
Sorting Network Development
Using Cellular Automata

Michal Bidlo, Zdenek Vasicek, and Karel Slany

Brno University of Technology,
Faculty of Information Technology

Božetěchova 2, 61266 Brno, Czech republic
{bidlom,vasicek,slany}@fit.vutbr.cz

Abstract. The sorting network design represents a task that has often
been considered as a benchmark for various applications of evolutionary
design and optimization techniques. Although the specific structure of
this class of circuits allows to use a simple encoding in combination with
additional mechanisms for optimizing the area- and delay-efficiency of
designed sorting networks, the design of large sorting networks represents
a difficult task. This paper proposes a novel cellular automaton-based
approach for the development of specific instances of sorting networks.
In order to explore the area of generative cellular automata applied on
this specific circuit structures, two different encodings are introduced:
(1) an absolute encoding and (2) a relative encoding. The abilities of the
both techniques are investigated and a comparative study is provided
considering a variety of experimental settings.

Keywords: cellular automata, sorting networks, evolutionary design

1 Introduction

In recent years, many approaches were introduced for the evolutionary design
of digital circuits. Probably the most popular approach is Miller’s cartesian ge-
netic programming [13]. His approach represents typical direct mapping between
genotypes and phenotypes in the genetic algorithm for the evolution of digital
circuits. Developmental systems represent an other class of systems that may
be utilized for the circuit design. For example, Miller’s developmental cartesian
genetic programming [14], Tufte’s FPGA-based approach for evolving function-
ality in cellular systems [18] or Gordon’s developmental approach in evolvable
hardware [6] represent instances of evolutionary developmental systems.

1.1 Cellular automata

Cellular automata (CA), originally invented by Ulam and von Neumann in 1966
[15], represent a mathematical model originally intended as a formal framework
to study the behavior of complex systems, especially the questions of whether

2 Michal Bidlo, Zdenek Vasicek, and Karel Slany

computers can self-replicate. Cellular automata may also be considered as a
biologically inspired technique to model and simulate the cellular development.

A cellular automaton consists of a regular structure of cells, each of which
can occur in one state from a finite set of states. The states are updated syn-
chronously in parallel according to a local transition function. The synchronous
update of all the cells of the CA is called a developmental step. The next state
of a cell depends on the combination of states in the cellular neighborhood. In
this paper we consider the cellular neighborhood consisting of the cell and its
two immediate neighbors. Moreover, cyclic boundary conditions will be consid-
ered, i.e. the first and the last cell of the CA are considered to be neighbors and
the 1D CA can be then viewed as a circle. The local transition function defines
a next state of a cell for all the possible combinations of states in the cellular
neighborhood. Let us denote s1s2s3 → sn a rule of the local transition function,
where s1s2s3 represents the combination of states of the cells in the cellular
neighborhood and sn denotes the next state of the particular middle cell.

Cellular automata have been applied to solve many complex problems in dif-
ferent areas. A detailed survey of the principles and analysis of various types
of cellular automata and their applications is summarized in [19]. Sipper [17]
investigated the computational properties of CA and proposed an original evo-
lutionary design method for the “programming” of the cellular automata called
cellular programming. He demonstrated the success rate of this approach to
solve some typical problems related to the cellular automata, e.g. synchroniza-
tion, ordering or the random number generation. In the recent years, scientists
have been interested in the design of cellular automata for solving different tasks
using the evolutionary algorithms. Miller investigated the problem of evolving
a developmental program inside a cell to create multicellular organism of an
arbitrary size and characteristic [12]. Tufte and Haddow utilized a FPGA-based
platform of Sblocks [7] for the online evolution of digital circuits. The system
actually implements a cellular automaton whose development determines the
functions and interconnection of the Sblock cells in order to realize a function
[18].

The cellular automata-based developmental approach has successfully been
applied to the evolutionary design of combinational circuits [1]. This paper rep-
resents a continuation of this kind of research considering the development of
sorting networks. Two different sets of experiments will be presented utilizing
various encodings of the sorting networks in the developmental process of the
cellular automaton. An absolute encoding and a relative encoding will be pro-
posed in order to determine how the positional information, represented by an
index of a cell in a CA, may influence the evolutionary design process and the
properties of the sorting networks generated by the cellular automaton by means
of those encodings. Several sets of experiments will be presented considering var-
ious setups of the developmental system. Statistical results of the evolutionary
process and the properties of resulting sorting networks are investigated in the
dependence on the experimental setup.

Sorting Network Development Using Cellular Automata 3

1.2 Sorting Networks and Their Design

The concept of sorting networks (SN) was introduced in 1954; Knuth traced
the history of this problem in his book [11]. A sorting network is defined as a
sequence of compare–swap operations (comparators) that depends only on the
number of elements to be sorted, not on the values of the elements. A compare–
swap of two elements (a, b) compares and exchanges a and b so that we obtain
a ≤ b after the operation.

The main advantage of any sorting network is that the sequence of compar-
isons is fixed. Thus it is suitable for parallel processing and hardware implemen-
tation, especially if the number of sorted elements is small. Figure 1 shows an
example of a 3-input sorting network.

The number of compare–swap components and the circuit delay are two cru-
cial parameters of any sorting network. By delay we mean the minimal number
of groups of compare–swap components that can be executed sequentially. De-
signers try to minimize the number of comparators, delay or both parameters.
Some of the best currently known sorting networks were designed (or optimized)
using evolutionary techniques [3, 5, 4, 8, 10, 9]. In most cases the evolutionary ap-
proach was based on the direct encoding given in Fig. 1 (in which comparator
connections are encoded by using a pair of integers).

In order to find out whether an N -input sorting network operates correctly
we should test N ! input combinations. Thanks to the zero–one principle this
number can be reduced. This principle states that if an N -input sorting network
sorts all 2N input sequences of 0’s and 1’s into the non-decreasing sequence, it
will sort any arbitrary sequence of N numbers into the non-decreasing sequence
[11].

Sorting networks are usually designed for a fixed number of inputs. This
approach also was applied in the mentioned evolutionary techniques. However,
the evolutionary approach is not usually scalable. Conventional approaches al-
ready exist for generic design of the sorting networks with some examples of
this approach (e.g. straight-insertion sort or select sort) described in [11]. These
generic approaches were improved by evolution using a generative encoding
called instruction-based development [16], [2]. However, the sorting networks
created using these generic principles are not usually efficient in comparison

Fig. 1. (a) A three-input sorting network consists of three comparators. (b) Alternative
symbol. This network can be described using the string (0,1)(1,2)(0,1).

4 Michal Bidlo, Zdenek Vasicek, and Karel Slany

with the appropriate instances designed and optimized for a fixed number of
inputs.

2 Development of Sorting Networks Using Cellular
Automata

In this section, two different encodings will be introduced for the development
of sorting networks by means of cellular automata. Each encoding of the sort-
ing network is based on a suitable enhancement of the local transition function
of the CA. The fundamental principle of this enhancement is based on includ-
ing an additional information to the local transition function (next to the new
cell state) that represents a prescription for generating a compare–swap compo-
nent. The meaning of this additional information and the way of generating the
compare–swap components is described in the next paragraphs. In this paper,
two different encodings of the sorting networks inside the local transition func-
tion are investigated: (1) an absolute encoding and (2) a relative encoding. Both
the encodings are assumed to generate a comparator by each cell during every
developmental step of the CA.

In both cases the number of cells (N) of the CA corresponds to the number
of inputs of the sorting network to be developed. In general, a comparator is
generated by each cell during the development of the CA. The comparator to be
generated is specified by the rule of the local transition function that is applied
to determine the next state of the cell depending on the combination of states
in the cellular neighborhood. Therefore, up to N comparators can be generated
in one developmental step of the CA. The conditions for including the generated
comparator into the sorting network being developed are specified separately in
each encoding that we have used. In order to ensure that the process of gener-
ating a sorting network is deterministic, a unique ordering of cells in the CA is
introduced. The series of comparators generated by the cells is then specified by
the ordering of the cells. The following ordering will be applied in all the experi-
ments presented in this paper. Consider a CA that consists of four cells ordered
as c0c1c2c3 and that performs three developmental steps. Then a series of com-
parators C0,0C1,0C2,0C3,0C0,1C1,1C2,1C3,1C0,2C1,2C2,2C3,2 is generated during
the development of the CA, where Ci,j represents a comparator generated by
the cell ci in the j-th developmental step.

The initial state of the CA together with the enhanced local transition func-
tion is the subject of the evolutionary design process (see Section 3 for details).

For the purposes of the experiments presented in this paper, let us denote S
the number of possible cell states of the CA and T the number of steps of the
CA after which the generated comparator sequence is evaluated.

2.1 Absolute Encoding

In fact, the absolute encoding represents a direct comparator-generating tech-
nique using a cellular automaton. In order to accomplish this process, a pair of

Sorting Network Development Using Cellular Automata 5

non-negative digits (w1, w2) satisfying a relation w1 < w2 is associated with each
rule of the local transition function. Therefore, a general form of a rule is

s1s2s3 → sn : w1 w2,

where the part on the right of the colon describes a comparator which is gener-
ated by a cell of the CA if this cell determines its next state according the given
rule. These digits represent indices of inputs of the comparator to be generated;
the range of both of them is from 0 to N−1, where N corresponds to the number
of cells and the number of inputs of the sorting network to be developed.

For example, consider a 3-cell CA whose behavior is specified by its local
transition function containing rules

(1) 010→ 0 : 0 1, (2) 100→ 1 : 1 2, (3) 001→ 1 : 0 1.

The initial state of the CA is 100. Let the CA perform a developmental step,
i.e. its state is in the form 011 after that. The first cell has determined its
next state according to the rule (1), therefore it has generated a comparator (0,
1). The state of the second cell has been calculated using the rule (2) and a
comparator (1, 2) has been created in a series with the previous one. Finally, the
last comparator, (0, 1), has been generated by the third cell according to the rule
(3). In summary, one developmental step of this CA has produced a sequence of
comparators (0, 1)(1, 2)(0, 1) which correspond to the sorting network shown in
Figure 1.

2.2 Relative Encoding

The aim of the relative encoding is to utilize the positions of the cells in a
cellular automaton for generating the compare–swap elements. The enhanced
local transition function consists of rules, each of which in the form

s1s2s3 → sn : r d,

where the part on the right of the colon has the following meaning. The value of
r specifies the index of the first comparator input w1 relatively to the position
(cell index) c of a cell that generates the comparator, i.e. w1 = c + r. The range
of r is considered from −R to R, where R is a positive integer specified as a
parameter for a given set of experiments. The value of d represents a “width” of
a comparator, i.e. the difference between the indices of inputs of the comparator.
Therefore, the index of the second input w2 is calculated as w2 = w1 + d. The
maximal value of d (let us denote it D) represents the second parameter of the
design system. The value of D was determined experimentally as D = 2R for a
given set of experiments. If w1 or w2 exceeds the index range of the inputs of
the target sorting network, then the comparator is not generated (i.e. it is not
included in the comparator sequence generated by the CA).

An example of a sorting network development using the relative encoding is
illustrated by Figure 2 (initial state of CA is 0100). The cells of the CA and

6 Michal Bidlo, Zdenek Vasicek, and Karel Slany

the inputs (wires) of the target sorting network are indexed by integer values in
range from 0 to 3. The first cell at the position c = 0 generates a comparator
using the relative value r = 0 and the width of the comparator d = 1 (see the
pair 0, 1 as specified in the rule on the right of the first cell). Therefore, the first
input of the comparator is calculated as w1 = c + r = 0 + 0 = 0. the second
input is calculated as w2 = w1 + d = 0 + 1 = 1 and the comparator (0, 1) is
generated (see the comparator denoted as 1 at the right part of Figure 2). The
same principle is used for generating comparator 2 (2, 3), 3 (0, 2), and 4 (1, 3).
After the first step, CA possesses the state 1110. During the second step the first
cell (at c = 0) generates a comparator using the relative value −1 and width 1.
However, after calculating the comparator inputs a pair (-1, 0) is obtained. This
is not a valid comparator for a 4-input network and therefore it is not included
in the developed comparator sequence (illustrated by a dashed comparator 5 of
the sorting network in Figure 2). Similarly, comparator 7 (3, 4) generated by the
cell at c = 2 is also invalid and hence meaningless for the target sorting network.
The sorting network shown in the right part of Figure 2 has been created in two
developmental steps of the CA. Note that the comparator 8 (0, 3) is redundant
in this network because it does not swap any values during the complete test
of the sorting network and therefore it can be removed from the comparator
sequence without loss of the network functionality.

3 Evolutionary System Setup

The simple genetic algorithm was utilized for the evolutionary design of the
cellular automaton that generates a target sorting network. Two sets of experi-
ments will be presented regarding the development of this kind of circuits using
the absolute and relative encoding. In both sets of experiments the initial state
of the CA is evolved together with its local transition function. The initial state
is encoded in the chromosome as a finite sequence of integers. A rule of the
enhanced local transition function consists of the next state and two integer val-
ues whose range and meaning differs for the absolute and relative encoding (see
Section 2.1 and 2.2). The general structure of a chromosome is in the form

s0 s1 . . . sN−1 ns0 x0 y0 ns1 x1 y1 . . . ns|Q|3−1 x|Q|3−1 y|Q|3−1,

where si is the initial state of i-th cell (i = 0, 1, . . . N − 1), nsj is the new state
for the appropriate combination of states in the cellular neighborhood expressed

Fig. 2. An example of development of a 4-input sorting network (4-cell CA is used).

Sorting Network Development Using Cellular Automata 7

by its index j = 0, 1, . . . |Q|3 − 1 (|Q| is the number of possible cell states), xj

and yj is the additional information according to which the comparators are
generated.

The index (position in the genome) is specified implicitly by means of the
value expressed by the number representing the combination of states in the
cellular neighborhood. Therefore, if we consider the general form of the rule
s1 s2 s3 → sn : x y, only the part on the right of the arrow is encoded in the
genome. For example, if a cellular automaton with 2 different states and the
cellular neighborhood consisting of 3 cells ought to be evolved, there are 23 rules
of the local transition function. Consider the rule 0 1 1 → 0 : 2 3. Since the
combination of states 0 1 1 corresponds to the binary representation of value 3,
this rule will be placed in the chromosome at the position 3 of the local transition
function.

In all the experiments, the population consists of 20 chromosomes which are
initialized randomly (with respect to the correct range of each gene) at the be-
ginning of evolution. The chromosomes are selected by means of the tournament
operator with the base 4. Only mutation operator is utilized. In each chromo-
some selected by the tournament operator, 5 genes are chosen randomly and
each of them is mutated with the probability 0.95.

The fitness function is calculated as the number of correct output bits of the
sorting network using all the binary input test vectors. For example, there are
24 test vectors in case of 4-input SN. Therefore, the fitness value of a perfect
solution is Fmax = 4 · 24 = 64. If no solution is evolved in 100,000 generations
the evolutionary run is terminated.

4 Experimental Results and Discussion

The experiments were focused of the evolutionary development of 16-input sort-
ing networks by means of one-dimensional uniform cellular automata. 16-input
networks were chosen as a benchmark problem for the proposed developmental
encodings.

In general, sorting networks exhibit a specific structure in which a comparator
represents a basic building block. The comparator approach to the design of
sorting networks actually represents a higher level of abstraction of this kind of
circuits in comparison with the basic gate-level representation. A specific feature
of a comparator is that the function of a SN does not go wrong if an arbitrary
valid comparator is appended to the existing comparator sequence which, in
fact, may simplify the design process. However, unsuitable arrangement of the
comparators may cause both area- and delay-inefficient sorting networks. These
properties are hence the subject of investigation with respect to different setup
of the developmental system. Note that we do not deal with the optimization of
the sorting networks during the evolutionary process in this stage of research.

8 Michal Bidlo, Zdenek Vasicek, and Karel Slany

Table 1. Statistical results of the evolutionary process using the absolute encoding.

Success rate in % Average number of generations
CA steps CA steps

states 5 6 7 8 9 5 6 7 8 9

3 - - - 1 33 - - - 68,9k 58,6k
4 - 45 95 98 100 - 58,5k 23,1k 10,5k 5,4k
5 16 98 100 100 100 49,0k 8,7k 3,3k 2,9k 1,3k
6 65 100 100 100 100 32,8k 5,5k 1,7k 0,8k 0,8k

4.1 Results from the Absolute Encoding

The absolute encoding may be considered as the simplest representation of the
comparators inside the developmental process of a cellular automaton. The cru-
cial part of the design process is that the evolution searches for an enhanced
local transition function of the CA containing suitable set of comparators that
are encoded directly (by the indices of their inputs). The experimental setup of
the developmental system includes the setting of the number of cell states and
the number of steps of the CA. These values are specified at the beginning of
the evolutionary process.

Table 1 shows the success rate and the average number of generations for the
experiments using the absolute encoding. A hundred independent experiments
were performed for each combination of the number of states and the number of
steps of the CA. As evident, it is easy to evolve a fully functional solution if the
number of states is greater than 4 and the number of steps greater than 6. As
there are many combinations of inputs possible for a comparator in a 16-input
sorting networks, three states of the CA showed to be a minimum to evolve a
working solution. For two states, no CA was found within 100,000 generations.
If the number of states is sufficient, then there is a higher probability that a
working solution is found in the given number of generations (see Table 1) for 5
steps. Moreover, the number of generations needed to evolve a working solution is
substantially lower in those cases, although the search space is more complex due
to the number of CA states. This shows that there are many correct solutions in
such search space which is probably heavily influenced by the specific structure
of sorting networks. On the other hand, more developmental steps are needed if
the number of states is low (see Table 1).

Table 2 contains the average properties (the number of comparators and
delay) of the resulting sorting networks for different experimental setup. These
results show (as one would usually expect) that if more steps are performed to
create s working SN, then this SN exhibit worse parameters (more comparators
are needed, the delay is higher). However, if the results are compared for a given
number of steps, the sorting networks developed with a higher number of states
exhibit slightly better properties in most cases (especially from the point of view
of the delay). This may be caused by the possibility of higher number of different
comparators that can be generated in one step thanks to the higher number of
different combinations of states in the cellular neighborhood.

Sorting Network Development Using Cellular Automata 9

Table 2. Properties of the resulting SNs obtained from the absolute encoding.

Average number of comparators Average delay
CA steps CA steps

states 5 6 7 8 9 5 6 7 8 9

3 - - - 93,0 98,8 - - - 28,0 30,8
4 - 85,4 90,0 92,4 95,7 - 27,3 29,3 30,1 31,8
5 78,4 85,5 90,1 92,1 94,8 23,1 26,9 28,6 28,9 30,9
6 78,0 86,1 90,0 92,5 94,3 22,2 26,4 28,6 29,3 30,6

4.2 Results from the Relative Encoding

The goal of this set of experiments is to investigate the sorting networks develop-
ment that involves positional information of cells inside the CA to determine the
inputs of the comparators being generated. Since the enhanced transition func-
tion of the CA includes information for calculating the indices of comparator
inputs (i.e. the relative position value and the comparator width), the experi-
mental setup includes, besides the number of states and the number of steps of
the CA, limit value of the relative position R according to which the maximal
comparator width is also calculated. These values are specified at the beginning
of the evolutionary process.

Table 3 summarizes the success rate for the evolutionary experiments utiliz-
ing the relative encoding. It can be observed that the dependence of the success
rate on the increasing number of states and developmental steps is for the given
value of R very similar to the results obtained from the absolute encoding. In-
terestingly, the success rate decreases with increasing the maximal comparator
width if the number of states is small (2 and 3 states). This dependency is
inverse for 4 states. Although no correct solution was evolved in 100,000 gener-
ations for less than 6 steps, the evolution succeeded with utilizing only 2 states
of the CA. This result shows that the generation of comparators relatively with
respect to the cell position has a significant influence on the ease of building a
sorting network. However, the increasing number of states does not reduce the
computational effort (expressed by the average number of generations needed to
find a working solution) in comparison with the absolute encoding - see Table 4.
Although the average number of comparators of the resulting SNs decreases with
increasing R for a given number of states and developmental steps (see Table
5), it is difficult to observe a significant dependence of average delay on varying
R (Table 6). However, it is possible to say that the properties of the resulting
networks are better for the relative encoding (in comparison with the absolute
encoding) especially for a higher number of developmental steps.

5 Conclusions

In this paper a developmental method based on uniform 1D cellular automaton
was presented for the design of sorting networks. Two different encodings of the

10 Michal Bidlo, Zdenek Vasicek, and Karel Slany

Table 3. Success rate in % for the evolution using the relative encoding.

CA steps / relative limit
6 7 8 9

states 2 3 4 2 3 4 2 3 4 2 3 4

2 - - - 41 30 30 99 98 90 100 100 100
3 - - 3 45 43 33 99 98 97 100 100 100
4 1 10 15 76 92 81 99 100 100 100 100 100

Table 4. Average number of generations of the evolutionary process using the relative
encoding. The values are measured in thousands of generations.

CA steps / relative limit
6 7 8 9

states 2 3 4 2 3 4 2 3 4 2 3 4

2 - - - 26,5 26,5 21,3 3,21 4,94 7,13 0,19 0,35 0,57
3 - - 58,4 22,2 26,8 26,9 5,94 4,84 7,51 0,48 0,56 1,37
4 39,1 36,2 42,2 21,0 21,1 27,2 5,12 5,35 8,86 1,23 1,67 3,89

Table 5. Average number of comparators of SNs developed using the relative encoding.

CA steps / relative limit
6 7 8 9

states 2 3 4 2 3 4 2 3 4 2 3 4

2 - - - 91,2 89,9 88,5 97,5 94,4 93,9 98,0 96,9 97,7
3 - - 83,7 91,8 89,5 88,3 95,6 93,1 92,7 98,6 96,9 95,5
4 83,0 84,1 83,1 90,3 88,3 87,1 93,5 91,7 90,7 96,1 94,5 92,6

Table 6. Average delay of SNs developed using the relative encoding.

CA steps / relative limit
6 7 8 9

states 2 3 4 2 3 4 2 3 4 2 3 4

2 - - - 20,9 20,3 20,0 22,7 24,6 24,7 27,8 26,9 28,8
3 - - 30,0 27,1 28,8 27,8 29,2 28,9 29,8 30,4 30,1 29,9
4 24,0 26,0 27,8 28,6 28,8 28,0 30,0 29,5 29,6 31,0 31,3 30,4

Sorting Network Development Using Cellular Automata 11

sorting networks in the process of development of the CA were proposed: (1)
an absolute encoding and (2) a relative encoding. The goal was to investigate
the influence of utilization of relative positional information on the evolutionary
design process and the properties of resulting sorting networks.

The results showed that the number of states and the number of steps of the
CA has a significant influence on the ability of the CA to develop successfully a
working sorting network. The relative encoding was shown as more suitable for
the development of SNs using a lower number of states. Moreover, the sorting
networks designed by means of this encoding exhibit better properties in average
in comparison with the absolute encoding.

As evident, the resulting networks are neither area-efficient nor delay-efficient.
The currently best-known 16-input SN consists of 60 comparators working with
the delay 10. The best result obtained from the absolute encoding contains 75
comparators and its delay is 16. The relative encoding produced the best SN with
92 comparators and the delay 14. The significant difference in the proposed ap-
proach is that we have used a developmental encoding whilst the best result was
obtained using a direct representation with an explicit area/delay optimization
mechanism (e.g. see [3]). Another example represents a generic developmental
approach proposed in [16] by means of which a 92-comparator network was cre-
ated working with the delay 21. The findings from the results presented herein
are interesting especially for the future research considering the application of
cellular automata in which we are going to focus on advanced encodings able to
reduce of the resulting properties during the developmental process. Moreover,
the possibilities of designing regular structures will be investigated with the uti-
lization of these encodings which may lead to the research of generic design using
cellular automata.

Acknowledgement

This work was partially supported by the Grant Agency of the Czech Repub-
lic under contract No. GP103/10/1517 Natural Computing on Unconventional
Platforms, No. GD102/09/H042 Mathematical and Engineering Approaches to
Developing Reliable and Secure Concurrent and Distributed Computer Systems,
the Grant Fund (GRAFO) of Brno University of Technology (BUT), the in-
ternal BUT research project No. FIT-S-10-1 and the Research Plan No. MSM
0021630528 Security-Oriented Research in Information Technology.

References

1. Bidlo, M., Vasicek, Z.: Gate-level evolutionary development using cellular au-
tomata. In: Proc. of The 3nd NASA/ESA Conference on Adaptive Hardware and
Systems, AHS 2008. pp. 11–18. IEEE Computer Society (2008)

2. Bidlo, M., Škarvada, J.: Instruction-based development: From evolution to generic
structures of digital circuits. International Journal of Knowledge-Based and Intel-
ligent Engineering Systems 12(3), 221–236 (2008)

12 Michal Bidlo, Zdenek Vasicek, and Karel Slany

3. Choi, S.S., Moon, B.R.: A hybrid genetic search for the sorting network problem
with evolving parallel layers. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001). pp. 258–265. Morgan Kaufmann, San
Francisco, California, USA (2001)

4. Choi, S.S., Moon, B.R.: Isomorphism, normalization, and a genetic algorithm for
sorting network optimization. In: GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference. pp. 327–334. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA (2002)

5. Choi, S.S., Moon, B.R.: More effective genetic search for the sorting network prob-
lem. In: Proc. of the Genetic and Evolutionary Computation Conference GECCO
2002. pp. 335–342. Morgan Kaufmann, New York, US (2002)

6. Gordon, T.G.W., Bentley, P.J.: Towards development in evolvable hardware. In:
Proc. of the 2002 NASA/DoD Conference on Evolvable Hardware. pp. 241–250.
IEEE Press, Washington D.C., US (2002)

7. Haddow, P.C., Tufte, G.: Bridging the genotype–phenotype mapping for digital
FPGAs. In: Proc. of the 3rd NASA/DoD Workshop on Evolvable Hardware. pp.
109–115. IEEE Computer Society, Los Alamitos, CA, US (2001)

8. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization
procedure. Physica D 42(1–3), 228–234 (June 1990)

9. J. R. Koza and F.H. Bennett and D. Andre and M. A. Keane: Genetic Programming
III: Darwinian Invention and Problem Solving. Morgan Kaufmann (1999)

10. Juillé, H.: Evolution of non-deterministic incremental algorithms as a new approach
for search in state spaces. In: Proc. of 6th Int. Conference on Genetic Algorithms.
pp. 351–358. Morgan Kaufmann (1995)

11. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching (2nd ed.).
Addison Wesley (1998)

12. Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis and
self-repair. In: Advances in Artificial Life. 7th European Conference on Artificial
Life, Lecture Notes in Artificial Intelligence, volume 2801. pp. 256–265. Springer,
Dortmund DE (2003)

13. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proc. of the 3rd Eu-
ropean Conference on Genetic Porgramming, Lecture Notes in Computer Science,
vol 1802. pp. 121–132. Springer, Berlin Heidelberg New York (2000)

14. Miller, J.F., Thomson, P.: A developmental method for growing graphs and circuits.
In: Proc. of the 5th Conf. on Evolvable Systems: From Biology to Hardware (ICES
2003), Lecture Notes in Computer Science, vol. 2606. pp. 93–104. Springer-Verlag,
Berlin DE (2003)

15. von Neumann, J.: The Theory of Self-Reproducing Automata. A. W. Burks (ed.),
University of Illinois Press (1966)

16. Sekanina, L., Bidlo, M.: Evolutionary design of arbitrarily large sorting networks
using development. Genetic Programming and Evolvable Machines 6(3), 319–347
(2005)

17. Sipper, M.: Evolution of Parallel Cellular Machines – The Cellular Programming
Approach, Lecture Notes in Computer Science, volume 1194. Springer-Verlag,
Berlin (1997)

18. Tufte, G., Haddow, P.C.: Towards development on a silicon-based cellular comput-
ing machine. Natural Computing 4(4), 387–416 (2005)

19. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign IL (2002)

