network is given [13].

• Insertion – the (N+1)st input is inserted into a proper place after the first N elements have been
sorted – Fig. 9a.

• Selection – the largest input value can be selected before we proceed to sort the remaining ones –
Fig. 9b.

Although the sorting networks created by means of insertion or selection principle are not optimal for
a particular N , these methods can be treated as generic construction algorithms for this class of circuits.
Moreover, they showed to be suitable approaches for the evolutionary design using a developmental
encoding. Therefore, we well consider these techniques as a basis for comparing the evolved solutions. It
is evident that these conventional approaches enable to “grow” the sorting networks to arbitrary size from
a smaller instance. The evolutionary development of generic sorting networks presented in this section is
inspired by those conventional methods.

Similar approach, involving an instruction-based developmental encoding for the design of arbitrarily
large sorting networks, was introduced in [16], which differs from the developmental system presented
herein in the following aspects: (1) The form of the embryo influence the form of the developed sorting
networks. (2) Only two types of instructions were utilized for the development: copy and copy-and-
modify. Neither variables nor parameters were involved. Loops were not used explicitly, the number
of comparators to be processed was specified by the instruction argument and the width of the sorting
network being developed. (3) The comparators were represented by the indices of wires they should
be connected to. The new comparators were created by copying the existing comparators and possibly
modifying their input indices using the instructions of the evolved program.

The novel developmental system for the construction of generic sorting networks is based on the
concept introduced in Section 2. The following application-specific setup was utilized for the design
of the sorting networks. There are six variables inside the developmental system; parameters are not
involved explicitly. Only a single program is evolved, i.e. no environmental information is utilized. Since
the sorting networks are intended to be able to “grow”, the development runs in steps by means of
repeated application of a single program. After each application of the program some comparators are
generated next to the existing ones in order to create larger sorting network. A developmental step
is defined as a single application of the evolved program. A finite number of the developmental steps
represents a developmental sequence. Let us define the size of a developmental step as the difference
of the number of inputs of two resulting sorting networks following immediately in the developmental
sequence. A comparator is considered as a basic building block for the development of the sorting
networks. Four types of comparators are utilized in the evolutionary process which differs in the “width”,
i.e. the number of wires of the sorting network they are connected over - see Fig. 10a. The structure
for the construction of the sorting networks consists of a one-dimensional array in which each element
can contain one comparator (see Fig. 10b). A 2-input, 3-input and 4-input embryo is utilized for the
development of the sorting networks as shown in Fig. 10c). The embryo is stored in the first e elements
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Figure 10: The concept of development of generic sorting networks: (a) The building blocks are repre-
sented by the comparators of the width 1, 2, 3 and 4 respectively. (b) The array where the building
blocks are generated to during the development. The gray elements denote the building blocks of the
embryo. (c) The embryos of the width 2, 3 and 4 respectively, utilized for the development.

of the array depicted in gray and is invariable during the evolutionary and developmental process. The
position of the comparators in the sorting network (i.e. the connection to the particular wires) is specified
by the value of an arbitrary of the variables v0, v1, v2 or v3. For example, consider the comparator of
width 2 from Fig. 10a and let its position be determined by the variable v0 = 1. Then the first
input of this comparator is connected to the wire 1 and the second input to the wire 3. During the
development of a sorting network the comparators are generated sequentially into the free positions of
the array pointed by the index pointer p according to the program, which is the subject of evolution.
Note that the comparator is generated only if p does not exceed the array boundary of L elements
and the connection of the comparator does not exceed the width (the number of inputs) of the sorting
network being developed. Although the developmental system does not utilize any parameters (constants
that are invariable during the developmental process), the variables are initialized before proceeding
each developmental steps to the specific values which were determined experimentally. The variables are
initialized as follows: v0 = 0, v1 = w− 2, v2 = w− 2, v3 = w− 3, v4 = w− 4, v5 = w, where w denotes the
number of inputs (width) of the sorting network to be developed in the forthcoming developmental step.
Note that the initial values of the variables may be changed during the development by the appropriate
instructions of the evolved program.

The candidate solutions are evaluated typically for three developmental steps, i.e. for each chromosome
in the population a finite developmental sequence is created consisting of three sorting networks of different
sizes depending on the width of the embryo and the size of the developmental step. Each sorting network in
the developmental sequence is evaluated by computing a fitness value as the number of correct output bits
for all binary test vectors. The fitness value of a chromosome is calculated as the sum of the fitness values
of all sorting networks in the developmental sequence. For example, let we = 2 be the number of inputs
of the embryo, ws = 2 be the size of the developmental step and n = 3 be the number of developmental
steps to be conducted. Then the total fitness value of a chromosome is calculated as Ft = f4 + f6 + f8,
where fk denotes the fitness value of the k-input sorting network (k = we + ws, we + 2ws and we + 3ws).
In this case the maximal fitness value of a chromosome is Fm = 4 · 24 + 6 · 26 + 8 · 28 = 2048. Similarly
to the development of combinational multipliers presented in Section 4, a comparator is considered as
elementary sorting network component. Neither delay nor the number of comparators are optimized
during evaluation of the candidate solutions; the selected resulting programs have subsequently been
analyzed in order to identify the best sorting networks developed by means of the evolved programs.

5.1 Experimental Results and Discussion

In case of the development of generic sorting networks three sorts of experiments were conducted which
differ by the size of the developmental step and the embryo utilized. In all the experiments presented in
this section each chromosome of the evolutionary algorithm contains a single program consisting of eight
instructions.

The first sort of experiments dealt with the development of arbitrary even- input sorting networks from
a two-input embryo when the size of the developmental step was set to 2. 1000 independent experiments
were conducted from which 90 % finished successfully in 40000 generations of the evolutionary algorithm
and 98 % of the evolved programs were classified as general. Figure 11a shows a sequence of sorting
networks developed by the three steps of the best evolved program shown in Fig. 11b. The sorting

12



0

1

2

3

4

5

6

7

1:
2:
3:
4:
5:
6:
7:
8:

DEC  v3  1
GEN  C1  v2
REP  v1  2
DEC  v1  1
GEN  C1  v1

GEN  C2  v3

GEN  C1  v1
REP  v1  2

(a) (b)

a b

c

d

e

f

g h

i

j

k

l

m

n

o

p

Figure 11: (a) Even-input sorting networks developed from a two-input embryo using the developmental
step of size 2. The crossed comparators are redundant in the sorting network, therefore, they can be
removed from the network without any loss of its functionality. (b) The evolved general program for the
development of these sorting networks.

networks have been constructed from a two-input embryo by the following process. Let we = 2 denote
the number of inputs of the embryo, s = 2 denote the size of the developmental step and w = ve + i · s

denote the width of the sorting network to be developed in the i-th developmental step. Recall the values
of appropriate variables involved in the evolved program are initialized as v1 = w − 2, v2 − 2, v3 − 3. For
the first developmental step (i = 1), w = 2 + 1 · 2 = 4, therefore, v1 = 2, v2 = 2 and v3 = 1. Considering
these initial values the first instruction 1 from Fig. 11b generates the comparator of width 1 labeled as a

in Fig. 11a which is connected to the wires denoted by indices 2 and 3. The instruction 2 initiates a loop
repeating 2 times (since v1 = 2) two following instructions. During the first pass of this loop instruction 3
generates comparator b whose connection to the sorting network is determined by v3 = 1 and instruction
4 decreases v3 by one, i.e. v3 = 0 at the moment. Similarly, comparator c is generated in the second
pass of the loop considering the actual value of v3. Note that negative values are not allowed, therefore,
the execution of instruction 4 during the second pass of the loop has no effect in this step. Instruction 5
generates comparator d with respect to the value of v2 = 2. Instruction 6 initiates a loop to be repeated
2 times (since v1 = 2) and the two following instructions 7 and 8 result in generating comparators e, f

in each pass of this loop. The first developmental step is now finished. At the beginning of the second
developmental step the variables are initialized to the new values with respect to actual w. During the
second developmental step comparator g is generated by the instruction 1 and comparators from h to k

are generated by the loop initiated by instruction 2. Then comparator l is generated by instruction 5
and comparators m − p are generated by the loop initiated by instruction 6. The next developmental
steps proceed in the same way the consequence of which is the “growth” of the sorting network. Note
that this program was verified for generality, i.e. arbitrary even-input sorting network can be created.
However, the analysis of the developed sorting networks indicates that there are redundant comparators
in these networks which can be removed without the loss of its functionality. Therefore, these sorting
networks are optimized both from the point of view of the number of comparators and delay. Note that
the redundant comparators in Fig. 11 are crossed.

In the second sort of experiments sorting networks were developed from a three-input embryo consid-
ering the size of the developmental step s = 3. Therefore, 6-input, 9-input, 12-input etc. sorting networks
could be designed by means of the evolved programs. From 1000 independent experiments conducted
88 % of working programs were evolved from which 99 % were classified as general. Figure 12 shows the
best and most interesting result obtained in this sort of experiments. The evolved program, which was
classified as general, produces sorting networks without any redundant comparators. Moreover, there are
both even-input and odd-input sorting networks in a single developmental sequence (because of the size
of the developmental step s = 3). This result represents the first case of observing such a behavior that
was not achieved in the developmental system introduced in [16]. Note that the structure of the sorting
networks and the evolved program is very similar in comparison with that shown in Fig. 11. In addition,
the algorithm from Fig. 11 (without any modifications) showed the ability to construct sorting networks
with the size of the developmental step s = 3. The only difference is the dashed line drawn comparator
shifted before its predecessor in each developmental step (caused by different variable in instruction 5
determining the connection of the comparator to be generated, see Fig. 12) which, however, results in
better delay in comparison with the solution constructed by means of the program from Fig. 11b.

The goal of the third sort of experiments was to develop arbitrary even-input sorting networks con-
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Figure 12: (a) Sorting networks developed from a three-input embryo using the developmental step of
size 3. (b) The evolved general program. Note that this solution constructs sorting networks without any
redundant comparators.
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Figure 13: (a) Even-input sorting networks developed from a four-input embryo using the developmental
step of size 4. Note that only the effective (non-redundant) comparators are shown. (b) The evolved
general program.

sidering the size of the developmental step s = 4 and a four-input embryo. Since there are 8-input,
12-input etc. sorting networks in the developmental sequence considering the four-input embryo and the
developmental step of size 4, only two developmental steps were performed for the fitness calculation
because of very time-consuming evaluation of such large sorting networks. 500 independent experiments
were conducted from which 34 % evolved a working general solution, i.e. 100 % successfulness of the
evolved programs. Figure 13 shows one of the best evolved program together with the optimized sorting
networks developed by means of it.

Tables 5 and 6 summarize the number of comparators and delay of the developed sorting networks and
their optimized variants for selected numbers of inputs of the sorting networks. It is evident that all the
sorting networks presented in this paper (Figs. 11, 12 and 13) exhibit better properties from the both point
of view of the number of comparators and delay in comparison with the general conventional principle
of the same type (straight-insertion sort). Note that the optimized sorting networks created using the
developmental step of size 2 corresponds to the best sorting networks developed in [16]. Moreover, general
programs were evolved herein for the developmental step of sizes 3 and 4 that were not achieved in [16]
and these sorting networks also exhibit better properties in comparison with the conventional solution. In
case of the step of size 3 a general program was evolved which even constructs sorting networks without
any redundant comparators. The results presented in this section suggest that this instruction-based
developmental model is more robust and flexible in comparison to the system introduced in [16].

6 Conclusions

In this paper a new approach to the computational development in the area of evolutionary design was
proposed: a general instruction-based model. The goal was to present an ability of the evolutionary
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Inputs 8 9 10 12 14 15 16 18 20 21 22 24 26 27 28
Conventional 28 36 45 66 91 105 120 153 190 210 231 276 325 351 378

Evolved: step 2 31 49 71 97 126 161 199 241 287 337 391
22 35 51 70 92 117 145 176 210 247 287

Evolved: step 3 29 51 79 113 153 199 251
Evolved: step 4 29 69 125 197 285 389

23 53 95 149 215 293

Table 5: The number of comparators of the evolved sorting networks for different sizes of the develop-
mental step in comparison with the conventional straight- insertion sorting networks. The bold values
represent the number of comparators of the optimized sorting networks (after removing the redundant
comparators). Note that the sorting networks created using the developmental step of size 3 do not
contain any redundant comparators.

Inputs 8 9 10 12 14 15 16 18 20 21 22 24 26 27 28
Conventional 13 15 17 21 25 27 29 33 37 39 41 45 49 51 53

Evolved: step 2 15 20 25 30 35 40 45 50 55 60 65
9 12 15 18 21 24 27 30 33 36 39

Evolved: step 3 12 17 22 27 323 37 42
Evolved: step 4 14 28 46 68 94 124

9 15 21 27 33 39

Table 6: Delay of the evolved sorting networks for different sizes of the developmental step in comparison
with the conventional straight-insertion sorting networks. The bold values represent the delay of the
optimized sorting networks (after removing the redundant comparators). Note that the sorting networks
created using the developmental step of size 3 do not contain any redundant comparators.

developmental system to design generic structures of slacable digital circuits. Two case-studies were
presented: (1) the evolution of generic multipliers and (2) the evolution of generic sorting networks.

In case of the development of multipliers a specific form of environment was integrated into the
developmental model representing an external control of the developmental process which is intended
as a tool enabling the design of irregular structures. Moreover, the environment was utilized in order
to demonstrate adaptation of the development, retaining its ability to design generic multipliers. The
experiments confirmed the capability of adaptation in connection with the proposed circuit representation.
General programs were evolved for the construction of multipliers which exhibit a high degree of regularity
in the circuit structure. Since the multipliers of different sizes are constructed every time from scratch
by means of an evolved program, utilizing the bit-width of the operands as a parameter for determining
the circuit structure, it is a case of parametric developmental design. Note that several developmental
steps are needed to construct a single working circuit.

An iterative approach was utilized for the design of generic sorting networks from the embryo. There-
fore, the sorting network is able to “grow” to theoretically arbitrary size. General programs were evolved
for the sizes of the developmental steps 2, 3 and 4 that was not achieved before. Moreover, the evolution
showed an ability to design innovative solutions in all those cases. The best general programs working
with the developmental step of size 2 and 4 produce sorting networks that exhibit the same qualities (i.e.
the number of comparators and delay) like the best solutions developed in [16]. Although the sorting
networks developed with the step of size 3 do not achieve the qualities of the best solutions, their number
of comparators and delay are better in comparison with the conventional solution. However, the evolved
program constructs solutions with no redundant comparators.

Similar model based on this instruction-based development was utilized also for the evolutionary
design of efficient carry-save multipliers [1]. Considering the manner of the development of sorting
networks presented herein, the resulting developed solution is fully functional after each developmental
step which poses a significant difference in the approach compared to the development of multipliers.
This demonstrates that the instruction-based model is possible to use in a wide range of applications of
various traits.

The open questions, however, regard to the choice of suitable building blocks for a given application.
In case of the multipliers, relatively complex building blocks (half- and full adders) had to be utilized
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for the successful design which was inspired by the structure of the conventional multipliers. No general
solution has yet been evolved at a lower-level representation of the circuit. The proposed evolutionary
developmental system was implemented using a software simulator. In order to speed-up the automatic
design process, hardware realization could be useful. The instruction-based development actually rep-
resent a simple application-specific machine language that could be executed directly (or after a few
modifications) on processors that are commonly available in some FPGAs. The regular representation of
the circuits to be developed is evidently suitable for implementation using the configurable logic blocks
of the FPGAs. If this hardware implementation was realized, the candidate circuits would be possible to
evaluate in shorter time in comparison with the software simulation, which would additionally speed-up
the evolution. These issues represent the ideas for our next research.

Acknowledgements

This research was supported by the Grant Agency of the Czech Republic under contract No. 102/07/0850
Design and hardware implementation of a patent-invention machine, No. 102/05/H050 Integrated Ap-
proach to Education of PhD Students in the Area of Parallel and Distributed Systems and the Research
Plan No. MSM 0021630528 Security-Oriented Research in Information Technology.

References

[1] M. Bidlo. Evolutionary design of generic combinational multipliers using development. In Proc. of
the International Conference on Evolvable Systems: From Biology to Hardware (ICES 2007), Lecture
Notes in Computer Science vol. 4684, pages 77–88. Springer, 2007.

[2] S.-S. Choi and B.-R. Moon. A hybrid genetic search for the sorting network problem with evolving
parallel layers. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), pages 258–265, San Francisco, California, USA, 2001. Morgan Kaufmann.

[3] S.-S. Choi and B. R. Moon. Isomorphism, normalization, and a genetic algorithm for sorting net-
work optimization. In GECCO 2002: Proceedings of the Genetic and Evolutionary Computation
Conference, pages 327–334, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[4] S.-S. Choi and B. R. Moon. More effective genetic search for the sorting network problem. In Proc.
of the Genetic and Evolutionary Computation Conference GECCO 2002, pages 335–342, New York,
US, 2002. Morgan Kaufmann.

[5] B. A. et al. Essential Cell Biology, 2nd edition. Garland Science/Taylor & Francis Group, 2003.

[6] T. G. W. Gordon and P. J. Bentley. Towards development in evolvable hardware. In Proc. of the
2002 NASA/DoD Conference on Evolvable Hardware, pages 241–250, Washington D.C., US, 2002.
IEEE Press.

[7] F. Gruau. Neural network synthesis using cellular encoding and the genetic algorithm, PhD thesis.
Technical report, Laboratoire de l’Informatique du Parallelisme, Ecole Normale Superieure de Lyon,
France, 1994.

[8] W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimization procedure.
Physica D, 42(1–3):228–234, June 1990.

[9] G. S. Hornby and J. B. Pollack. The advantages of generative grammatical encodings for physical
design. In Proc. of the 2001 Congress on Evolutionary Computation, pages 600–607. IEEE Press,
2001.

[10] J. R. Koza et al. Genetic Programming III: Darwinian Invention and Problem Solving. Morgan
Kaufmann, San Francisco, 1999.
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