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Abstract

Cellular automata-based model has been shown as a

useful developmental model in the evolutionary design of

digital circuits at the gate level. Uniform one-dimensional

cellular automata have been successfully applied to the cir-

cuit design task so far. Moreover, the initial experiments

performed during our previous research have demonstrated

the possibility of applying non-uniform cellular automata

to the circuits design which is the main objective of the pro-

posed paper. We will investigate this approach considering

several classes of combinational circuits, provide an anal-

ysis of the obtained results and their comparison with the

results of the uniform cellular automata-based model. It

will be shown that evolution is able to find (in general a dif-

ferent) local transition function for each cell of the automa-

ton according to which the target circuit is developed. Two

different case studies will be presented in order to demon-

strate the abilities of the proposed method. The first case

study deals with the development of combinational multi-

pliers and the second one is intended to develop combina-

tional dividers. The obtained experimental results will be

compared to our previous approach in which uniform cellu-

lar automata were applied. The proposed non-uniform ap-

proach enables to design circuits that we were not able to

develop successfully using the uniform cellular automata.

1 Introduction

The biologically inspired development represent a pow-

erful technique in the area of evolutionary design. A non-

trivial indirect construction process (i.e. the genotype–

phenotype mapping in the evolutionary algorithm) repre-

sents the main feature of this approach. Recently, the de-

velopment has successfully been applied in solving various

complex problems not only in engineering areas.

Cellular automata (CA) represent one of the methods to

perform the computational development (i.e. to simulate

the basic principles of that biological phenomena by means

of digital computational devices). Since the invention of

the basic concept of the cellular automata in 1966 [15], this

mathematical model has been successfully applied to inves-

tigate many complex problems in different areas. The de-

tailed survey of the principles and analysis of various types

of cellular automata and their applications (including emu-

lation of circuits and computer systems) is summarized in

[16]. Sipper [13] investigated the computational properties

of cellular automata and proposed an original evolutionary

design method for cellular automata called the cellular pro-

gramming. He demonstrated the successfulness of this ap-

proach to solve some typical problems related to the cellu-

lar automata, e.g. synchronization, ordering or the random

number generation. In the recent years, scientists have been

interested in the design of cellular automata for solving dif-

ferent tasks using the evolutionary algorithms. Dellaert et

al. introduced a method for the evolutionary development

of complete autonomous agents using random boolean net-

works. In fact, random boolean network can be understood

as a binary cellular automaton whose cellular neighborhood

is not limited by the structure of the automaton. The suc-

cessful evolutionary development was presented that con-

structs complete autonomous agents which perform the line

following task [6]. Corno et al. applied the cellular au-

tomaton as a generator of the binary test vectors for BIST

(Built-In Self Test) units to detect stuck-at faults inside a

Finite State Machine circuit. According to the results pre-

sented in [5], this method is able to overcome the fault cov-

erage that can be achieved using current engineering prac-

tice. Nandi et al. studied the theory and applications of

cellular automata for synthesis of easily testable combina-

tional logic [11]. Miller investigated the problem of evolv-

ing a developmental program inside a cell to create mul-

ticellular organism of arbitrary size and characteristic. He



presented a system in which the organism organizes itself

into well defined patterns of differentiated cell types (e.g.

the French Flag) [10]. Tufte and Haddow utilized a FPGA-

based platform of Sblocks [8] for the online evolution of

digital circuits. The system actually implements a cellu-

lar automaton whose development determines the functions

and interconnection of the Sblock cells in order to realize a

function. Note that the evolutionary algorithm is utilized to

design the rules for the development of the cellular automa-

ton [14]. Recently, cellular automata have successfully been

applied in the area of gate-level evolutionary development

of digital circuits. One-dimensional uniform CA have been

investigated in [2, 1, 3] and the initial experiments of apply-

ing the non-uniform approach were introduced in [4].

In this paper, adavanced experiments of the gate-level

combinational circuits development using the non-uniform

cellular automata will be presented and an analysis of the

obtained results will be proposed. The development will be

performed by means of one-dimensional cellular automata.

The impact of the cellular automata size (i.e. the number

of cells) on the success rate and computational effort of the

evolutionary processes will be investigated. The obtained

results will be compared to the results of our previous re-

search published in [3] and the advantages and disadvan-

tages of the proposed approach will be discussed. More-

over, it will be demonstrated that the non-uniform CA-based

approach allows us to develop circuits whose development

have not been successful by means of uniform cellular au-

tomata. The case studies deal with the development of com-

binational multipliers and dividers at the gate level.

The paper is structured as follows. Section 2 summarizes

the basic principles of the biological development and high-

lights the aspect which represent the crucial features of the

computational development. Section 3 summarizes the ba-

sic principles of the cellular automaton that will be utilized

in the experiments. In Section 4 the cellular automata-based

developmental model is described by means of which the

target circuits will be generated. Section 5 provides the in-

formation about the experimental setup (the evolutionary al-

gorithm and the configuration of the developmental system)

with respect to the process of circuits construction. Section

6 presents the obtained results and discussion. Finally, con-

cluding remarks are summarized in Section 7.

2 Biological and computational development

In nature, the development is a biological process of on-

togeny representing the formation of a multicellular organ-

ism from a zygote. It is influenced by the genetic infor-

mation of the organism and the environment in which the

development is carried out.

In the area of computer science and evolutionary al-

gorithms in particular, the computational development has

been inspired by that biological phenomena. Computational

development is usually considered as a non-trivial and indi-

rect mapping from genotypes to phenotypes in an evolution-

ary algorithm. In such case the genotype has to contain a

prescription for the construction of target object. While the

genetic operators work with the genotypes, the fitness cal-

culation (evaluation of the candidate solutions) is applied

on phenotypes created by means of the development. The

principles of the computational development together with a

brief biological background and selected application of this

bio-inspired approach are summarized in [12].

The utilization of the computational development is mo-

tivated by the fact that natural development is one of the

phenomena which is primarily responsible for the extraordi-

nary diversity and sophistication of living creatures. It is as-

sumed that the computational development (inspired by nat-

ural development) in connection with an evolutionary algo-

rithm might be utilized to achieve the evolution of complex

artificial objects and other objectives desired by evolution-

ary design systems, including evolvability, adaptation, regu-

lation, repetition or robustness (as discussed in [9]). Several

researchers have dealt with the development applied to the

field of digital circuits, e.g. [7]. In fact, Tufte’s work repre-

sents one of the few cellular automata-based models applied

to the design of digital circuits. However, the approach pre-

sented in [14] involves higher-level functions by means of

which the target circuits are implemented.

3 Cellular automata

The fundamental principle of CAs is as follows [15]. A

cellular automaton (CA) consists of a regular structure of

cells, each of which can possess one state from a finite set of

states at a given time. The states are updated synchronously

in parallel according to a local transition function. The next

state of a given cell depends on the combination of states in

the cellular neighborhood. In this paper the cellular neigh-

borhood of each cell consists of the cell itself and its two

immediate neighbors. Cyclic boundary conditions of the

CA will be considered, i.e. the left neighbor of the first cell

is the last cell of the CA and the right neighbor of the last

cell is the first cell of the CA. The local transition function

defines a next state of a cell for every possible combina-

tion of states in the cellular neighborhood. Let us denote

c1c2c3 → cn as a rule of the local transition function, where

c1c2c3 represents the combination of states of the cells in

the cellular neighborhood and cn denotes the next state of

the middle cell. In case of uniform cellular automata, the

local transition function is identical for all the cells the CA

consists of. In this paper, however, the non-uniform CA will

be considered. Therefore, each cell possesses its own local

transition function for updating the cell state. In general,

the local transition function may be different for the cells.



4 Developmental system using cellular au-

tomata

The CA-based developmental system is based on the

approach introduced in [3] with the difference that non-

uniform cellular automata are considered herein.

A logic gate is assigned to each rule of the local transi-

tion function of each cell. The gate will be generated by

the cells during the development of the cellular automaton.

Therefore, in general, the rule of the local transition func-

tion possesses the form: c1c2c3 → cn : f i1 i2, where the

part on the right of the colon specifies the function (f ) of

the gate to be generated and the indices of its two inputs (i1
and i2). The developmental step is considered as the cal-

culation of the next state for each cell of the CA together

with generating a gate by the cells. The gate to be gener-

ated is specified by the rule that is applied to determine the

next state of the given cell depending on the combination of

states in the cellular neighborhood. Considering this devel-

opmental scheme, one level of the circuit is generated in one

developmental step of the CA. In case of the first develop-

mental step, the inputs of the gates being generated are con-

nected to the primary inputs of the target circuit. The inputs

of gates generated in the next developmental steps are con-

nected to the specified outputs of the gates generated in the

previous developmental step. The outputs of the appropri-

ate gates generated in the last developmental step represent

the primary outputs of the target circuit. No other intercon-

nection of the gates are allowed. This development strategy

was chosen with respect to our previous experiments using

the uniform CA [3, 1, 2] in order to perform a comparison

of the uniform and non-uniform CA-based approach.

There are several possibilities how to connect the cir-

cuit outputs to the outputs of the gates generated in the

laste developmental step if the number of cells of the CA

is greather than the number of outputs of the circuit. The

experiments showed that there is no significant influence of

different ways of inputs connection on the design process.

Therefore, we will consider the simplest way when the pri-

mary outputs of the circuit are successively connected to the

gates generated by the cells from the cell index 0 to p − 1,

where p denotes the number of outputs of the circuit. The

connection scheme is illustrated in Figure 1.

In order to ensure correct connection of gates generated

in the first developmental step, the modulo operation will

be utilized. For example, if a 3-input circuit is generated

by means of a 5-cell CA and a gate generated in the first

developmental step should have its input connected to in-

dex 4, it will be connected to the primary input of index

4 mod 3 = 1. (i.e. the range of cell indices 0 . . . 4 is

mapped into the range of input indices 0 . . . 2.) The number

of gates generated in each of the next developmental steps

corresponds to the number of cells, therefore, the inputs of

Figure 1. An example of an abstract 3-output

circuit generated in 3 developmental steps.

The connection scheme of the outputs uti-

lized during the experiments is illustrated

(the circuit outputs are denoted by arrows,

the remaining outputs are meaningless).

the gates generated in a developmental step can be directly

connected to the given outputs of the gates generated in the

previous developmental step (using the index range 0. . . 4 in

this example).

Table 1 shows the set of gates utilized for the experi-

ments presented in this paper.

Gate Inputs Description

0: AND a, b two-input AND gate

1: OR a, b two-input OR gate

2: XOR a, b two-input exclusive-OR gate

3: NAND a, b two-input NAND gate

4: NOR a, b two-input NOR gate

5: NXOR a, b two-input gate of equivalence function

6: IDA a, x one-bit buffer (identity function)

of the first input

7: IDB x, b one-bit buffer (identity function)

of the second input

Table 1. Gates utilized for the development.

Note that x represents an unused input.

Figure 2a shows an example of the cellular automaton

generating a three-level 2x2-bit combinational multiplier.

Note that for simplicity the developmental process is ex-

plained using an uniform CA whose number of cells cor-

responds to the number of inputs of the target circuit. The

primary inputs of the multiplier and the cells of the CA are

denoted by indices 0, 1, 2 and 3. However, in real experi-

ments presented herein, non-uniform cellular automata are

evolved that may possess different cells in comparison with

the number of circuit inputs and outputs. The design pro-

cess is performed as follows. At the beginning of the devel-

opment, the CA is initialized by a suitable initial state, in

this case 1 1 0 0. Considering the cyclic boundary condi-

tions, the state of each cell is updated according to the local



transition function (Fig. 2b). During the first developmen-

tal step, the actual state 1 of the first (top) cell is updated

according the rule 0 1 1 → 0 : AND 2 3. The AND gate

is generated having its inputs connected to the primary in-

puts 2 mod 4 = 2 and 3 mod 4 = 3 (the modulo operation

is performed because, in general, the number of inputs may

be smaller than the number of cells of the CA). The next

state of the second cell in computed according to the rule

1 1 0 → 2 : AND 0 1, generating the AND gate whose

inputs are connected to the primary inputs 0 mod 4 = 0

and 1 mod 4 = 1. The same principle is applied to gen-

erate the other gates in the first developmental step. After

the first step the state of the CA is 0 2 1 1. In the second

developmental step, for instance, the XOR 2 3 is generated

by the rule 0 2 1 → 1 : XOR 2 3 and the identity function

of the first gate input (IDA 1) is generated according to the

rule 2 1 1 → 1 : IDA 1 0. Note that the input index 0

is meaningless since the IDA gate passes only the first input

(labeled by 1) which is connected to the output of the AND
gate generated by the cell 1 in the previous developmental

step. After the next (and last, third) developmental step, the

circuit is completed and the outputs of the gates generated

in this step represent the primary outputs of the multiplier.

(a)

0 0 1 → 1 : AND 1 2 0 1 1 → 0 : AND 2 3

0 2 1 → 1 : XOR 2 3 1 0 0 → 1 : AND 3 0

1 0 2 → 2 : IDA 0 1 1 1 0 → 2 : AND 0 1

1 1 2 → 2 : XOR 3 0 1 2 2 → 0 : IDA 3 3

2 1 1 → 1 : IDA 1 0 2 2 1 → 1 : IDB 0 2

(b)

Figure 2. Example of the circuit development

using a cellular automaton from the initial

state 1100: (a) developed 2x2-bit multiplier,

(b) a part of local transition function of the

CA applied to development of the multiplier.

5 Evolutionary System Setup

The simple genetic algorithm was utilized for the evo-

lutionary design of a non-uniform cellular automaton that

generates a specified circuit. The objective is to design us-

ing the genetic algorithm (1) the local transition function

for each cell together with the initial state of the CA and (2)

the local transition function for each cell whereas the ini-

tial state is fixed to a suitable value at the beginning of the

evolutionary process.

The form of the chromosome is shown in Figure 3. Each

cell of the CA possesses a complete local transition func-

tion in the genome. The local transition function of a cell is

represented by its rules that are encoded by 4-tuples. These

rules contain the next state of the cell, the gate (function)

and the indices of inputs of that gate that is generated when

the rule is activated, i.e. when the cell determines its next

state according to the given rule. The index of a rule in-

side a given local transition function is determined implic-

itly by means of the value calculated from the combination

of states in the cellular neighborhood. This combination

is interpreted as a number whose base corresponds to the

number of possible cell states of the CA. Therefore, if the

general rule of the local transition function is considered in

the form c1 c2 c3 → cn : f i1 i2, only the part on the right

of the arrow is encoded in the genome. For example, if a

cellular automaton with 2 possible cell states and the cellu-

lar neighborhood consisting of 3 cells is considered, there

are 23 = 8 rules of the local transition function. Consider

the rule 0 1 1 → 0 : XOR 0 1. Since the combination of

states 0 1 1 corresponds to the binary representation of num-

ber 3, this rule will be placed in the third 4-tuple (counted

from zero) of the local transition function corresponding to

the given cell. Note that this rule would be encoded as a

sequence of integers 0 2 0 1 (0 denotes the next state and 2,

0, 1 denotes the function of the gate and indices of its two

inputs respectively).

Figure 3. A genome consists of the initial

states of the CA and the set of rules (R0,

R1,. . . ) of the local transition function (LTF)

for each cell. Each rule contains the next

state (S), gate function (F) and indices of the

gate inputs (I1, I2) respectively. The combina-

tions of states in the cellular neighborhood

are encoded implicitly by the indices of rules

in the chromosome.



The population consists of 200 chromosomes which are

initialized randomly at the beginning of evolution. The

chromosomes are selected by means of the tournament op-

erator with the base 4. No crossover is applied because the

experimentation with various types of this operator has not

shown any positive impact on the evolutionary process. The

following mutation operator is utilized. In each chromo-

some selected by the tournament operator, 6 genes are cho-

sen randomly and each of them is mutated with the prob-

ability 0.96. A gene is understood as a single value repre-

senting the state or the gate function or the input index. The

high mutation rate was chosen in order to enable a larger

change in the genome because no crossover operator is ap-

plied. The experiments showed that if only one gene per

chromosome is mutated, then the convergence of the evolu-

tion is very slow. Therefore, up to 6 genes per chromosome

may be mutated. This number represents a sufficiently large

part of the genome undergoing changes in order that the

evolution converges in a reasonable time while preserving a

good success rate in different sorts of experiments.

The fitness function is calculated as the number of cor-

rect output bits of the target circuit using all the binary test

vectors. For example, if a 4-input circuit ought to be de-

veloped, there are 24 test vectors. Therefore, the fitness

of a perfect solution possessing 4 primary outputs equals

4 · 24 = 64. The number of developmental steps for devel-

oping a working circuit (i.e. the number of steps after which

the resulting circuit is evaluated) is determined on the basis

of the delay of conventional multipliers designed at the gate

level.

The experiments were performed on common PCs run-

ning RedHat-based Linux operating system. The hardware

configuration consists of a 2.0 GHz processor and 512 MB

RAM. Sun Grid Engine (SGE) system was utilized so that

several independent experiments could be run on different

PCs in parallel.

6 Experimental results and discussion

Since the non-uniform cellular automata, in general, may

apply different local transition function for each cell, a more

complex behavior is possible to observe in comparison with

the uniform CA, considering the same number of cell states

[13]. However, because of several local transition functions

are evolved in case of non-uniform CA, the search space

grows exponentially with the number of states and, more-

over, with the number of cells (size) of the CA because each

additional cell extends the genome by all the rules of a lo-

cal transition function. For example, the search space of a

binary CA consisting of four cells for the development of a

4-input circuit composed of 7 different building blocks ap-

proximately possesses 1.2 · 1073 candidate solutions. Sev-

eral sets of experiments were conducted. These experiments

Table 2. Success rate and computational ef-

fort of the evolutionary dividers development

using non-uniform cellular automata. A fixed

and evolved initial state of the CA is consid-

ered.

Evolved init. st. Fixed init. st.

I W S T S. rate C. effort S. rate C. effort

5 10 3 4 35 16k 28 16k

5 72 16k 70 11k

4 4 27 17k 20 21k

5 74 17k 65 19k

15 3 4 51 15k 51 15k

5 83 10k 89 7k

4 4 36 20k 32 22k

5 81 13k 81 13k

20 3 4 53 18k 55 14k

5 96 8k 96 8k

4 4 36 22k 37 19k

5 81 14k 86 15k

6 12 3 5 16 67k 16 75k

6 33 70k 35 62k

4 5 6 100k 1 133k

6 43 79k 37 78k

18 3 5 33 60k 27 54k

6 67 50k 61 45k

4 5 16 84k 17 77k

6 60 69k 52 72k

24 3 5 35 67k 31 59k

6 85 41k 70 42k

4 5 19 77k 22 73k

6 77 55k 68 48k

were focused on the evolutionary design of CAs of different

sizes for the development of the multipliers and dividers.

In each class of circuits, two different sets of experiments

will be presented. In the first one, the local transition func-

tions of non-uniform cellular automata are evolved together

with the initial states of the CAs. In the second set of ex-

periments, only the local transition functions are evolved

whereas the initial state is set to a fixed combination that is

invariable during the evolutionary process. In this case the

genetic algorithm actually searches the rules of the CA for

the development from the given initial state. Since the nun-

uniform cellular automata are considered, it is supposed that

a working circuit can be developed from the simplest form

of the initial state in which all the cells are set to identical

initial state. The experiments were performed for various

parameters of the CA (i.e. the number of cells, the number

of states and the number of developmental steps) using the

gates from Table 1.

For each experimental setup (i.e. the number of circuit

inputs, cells, states, developmental steps and circuit type)

100 independent evolutionary experiments were conducted.

The results are summarized in tables 2, 3 and 4. In each

table, the number of inputs of the target circuit is denoted

as I, W denotes the number of cells (width) of the CA, S



denotes the number of possible cell states and T denotes

the number of developmental steps. In each experimental

setup specified by those parameters we measured the suc-

cess rate (the number of successfully evolved solutions out

of 100 independent experiments) and computational effort

(expressed as an average number of generations needed to

evolve a working solution).

Combinational dividers represent a class of circuits that

has not been successfully evolved by means of uniform cel-

lular automata so far. As we assumed, the non-uniform ap-

proach is able to develop different instances of these circuits

up to 7 inputs. Note that a divider possessing N input bits

considers D = N/2 + N mod 2 bits of a dividend and the

rest d = N − D bits of a divisor. The quotient is then ex-

pressed by D bits. If the divisor equals zero, the quotient

is not defined (i.e. its bits are considered as don’t care val-

ues during the circuit evaluation). The experimental results

related to the dividers development are summarized in Ta-

ble 2. The maximal number of generations for measuring

the success rate was chooses as follows: 50k for 5-input

dividers, 150k for 6-input dividers and 750k for 7-input di-

viders. Although the non-uniform approach to the develop-

ment of 7-input dividers was successful (with approx. 10%

success rate), only 5-input and 6-input dividers will be pre-

sented herein since no 7-input working multiplier has been

evolved yet so there are no results to compare. As Table 2

shows, the success rate as well as the computational effort

does not differ very markedly if compared the evolving and

fixed initial states. Note that in case of experiment consid-

ering the fixed initial state, the initial state of all the cells

was set to zeros and only the local transition function was

evolved. In contrast to [2], where the fixed initial state pro-

vided better results in comparison with the evolving initial

state using uniform CA, the experiments presented herein

exhibit worse success rate if the fixed initial state is consid-

ered using the non-uniform approach. It is surprising be-

cause the fixed initial state reduces the search space. More-

over, it could be claimed that evolving initial state makes

the evolution more difficult because if the initial state is

mutated, the evolution has to design suitable local transi-

tion functions for the cells in order that a working circuit

can be developed. This might require a substantial compu-

tational effort. However, the evolving initial state evidently

does not represent a problem, since the success rate reaches

over 50% in many cases. Similar behavior can also be ob-

served in the computational effort. The values do not exhibit

big differences and there is not any substantial influence

of the evolving/fixed initial state. Similarly to the results

presented in [3], the success rate increases with increased

number of cells for given values of cell states and number

of developmental steps. However, the computational effort

is lower for larger numbers of cells in many cases which

is surprising because of significant increase of the search

space (the evolution has to design a separate local transition

function for each cell).

Similar features of the evolutionary process can be ob-

served in most cases of the multipliers development whose

results are summarized in Table 3. The maximal number

of generations for measuring the success rate was chosen as

50k for 4-input multipliers, 250k for 5-input and 1M5 for 6-

input multipliers. Unfortunately, no larger multipliers have

been developed yet using CA. As could be expected, the

development of larger multipliers is more difficult in com-

parison with the dividers. For example, there are several

cases in the design of 6-input dividers where the success

rate reaches substantially over 60%. However, the best suc-

cess rate in case of 6-input multipliers is 60% if the initial

state was fixed and 55% in case of evolving initial state.

It may be caused by different structures of these classes of

circuit, by the fact that in case of division by zero the result

may be arbitrary and also by the differences in setting the

parameters of the CA because determining optimal values

for a given problem is not trivial (no systematic approach

has been published yet so it is needed to perform it experi-

mentally or empirically).

Since the combinational multipliers have already been

evolved in [3] using uniform cellular automata, we will

compare the results with those obtained herein by means

of the non-uniform approach. Note that only the cellular

automata with evolving initial states will be included. The

comparison, that is shown in Table 4, provides several in-

teresting features. It can be observed that the success rate

increases with the increasing number of cells in case of the

uniform CA [3], while this phenomen is not present if non-

uniform CA were utilized. This feature is possible to make

clear as follows. In case of uniform CA the local transi-

tion function is identical for all the cells. If a more com-

plex circuit structure ought to be developed, it is easier for

the design process to involve more cells in order to gen-

erate more gates in a developmental step from which the

suitable interconnection of the target circuit emerges dur-

ing other developmental steps (i.e. some gates generated by

the CA may be unused). Therefore, there are more possi-

bilities how to develop a working circuit if the number of

cells is higher which leads to increased success rate. The

non-uniform CA is able to perform more complex behavior

in comparison with the uniform approach that enables the

CA to develop sufficient number of working circuit struc-

tures which leads to increased success rate already with less

number of cells. The next interesting feature is that in more

than 50% of experiments the computational effort of the

evolution of non-uniform CA is substantially lower in com-

parison with the evolution of uniform CA. Moreover, the

non-uniform approach was able to find working solutions

of 3x3-bit multipliers using the same parameters of the CA

that were unsuccessful by means of the uniform approach.



Table 3. Success rate and computational ef-

fort of the evolutionary multipliers develop-

ment using non-uniform cellular automata. A

fixed and evolved initial state of the CA is

considered.

Evolved init. st. Fixed init. st.

I W S T S. rate C. effort S. rate C. effort

4 7 2 2 97 3k 94 3k

3 100 1k 100 1k

3 2 80 1k 76 1k

3 94 2k 93 2k

4 2 74 4k 63 3k

3 95 3k 92 4k

10 2 2 93 2k 87 2k

3 100 1k 100 777

3 2 84 3k 74 1k

3 99 1k 100 2k

4 2 83 6k 78 3k

3 94 2k 92 4k

13 2 2 93 6k 81 5k

3 100 468 100 438

3 2 81 4k 75 2k

3 100 1k 100 2k

4 2 78 4k 74 5k

3 96 3k 97 3k

5 9 3 3 53 54k 50 52k

4 81 41k 86 37k

4 3 39 77k 39 79k

4 82 61k 82 54k

5 3 41 107k 35 95k

4 59 65k 65 68k

13 3 3 49 40k 57 57k

4 97 27k 94 20k

4 3 44 88k 50 80k

4 95 44k 92 35k

5 3 44 85k 37 92k

4 76 52k 83 59k

17 3 3 51 58k 63 70k

4 96 23k 98 25k

4 3 54 78k 56 77k

4 95 39k 95 39k

5 3 44 84k 40 90k

4 91 66k 92 63k

6 11 4 5 0 - 6 822k

6 2 382k 3 376k

5 5 0 - 0 -

6 0 - 1 821k

6 5 1 900k 1 1M

6 1 1M 1 1M

16 4 5 16 554k 9 624k

6 27 589k 32 673k

5 5 14 854k 7 1M

6 20 758k 26 701k

6 5 5 887k 4 697k

6 10 837k 9 675k

21 4 5 33 617k 27 767k

6 55 499k 60 577k

5 5 25 845k 21 919k

6 40 617k 41 685k

6 5 4 688k 10 836k

6 19 639k 18 598k

Table 4. Comparison of success rate and

computational effort of the evolutionary mul-

tipliers development using non-uniform and

uniform CA

Non-uniform CA Uniform CA

I W S T S. rate C. effort S. rate C. effort

4 7 2 2 97 3k 44 18k

3 100 1k 3 17k

3 2 80 1k 100 4k

3 94 2k 92 10k

4 2 74 4k 99 2k

3 95 3k 99 1k

10 2 2 93 2k 77 16k

3 100 1k 16 27k

3 2 84 3k 100 3k

3 99 1k 99 7k

4 2 83 6k 100 752

3 94 2k 99 1k

13 2 2 93 6k 85 13k

3 100 468 23 28k

3 2 81 4k 100 2k

3 100 1k 98 5k

4 2 78 4k 100 550

3 96 3k 100 2k

5 9 3 3 53 54k 8 157k

4 81 41k 5 145k

4 3 39 77k 40 105k

4 82 61k 54 102k

5 3 41 107k 63 77k

4 59 65k 90 45k

13 3 3 49 40k 16 167k

4 97 27k 15 146k

4 3 44 88k 69 90k

4 95 44k 87 73k

5 3 44 85k 92 73k

4 76 52k 96 41k

17 3 3 51 58k 24 161k

4 96 23k 19 166k

4 3 54 78k 68 103k

4 95 39k 91 82k

5 3 44 84k 94 83k

4 91 66k 99 34k

6 11 4 5 0 - 0 -

6 2 382k 0 -

5 5 0 - 1 1M

6 0 - 0 -

6 5 1 900k 9 666k

6 1 1M 9 632k

16 4 5 16 554k 0 -

6 27 589k 0 -

5 5 14 854k 18 887k

6 20 758k 18 842k

6 5 5 887k 32 890k

6 10 837k 56 792k

21 4 5 33 617k 0 -

6 55 499k 0 -

5 5 25 845k 22 938k

6 40 617k 27 975k

6 5 4 688k 42 658k

6 19 639k 62 797k



It means that, although the non-uniform search space is sub-

stantially larger if compared to the uniform CA, the number

of correct solutions and the conditions for the evolutionary

convergence is probably more advantageous than in case

of uniform CA. The low computational effort of the non-

uniform setups in comparison with the corresponding uni-

form setups may also indicate suitable setup values of the

cellular automata for the given circuit to be developed.

7 Conclusions

We proposed a developmental method based on non-

uniform cellular automata for generating combinational cir-

cuits at the gate level. The evolutionary design of the CA

was demonstrated on the problems of dividers and multi-

pliers development which could be considered as typical

benchmark problems. The impact of the cellular automata

size on the success rate and computational effort was in-

vestigated. The results showed that the number of cells of

the non-uniform CA has lower influence on the success rate

than the uniform CA. The non-uniform approach enabled

us to evolve circuits that has not been successfully designed

using the uniform CA. It is the case of the combinational

dividers of different sizes (we performed successful devel-

opment of 5-input, 6-input and 7-input dividers) and 6-input

multipliers using several CA setups that were unsuccessful

in the development using uniform CA. We also provided

a comparative study of the multipliers development using

non-uniform and uniform approach. The results showed

that the computational effort of the non-uniform CA evolu-

tion is substantially lower in most cases in comparison with

the uniform approach.

The next research will be focused on a more in-depth

analysis of the evolved developmental rules of the CA, opti-

mization of the developing circuits during the evolutionary

process and investigation of other development strategies

considering different sets of building blocks.
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