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Abstract— Cellular automata represent a computational
model that is based on updating the states of the cells,
that are arranged in a regular structure, by means of local
interactions between the cells. Cellular automata have often
been utilized as a developmental model in engineering areas to
solve many complex problems. In the area of the evolutionary
algorithms, cellular automata can be applied as an indirect
mapping between genotypes and phenotypes. In the recent
years, this approach has successfully been applied on the
evolutionary development of digital circuits at the gate level.
Combinational multipliers represent a class of circuits that
is usually considered as hard task for the design using the
evolutionary techniques. In our previous research regarding
the cellular automata-based development, 2x2-bit multipliers
were successfully evolved using this approach. Combinational
multipliers have been chosen in this paper to demonstrate
capabilities of an advanced developmental system that allows
to apply cellular automata of different sizes in order to design
larger instances of this kind of circuits. In the experiments
presented herein, the 2x3-bit and 3x3-bit multipliers will be
considered which represent the first case when such instances
of multipliers have been successfully developed at the gate level
using cellular automata. The proposed developmental model
is investigated in detail with respect to the success rate of
the evolutionary experiments for different experimental setups
(such as the cellular automata size, the number of cell states
and developmental steps). Moreover, it will be demonstrated
that different ways of connections of the circuit outputs can be
utilized without a significant influence on the successfulness of
the evolutionary process.

I. I NTRODUCTION

In the area of evolutionary design, the biologically inspired
development has often been utilized as indirect construction
process of the target objects. This has been accomplished by
means of algorithms that were designed using the evolution.
Cellular automata represent one of the methods to perform
the so called computational development inspired by prin-
ciples observed in biology (e.g. cell division, differentiation
and growth). In addition to their original purpose — the study
of the behavior of complex systems and simulation of those
biological phenomena [1] — cellular automata represent a
universal computational model applicable to various fields
[2]. The detailed survey of the principles and analysis of
various types of cellular automata and their applications
(including emulation of circuits and computer systems) is
summarized in [3].

Sipper [2] investigated the computational properties of cel-
lular automata and proposed an original evolutionary design
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method for cellular automata called the cellular program-
ming. He demonstrated the successfulness of this approach to
solve some typical problems related to the cellular automata,
e.g. synchronization, ordering or the random number gen-
eration. In the recent years, scientists have been interested
in the design of cellular automata for solving different tasks
using the evolutionary algorithms. Dellaert et al. introduced
a method for the evolutionary development of complete
autonomous agents using random boolean networks. In fact,
random boolean network can be understood as a binary cel-
lular automaton whose cellular neighborhood is not limited
by the structure of the automaton. The successful evolu-
tionary development was presented that constructs complete
autonomous agents which perform the line following task [4].
Corno et al. applied the cellular automaton as a generator of
the binary test vectors for BIST (Built-In Self Test) units to
detect stuck-at faults inside a Finite State Machine circuit.
According to the results presented in [5], this method is
able to overcome the fault coverage that can be achieved
using current engineering practice. Nandi et al. studied the
theory and applications of cellular automata for synthesisof
easily testable combinational logic [6]. Miller investigated
the problem of evolving a developmental program inside a
cell to create multicellular organism of arbitrary size and
characteristic. He presented a system in which the organism
organizes itself into well defined patterns of differentiated
cell types (e.g. the French Flag) [7]. Tufte and Haddow
utilized a FPGA-based platform of Sblocks [8] for the online
evolution of digital circuits. The system actually implements
a cellular automaton whose development determines the
functions and interconnection of the Sblock cells in order
to realize a function. Note that the evolutionary algorithmis
utilized to design the rules for the development of the cellular
automaton [9].

In this paper we present an approach that allows to
generate combinational multipliers at the gate level. We will
show that by increasing the number of cells of the cellular
automaton larger multipliers can be developed (note that
during our previous research, only 2x2-bit multipliers were
successfully designed using the cellular automata that possess
the same number of cells as the number of input of the target
circuit [10]). We will investigate the impact of the cellular
automata size (i.e. the number of cells) on the success rate
of the experiments. Finally, it will be shown that different
ways of connection of the outputs of the multipliers can be
considered during the evolutionary process. The impact of
this issue on the success rate will be investigated.



The paper is structured as follows. Section II summa-
rizes the basic principles of the biological development and
highlights the aspect which represent the crucial featuresof
the computational development. Section III summarizes the
basic principles of the cellular automaton that will be utilized
in the experiments. In Section IV the cellular automata-
based developmental model is described by means of which
the combinational multipliers will be generated. Section V
provides the information on the evolutionary system setup
and the configuration of the developmental process with
respect to the construction. Section VI provides the obtained
results and discussion. Finally, concluding remarks are given
in Section VII.

II. DEVELOPMENT

In nature, the development is a biological process of on-
togeny representing the formation of a multicellular organism
from a zygote. It is influenced by the genetic information of
the organism and the environment in which the development
is carried out.

In the area of computer science and evolutionary algo-
rithms in particular, the computational development has been
inspired by that biological phenomena. Computational devel-
opment is usually considered as a non-trivial and indirect
mapping from genotypes to phenotypes in an evolution-
ary algorithm. In such case the genotype has to contain
a prescription for the construction of target object. While
the genetic operators work with the genotypes, the fitness
calculation (evaluation of the candidate solutions) is applied
on phenotypes created by means of the development. The
principles of the computational development together witha
brief biological background and selected application of this
bio-inspired approach are summarized in [11].

The utilization of the computational development is mo-
tivated by the fact that natural development is one of the
phenomena which is primarily responsible for the extraor-
dinary diversity and sophistication of living creatures. It is
assumed that the computational development (inspired by
natural development) in connection with an evolutionary al-
gorithm might be utilized to achieve the evolution of complex
artificial objects and other objectives desired by evolutionary
design systems, including evolvability, adaptation, regulation,
repetition or robustness (as discussed in [12]). Several re-
searchers have dealt with the development applied to the field
of digital circuits, e.g. [13]. In fact, Tufte’s work represents
one of the few cellular automata-based models applied to the
design of digital circuits. However, the approach presented
in [9] involves higher-level functions by means of which the
target circuits are implemented.

III. CELLULAR AUTOMATA

The fundamental principle of CAs is as follows [1]. A
cellular automaton (CA) consists of a regular structure of
cells, each of which can possess one state from a finite set of
states at a given time. The states are updated synchronously
in parallel according to a local transition function. Let uscall
a developmental step of the CA the synchronous update of all

the cells of the CA. The next state of a given cell depends
on the combination of states in the cellular neighborhood.
In this paper the cellular neighborhood of each cell consists
of the cell itself and its two immediate neighbors. Cyclic
boundary conditions of the CA will be considered, i.e. the
left neighbor of the first cell is the last cell of the CA and
the right neighbor of the last cell is the first cell of the CA.
The local transition function defines a next state of the cell
being updated for every possible combination of states in the
cellular neighborhood. Let us denotec1c2c3 → cn as a rule
of the local transition function, wherec1c2c3 represents the
combination of states of the cells in the cellular neighborhood
and cn denotes the next state of the middle cell. In case of
uniform cellular automata, that will be applied in this paper,
the local transition function is identical for all the cells.

IV. PROPOSEDCA-BASED DEVELOPMENTAL SYSTEM

A CA-based developmental model will be utilized to
generate combinational multipliers at the gate level. This
model is based on the approach introduced in [10].

A logic gate is assigned to each rule of the local transition
function that will be generated by the cells during the CA
development. Therefore, in general, the rule of the local
transition function possesses the form:c1c2c3 → cn : f i1 i2,
where the part on the right of the colon specifies the function
(f ) of the gate to be generated and the indices of its two
inputs (i1, i2). Since we consider 3-cell neighbourhood of
each cell (i.e. the next state of a cell depends on the present
state of this cell and the states of its immediate neighbours
on the left and right side), the state space that determines
the number of different rules of the local transition function
can be calculated asrulescount = s3, where s denotes
the number of possible cell states. The developmental step
is considered as the calculation of the next state for each
cell of the CA. The gate to be generated is specified by
the rule that is applied to determine the next state of the
cell depending on the combination of states in the cellular
neighborhood. Therefore, one level of the circuit is generated
in one developmental step of the CA. In case of the first
developmental step, the inputs of the gates being generated
are connected to the primary inputs of the target circuit.
Otherwise the gate inputs are connected to the outputs of the
gates generated in the previous developmental step, which
corresponds to thel − back parameter of the value 1 if the
cartesian genetic programming is considered [14].

The enhancements of the developmental model (in com-
parison with the approach introduced in [10]) lies in the uti-
lization of higher number of cells of the CA than the number
of primary inputs of the circuit to be developed. Obviously,
we will consider only the case when the number of cells is
greater than the number of inputs of the circuit. Since this
feature enables to select different ways of connection of the
circuit outputs, we will investigate this issue in more detail
in order to determine its impact on the successfulness and
computational effort of the evolutionary process.

A suitable method of connection of the gates to the
primary inputs in the first developmental step must be



considered because of different number of gates that can be
generated in a developmental step. The following approach
will be utilized. LetN be the number of inputs of the circuit
(and also the number of outputs because multipliers possess
the same number of inputs and outputs) andC the number
of cells of the CA. IfC > N , the index range of the primary
inputs is lower than the index range of the gates generated
by the cells. In order to ensure correct connection in the first
developmental step, the modulo operation will be utilized.
For example, if an input of a gate has its input specified by
the index 10 and a 6-input circuit ought to be developed,
this input of the gate will be connected to the primary input
of the index4 = 10 mod 6 (i.e. the range of cell indices
0 . . . 9 is mapped into the range of input indices0 . . . 5. The
number of gates generated in the next developmental steps
is equivalent, therefore, the inputs of the gates generatedin
a developmental step can be directly connected to the given
outputs of the gates generated in the previous developmental
step.

The specified outputs of the gates generated in the last
step will directly be connected to the primary outputs of
the circuit. However, because the number of cells of the
CA is greater than the number of outputs of the circuit,
there are several variants of what outputs of the gates will
be considered as primary outputs of the circuit. Since the
number of gates exceeds the number of primary outputs of
the circuit, there are more options how to connect these
outputs to the gates generated in the last developmental step.
Four different ways of connection will be investigated in this
paper: (1) the outputs are considered at the beginning of the
range of the cell indices, (2) the outputs are considered at
the middle of the range, (3) the outputs are considered at the
end of the range and (4) the outputs are considered to be
regularly spread within the range of the cell indices. In the
second variant, the starting index of the outputs corresponds
to the integer value(C−N)/2 and the last output possesses
the index (C − N)/2 + N − 1. In the fourth variant, a
special multiplicatorP (an integer parameter) is introduced
to determine the number of cells of the CA according to the
number of inputs of the multiplier asC = P · (N −1)+1 in
order to ensure regular spreading of the outputs into the index
range greater than the number of outputs. In addition, this
parameter will be utilized to determine the number of cells
of the CAs considered in the experiments for all the variants
of the outputs selection and the sizes of the multipliers to be
developed. Figure 1 shows an example of selecting outputs of
a 4-output circuit developed by means of a 7-cell CA. Note
thatP = 2 in this example, therefore, the cellular automaton
consists ofC = 2 · (4 − 1) + 1 = 7 cells.

Table I shows the set of gates utilized for the experiments
presented in this paper.

Figure 2 shows an example of the cellular automaton
generating two-level 2x2-bit combinational multiplier. The
primary inputs of the multiplier and the cells of the CA
are denoted by the indices 0, 1, 2 and 3. The development
of the circuit is performed as follows. At the beginning of

Fig. 1. Configurations for different outputs selections illustrated on the
example of 4-output circuit developed by a 7-cell cellular automaton.
The pins with arrows denote the selected outputs. (a) Selection from the
beginning of the index range, (b) selection from the middle, (c) selection
from the end and (d) selection of outputs that are spread regularly within
the index range.

Gate Inputs Description
0: AND a, b two-input AND gate
1: OR a, b two-input OR gate
2: XOR a, b two-input exclusive-OR gate
3: NAND a, b two-input NAND gate
4: NOR a, b two-input NOR gate
5: NXOR a, b two-input gate of equivalence function
6: IDA a, x one-bit buffer (identity function)

of the first input
7: IDB x, b one-bit buffer (identity function)

of the second input

TABLE I

GATES UTILIZED FOR THE DEVELOPMENT. NOTE THAT x REPRESENTS

AN UNUSED INPUT.

the development, the CA is initialized by a suitable initial
state, in this case1 1 0 0. Considering the cyclic boundary
conditions, the state of each cell is updated according to the
local transition function (Fig. 2a). During the first develop-
mental step, the actual state1 of the first (top) cell is updated
according the rule0 1 1 → 0 : AND 2 3. TheAND gate is
generated having its inputs connected to the primary inputs
2 mod 4 = 2 and 3 mod 4 = 3 (the modulo operation is
performed because, in general, the number of inputs may
be smaller than the number of cells of the CA). The next
state of the second cell in computed according to the rule
1 1 0 → 2 : AND 0 1, generating theAND gate whose
inputs are connected to the primary inputs0 mod 4 = 0 and
1 mod 4 = 1. The same principle is applied to generate the
other gates in the first developmental step. After the first step
the state of the CA is0 2 1 1. In the second developmental
step, for instance, theXOR 2 3 is generated by the rule
0 2 1 → 1 : XOR 2 3 and the identity function of the
first gate input (IDA 1) is generated according to the rule
2 1 1 → 1 : IDA 1 0. Note that the input index 0 is
meaningless since the IDA gate passes only the first input
(labeled by 1) which is connected to the output of theAND



gate generated by the cell 1 in the previous developmental
step. After the next (and last, third) developmental step, the
circuit is completed and the outputs of the gates generated
in this step represent the primary outputs of the multiplier.

(a)

0 0 1 → 1 : AND 1 2 0 1 1 → 0 : AND 2 3
0 2 1 → 1 : XOR 2 3 1 0 0 → 1 : AND 3 0
1 0 2 → 2 : IDA 0 1 1 1 0 → 2 : AND 0 1
1 1 2 → 2 : XOR 3 0 1 2 2 → 0 : IDA 3 3
2 1 1 → 1 : IDA 1 0 2 2 1 → 1 : IDB 0 2

(b)

Fig. 2. Example of the circuit development using a cellular automaton
from the initial state 1100: (a) developed 2x2-bit multiplier, (b) a part of
local transition function of the CA applied to development ofthe multiplier.

V. EVOLUTIONARY SYSTEM SETUP

The simple genetic algorithm was utilized for the evo-
lutionary design of the cellular automaton that generates a
specified circuit. The objective is to evolve the initial state
of the CA and the local transition function. The form of the
chromosome is shown in Figure 3. The rules of the transition
function are represented by a 4-tuples, each of which contains
the next state of the cell, the function and the indices of
inputs of the gate to be generated when the rule is activated.
The index (position in the genome) is specified implicitly
by means of the value expressed by the number representing
the combination of states in the cellular neighborhood. The
base of this number equals the number of possible states of
the cell. Therefore, if we consider the general form of the
rule c1 c2 c3 → cn : f i1 i2, only the part on the right
of the arrow is encoded in the genome. For example, if a
cellular automaton with 2 different states and the cellular
neighborhood consisting of 3 cells ought to be evolved, there
are23 rules of the local transition function. Consider the rule
0 1 1 → 0 : XOR 0 1. Since the combination of states0 1 1
corresponds to the binary representation of number 3, this
rule will be placed in the chromosome at the position 3 of
the local transition function. Note that the rule is encodedas
a sequence of integers0 2 0 1.

The population consists of 200 chromosomes which are
initialized randomly at the beginning of evolution. The chro-
mosomes are selected by means of the tournament operator
with the base 4. The crossover operator is not applied. The
following mutation operator is utilized. In each chromosome
selected by the tournament operator, 6 genes are chosen
randomly and each of them is mutated with the probability
0.96. A gene is understood as a single value representing
the state or the gate function or the input index. The high

Fig. 3. A chromosome consists of the initial states of the CA to be evolved
(denoted as istate) and the set of rules of the local transition function. Each
rule contains the next state, gate function and indices of two inputs of the
gate respectively. The combinations of states in the cellular neighborhood
are encoded implicitly by the indices of rules in the chromosome.

mutation rate was chosen in order to enable a larger change
in the genome because no crossover operator is applied. The
experiments showed that if only one gene per chromosome
is mutated, then the convergence of the evolution is very
slow. Therefore, up to 6 genes per chromosome may be
mutated. This number represents a sufficiently large part of
genome undergoing changes in order the evolution converges
in a reasonable time while preserving a good success rate in
different sorts of experiments.

The fitness function is calculated as the number of correct
output bits of the target circuit using all the binary test vec-
tors. For example, if a 4-input circuit ought to be developed,
there are24 test vectors. Therefore, the fitness of a perfect
solution possessing 4 primary outputs equals4·24 = 64. The
number of developmental steps for developing a working
circuit (i.e. the number of steps after which the resulting
circuit is evaluated) is determined on the basis of the delay
of conventional multipliers designed at the gate level.

The experiments were performed on common PCs running
RedHat-based Linux operating system. The hardware config-
uration consists of a 2.0 GHz processor and 512 MB RAM.
Sun Grid Engine (SGE) system was utilized so that several
independent experiments could be run on different PCs in
parallel.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The goal was to design a uniform cellular automaton (i.e.
its initial state and the local transition function) by means
of which a working multiplier of a given number of inputs
could be developed. Two sets of experiments were conducted,
considering the development of 2x3-bit and 3x3-bit mul-
tipliers. We tried to develop as large circuits as possible
using the proposed model. The evolution of 2x3-bit and
3x3-bit multipliers exhibits a reasonable computational effort
that allows us to perform sufficient number of experiments
for several different experimental setups that allows us to
identify suitable setup parameters and their impact on the
success rate of the evolutionary process. In each set of
experiments, different sizes of the cellular automata (letus
denote it W), number of possible states of the cells (S), and
ways of connections of the outputs of the multipliers were
considered. Let us denote the outputs connections by the
abbreviations as follows: the connection at the beginning of
the gate sequence (B), the connection at the middle of the
gate sequence (M), at the end (E) and the spread outputs (P).
For each setup of these parameters, the 2x3-bit combinational
multipliers were developed using 3 and 4 developmental



steps (corresponding to the delay of the resulting circuits)
and the 3x3-bit multipliers were developed using 4 and 5
developmental steps. These values showed to be suitable to
develop a working multiplier of the given size by means of
the cellular automaton, using the building blocks from table
I.

The experimental results demonstrate the success of the
development of 2x3-bit and 3x3-bit multipliers at the gate
level which confirmed our initial assumption that larger
multipliers can be developed by increasing the number of
cells of the CA. We were not able to obtain such sizes
of multipliers using the original developmental model [10].
One of the best 3x3-bit multiplier developed by means of
this approach is shown in Figure 4. This circuit has been
optimized by removing the meaningless gates (e.g. AND
gates containing identical inputs, gates whose outputs are
not connected to any input of another gate or primary output
etc.). After this optimization, 30 gates are needed and the
resulting multiplier possesses delay of 5 gates. Although
this result is not optimal in comparison with the best known
solution, it represents a significant contribution of this paper
because such size of multipliers has not been obtained before
using the cellular automata.
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Fig. 4. One of the best 3x3-bit multipliers developed by means of cellular
automata designed by the evolutionary algorithm. Note that the arrangement
of the gates against the structure generated by the cells wasaltered by the
optimization (i.e. removing the unused and meaningless gates)performed
by our visualisation software.

For each experimental setup (i.e. different values of pa-
rameters W, S, T, size of the target multipliers and the
way of outputs connection) 200 independent runs of the
evolutionary process were executed. If no solution is found
in 250k generations in case of 2x3-bit multipliers and in
1M5 generations in case of 3x3-bit multipliers, the evolution
is stopped. The success rate and the average number of
generations needed to evolve a working solution were mea-
sured. The experimental results for the evolution of 2x3-bit
multipliers are summarized in Table II and for the evolution
of 3x3-bit circuits in Table III.

TABLE II

SUMMARY OF THE SUCCESS RATE AND AVERAGE NUMBER OF

GENERATIONS FOR THE EXPERIMENTS OF EVOLUTION OF2X3-BIT

MULTIPLIERS USING CELLULAR AUTOMATA. SEVERAL DIFFERENT

NUMBERS OF CELLS(DENOTED BY W) WERE CONSIDERED, FOR EACH

SIZE OF THECA THE NUMBER OF CELL STATES(S) AND THE NUMBER

OF DEVELOPMENTAL STEPS(T) WERE DETERMINED EXPERIMENTALLY.

DIFFERENT WAYS OF CONNECTION OF THE CIRCUIT OUTPUTS WERE

INVESTIGATED (P, S, M, E).

success rate (%) avg. # generations

W S T P S M E P S M E

9 3 3 8 7 12 9 157k 106k 156k 162k

4 5 4 3 6 145k 182k 172k 177k

4 3 40 55 54 48 105k 90k 113k 93k

4 54 52 56 53 102k 98k 107k 102k

5 3 63 64 53 62 77k 66k 72k 69k

4 90 88 93 92 45k 48k 45k 56k

13 3 3 16 23 17 17 167k 152k 139k 125k

4 15 12 14 7 146k 167k 146k 144k

4 3 69 72 68 60 90k 97k 85k 85k

4 87 81 77 78 73k 84k 84k 68k

5 3 92 80 77 76 73k 66k 56k 66k

4 96 97 98 99 41k 31k 36k 39k

17 3 3 24 23 24 17 161k 157k 139k 142k

4 19 14 12 21 166k 175k 152k 146k

4 3 68 67 57 75 103k 90k 109k 95k

4 91 85 79 92 82k 83k 76k 76k

5 3 94 84 87 86 83k 66k 73k 63k

4 99 97 100 99 34k 37k 37k 33k

21 3 3 19 24 22 25 135k 124k 165k 152k

4 21 14 16 20 174k 135k 164k 160k

4 3 65 74 63 75 91k 88k 81k 89k

4 96 87 85 83 77k 78k 72k 76k

5 3 88 93 87 90 69k 67k 66k 69k

4 100 97 98 100 32k 32k 38k 37k

25 3 3 25 25 16 19 122k 135k 142k 152k

4 24 15 11 24 144k 136k 155k 135k

4 3 64 69 71 76 85k 97k 82k 107k

4 96 91 87 90 69k 77k 67k 89k

5 3 91 90 88 87 70k 80k 74k 76k

4 99 98 99 98 39k 33k 43k 35k

As the results show, the success rate exceeds 90% in
many cases of experiments related to the development of
2x3-bit multipliers (see Table II). If four states (S=4) are
utilized, the success rate is much higher (even several times)
in comparison with the experimental setup possessing S=3.
If the setups of S=4 and S=5 are compared, the increase of
the success rate is lower. Surprisingly, the size of the CA
does not lead to any significant increase of the success rate.
In some cases the larger CA even causes a worse success rate
in comparison with the smaller CAs. It is interesting because
the higher number of cells (in comparison with the number
of circuit inputs) just enabled to design larger multipliers.
Note that very good success rates have already been achieved



TABLE III

SUMMARY OF THE SUCCESS RATE AND AVERAGE NUMBER OF

GENERATIONS FOR THE EXPERIMENTS OF EVOLUTION OF3X3-BIT

MULTIPLIERS USING CELLULAR AUTOMATA. THE COLUMNS HAVE THE

SAME MEANING AS IN TABLE II.

success rate (%) avg. # generations

W S T P S M E P S M E

11 4 5 0 0 0 0 - - - -

6 0 0 0 0 - - - -

5 5 1 1 1 3 806k 1M 1M 660k

6 0 0 3 2 - - 818k 1M

6 5 14 4 8 10 971k 718k 720k 812k

6 15 10 9 7 537k 886k 653k 1M

16 4 5 0 1 0 0 - 848k - -

6 0 0 1 0 - - 1M -

5 5 18 14 16 16 882k 963k 836k 728k

6 17 17 10 17 843k 792k 746k 873k

6 5 47 42 47 39 816k 692k 631k 755k

6 36 39 41 47 728k 668k 780k 752k

21 4 5 1 1 0 0 1M 892k - -

6 0 0 0 0 - - - -

5 5 36 30 32 30 802k 899k 788k 755k

6 28 28 33 28 831k 862k 853k 807k

6 5 67 57 57 56 615k 699k 669k 635k

6 61 64 69 62 658k 572k 552k 666k

26 4 5 1 2 1 0 816k 1M 996k -

6 1 0 1 0 285k - 1M -

5 5 39 41 23 30 789k 821k 771k 737k

6 34 26 37 26 782k 651k 863k 864k

6 5 70 66 67 60 662k 680k 617k 609k

6 78 73 74 74 565k 693k 587k 564k

31 4 5 2 2 2 2 1M 1M 1M 928k

6 2 1 0 0 828k 1M - -

5 5 45 36 33 40 778k 815k 773k 830k

6 44 35 36 41 838k 735k 800k 852k

6 5 78 63 66 75 679k 650k 607k 553k

6 84 81 81 77 500k 518k 531k 599k

with 13 cells of the CA; if larger sizes of the CA is used, the
success rate exhibits only small improvements. It is possible
to observe similar behavior in the average number of gener-
ations (with contradictory values). If three cell states (S=3)
are considered, there is a higher computational effort (i.e.
higher number of generations is needed in average to evolve
a working solution) in comparison with higher numbers of
states. However, it is possible to observe significantly lower
computational effort for 5 states and 4 developmental stepsin
comparison with the rest of the experimental setups though
the increased number of states leads to exponential increase
in the size of the search space. In the worst case, a working
multiplier was evolved in 3 minutes. The smaller CAs with
a lower number of cell states exhibit higher computational
effort in comparison with larger CAs that provide more
possibilities how the working solution can be developed.

As expected, the evolution of CAs for the development
of 3x3-bit multipliers is more difficult. More states, de-

velopmental steps and larger CAs were needed to evolve
working solutions (see Table III). In case of 4 cell states,
only a few of functional multipliers were developed. In most
cases, the evolution failed even in 1M5 generations using
this experimental setup. However, it is possible to achieve
significantly better success rate for the number of states
5 and higher. In addition, as evident from Table III, the
success rate increases with increasing the size of the CA
in most cases. For example, the 26- and 31-cell CAs with 6
states that construct 3x3-bit multipliers in 6 developmental
steps can be evolved with the success rate exceeding 70%
which is a perfect result if the complexity of the CA-based
construction process and the gate-level structure of these
multipliers is considered. The computational effort, measured
as the average number of generations needed to evolve a
working solution, exhibit similar rates like in the experiments
dealing with the 2x3-bit multipliers. In the worst case, a
working multiplier was evolved in 45 minutes. Such a high
increase in the evolution time in comparison with the 2x3-
bit multipliers is caused by the exponential increase of the
evaluation time and the complexity of the structure of the
3x3-bit multipliers that needs to be designed.

As evident from both the experiments dealing with the
construction of 2x3-bit multipliers (Table II) and 3x3-bitmul-
tipliers (Table III), the way of the outputs connection does
not influence the success rate and computational effort very
markedly. The difference is usually a few of percents only for
the specific experimental setup. This is illustrated by Figure
5, 6 and 7 that shows the dependence of success rate on the
cellular automaton size for the investigated connections of
the circuit outputs, processed for the development of 3x3-bit
multipliers using the experimental setup (1) S=5, T=6, (2)
S=6, T=5 and (3) S=6, T=6 respectively. In fact, this feature
is not surprising. If there is a sufficient number of possible
combinations of states in the cellular neighborhood, the
evolution may generate a variety of different gates and their
interconnections (using different rules of the local transition
function) which are required to design a working multiplier
for the given outputs connections.
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Fig. 5. Dependence of the evolution success rate on the size of the CA,
considering different ways of the outputs connection. Experimental setup:
S=5, T=6.

The experiments showed that it is possible to evolve a lot
of different CA that develop various structures of the target
circuit. In case of 2x3-bit multipliers, the convergence ofthe
evolutionary process is very fast considering the large size



10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
CA width

0

10

20

30

40

50

60

70

80
S
u
cc

e
ss

 r
a
te

 [
%

]

beginning (B)
end (E)
middle (M)
multiplicator (P)

Fig. 6. Dependence of the evolution success rate on the size of the CA,
considering different ways of the outputs connection. Experimental setup:
S=6, T=5.
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Fig. 7. Dependence of the evolution success rate on the size of the CA,
considering different ways of the outputs connection. Experimental setup:
S=6, T=6.

of the search space (its size is approximately1.2 · 1093 in
the simplest case dealing with the 9-cell CA for the design
of 2x3-bit multiplier). Similar behavior of the evolutionary
process was observed in case of 3x3-bit multipliers when
CA larger than 20 cells was applied (of course, there is a
higher computational effort) which indicates a good level of
evolvability using the CA-based generative representation.

Unfortunately, we have not been able to obtain any
working solution for 3x4-bit multipliers. This is probably
caused by the exponential increase in the search space with
increasing the number of the cell states that is needed
to generate more complex gate-level structures. It means
that the problem of scale represents the main issue of this
approach. In fact, the developmental system in the form in
which it has been presented is not suitable to scale up the
circuit during the development process which could enable
to overcome this issue. For example, we could enable the CA
to ”grow” during its development and allow to determine the
size of the structure generated in a given developmental step
by the stage of the development process (i.e. more advanced
developmental steps could produce more gates). Moreover,
the system works with basic logic gates that represent a
certain amount of information supplied to the system that
may not be sufficient to develop larger circuits. In fact, the
increasing number of cells can be understood as increasing
the amount of information supplied to the developmental
system in the form of the resources that can be utilized
for the circuit development. The results show that more
resources lead to higher success rate (i.e. easier evolution
of the CA) – see Table II and III. It could be useful to

introduce a capability of supplying with domain-specific
information to the developmental system in order to develop
larger multipliers (e.g. more complex building blocks).

Despite of the problems mentioned in the previous para-
graphs, the approach we presented demonstrates a variant of
generative encoding as an alternative to the direct encoding
in the gate-level evolutionary design of digital circuits.Since
the primary experiments were successful in most cases, this
approach may represent a basis for our next research in which
those issues will be addressed.

VII. CONCLUSIONS

Cellular automata were utilized as the developmental
model for the evolutionary design of combinational mul-
tipliers at the gate level. Since the multipliers are usually
considered as the class of circuits that are difficult to design
using evolutionary algorithms, we chose them in order to
demonstrate capabilities of the proposed enhanced cellular
automata-based developmental model.

By allowing higher number of cells in comparison with
the number of circuit inputs, it is possible to develop larger
multipliers (it was demonstrated on the development of 2x3-
bit and 3x3-bit multipliers). Moreover, the obtained results
represent the first case when such sizes of gate-level mul-
tipliers have successfully been developed using the cellular
automata.

The research was focused on investigating the influence of
the number of cells of the CA on the success rate and the
number of generations that is needed to evolve a working
solution. A perfect success rate was observed in some cases
that exceeds 90% in the evolution of 2x3-bit multipliers and
70% in case of 3x3-bit multipliers. The success rate can
significantly be influenced by the size (number of cells) of the
utilized cellular automaton. Moreover, several differentways
of connection of the multiplier outputs were considered. The
experiments showed that the outputs connection has only a
very small impact on the success rate and the computational
effort.

The development of digital circuits by means of cellular
automata represents a more difficult task in comparison with
the case if a direct encoding is used (e.g. cartesian genetic
programming). In fact, the evolution has to design both the
initial state and the local transition function together with
the gates (including their interconnections) to be generated
during the CA development. This process would be very
difficult to perform manually because no systematic approach
exists how to design a cellular automaton to exhibit a
given behavior. The construction of digital circuits using
cellular automata is performed at the structural level, i.e.
the circuit structure emerges as the “second” product of
the CA development, in addition to updating the cell states.
Because of this issue, the evolved solutions and the principles
of the circuit construction process is often not fully un-
derstood. Therefore, more investigation is needed regarding
the analysis of specific CAs and the resulting circuits. The
multipliers produced by the proposed developmental system
are not optimal if the number of gates or delay is considered



in comparison with the best known solutions. Actually, the
optimization was not the goal of this paper, the circuits were
only evaluated according to their functionality. Therefore,
these issues represent possible topics for our next research.
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