
Brno University of Technology
Faculty of Information Technology

Information Extraction from HTML

Documents Based on Logical

Document Structure

by

Radek Burget
M.Sc., Brno University of Technology, 2001

a thesis submitted in partial fulfillment

of the requirements for the degree of

doctor of philosophy

Supervisor: Jaroslav Zendulka, associate professor
Submitted on: August 27, 2004
State doctoral exam passed on: June 18, 2003
This thesis is available at the library of the Faculty of
Information Technology of the Brno University of Technology

c© 2004 Radek Burget

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Contents

Abstract v

Preface vi

1 Introduction 1

1.1 Information Extraction . 2

2 The World Wide Web Technology 5

2.1 Hypertext Markup Language . 5
2.2 Cascading Style Sheets . 6
2.3 Dynamic Web Content . 7
2.4 Web Services . 8
2.5 Semantic Web . 9
2.6 Current Information Extraction Alternatives 10

3 State of the Art 12

3.1 Information Extraction from HTML Documents 12
3.1.1 Wrappers . 14
3.1.2 Document Code Modeling . 16
3.1.3 Wrapper Induction Approaches 17
3.1.4 Alternative Wrapper Construction Approaches 20
3.1.5 Computer-aided Manual Wrapper Construction 21

3.2 Cascading Style Sheets from the IE Perspective 21
3.3 Advanced Document Modeling . 22

3.3.1 Logical versus Physical Documents 22
3.3.2 Logical Document Discovery . 23
3.3.3 Logical Structure of Documents 24
3.3.4 Visual Analysis of HTML Documents 26

4 Motivation and Goals of the Thesis 28

5 Visual Information Modeling Approach to Information Extraction 31

5.1 Proposed Approach Overview . 32
5.2 Visual Information Modeling . 33

5.2.1 Modeling the Page Layout . 34

iii

5.2.2 Representing the Text Features 37
5.3 Representing the Hypertext Links . 40
5.4 HTML Code Analysis for Creating the Models 40

5.4.1 Tables in HTML . 44
5.4.2 Example of Visual Models . 45

5.5 Logical Structure of a Document . 46
5.6 Information Extraction from the Logical Model 50

5.6.1 Using Tree Matching . 51
5.6.2 Approximate Unordered Tree Matching Algorithm 52

5.7 Information Extraction from Logical Documents 54

6 Experimental System Implementation 56

6.1 System Architecture Overview . 56
6.2 Using XML for Module Communication 58

6.2.1 Representing the Logical Documents 58
6.2.2 Logical Structure Representation 58

6.3 Implementation . 59
6.3.1 Interface Module . 59
6.3.2 Logical Document Module . 60
6.3.3 Analysis Module . 60
6.3.4 Extraction Module . 60
6.3.5 Control Panel . 62

6.4 Information Extraction Output . 63
6.4.1 Extracted Data as an XML Document 63
6.4.2 Extracted Data as an SQL Script 63

7 Method Evaluation 65

7.1 Experiments on Physical Documents . 65
7.1.1 Experiment 1 - Personal Information 65
7.1.2 Experiment 2 - Stock Quotes . 67

7.2 Independence on Physical Realization 67
7.3 Information Extraction from Logical Documents 69

8 Conclusions 73

8.1 Summary of Contributions . 73
8.2 Possible Improvements and Future Work 74

Bibliography 75

A Example Task Specification 80

B Document Type Definitions 83

B.1 Task Specification . 83
B.2 Logical Document Representation . 84
B.3 Logical Structure Representation . 84

iv

Abstract

The World Wide Web presents the largest Internet source of information from a broad
range of areas. The web documents are mostly written in the Hypertext Markup
Language (HTML) that doesn’t contain any means for semantic description of the
content and thus the contained information cannot be processed directly. Current
approaches for the information extraction from HTML are mostly based on wrappers
that identify the desired data in the document according to some previously specified
properties of the HTML code. The wrappers are limited to a narrow set of documents
and they are very sensitive to any changes in the document formatting.

In this thesis, we propose a novel approach to information extraction that is based
on modeling the visual appearance of the document. We show that there exist some
general rules for the visual presentation of the data in documents and we define formal
models of the visual information contained in a document. Furthermore, we propose
the way of modeling the logical structure of an HTML document based on the visual
information. Finally, we propose methods for using the logical structure model for the
information extraction task based on tree matching algorithms. The advantage of this
approach is certain independence on the underlying HTML code and better resistance
to changes in the documents.

v

Preface

In 2001, when I finished my master studies at the Faculty of Electrical Engineering and
Computer Science at the Brno University of Technology, I was thinking about enrolling
the PhD. program. There were multiple topics available but one of them attracted me
more than the other ones: “Methods of knowledge discovery in the WWW”. Since I
was fascinated by everything related to the web, I started working on this topic under
the supervision of Jaroslav Zendulka. Very quickly I realized how broad this area is
and I decided to focus on processing the web content, which is always the first step of
the data mining process.

During the first year, I have been trying to orientate myself in the topic. In addition
to reading great amounts of available papers, I attended the EDBT 2002 Summer School
on distributed databases on the Internet. In 2002, I also spent three months at a study
stay at the University of Valladolid in Spain, which has been also very valuable for me.

This thesis is the result of the last three years’ work. In my first papers concerning
this topic [8, 9], I formulated the features of current information extraction approaches
that in my opinion caused the major problems of the existing methods and I proposed
a more abstract look at the HTML documents. During further work, I proposed some
suitable models of the documents and the methods of using them for information ex-
traction [10]. The last year I spent on a formal specification of the proposed models
and methods [11].

Organization of the Thesis

This thesis is organized as follows. Chapter 1 contains a short introduction to the
area of processing the data accessible through the World Wide Web and explains basic
concepts of the information extraction from the web documents.

Chapter 2 gives a brief overview of the current World Wide Web technology. Basic
concepts of the most important languages are explained and the main technological
aspects and forthcoming technologies are discussed.

In Chapter 3, the state of the art in the information extraction from HTML docu-
ments and related areas is summarized.

In Chapter 4 we summarize major problems of the current information extraction
approaches as the motivation for this thesis and we formulate the goals of this thesis.

Chapter 5 is the theoretical core of the thesis: it contains the formal models of the
visual appearance and the logical structure of HTML documents and introduces a novel
information extraction method based on these models.

vi

In chapter 6, we describe an experimental system that implements the proposed
information extraction method and that has been used for testing the method on real
data.

Chapter 7 summarizes the experimental results.
And finally in Chapter 8, we conclude the thesis. We discuss possible uses of the

information extraction and of the logical document structure modeling. We summarize
the major contributions of the thesis and we propose possible improvements of the
method and directions of further investigation in this area.

The appendices contain the XML specifications of the information extraction tasks
that have been used for testing the method and formal definitions of the XML formats
used within the experimental system.

Acknowledgements

I would like to express my sincere thanks to people who have helped me writing this
thesis: Jaroslav Zendulka, my supervisor, for his valuable comments and organizational
support, Alexander Meduna for his great help with the formal specification issues.
Many thanks also deserve people who supported me while writing this thesis: my
parents, my brother and my girlfriend Jana.

vii

Chapter 1

Introduction

The World Wide Web presents currently the largest Internet source of information from
a broad range of areas. One of the main reasons of this great expansion is the absence of
any strict rules for the information presentation and the relative simplicity of the used
technology. The orientation to documents and the HTML language that is mainly used
for creating the documents, gives the authors enough freedom for presenting any kind
of data with minimal effort and the new technologies such as Cascading Style Sheets
(CSS) allow to achieve the desired quality of presentation. Together with the hypertext
nature of the documents, these properties make the World Wide Web a distributed and
dynamic source of information.

On the other hand, the loose form of the data presentation brings also some draw-
backs. With the increasing number of available documents a problem arises, how to
efficiently access and utilize all the data they contain. Due to the above properties
of the web, related information is often presented at different web sites and in diverse
forms. Accessing this data by browsing the documents manually is a time-consuming
and complicated task. For this reason, it is desirable to automatically process the doc-
uments by a computer. As a first step, there exists an effort to provide the users with
centralized views of related data from various sources in the World Wide Web such
as the services for comparing the prices of goods in on-line shops. The next step is
presented by the data mining techniques that have been developed for the database
branch.

For all these tasks, it is necessary to access the data that are contained in the docu-
ments. This is however not a trivial problem. As mentioned above, the state-of-the-art
web consists mainly of the documents written in the Hypertext Markup Language
(HTML) [54]. This language is suitable for the definition of the presentation aspect of
the documents but it lacks any means for the definition of the content semantics. The
information contained in the documents can be therefore very hardly interpreted and
processed by a computer.

Possible answer to this problem is the proposal of semantic web [6] that is based
on different technology and has quite different nature. While the classical web can be
viewed as a distributed document repository, the semantic web has many characteristics
of an object database [34]. Although this technology is very promising and it is being
developed rapidly, it doesn’t solve processing of the great amount of documents that

1

Figure 1.1: An Information Extraction Task

are already available in the “legacy” web. Moreover, simultaneously with the semantic
web, the legacy web is still growing and developing. In contrast to the semantic web, the
evolution of the technologies has however quite different direction. Currently, the most
important issue in the development of the classical web technologies is the flexibility
of the web design and effective management of the web content. For the information
providers, it is not the aim to allow better automatic processing of the documents on
the web and in some cases it is even undesirable. All these facts together with the great
amount of information that is virtually available make the automatic HTML document
processing an interesting and challenging area of investigation.

1.1 Information Extraction

Our aim in the HTML document processing is to identify a particular information that
is explicitly contained in the text of the document and to store it in a structured form;
e.g. to a database table or a XML document. This process is usually called information
extraction from the HTML documents [21, 26, 38].

As an example, let’s imagine a set of pages containing information about various
countries as shown in the Figure 1.1. The task of information extraction in this case
is to identify the values of country name, area, population etc. and to store them in a
structured way. The result of processing such a set of documents could be a database
table containing the appropriate values for each country.

There are two basic approaches to the information extraction. The first and most
common one assumes that it is specified in advance, what data are to be extracted from

2

the documents. The specification for the country information task mentioned above
can have for example following format

COUNTRY ::=< name, area, population, capital >

i.e. for each country we want to extract its name, geographical area, population and the
name of the capital. This type of task is often called the slot filling task. In contrary,
the other approach is to analyze the documents and extract all the available data.
This approach requires a set of documents to be compared in order to distinguish the
relevant data from the remaining text [18]. It is assumed that the relevant data differs
among the documents whereas the other text remains static.

The process of extracting information from the World Wide Web can be split to
following phases:

1. Localization of relevant documents

2. Identification of the data in the documents

3. Data storage

The first one is the information retrieval phase where the documents containing the
appropriate data must be localized in the World Wide Web. Since each document is
identified by its URI, the result of this phase is a list of URIs of the documents to
be processed. In the World Wide Web, there are several types of services available
for locating the documents, from the Web directories that provide categorized lists of
URLs to the automatic search engines such as Google 1 that are based on indexing
terms in the documents. The hypertext nature of HTML documents brings another
problem: the presented data can be split to several HTML documents that contain
links to each other. Then, this set of HTML documents forms a logical entity that
is usually called a logical document [60]. Since the way in which the information is
split to individual documents cannot be predicted, for extracting the information all
the physical documents must be processed. As a result, the URIs of all the documents
must be discovered.

The identification of the data in documents is the key phase of the information
extraction process. During this phase, a model of the logical document is created and
the desired data values are identified by certain extraction rules. The character of these
rules depends on the model of the document and the information extraction method.
Alternatively, the data values may be identified based on a statistical model of the
document (e.g. the Hidden Markov Models) instead of explicit extraction rules.

The last phase of the process is the data storage. This phase depends completely
on the application.

Although the information extraction area had established long before the World
Wide Web come into being and its application to the web is almost as old as the
web itself, due to the enormous extent and variability of the web it still presents a
challenging problem that hasn’t been satisfactorily resolved yet. In this thesis, we focus

1http://www.google.com

3

on the parts of the information extraction process that are not sufficiently explored yet.
In the first phase it is the problem of the logical document discovery. We discuss the
existing approaches and we propose certain improvements of current techniques. The
main focus of our work is on the data identification phase. We analyze the problems of
current methods and we propose a novel approach to this problem based on modeling
the visual aspect of the documents and their logical structure.

4

Chapter 2

The World Wide Web

Technology

TheWorldWideWeb is built on a concept of hypertext. This notion has been introduced
in 1965 by T. H. Nelson [51] and refers to a text that is not constrained to be linear; it
contains links to other texts. Hypertext that is not constrained to text only is called
Hypermedia. It can include graphics, video and sound, for example.

The World Wide Web is document-oriented. Each document is identified by a
Uniform Resource Identifier (URI). A notion of Unified Resource Locator (URL) is often
used in the same meaning. A document can contain any type of data (text, hypertext,
graphics, etc.). For identifying the type of content, the MIME (Multipurpose Internet
Mail Extension) standard is used.

The web is based on client-server architecture. The documents are stored on a
web server that is accessible through the Internet. The client accesses the server and
downloads the desired documents using the Hypertext Transfer Protocol (HTTP) [24].
In most cases, the client is represented by a web browser that displays the document
on the screen.

Most of the documents in the World Wide Web are created using the Hypertext
Markup Language (HTML). Additionally, more technologies have been developed for
improving the presentation capabilities and to make the maintenance of the content
more efficient. There exist also many standard formats for presenting the non-textual
data such as images and multimedia files.

2.1 Hypertext Markup Language

Hypertext Markup Language (HTML) [54] is a basic language for publishing hypertext
on the web. It is based upon SGML (Standard Generalized Markup Language, ISO
8879). An HTML document is basically a text file enriched by standardized tags.
HTML contains tags for defining the structure of the document (headings, paragraphs),
basic page objects (lists, tables, images), text formatting (font and color selection,
special effects) and, of course, hypertext links to other documents. Most of the tags
are pair tags that consist of an opening tag written <tagname> and closing tag written

5

</tagname>. For example, a portion of text can be written in bold by following code:

Normal text bold text normal text.

that will be printed out as:

Normal text bold text normal text.

Some of the tags are unpaired, for example a line break can be inserted using just a

 tag. Some of the tags allow or require specifying additional attributes that define
the meaning of the tag more precisely. For example, when inserting an image to the
document, an attribute src must be specified that identifies the file where the image
is stored: .

The SGML language that has been used as a basis for creating HTML is very pow-
erful and flexible. However, this great flexibility brings certain drawback such as, for
example, complicated implementation. For this reason, a simplified derivation of SGML
has been created that is called XML (eXtensible markup language). The most impor-
tant simplification is that only the pair tags are allowed and the tags must be properly
nested (they may not overlap). For hypertext publishing, a XML variant of HTML has
been created that is called XHTML (eXtensible hypertext markup language). In com-
parison to HTML, many tags have been omitted and replaced by other means (mainly
the Cascading Style Sheets that are described below). The unpaired tags have been
replaced by pair tags even in the cases that the pair tag gives no sense – e.g. the above
mentioned line break must be written as
</br> which can be according to the
XML specification also written as
. Currently, XHTML is an upcoming standard
in web publishing. All the mentioned web standards are being maintained by the World
Wide Web Consortium1.

In this thesis, we focus on hypertext documents written in the HTML language
optionally in conjunction with the Cascading Style Sheets. However, all the techniques
and methods proposed below apply to the XHTML language as well.

2.2 Cascading Style Sheets

Cascading Style Sheets (CSS) is a simple mechanism for adding style (e.g. fonts, colors,
spacing) to Web documents. It allows separating the visual style of the page from the
HTML code that facilitates the creation and management of the web pages and allows
better flexibility. For XHTML, the Cascading Style Sheets presents a unique mechanism
for specifying the visual style of the page.

The style sheets consist of a set of rules that define the style for particular (X)HTML
tags. For example, a rule can look as follows:

h1 { font-weight: bold; color: blue; }

This rule says that the headings marked with the <h1> tag will be printed in bold and
blue color. It consists of a selector that determines on which tags this rule should be

1http://www.w3.org

6

applied and a declaration. The declaration consists of a name of the CSS property (in
our case font-weight: and color:) and its value (bold and blue). The values of the
individual properties are inherited as the tags are nested in the HTML code – the values
of properties that are not specified in our example are inherited for example from the
declaration of the <body> that encloses the whole content of an HTML document.

Each element in the HTML code denoted by some tag can be assigned a named class
using the class attribute (e.g. <p class="heading">) and/or assigned an identifier
using the id attribute that is unique for the whole document. The CSS rule selectors
can be based not only on the tag names (as we can see in the example) but also on the
element classes and identifiers.

The style sheets are incorporated to the HTML code by one of following ways:

• The style sheet is placed in a separate file that is available through the web and
it is referenced in the HTML document header.

• The style sheet is directly inserted into the header of the HTML document.

• The declaration is specified without a selector, directly for a particular tag in the
document as a value of its style attribute. This is called inline style definition.
For example, the tag <p style="font-weight: bold;"> starts a paragraph
written in bold.

The use of CSS has grown significantly in the last few years, which has been al-
lowed by sufficient support of CSS by the modern web browsers. It is now practically
unimaginable to create a modern, well-designed web presentation without the use of
CSS.

2.3 Dynamic Web Content

The modern web technologies allow creating documents that don’t only contain a static
text but their contents can be generated dynamically upon a client request according
to various factors. Basically, the dynamic content can be generated two in ways:

• On the server side. There are various technologies that allow generating the
HTML code in the time of the client request (e.g. CGI, PHP, ASP, JSP, etc.). In
this case, no support for dynamic content is required on the client side, the client
always obtains a complete HTML document that can be, however, different on
each request.

• In the client browser. The HTML document that is sent to the client contains
routines written in a scripting language (in most cases, JavaScript language is
used) that are interpreted by the client browser. The scripting language must be
supported by the browser.

From the document processing point of view, the former case doesn’t present any
particular problem because the client always obtains a complete document that can be
processed directly. The use of JavaScript or similar technology presents a serious prob-
lem not only for automatic web content processing tools but also for various alternative

7

browsers such as text-oriented browsers or voice readers for blind people. For this rea-
son, JavaScript should be used as an additional feature only and its support shouldn’t
be automatically expected by the authors of documents. For the same reason, we don’t
solve the problems related to the dynamic web content generated on the client side in
this thesis.

An additional problem of the dynamically generated pages on the server side is
that the generation procedure requires certain data to be supplied by the client when
requesting the page from the server. Typically, this is the case of the pages that
are generated according to the values filled-in to an interactive form that is available
on another page. Without filling some fields of the form – i.e. without providing a
particular data along with the page request, the dynamic page is not accessible. The
great amount of such pages available through the web is often called a hidden web
because its content is not easily accessible to any automatic web content processing
tools including the search engine indexing robots. Although the hidden web presents
a considerable problem for any automatic processing of the web content, it forms a
separate and quite large area of investigation that is quite distant from the information
extraction as such. Therefore, in this thesis, we only mention this problem without
discussing it in greater detail.

2.4 Web Services

Web services present a way of using the Internet for application to application com-
munication. They provide a standardized way of specifying the capabilities and pro-
grammatic interfaces of the services that are available over the Internet and the com-
munication protocols that allow using the services by other services or applications.
This possibilities originate a distributed service architecture where the services can use
each other for performing a particular task and the inter-service communication and
the results have a standardized, computer-processable format.

For example, the Google search engine provides a standard web interface where the
user uses a web browser for downloading an HTML page with a query form; he fills
in the search query and posts the query to the server. The server returns the list of
search results, again as an HTML document. The results in this form are intended to
be displayed only; it would be very complicated to further process the query results by
some application. For this reason, Google provides an alternative interface in a form
of a web service. This service receives the query and returns the appropriate results
using the standardized web service protocols based on XML so that the results may be
further processed.

The roles in web services and the relations among the protocols and the roles are
shown in the figure 2.1. The basic roles are the service provider and the service requester
(client). The requester sends a request and the provider sends back the results both
using the Simple Object Access Protocol (SOAP). In order to allow the automatic
localization of appropriate web services over the Internet, the web service proposal
includes a role of a service broker that maintains a registry of available web services.
Each service publishes information about its purpose and interface to the service broker

8

using the Web Services Description Language (WSDL). The service registry format and
the way of querying are is described by the UDDI (Universal Description, Discovery,
and Integration) standard.

(WSDL)
Publish

(UDDI)
Find

(SOAP)
Bind

Service
Provider

Service
Broker

Service
Requester

Figure 2.1: The relations among protocols and roles in web services

2.5 Semantic Web

According to [6], the Semantic Web is an extension of the current web in which infor-
mation is given well-defined meaning, better enabling computers and people to work
in cooperation. The semantic web proposal is based on two based technologies: XML
and the Resource Description Framework (RDF). RDF allows encoding basic triplets
being rather like the subject, verb and object of an elementary sentence. Slightly more
formally, it consists of a subject, a predicate (also known as a property of the triplet)
and an object each of which is defined by its URI. Alternatively, the object may be
specified by a literal. This simple architecture allows anyone to define new concepts
and verbs by defining new URI for it and to “say anything about anything” by defining
new RDF triplets. Each set of RDF definitions creates a RDF graph where the nodes
correspond to the concepts (subjects and objects) and the edges correspond to the
predicates. Figure 2.2 shows an example of a RDF graph that specifies an address of
a person. The ovals correspond to the concepts defined by their URIs (a staff member
and an address), the rectangles represent the literals.

The last important component of the semantic web is formed by ontologies. Basi-
cally, an ontology is a document or file that formally defines the relations among terms.
For specifying the ontologies in the semantic web environment, the Web Ontology Lan-
guage (OWL) has been proposed.

9

http://www.example.org/addressid/85740

01730 Bedford Massachusetts 1501 Grant Avenue

http://www.example.org/staffid/85740

http://www.example.org/terms/address

http://www.example.org/terms/zip

http://www.example.org/terms/city
http://www.example.org/terms/state

http://www.example.org/terms/street

Figure 2.2: An example of an RDF graph (taken from [44])

2.6 Current Information Extraction Alternatives

As stated in the introduction, it is not a trivial task to process the information con-
tained in the HTML documents mainly because the documents don’t contain any formal
definition of the contained data semantics. The web services and the semantic web are
often regarded as possible alternatives, that can be used for giving the content the
semantics and allow better processing of the content.

The web services are suitable for applications, where the resulting data are highly
structured and have a fixed format that is specified in the service definition. The
resulting data are expected to be a product of some process that can be optionally
influenced by some input parameters. The drawback of web services is that they re-
quire the installation and maintenance of an indispensable amount of quite complicated
software on the server that can, in addition, significantly increase the requirements to
the server performance. Creating a web service is not a trivial task neither. It requires
special tools and creating the software pieces that implement the web service process
itself. When comparing this quite complicated technology with the simplicity of the
traditional web, in most cases the possible benefits are not worth all the effort.

The semantic web, in comparison to the web services, is much more flexible and
its implementation on the server side consists mainly of creating the appropriate XML
documents that contain the RDF data. On the other hand, in order to be usable, it
requires the implementation of software agents that would join together the distributed
pieces of information in order to infer the desired results. Unfortunately, the entire
semantic web is still in more or less theoretical stage.

The last important issue is not technological. Very often, the information is pre-
sented on the web with the only purpose of attracting the users that read the adver-
tisement and bring profit to the service providers. It is not the aim of the information
providers to allow better automatic processing of the presented data.

When considering all these facts, the service providers are not motivated enough
to adopt the existing or proposed semantic technologies and even the benefits of these
technologies for the end-users are questionable. The result is obvious – while the
number of available HTML documents grows exponentially, the semantic technologies
are practically not used. In this situation, we must accept current state of the web as it

10

is and to state, that extracting information from the unsophisticated HTML documents
is currently the only way how to access the information available in the web.

11

Chapter 3

State of the Art

Our approach to information extraction combines several areas of endeavour that have
been intensively investigated recently. Firstly, it is the area of information extraction
from HTML documents that mainly focuses on the problems related to wrapper gener-
ation and wrapper induction. And secondly, it is the area of advanced modeling of the
structure of documents and the discovery of semantic structures in the documents.

As mentioned in section 1.1, the hypertext capability of HTML allows to create
larger information entities consisting of multiple documents linked together that are
usually called logical documents. A complex approach to information extraction there-
fore includes the analysis of the logical documents.

First, we give an overview of current approaches to individual, “physical” HTML
documents. Next, we discuss the area of modeling the logical organization of docu-
ments. This area presents an alternative look to the HTML document modeling and
it is applicable to information extraction. And finally, current techniques of the logical
document discovery are discussed.

3.1 Information Extraction from HTML Documents

The information extraction has been largely investigated in the plain text context long
before the World Wide Web emerged. It has been used for processing the electronic mail
messages, network news archives etc. [50]. Many information extraction techniques for
various types of electronic messages have been proposed within the frame of the Message
Understanding Conferences (MUC) [31] that were in progress from 1987 to 1998. For
each MUC, participating groups have been given sample messages and instructions on
the type of information to be extracted, and have developed a system to process such
messages. These systems have been then evaluated for the conference.

The World Wide Web and the HTML language bring a new look to information
extraction. In contrast to the plain text messages, HTML allows to define the visual
presentation of the content. This possibility is often used for making the documents
clearer and easily understandable. The data in HTML documents is presented in a
more or less regular and structured fashion. For this reason, the HTML documents are
often regarded as a semistructured information resource [38]. The reader is not forced

12

Capital Cities

France – Paris
Japan – Tokyo

...

<h1>Capital Cities</h1>

France - <i>Paris</i>

Japan - <i>Tokyo</i>

...

Figure 3.1: Example of a simple document and its code

to read the whole document. On the contrary, according to many studies, the readers
only scan the document looking for some interesting parts instead of reading it word by
word [47]. Due to this behaviour of the web users, writing text for the World Wide Web
has become a specific area for which the term web copywriting is frequently used. One
of the major requirements to the text on the web is that the organization of the page
is clear and the user can easily find the part of the document containing the desired
information. For this purpose, the documents contain a system of navigational cues that
have mostly visual character. During the years of the World Wide Web development,
these techniques of data presentation have been brought almost to perfection so that
reading the documents using the web browser becomes relatively efficient.

From the point of view of the automated document processing, the situation is
different. HTML doesn’t contain sufficient means for the machine-readable semantic
description of the document content. The techniques for natural language processing
that have been used for the information extraction from plain text are not applicable,
because HTML documents usually don’t contain many whole sentences or blocks of
continuous text. On the other hand the HTML tags inserted to the text of the document
provide additional information that can be used for identifying the data. In the figure
3.1, there is an example of a simple document and the relevant part of its HTML code.
Let’s imagine that we want to extract the names of countries and their capitals from
this document. When looking at the HTML code, we can notice that each name of a
country is surrounded by the and tags and accordingly, each name of a capital
is surrounded by the <i> and </i> tags. Thus for extracting the desired information
from this document, a simple procedure can be created that reads the document code,
detects these tags and stores the text between each pair of the tags. Such a procedure
is called a wrapper. Apparently, the given example is quite trivial. For more complex
documents, more sophisticated wrappers have to be designed.

For the data in the HTML documents, a database terminology is usually used in the
information extraction context. We assume that the documents contain one or more
data records where each record consists of some number of data fields. Usually, we
admit that some records are incomplete; i.e. that the values of some fields are missing
in the document. For example, figure 3.1 shows a document containing two records
where each record has two fields: the name of the country and the name of its capital
city.

13

Wrapper

HTML Documents

Extracted data

Extarction rules

Figure 3.2: Information extraction using a wrapper

Capital Cities

France – Paris
Japan – Tokyo

...

<i>Capital Cities</i>

France - <i>Paris</i>

Japan - <i>Tokyo</i>

...

Figure 3.3: Ambiguous fields in a document

3.1.1 Wrappers

According to Kushmerick [38], a wrapper is a procedure that provides the extraction
of particular data in the HTML document as illustrated in the figure 3.2. For the
identification of the particular data in the document, the wrapper uses either a set of
extraction rules that define the way of the identification of each individual data field or
a model of the document that is used for the decision of which part of the document
corresponds to the particular data value (for example, the Hidden Markov Models are
used in some methods). With wrapper construction, we mean the process of formulating
the extraction rules or the model of the document for a particular information extraction
task.

Kushmerick in [38] defines six classes of wrappers with increasing expressiveness
that differ in the way, how the extraction rules are defined. The simplest wrapper class
is called LR (left-right). In this class, for each data field to be extracted, one extraction
rule is defined. Each rule is a pair of strings that delimit the field in the document code
from the left and from the right. Let’s consider again an example of a simple document
shown in the figure 3.1. An LR wrapper for this task can be defined as a set of two
rules:

W = {[< b >, < /b >], [< i >, < /i >]}

where the first rule identifies the values of country and the second one identifies the
values of capital.

This way of defining the rules is apparently not usable for all the tasks; let’s consider
a slightly modified example in the figure 3.3. When the above LR wrapper were invoked
on this document, the caption would be incorrectly identified as a city name. As a

14

solution, more complex wrapper classes have been defined:

• HLRT (head-left-right-tail). Two additional delimiters are used; the head de-
limiter is used to skip potentially confusing text in document heading and the
tail is used to skip potentially confusing text in the bottom of the document.

• OCLR (open-close-left-right). The open and close delimiters identify each record
in the document.

• HOCLRT (head-open-close-left-right-tail). An analogical combination of the
above two classes.

• N-LR andN-HLRT. The modification of the LR and HLRT classes for handling
nested tabular data in documents.

According to Kushmerick, the six wrapper classes were able to handle about 70%
of the real web documents. It is obvious that the wrapper works properly for a limited
set of documents that correspond to previously defined extraction rules. In literature,
such a set of documents is commonly called a document class. In most cases, the
document class consists of documents of the same topic generated automatically from
a back end database by an identical procedure or at least created by the same author.
Moreover, the wrapper works until the data presentation changes. As results from a
simple comparison of the document in the figures 3.1 and 3.3, even a minor change
in the document design can cause the wrapper to stop working properly. Due to the
distributed and dynamic nature of the Web, this state cannot be predicted and since no
additional information about the extracted data is provided, it is not trivial to detect
the malfunction of the wrapper automatically.

When using wrappers for integrating information from many sources, for each source
a wrapper or wrappers must be created and when some conditions change, the wrappers
must be modified appropriately. From this point of view, the method how the wrappers
are being constructed is important. The most obvious method is writing the wrappers
by hand; i.e. by analyzing a set of documents to be processed and determining the
delimiting strings. This method is very time-consuming and error-prone; unfortunately,
it is the most used method currently. The companies employ people that work on
coding new wrappers and maintaining the old ones. Since this approach presents a
serious scalability problem, many approaches have been developed for an automatic
inference of wrappers.

Most methods for the automatic wrapper construction are based on wrapper in-
duction. This approach is based on machine learning algorithms and the wrapper
construction proceeds in following phases:

1. A supervisor provides a set of training samples (i.e. labeled HTML pages)

2. A machine learning algorithm is used to learn the extraction rules

3. A wrapper is generated based on the extraction rules

4. The wrapper is used on the target documents

15

Capital Cities

Country Capital

France Paris
Japan Tokyo

tr

td td

tr

td td

tr

td td

html

head

title

body

h1 table

Figure 3.4: An HTML code tree

For the inference of the extraction rules, a model of the document text and the
embedded tags must be created. The character of this model depends on the machine
learning algorithm used. In following sections, we give an overview of the used models
of the document and the existing methods for the wrapper induction.

3.1.2 Document Code Modeling

The most straightforward model is to represent the document code simply as a string
of characters. In this representation, the text of the document is not explicitly distin-
guished from the embedded tags. When processing the documents represented this way,
usually the extraction rules based on delimiting substrings [57] or regular expressions
[3] are used. For example, the words that end with a colon can introduce an important
data value. Such phrases can be found using the regular expression [A-Za-z0-9]+[:].

For using the machine learning algorithms, it appears that is more suitable to use
a different representation where the basic unit is a word instead of a character. The
document is represented as a sequence of words [15, 26, 35, 49]. Each word can be
assigned various attributes based some of their orthographical or lexical properties. The
embedded HTML tags can be either omitted or used for inferring additional attributes
of the individual words [26, 49] (e.g. the text is in a caption). A special case of such a
model is used by [35]. In this model, on the contrary, the HTML tags are regarded as
the symbols of an alphabet Σ; any text string between each pair of subsequent tags is
represented with a reserved symbol x.

Most common is a hierarchical model of the HTML code that represents the nesting
of the tags in the document [12, 17, 21, 22, 23, 37]. Figure 3.4 shows an example of
a simple document and the corresponding tree of the HTML tags. In order to make
it possible to create such a model for an HTML, it is necessary to pre-process the
document so that we obtain so called well-formed document [12] where all opening
tags have the corresponding closing tag and they are properly nested. The XHTML
documents are always well-formed. The text content of the document is then contained
in the leaf nodes of the tree or it is not included in the model at all. It is the advantage
of the hierarchical model that it describes the relations among the tags in addition to
the observed properties of individual words and tags.

16

3.1.3 Wrapper Induction Approaches

Current methods of the wrapper induction are based on the knowledge from various
areas of the research work. Many approaches are based on grammatical or automata
inference [18, 25, 35, 37, 38], other approaches use the relational machine learning
algorithms [17, 21, 26, 57]. Quite different approach is presented by the methods based
on conceptual modeling [22, 23]. Note that this is a coarse classification only and the
different approaches influence each other.

As mentioned in section 3.1.1, the wrapper induction approaches require a set of
labeled examples of the documents that are used for inferring the extraction rules.
According to the artificial intelligence terminology, we call this set of examples a training
set and the process of inferring the extraction rules the wrapper training.

For evaluating the performance of the individual information extraction approaches,
there are two commonly used metrics: the precision P and recall R [37]. They are
defined as follows:

P =
c

i
(3.1)

R =
c

n
(3.2)

where c is the number of correctly extracted records, i is the total number of extracted
records and n is the real number of the records in the document.

Methods Based on the Grammatical Inference

The grammatical inference is a well-known and long studied (early studies in the 60’s)
problem and its application to information extraction is therefore supported by a large
theoretical foundation. The problem is following: We have a finite alphabet Σ and
a language L ⊆ Σ∗ (usually, regular or context-free languages are discussed in this
context). Given a set S+ of the sentences over Σ that belong to L and a (potentially
empty) set S− of the sentences over Σ that do not belong to L we want to infer a
grammar G that generates the language L.

The basic idea behind using grammatical inference for information extraction is
that generating a wrapper for a set of HTML documents corresponds to a problem of
inferring a grammar for the HTML code of the pages and finally using the inferred
grammar for the extraction of the data fields. This idea is however not directly appli-
cable to the document processing. The main obstacle is that there are only positive
examples available in the web; i.e. the available documents. As it follows from Gold’s
work [30], regular nor context-free grammars cannot be correctly identified from the
positive samples only. This problem can be basically solved by limiting the language
class to a subclass of regular languages that is identifiable in the limit (e.g. k-reversible
languages) or by changing the computational model (artificial negative samples or sup-
plying an additional information).

One of the approaches to the information extraction is presented in [25]. For lo-
cating a particular data field in the document, a combination of a Bayes classifier and
grammatical inference is used. The document is modeled as a sequence of words. The

17

Bayes classifier processes parts of the document determined by a floating window of
a fixed length of n words. To each position of the window, a probability is assigned
that the particular part of the text matches to the particular data field (e.g. the name
of a person). The problem of this method is in determining the exact boundaries of
the data field (the window of a fixed size). Moreover, the classification doesn’t con-
sider the word order; the Bayes classifier only works with the occurrence of individual
words. These problems are solved by the grammatical inference. The words con-
tained in the document are converted to abstract symbols from an alphabet Σ using
their orthographical properties. Thus the alphabet Σ contains symbols of the type
word-lower+dr (an abbreviation “Dr.” written arbitrarily in upper-case or lower-case
letters), capitalized-p t (any word beginning with capital letter) etc. The training
set is used for both training the Bayes classifier and for inferring a finite automaton,
where each terminating state is assigned a probability that the accepted string corre-
sponds to the particular data field. When the string is not accepted at all, it is assigned
a small probability. The result is then a product of the probabilities from the Bayes
classifier and from the automaton.

Another approach to the application of grammatical inference is presented by Kosala
[37]. This method is based on tree languages. The document is modeled according to
its HTML code as a tree where the nodes contain the name of the HTML tag or a text
string. Instead of a set of strings over Σ we obtain a set of trees over a new alphabet
V where each tree corresponds to a particular document from the training set. In the
sample trees, the data field to be extracted is replaced by a special symbol x. Then, the
aim is to infer a deterministic tree automaton that accepts the trees in which the desired
data value is replaced by x. When using this automaton for information extraction, we
replace subsequently the nodes of the document tree by x. Once the resulting tree is
accepted by the automaton, the extraction result is the original string that has been
replaced by x.

A different way of the grammatical inference application is presented by [35]. This
work is based on stochastic context-free grammars. The input alphabet is formed by
the HTML tags and an extra symbol text that represents any non-empty text string
between a pair of tags. During the grammatical inference process, the complexity of
the grammar is evaluated and the simplest grammar is chosen. The non-terminals
of the inferred grammar correspond to basic parts of the document. For more exact
localization of the data fields, regular expressions are used that represents the domain-
specific knowledge.

A completely new view of the problem is presented by [18]. The presented approach
deals with the problem of schema discovery – given a set of HTML documents we are
looking for a common schema of their content and the extraction rules based on the
discovered schema. The schema discovery is based on comparing the documents – the
parts that are present in all the documents are considered as static content whereas
the changing parts correspond to the data values.

18

Hidden Markov Models

A Hidden Markov Model (HMM) is a finite state automaton with stochastic state
transitions and symbol emissions. The automaton models a probabilistic generative
processes whereby a sequence of symbols is produced by starting at a designated start
state, transitioning to a new state, emitting a new symbol – and so on until a designated
final state is reached.

The application of HMMs to information extraction is based on a hypothetical as-
sumption that the text of a document has been produced by a stochastic process and
we attempt to find a Markov model of this process. The states of the model are associ-
ated to the tokens to be extracted. The model transition and emission probabilities are
learned form training data. The information extraction is performed by determining
the sequence of states that was most likely to have generated the entire document and
extracting the symbols that were associated with designated target states.

This approach is used for example by [27]. For each field to be extracted a separate
HMM is used that consists of two types of states – the target states that produce the
tokens to be extracted and background states. Each of the HMMs models the entire
document so that no pre-processing is needed and the entire text of the documents
from the training set is used to train the transition and emission probabilities.

Relational Learning Approaches

General principle of these techniques is similar to the above. Again, we assume that
there exists a class of documents with similar properties and that there is a training
set of the documents from this class available. In the training set, we describe some
properties for each data field to be extracted using logical predicates. Then, we use
relational learning algorithms for inducing general rules that identify the data fields in
documents.

Freitag [26] assigns each word in the documents certain attributes based on the
properties of the given portion of the text such as word length, character type (letters,
digits) or orthography and adds some additional attributes that describe the relation
between the word and the surrounding HTML tags (e.g. the word forms part of a
heading or the word forms a table row). Each data field to be extracted is then described
by logical predicates based on these attributes and using an algorithm SRV (based on
the FOIL algorithm [53]) a general rule is inferred that identifies the data field in the
document. DiPasquo [21] extends this approach by modeling the hierarchical structure
of HTML tags in the document, which allows describing the relations among the HTML
tags more exactly.

Soderland [57] uses an approach that is based on the methods for natural language
processing. Each word of the document a semantic class is assigned (e.g. Time, Day,
Weather condition) using predefined concept definitions. Using the learning algorithms
AQ and CN2 [16] a general description of each data field is inferred.

19

3.1.4 Alternative Wrapper Construction Approaches

Wrapper induction is not the only method for automatic wrapper construction. Fol-
lowing techniques are based on direct analysis of the HTML code of the particular
documents to be processed. The aim of these techniques is to avoid the training phase
and eliminate the requirement of the training set of document. On the other hand,
these techniques are usually based on empirical heuristics and it is often hard to spec-
ify exactly for which document the method is suitable. Furthermore, some predefined
domain-specific knowledge is often required and in some cases (e.g. [33]) the method
is language dependent.

HTML-related Heuristics

These techniques are based on specific empirical heuristics related to the HTML lan-
guage generally or to some generally accepted ways of its usage.

Ashish [3] locates some important words that introduce an important information
in the document (e.g. Geography, Transportation, etc.) – so called tokens. The tokens
are identified based on the properties of the text and surrounding HTML tags and all
the possible occurrences are firmly defined by regular expressions. For example, the
text between the and tags, words in headings, text that ends with a colon,
etc. Each token indicates the start of a section of the document. Next, the hierarchical
structure of sections is built by comparing the font size and the indentation of the
text that begins each section. The proposed extraction tool contains a graphical user
interface for an interactive adjustment of the tokens and the hierarchical structure.
Finally, the wrapper is generated using the YACC generator.

Another approach is used by [12, 22]. This approach assumes that there can be
found a unified separator of the data records in the document. The document is modeled
as a tree of tags and based on various heuristics, a general structure is discovered that
is used as a record separator. As the next step, a data field separator is located similar
way. The heuristics are based on the statistical analysis of the text in potential sections,
repeating patterns, etc. Furthermore, a predefined knowledge about the meaning of
some HTML tags is used. Similar approach is used in [43]. The proposed MDR
algorithm attempts to locate the regions of the document tag tree that potentially
contain data records. In these regions, one or more data records can be identified.

Conceptual Modeling

Conceptual modeling approach is more common in the area of the information extrac-
tion from plain text documents; however, it can be used for HTML documents too.
For example Embley et al. [22, 23] proposes a method where as the first step, an
ontological model of the extracted information is created and based on this model, cor-
responding data records are discovered in the document. It is possible to combine this
approach with the HTML code analysis described above. The main difference is that
the structure of the information is not inferred from the document but it is known in
advance.

20

3.1.5 Computer-aided Manual Wrapper Construction

This category is formed by special tools that generate wrappers in collaboration with
a human expert. These tools usually provide a graphical user interface that allows
the wrapper creator to analyze the documents to be processed and to easily design a
wrapper.

The DoNoSe tool [1] works mainly with plain text documents. The tool allows hier-
archical decomposition of the contained data and mapping selected regions of the text
to components of the data model. LiXto [5] is a fully visual interactive system for the
generation of wrappers based a declarative language for the definition of HTML/XML
wrappers. Both tools provide a graphical user interface that allow the user with no
programming experience to produce the appropriate wrappers.

3.2 Cascading Style Sheets from the IE Perspective

With the new technologies being introduced to WWW, some critical disadvantages
of the wrapper approach appear. For example, according to the recommendations
of the WWW Consortium the usage of Cascading Style Sheets (CSS) [7] has grown
significantly in the last few years. This technology allows defining the visual layout and
formatting of an HTML or XML document independently on its content. This property
is particularly useful when the HTML documents are being generated dynamically (e.g.
from a database) since it allows modifying the visual appearance of the pages without
modifying the HTML generator. On the other hand, this significantly reduces the
amount of information that can be used by a wrapper for identifying the information
in HTML documents.

Figure 3.5 shows an example of a traditional HTML document formatting. It is
obvious that all the names of the countries are denoted by the and tags. A
wrapper for extracting countries from the document simply looks for these tags and
extracts the inserted text.

...

<h1>Capitals</h1>

France

- <i>Paris</i>

Japan

- <i>Tokyo</i>

...

Figure 3.5: Document formatting using HTML tags

One of the possible variants of the same document code written using CSS is shown
in the figure 3.6. The above method for defining the wrapper fails in this case because
all the elements are denoted by the same tag. Moreover, there are several ways
how to incorporate CSS to the HTML code (in our example, we can see the classes

21

defined by the class attribute and inline styles defined by the style attribute of the
HTML tags).

...

Capitals

France

- Paris

Japan

- Tokyo

...

Figure 3.6: Document formatting using CSS

As we can see, all the HTML tags have been replaced with a single tag
that is used for specifying the CSS class of the individual parts of the text. Moreover,
as mentioned in section 2.2, the style definitions can be incorporated different ways to
the HTML code. In any case, the result is that the “semantic” HTML tags such as
headings, emphasis, etc. may be completely removed from HTML and replaced by CSS
definitions. This change significantly complicates or even makes unusable most of the
wrapper induction methods mentioned above.

From this point of view, it is not reliable to construct wrappers that rely directly
on the HTML code. HTML and CSS are only the means for creating documents and
they can be used various ways. The fixed point in this variable world is the final
presentation of the document that has been usually carefully designed by experts from
various branches and that must be delivered to the reader in unchanged form regarding
especially the visual appearance and the structure of the presented document.

For this reason, instead of modeling the HTML code directly, some more sophisti-
cated models need to be proposed that describe the documents from the perspective
of its final presentation. These models should describe the organization and the visual
appearance of the documents as it is expected to be perceived by a human reader.

3.3 Advanced Document Modeling

3.3.1 Logical versus Physical Documents

The World Wide Web consists mainly of HTML documents that may reference each
other using hypertext links. In this thesis we will call these documents physical docu-
ments because each of them corresponds to a physical file stored on a WWW server.
However, the hypertext links allow splitting a complex information to multiple physical
documents where each of them contains a specific part of the information and these
individual parts are interconnected by the hypertext links. This way of presentation is
very frequent in the World Wide Web. We will call such a set of physical documents
that form a complete information entity a logical document. An example of a logical
document is given in the figure 3.7. The arrows represent links among the physical

22

Figure 3.7: Logical document

documents. The three physical documents in the dashed box form a logical document.
As we can see, any of the documents that form the logical document can contain links
to other external documents that do not belong to the logical documents. Since it is
not specified in the documents, which of the links are external, the discovery of logi-
cal documents in the web is not a trivial task and it requires further analysis of the
documents and the links.

3.3.2 Logical Document Discovery

The task of the logical document discovery consists of locating all the physical HTML
documents that form a logical entity called logical documents. The input is the URI of
the main page (sometimes also called the top page or the index page), which is intended
by the author of the document to be an entry point to the logical document and it is
usually directly accessed by the users1. The output is the list of the URIs of all the
HTML documents that form the logical document.

The primary source of information for discovering the related physical documents
are the HTML links. An HTML document that forms part of a logical document, except
the main page, must be referenced by at least one other HTML document in the same
logical document. The process of logical discovery is therefore quite straightforward:

• We find the URIs of all the documents referenced in the main page

• We select all URIs that point to the documents that belong to the logical docu-
ment

• We repeat the process recursively for each selected document

The major problem that has to be solved is in the second step: How to distinguish
the documents that belong to the logical document from the remaining ones? There
exist two different types of information that can be used for resolving this task:

1The URI of the main page is usually publicly available, in contrast to the URIs of the remaining

documents

23

• Document classification. We assume that the individual physical documents that
form the logical document are more similar to each other than the remaining
referenced documents. The similarity of documents is usually computed using
the methods based on the term frequency in the document such as the tf · idf
method [55].

• Document layout analysis. We analyze and compare the layout of the documents
as mentioned for example in [42]

• Link topology analysis. In general, the topology of the links among a set of
HTML documents can be represented as a directed graph. By the analysis of this
graph using specific heuristics we can detect a subgraph with certain properties.
This technique is also used for detecting so-called communities in the web [29].
Additionally, some limitations can be put to the format of the URIs (e.g. all
documents must be placed on the same web server, etc.)

Usually, these types of information are used together. Tajima et al. [60] shows that
most of the logical documents are organized into hierarchies. The approach is based on
the assumption that the authors include some hypertext links to the documents that are
intended to be used by the users as a standard way of getting to a particular document.
These links form so-called standard navigation paths. There are, of course other links
that either point outside of the logical document or have a lower importance such as
links back to the main page. The proposed method of logical document discovery has
two steps. First, the hierarchical structure is discovered by identifying paths intended
by the authors of the documents to be the standard navigation routes from the main
page to other pages. Then, the discovered hierarchy is divided into sub-hierarchies
corresponding to the logical documents based on comparing the document similarity
using the tf · idf method.

3.3.3 Logical Structure of Documents

The information extraction methods described in the section 3.1 have been based on a
direct analysis of the code of HTML documents. We can say that these methods work
with the physical realization of the documents. The bottleneck of this approach is too
tight binding of the wrapper to the HTML code. The nature of HTML allows to achieve
the desired document design by various ways that can be arbitrarily combined, which
makes the wrappers limited to a narrow set of documents and a short time period.
As an answer to these drawbacks, there have been several attempts to describe the
documents from a logical point of view.

The logical structure of a document [2, 13, 58] is basically a model of a document
that describes the relations among the logical sections of the document as for example
sections, paragraphs, figures, captions, etc. There are generally two approaches to the
logical document structure discovery:

• Visual document analysis – we analyze the visual aspect of the documents. This
approach is applicable to any electronic document format such as PostScript,

24

PDF, HTML, etc. For HTML documents, many approaches to the visual analysis
have been published [14, 32, 36, 48, 62].

• Direct analysis of the hierarchy of tags in the document code – we assume that
the nesting of the tags corresponds to the logical structure of the document. This
approach is applicable to the markup languages only. It is more reliable from
the complexity point of view, but it is not usable in all cases (for example when
the Cascading Style Sheets are used in certain way) since the hierarchy of tags
needn’t necessarily correspond to the logical structure.

In this thesis, with the notion of logical document structure we understand the
logical structure of any document, either the physical or the logical one depending on
context. The notion of logical document structure has been introduced by Summers
[58, 59] in the context of processing the PDF, PostScript and scanned-in documents
and it is defined as a hierarchy of segments of the document, each of which corresponds
to a visually distinguished semantic component of the document. Other authors use
the notions of document structure tree [36] or document map [63] in similar sense.

For some time, it has been assumed that in case of HTML documents, there is no
need for modeling the logical structure because it is directly present in the document
in the form of the HTML tags. However, a closer analysis shows that there is only a
very loose binding between the HTML tag tree and the logical structure of an HTML
document. The reason is that the HTML provides both structural and presentational
capabilities that can be arbitrarily combined. Furthermore, the effort of the document
authors aims to the resulting visual presentation rather than the logically correct HTML
code so many tags are often misused. Thus creating the logical structure of an HTML
document is not trivial neither and it requires more detailed analysis of the document.

In almost all works published on the logical document structure analysis, the re-
sulting model is a tree, where the nodes correspond to individual logical parts of the
document. This model is based on the observation that each HTML document consists
of elements that specify information carrying objects at different levels of abstraction
through object nesting. The logical structure can be viewed as that the objects of a
higher level of abstraction are described by objects of finer levels of abstraction [14].
Such a hierarchical conception of a document organization seems to be natural to the
document authors as well as the readers. This fact has been observed by many authors,
for example [1, 4, 14, 20, 49, 58, 60] without any more detailed reasoning. We believe
that the main reasons of the hierarchical document organization are:

• It is efficient. Hierarchical organization of a document allows better orientation
in the text. It is possible to find the section that deals with a particular topic
without having to read the whole document.

• It is feasible. A standard document is linear – it has a beginning and the end. The
hierarchical organization can be easily reached by using various levels of headings
and labels. The organization is then apparent to the reader, especially when the
table of contents is included. It is not feasible to achieve some more complex
organization such as a general graph without confusing the reader. The situation

25

is different in case of the logical hypertext documents; this problem is discussed
separately in section 5.7.

• It is natural. The hierarchical organization of a structured text has been widely
used in technical and popular articles and books. People are used to it. This is
actually a consequence of the above two reasons.

For the above reasons, the authors of structured documents mostly prefer the hier-
archical organization and the readers automatically expect it. Therefore, a tree appears
to be sufficient for modeling all kinds of documents.

3.3.4 Visual Analysis of HTML Documents

There are several approaches to creating the model of the logical structure for HTML
documents. They differ in the granularity of the resulting model that depends on its
intended application.

The work of Carchiolo et al. [13] deals with the discovery of the logical schema of
a web site that contains multiple documents. For this purpose, basic logical sections
are localized in each document such as logical heading, logical footer and logical data
where the semantic of the page is mainly placed. The proposed approach is based
on a bottom-up HTML code analysis. First, collections of similar code patterns are
localized in the document. As the second step, each section is assigned a meaning
(e.g. logical header) based on the semantics of the HTML tags (e.g. the <form> tag
denotes an interactive section) or on some information retrieval techniques (e.g. the
header section is the collection that refers to the text in the title of the document
or to the URI of the page). Similarly, [62] discovers semantic structures in HTML
documents. This approach is based on the observation that in most web pages, layout
styles of subtitles or data records of the same category are consistent and there are
apparent boundaries between different categories. First, the visual similarity of the
HTML content object is measured. Then, a pattern detection algorithm is used to
detect frequent patterns of visual similarity. Finally, a hierarchical representation of
the document is built. The method described in [48] is based on similar principle. A
key observation of this method is that semantically related items in HTML documents
exhibit spatial locality. Again, a tree of HTML tags is built and similar patterns of
HTML tags are discovered. Finally, a tree of the discovered structures is built.

While the above methods discover the logical structure of the document to the level
of basic semantic blocks, the work of Chung et al. [14] is more oriented to information
extraction. Based on the visual analysis, it attempts locate data fields in the documents
and store them in an XML representation. It is assumed that the documents being
processed pertain to a particular, relatively narrow ontology. Furthermore, certain
domain knowledge provided by the user is necessary in the form of topic concepts and
optional concept constraints. Each concept is described by a set of concept instances
that specify the text patterns and keywords as they might occur in topic specific HTML
documents. By contrast, the topic constraints describe how concepts as information
carrying object can be structured. As the first step, a majority schema of the document

26

is inferred in the form of a document type definition (DTD). Next, the data fields
corresponding to the individual concepts are discovered.

The last described approach is quite different. In [32] a method for the web content
structure discovery is presented that is based on modeling the resulting page layout
and locating basic objects in the page through projections and two basic operations
- block dividing and merging. The projection allows to detect visual separators that
divide the page into smaller blocks and again, adjacent block can be merged, if they
are visually similar. This dividing and merging process continues recursively until the
layout structure of the whole page is constructed.

27

Chapter 4

Motivation and Goals of the

Thesis

Currently, wrappers are mainly used for obtaining the data from various web sites
in order to create a service that provides a centralized view of the data from certain
domain available in the WWW. Such a service allows a user to effectively use the data
available in the web with no need of locating the appropriate web sites, browsing the
documents and locating the appropriate data in the documents. Such a service is most
frequently offered for the shopping domain – several services for comparing prices of
goods in on-line shops are available (e.g. AmongPrices1 or Compare Online2). Another
good example is the financial domain – services for comparing stock quotes, exchange
rates etc.

Although many techniques for automatic wrapper construction have been proposed,
the most used approach is still the manual or semi-automatic wrapper construction.
The cause of this situation are following major problems that appear in different extent
in the above mentioned wrapper induction approaches:

• The necessity of wrapper training. A sufficiently large set of annotated training
data is required. The training set preparation is time-consuming; moreover, in
some cases no training data is available at all (e.g. when there is only one instance
of the page available). A partial solution of this problem is bootstrapping [52].

• Brittleness. When some change occurs in the documents being processed, the
wrapper can stop working properly. The detection of this situation is not a trivial
problem [40]. Moreover, new training data must be prepared and the wrapper
has to be re-induced.

• Low precision. For practical setting of the wrapper, it is necessary that the
produced data is reliable – i.e. the values of precision and recall are close to
100%. The precision of current methods varies between 30 and 80% [15, 21, 26, 37]
depending on the used method and the processed documents.

1http://www.amongprices.com/
2http://www.compare-online.co.uk

28

There are several causes of these problems. The most important one is too tight
binding of the produced wrapper to the HTML code, which makes the wrapper very
sensitive to any minor irregularity in the HTML code. All the above mentioned wrapper
induction methods are based on an assumption that there exists some direct correspon-
dence between the HTML code and its informational content. However, the relevance
of this assumption is also quite questionable. As stated in the introduction, HTML
allows defining a visual appearance of a document, i.e. a presentation and format-
ting of the contained text. The relation between this formatting and the semantics
of the document content is not defined anywhere. Wrappers based on some assump-
tions regarding this relation that have been defined based on previous analysis of some
documents are therefore based on an information whose relevance is not guaranteed
anywhere and it can be (and usually it is) limited to a certain set of document and
a certain (unpredictable) time period. Moreover, the document can contain various
irregularities and special features so that the rules induced for a document needn’t to
be completely applicable to another document event if it belongs to the same class of
documents.

As a solution of the above mentioned disadvantages of the wrapper approach, we
propose developing a new method that would fulfill the following requirements:

1. The documents are analyzed in time of extraction. The method shouldn’t be
based on any features of the document or the set of documents that have been
discovered in the past. Using information that was relevant at some time in the
past can lead to incorrect results because the document may have been changed
in the meantime.

2. Only the features of the logical document being processed are used for information
extraction. Using some knowledge about the features of other documents that are
considered to be “similar” to the currently processed one can lead to incorrect
results and imprecision.

3. The method must be independent on the physical realization of the document. It
must be based on the final document appearance that must respect certain rules
rather than the underlying HTML/CSS technology that can be chosen arbitrarily.
This includes the situations when the presented information is split to several
physical documents. Always the whole logical document should be analyzed.

These requirements solve the problems of the necessity of the training set of docu-
ments by analyzing each logical document individually. Moreover, this feature should
improve the precision of extraction because the method is not based on the extraction
rules inferred for other documents. And lastly, the independence on the physical re-
alization of the logical document should significantly reduce the brittleness of inferred
wrappers. The goals of our work can be summarized to following points:

1. To find a suitable model that describes the documents on sufficient level of ab-
straction and to define this model in a formal way.

2. To propose a new method of information extraction based on the defined model
that fulfills the above requirements and resolves the above mentioned problems.

29

3. To evaluate the proposed method experimentally on real WWW documents.

In following sections, we present the results of our work that have been achieved
while fulfilling the above specified goals.

30

Chapter 5

Visual Information Modeling

Approach to Information

Extraction

As discussed in the previous chapter, most problems of the wrapper approach are caused
by the fact that the wrappers interpret the HTML code too literally. This makes the
wrapper very sensitive to any irregularity or a slight change of the document code. For
removing this strict dependence on the HTML code, it is necessary to create a more
general model that would describe the document abstracting from the nonessential
implementation details.

The HTML tags embedded in the text of the document are an instrument for
achieving certain visual presentation of the document contents. Since the documents
in the World Wide Web are designed to be browsed by human users, it seems to
be reasonable to create a model describing the resulting rendered document as it is
expected to be displayed in the browser window. When designing a document, the
authors use the HTML tags for achieving a particular design with following particular
aims:

• To make the document good-looking from the aesthetic and typographical point
of view.

• To encourage the user to read the document; i.e. to make the document visually
“attractive”.

• To make the document well arranged; i.e. to allow the user an effective orientation
in the document with no need of reading each individual part of the document.

Although from the aesthetic and marketing point of view, the first two points are
important, from the point of view of the automatic document processing the last point
is the only important one. We are not interesting how attractive the document is for
the user but we are interested in what information is the user given in order to be able
to quickly understand the organization of the document. There exist several commonly
accepted rules in the visual presentation of the documents that are used for giving

31

the reader this information. These rules have been established during the evolution
of typography long before first electronic documents appeared. The most common of
them are following:

• The parts of the text that deal with different topics or that have a different pur-
poses are visually separated; e.g. the individual articles in a newspaper, footnotes
in a book, etc.

• Bold text, italics and underlining are used to stress the significance of a particular
part of the text. In modern typography, different colors of the text are sometimes
used for highlighting a particular word or a sentence.

• The larger font is used for typing a particular text, the more important this text
is. E.g. the most important affairs in newspapers are announced with banner
headlines whereas the less important notes are written with a small font size.

• The headings and labels that denote certain information are highlighted using
some combination of the above means.

In case of the world wide web documents, these visual instruments are used even more
intensively that in the traditional media. Since the Internet is usually used for quickly
and effectively obtaining some information, the documents must provide great amount
of visual cues that navigate the reader. Most often, these cues have the form of high-
lighted headings and labels that denote the meaning of each part of the document.

In this chapter, we propose an information extraction method that is based on
modeling the visual information in the document that is intended to be used by the
readers for quick navigation. First, we define the method for processing a single HTML
document. Later, in section 5.7, we extend the method to logical documents formed
by multiple HTML documents. As stated in the introduction, in this thesis we focus
on the data identification phase of the information extraction process.

5.1 Proposed Approach Overview

The principle of the proposed approach is shown in the figure 5.1. In contrast to the
traditional wrapper approach (figure 3.2), the information extraction process consists
of multiple steps.

As a first step, we analyze the HTML document that contains the data to be
extracted and we create a model of the visual information as it is expected to be
presented in a standard web browser. This model consists of two separate components
– the model of the page layout and the model of the visual features of the text.

As the next step, we transform these two components to an unified model of the
document logical structure. This model describes the document content on significantly
more abstract level. As defined in section 3.3.3, the logical structure only describes hier-
archical relations among individual parts of the document content. When we represent
the text content of the document as a text string, (omitting the embedded HTML tags),
the resulting model of the logical structure is a tree where each node contains a sub-
string of the text of the document and the edges represent relations between a superior

32

Page layout model Text features model

Subtree matching

Extracted data

Logical document structure

HTML Document

Visual information

HTML code analysis

Model transformation

Structured query

Figure 5.1: Visual modeling of an HTML document

or more general part of the text (e.g. a heading) and the inferior, more concrete part
(e.g. the chapter contents or a data value). More detailed specification can be found
in section 5.5.

After creating the logical structure model, the next step is the information extrac-
tion itself. Since the logical structure model is a tree of text strings, the information
extraction task can be formulated as a problem of locating a particular tree node that
contains the desired information. In our method, we propose defining the information
extraction task as a template of a subtree of the logical document structure. After this,
the information extraction task consists of locating all the subtrees of the logical struc-
ture model that correspond to the specified template. Each subtree found corresponds
to a data record in the extracted data.

In following sections we give a detailed description of the individual steps.

5.2 Visual Information Modeling

As discussed in previous sections, the documents in the World Wide Web have more
or less hierarchical organization so that the user can effectively locate the desired in-
formation in the document. This hierarchical organization is expressed by two basic
means:

1. By splitting the document to several visually separated parts that can be arbi-
trarily nested; i.e. the page layout.

2. By providing a hierarchy of headings and labels of different level of abstraction

33

HTML Document

Logical document structure

Page layout model Text features model

Figure 5.2: Visual modeling of an HTML document

that describe the contents of a part of the document or the meaning of a par-
ticular data presented in the document. This hierarchy is expressed by various
typographical attributes of the text; e.g. the more important is the heading, the
larger font size is used, etc.

In order to obtain a logical structure of a document we have to create the models of
both the components of the visual information: the page layout and the typographical
attributes and to transform these models to the model of the logical document structure
as shown in Figure 5.2.

5.2.1 Modeling the Page Layout

In order to clearly distinguish different kinds of information in the document, the web
pages are usually split to multiple areas. Figure 5.3 shows a typical example of a
document split to several visual areas. We can notice three basic visual areas – the
header on the top of the page, the left column with a navigation menu and the main
part that carries the informational contents of the page. The main part is further split
by a horizontal separator in two parts – the main contents and the footer. We can see
that some areas are nested and thus there is a hierarchy of visual area present in the
document.

Generally, the visual areas in a document can be visually expressed using various
visual separators (horizontal rules, boxes, etc.) or by different visual properties; the
most usual one is different background color. In HTML, it is not difficult to enumerate
all the possible means that can be used for creating a visually separated are in a
document. As follows from the HTML specification [54], the set of available means
is quite limited. To be specific, such an area can be created using following HTML
constructions:

34

Figure 5.3: Visual areas in a document

• Document. The whole document can be considered as a visual area that always
forms the root node of the visual area hierarchy.

• Tables and table cells. Each cell of a table forms an area that can have its own
visual attributes. The table forms an area that holds all the cells and optionally
a table caption.

• Lists and list items. A list item itself forms a visually separated area, a list can
contain multiple items.

• Paragraphs. Paragraphs are usually not used for creating separated areas but
they can be interpreted that way when used together with CSS and the visual
attributes of a paragraph are sufficiently different from the attributes of preceding
and following text.

• Generic areas. HTML provides a generic area <div> that has no influence to the
visual attributes itself. However, it is often used together with CSS that allows
to specify the style and position of the area.

• Frames. HTML frames allow to combine multiple HTML documents in a page.
Each of the documents forms an area.

• Horizontal rule. The <hr> element cannot be used for creating a standalone visual
area but it allows to insert a horizontal line that splits an area in two parts.

A complete list of the related page objects with the appropriate HTML tags is given
in Table 5.1.

35

Page object HTML tags

Document <html>

Table, table cell <table> <th> <td>

List, list item <dl> <dt> <dd>

Paragraph <p>

Generic area <div>

Frames <frameset> <frame>

Horizontal rule <hr>

Table 5.1: Visual areas in HTML and corresponding tags

For the purpose of modeling the page layout we define the notion of visual area as
any area in the document that is formed by one of the mentioned means independently
on its visual attributes. For example, we consider each table cell a separate visual area
independently on whether the surrounding table cells have different background color or
whether they are separated by a bounding box. The visual areas in a document form
a hierarchy where the root represents the whole document and the remaining nodes
represent the visual areas in the document that can be possibly nested. For modeling
the page layout, we assign each visual area an unique numeric identifier vi ∈ I, where
the whole document has v0 = 0 and the remaining areas have vi = vi−1 + 1. Then, the
layout of the page can be modeled as a tree of area identifiers vi as shown in the figure
5.4.

2

1v

v v6

v5

0v

3v

v4

Figure 5.4: Example of the page layout model

Formally, the model of the page layout can be denoted as a graph:

Ml = (Vl, El) (5.1)

where Vl = {0, 1, . . . n − 1} is the set of all area identifiers that form the nodes of the
tree and (vi, vj) ∈ El iff vi and vj are the visual area identifiers and the area identified
by vj is nested in the area identified by vi.

This model doesn’t contain any information about the visual attributes of the areas,
it only represents the way in which the visual areas are nested. However, by assigning
individual parts of the document text to the visual areas we can obtain the information
about what parts of the text are related. The model thus represents the most important
information the page layout gives to the reader as discussed above.

36

Figure 5.5: Visual attributes of the text

5.2.2 Representing the Text Features

Various visual attributes of certain portions of the text are often used for emphasizing
the importance of the particular text portion or, on the contrary, to suppress its im-
portance. Another common use of the visual attributes is to distinguish the headers
and labels in a document from the remaining text. An illustration of this fact is given
in the figure 5.5. In the text of the first section, the words “weight” and “markedness”
are emphasized by using italics. Similarly, the word “weight” in the second section is
emphasized by using the bold font. There are two levels of headings in the document
that are distinguished by the font size. The first-level heading gives the title of the
document whereas the two second-level headings are used for the titles of the sections.
Furthermore, there is a label “Number of cars sold” that introduces the value of “125”.
The function of the label is indicated by the trailing colon.

For the purpose of automatic document processing, we need to create a model of the
documents describing the mentioned features of the text. This model has to describe
these features on an abstract level. For example, we want to describe the fact, that
the word “weight” is emphasized in both occurrences. The used mean, i.e. if the
emphasizing is achieved using the bold font or italics is not significant from our point
of view. The same effect can be achieved for example by typing this word in red color.
Similarly, the font size used for the word “Introduction” is not important, we want to
describe that this heading has a lower level than the main document heading but it is
at higher level that the remaining text.

An HTML document consists of the text content and the embedded HTML tags.
Some of the tags can specify the typographical attributes of the text. Let’s denote
Thtml a set of all possible HTML tags and S an infinite set of all possible text strings
between each pair of subsequent tags in a document. Then, an HTML document D

37

can be represented as a string of the form

D = T1s1T2s2T3s3 . . . TnsnTn+1 (5.2)

where si ∈ S is a text string with the length |si| > 0 that doesn’t contain any embedded
HTML tags and n, n ≥ 0 is the number of such strings in the document. Tj , 1 ≤ j ≤
n + 1 is a string of HTML tags of the form

Tj = tj,1 tj,2 tj,3 . . . tj,mj
(5.3)

where tj,k ∈ Thtml and |Tj | ≥ 1.
Since the visual attributes of the text can only be modified by the HTML tags,

each text string si has constant values of all the attributes. Let’s define the notion of
text element as a text string with visual attributes. Each text element ei ∈ E, where
E = S × I × I × I. As usual, we write ei as

ei = (si, vi, xi, wi) (5.4)

and we define
ei < ej , 1 ≤ i ≤ n− 1, i + 1 ≤ j ≤ n (5.5)

where si ∈ S, vi, xi, wi ∈ I. si is a text string that represents the content of the
element, vi is the identifier of the visual area the element belongs to and xi and wi

are the element markedness and weight which present a generalization of the visual
attributes of the text string as defined further.

From this point of view, the whole text of the document with visual attributes can
be expressed as a string of the form

Mt = e1e2e3 . . . en (5.6)

where ei = (si, vi, xi, wi), 1 ≤ i ≤ n are the text elements. si corresponds to the
appropriate text string in (5.2). vi is determined during the tree of visual areas is being
built. The element e1 always contains the document title as discussed further in section
5.4.

The Markedness of a Text Element

The visual appearance of a text element ei can be determined by interpreting the HTML
tags in Tj , j ≤ i and corresponding CSS styles (this is basically what the web browsers
do). The markedness of an element determines how much the element is highlighted in
the document. In order to determine the element markedness, we analyze and interpret
following visual attributes of the text element:

• Font size. The font size is used to distinguish important parts of the text es-
pecially headers. The relation between the font size and the visual markedness
is straightforward – the greater is the font size the more expressive is the text
element. The normal text of a document is usually written in some default font
size. Small font size can be used for writing some additional information (e.g.
copyright notes etc.)

38

• Font weight. Although more degrees of the font weight can be distinguished, from
the point of view of a reader we can distinguish two of them – normal and bold.
The text element written in bold is always more visually expressive as a normal
text with the same attributes.

• Font style. The font style can be normal or italic. It is also possible to use the font
style called oblique or slanted. This style is however very similar to italic and it is
usually not distinguished by the readers even nor by some web browsers. Writing
the text element in italics is often used to reach its higher visual markedness.

• Text decoration. The text element can be underlined in order to increase its
markedness or, on the contrary, striked-out to decrease its markedness. Overlined
elements are usually not used and there is no clear interpretation of overlining.

• Text color. The document text is usually written in one color. Different colors
can be however used for highlighting some parts of the text. According to this,
any text element written in other than default color higher visual markedness.

Based on the above visual properties, we define following heuristic for computing
the value of markedness of a text element:

x = (F ·∆f + b + o + u + c) · (1− z) (5.7)

where b, o, u, c and z have the value 1 when the text element is bold, oblique, un-
derlined, color highlighted or striked-out respectively and 0 if they are not. ∆f is the
difference f − fd where f is the font size of the element and fd is the default font size
for the document. The constant F defines the relation between the text size and its
markedness. For F > 4 the element with greater font size is always more important
than the element with lower font size. This corresponds to the usual interpretation.

Element Weight

Some of the text elements are used as headings or labels that describe the contents of
a corresponding section of the document on a higher level of abstraction. The weight
of the element describes the position of the element in the hierarchy of headings. The
main title of the document has the highest weight while the normal text has the weight
of zero. For determining the element weight we analyze following factors:

• The markedness of the element. The headings are usually written in larger font
or at least in bold. The more expressive is the text element the higher should be
its weight.

• Element position. The position of the element is critical for deciding if the element
is a heading or it is not. An element that lies in the continuous block of the text
cannot be considered as a heading. For example the word “weight” in the figure
5.5 cannot be considered as a heading even if it has greater markedness that the
surrounding text. Generally, we can say that the must be placed at least at the
beginning of a line. An element en is placed at the beginning of a line iff any of
the tags in Tn causes a line break. Such tags are defined in see [54].

39

• Punctuation. The punctuation can be used for denoting the term-description or
property-value pairs of elements. The elements that contain the text ending with
the colon should have higher weight than the same element that doesn’t end with
the colon.

Considering these factors we can define the weight of a text element based on a
heuristic similar to the definition of markedness:

w =
[

(F ·∆f) + (b + o + u + c) · l + W · p
]

· (1− z) (5.8)

where F , ∆f , b, o, u, c and z have the same meaning as in the markedness definition
(5.7), l and p have the value 1 when the element follows a line break and when the
element text ends with a colon respectively and W is the weight of the final colon.
An element that ends with a colon should have higher weight that possibly following
element written in bold, underlined or highlighted by color. This condition holds for
W > 4.

5.3 Representing the Hypertext Links

As it follows from the hypertext nature of the world wide web, each document can
contain links to another document. These links don’t form part of the text content of
the document but they can be specified using a special HTML tag <a>. Therefore, the
links are not directly included in the visual information model1, they may be however
useful for the discovery of the logical documents that is going to be discussed below in
section 5.7. For this purpose, it is necessary to represent the included hypertext links
in some way.

In HTML, the link is assigned to a continuous portion of the HTML text usually
called anchor. This text is visually distinguished in the document and it is assigned a
target URI that points to another document. In our document representation, the text
of the document consists of text elements. Thus, we can define a representation of a
link as

l = (uri, T) (5.9)

where uri is the target URI of the link and T is a non-empty set of text elements that
form the anchor. Since the anchor must be continuous, T always contains one or more
subsequent text elements. For each document, we can create a set

L = {l1, l2, . . . , ln} (5.10)

that contains all the links in the document.

5.4 HTML Code Analysis for Creating the Models

The information necessary for creating both components of the visual information
model – the page layout model and the text features model must be obtained from

1Only the visual aspect of the links is considered as discussed below in section 5.4

40

the HTML code of the document. The process of obtaining the necessary data can be
split to following steps:

1. Obtaining of the document(s)

2. Tag to CSS conversion

3. Visual area and text element identification

4. Unit unification

5. Computation of the markedness and weight

The way in which the documents are obtained is not significant for the document
modeling. Usually, the documents are retrieved through a network using the HTTP
protocol. For the analysis, we have to retrieve the HTML document itself and all the
eventual style sheets referenced in the document. When the frames are used, it is also
necessary to obtain the code of all the frames.

As the next step, we go through the HTML code and we convert all the tags
that modify the values of the visual attributes to CSS specifications. For example,
we remove all the and pairs from the document code and we replace it
with . Similarly, some visual attribute can be
influenced by multiple CSS properties or by different specification methods (absolute
or relative value, etc.). In this phase, we convert the specification using HTML tags
and CSS properties to a single CSS property for each visual attribute. For each tag
encountered, we check also the document-wide style specification that may be also
influenced by the id or class attributes of the tag. The resulting CSS style definitions
are inserted back to the document using the style attribute of the generic and
<div> tags. Various methods and units of the value specification are unified later, in the
unit unification phase. Table 5.2 shows a list of all HTML tags and the corresponding
CSS properties that influence the values of individual visual attributes of the text. We
convert the specifications as follows:

• Headings are converted to a text style with the property font-weight: set to
bold and the font-size: property is set according to the level of the heading.
According to the standard behaviour of the web browsers, the headings of level
1 to 6 have the font size set to xx-large, x-large, large, medium, small and
x-small.

• Table headers specified using the <th> tag have the property font-weight: set
to bold.

• Links, i.e. the text that is used as a hypertext link to another documents have
the property font-decoration: set to underline.

• Font specifications using the tag can be used for modifying the font face,
size and color for a part of the text. The font size definitions is converted to the
font-size: property specification in CSS and the color attribute is converted to
the color: property. We don’t deal with the font face in our method.

41

Attribute CSS properties HTML tags

Size font-size:,
line-height:

<big>, , <h1> - <h6>,
<small>

Weight font-weight: , <h1> - <h6>, <th>,

Style font-style: <i>

Decoration text-decoration: <s>, <strike>, <u>
Color color:

Table 5.2: Text Visual Attributes

• Bold text specified using the and tags is converted to font-weight:
bold specification.

• Italics specified using the <i> and tags are converted to font-style:

italic.

• Underlined and overlined text is specified using the text-decoration: property
set to underline or line-through respectively.

The visual properties of some page objects such as headings and table headers are not
exactly defined in the HTML or CSS specification. The resulting visual appearance of
these elements depends to certain extent on the used web browser and its configura-
tion. The conversion rules listed above have been observed on popular web browsers
Mozilla2 version 1.6 and Konqueror3 version 3.2.2. Especially the first one is com-
monly considered to implement all the web standards and recommendations the most
precisely. Anyway, since certain variety in interpreting the HTML code by different
web browsers shouldn’t influence the document understanding by the user, the men-
tioned rules present one of the possible variants that is however acceptable and de facto
standard.

The next phase consists of discovering the visual areas and the text elements in the
document. These two tasks are done simultaneously during single-pass analysis of the
HTML code. The output of this phase is

1. The tree Ml of visual area identifiers vn that corresponds to the definition (5.1).

2. A string of styled elements Ms = es1, es2, . . . esn.

A styled element is basically a text string with an assigned visual area identifier and
the style. The style can be represented as a tuple

style = (fsize, fweight, fstyle, fdecoration, color) (5.11)

where the individual elements correspond to the appropriate CSS properties. Then, a
styled element can be defined as

esi = (si, vi, stylei) (5.12)

2http://www.mozilla.org
3http://konqueror.kde.org

42

where si is the text contents of the element, vi is the identifier of the assigned visual
area and stylei is the style of the element.

During the HTML code analysis, we read subsequently the HTML tags from the
code of the document. For creating the tree of visual area identifiers Ml, we maintain
the stack Sv of currently open visual areas. At the beginning, Sv contains the identifier
v0 of the root area and Ml contains only v0 as the root element. When a tag is read
that implies the start of a new area (any tag from the table 5.1), a new area is open,
it is assigned a new identifier vi. This identifier is added to Ml as a son node of the
identifier being currently on the top of Sv and afterwards, vi is added to the top of Sv.
When the corresponding closing tag is encountered, the area identifier on the top of
the stack is removed from the stack.

For determining the visual attributes of the elements we maintain a stack Ss of the
styles. At the beginning, the stack contains a default style. When any opening tag is
encountered in the code, the top of the stack is duplicated. The style on the top of the
stack is updated according to the available style definitions for the tag being processed.
When a corresponding closing tag is encountered, the top of the stack Ss is removed.
The style of the element can be specified by any CSS specification (see the overview in
section 2.2). This specification is particularly important for the hypertext links, that
are usually underlined by default but any other visual effect can be specified using CSS
definitions for the <a> tags.

Any non-empty text string encountered between two subsequent tags forms a new
styled element. The first styled element es1 is always formed by the document title
specified by the <title> tag. If no title is specified the element contains an empty
string s1. The weight of the title element should be always greater than the weight of
any other text element in the page. Each new element is assigned the identifier of the
visual area that is currently on the top of the stack Sv of visual areas and the style
that is currently on the top of the stack Ss. Then, the new styled element is appended
to the resulting string of styled elements Ms.

In the unit unification phase, the values of size and the color of the style of all the
styled elements from Ms are converted to a unified form. In CSS, the font size can be
specified by an absolute value or relatively or by pre-defined keywords (e.g. small or
x-large) and various units can be used. The text color can be specified by pre-defined
keywords or by the percentage of red, green and blue color that can be written various
ways. During the unification, all sizes are converted to an absolute value in points (pt)
and the colors are converted to the string #rrggbb where rr, gg and bb mean the value
of the red, green and blue in hexadecimal from 00 to FF.

In the final phase we create the model Mt of text visual features as defined in 5.6
from Ms by computing the values of markedness and weight for all the styled elements.
For each styled element esi ∈ Ms we create a new text element ei by copying the values
of si and vi and computing the values of the markedness xi according to the definition
(5.7) and the weight wi according to the definition (5.8). Then, the new element ei is
appended to Mt.

43

5.4.1 Tables in HTML

In HTML documents, the tables can be used in two basic roles:

• As a standard instrument for presenting the structured, tabular data

• For achieving desired page layout

The use of the tables for achieving some layout is deprecated by the HTML spec-
ification [54], the cascading style sheets should be used instead. Using tables for this
purpose causes many problems such as slower page rendering and display problems on
non-visual media. However, it is very frequent in current world wide web to use the
tables this way. For the HTML code analysis, this use of the tables corresponds to the
analysis method presented above. Each table cell is interpreted as a separate visual
area as well as the whole table itself. The text content is processed independently on
the table or cell tags; only the visual area identifier is assigned to each text element.

Structured tables that are used for presenting some tabular data must be handled
as a special case in the HTML code analysis. As in a HTML document always holds
that the order of the text elements in the document code corresponds to the order of
the elements in the displayed document, tables introduce a two-dimensional structure
where the logical order of the elements depends on the organization of the table and
it can be interpreted various ways. Moreover, the tables can contain a hierarchy that
results from the relation between the table header and the rest of the table [62].

John Smith

john@johnsmith.cz

Personal data

Name

E−mail

Figure 5.6: An example of a structured table

An example of such a table is in the figure 5.6. The contents of table cells in
HTML are always defined row by row so the order of the elements in the HTML code
is “Personal Data”, “Name”, “E-mail”, etc. However, a reader interprets such a table
as a hierarchy shown in the right part of the figure. It this case, the hierarchy of visual
areas that correspond to the table cells is not created by the HTML code only, but the
relations among the header and non-header cells must also be considered. Let’s assign
numbers from 1 to 5 to the visual areas that correspond to the table cells as shown
in the figure 5.7 and let’s consider that the whole table forms a visual area 0. Then,
using the HTML processing method specified above, the hierarchy of the visual areas
corresponds to the left tree in the figure 5.7. For the reader, however, the hierarchy of
the visual areas appears the way corresponding to the right tree in the figure 5.7. For
this reason, a special algorithm must be used for processing the structured tables.

When a table is encountered in the HTML code, the first step is to decide which
are the header cells. HTML allows to distinguish between the header cells and the data

44

2 41 5

0

3

0

1

2

4 5

3

Figure 5.7: Visual areas in a structured table

cells using the <th> or <thead> tags, this feature is however not commonly used and
in some cases it is used incorrectly. Therefore, we propose determining the headers by
comparing the visual appearance of the table cells:

• We assume that the header is formed by the top row or the leftmost column of
the table.

• All the cells in the header must have consistent visual style: font, color and
background.

• When a header row or column is encountered, we add each header cell to the tree
of visual areas as child nodes of the table visual area. After this, we consider each
part of the table that is covered by a single header cell as a separate subtable, that
is formed by one or more rows (when the header cells are in the first column)
or columns (headers in the first row) and we repeat the header identification
process recursively on all the subtables. The process ends when no headers can
be identified in the subtables. In this case, we assume that the remaining cells
only contain the data values.

At the end of this process we obtain a hierarchy of headers. In the next step, we add
the all the cells of the remaining subtables to the visual model as the child nodes of the
respective header cell they belong to. An illustration of this process is in the figure 5.8.
In steps 1 and 2 we detect the headers of the (sub)tables. In step 3, no more headers
can be detected and the data cells are just included to the tree.

5.4.2 Example of Visual Models

In order to demonstrate the HTML parsing process, let’s consider the simple document
shown in the figure 5.9. The HTML tags that influence the visual appearance of the
text elements are shown in the shaded boxes.

The root visual area is formed by the document. The only object that introduces
sub-areas to the document is a simple table. In this table, a structure can be detected.
The resulting tree of visual areas is shown in the figure 5.10.

Table 5.3 shows the visual attributes of all the text elements in the page and the
values ofmarkedness and weight computed from the definitions (5.7) and (5.8) for F = 5
and W = 5. As stated in the section 5.2.2, the first element e1 is always the title of the
document specified using the <title> tag.

45

1

0

2 3

5 6

1

0

2 3

1

0

Step 2

Step 1

Step 3

Figure 5.8: Example of the table structure detection

The resulting model of text visual attributes is the string of tuples (s, v, x, w) of the
corresponding values in each line of the table. Note that the visual area identifier v of
each text element corresponds to visual areas in the figure 5.10.

5.5 Logical Structure of a Document

The next step of the proposed information extraction method consists of creating the
model of logical document structure based on the visual information gathered and
modeled in previous steps. As defined in the introduction, logical document structure
is a hierarchy of the text elements in a document as it is interpreted by a reader. This
hierarchy should respect the logical relations among the text elements as the follow from
the visual appearance of the text elements independently on the particular HTML code.
As an illustration, figure 5.11 shows the logical structure of our sample document from
the previous section.

Formally, the logical document structure is an ordered tree of text elements. It can
be denoted as a graph

S = (VS , ES) (5.13)

where VS = {e1, e2, . . . en} is an ordered set of all the text elements in the document
where ei−1 precedes ei∀1 < i <= n. The set ES of edges of the tree contains the tuples
(ei, ej) such that ei ∈ VS and ej ∈ VS and ei is directly superior to ej according to the
interpretation of their visual attributes and their position in the document. In order
to ensure that S is a tree, it must hold that each text element except e1 which is the
page title has exactly one directly superior element (its parent element in the tree).
The element e1 always forms the root node of the tree.

46

Figure 5.9: Sample document

The set of edges ES of the tree is derived from the page layout model Ml (5.1) and
the model of typographical attributes of the text Mt (5.6) by an algorithm that consists
of following two phases:

1. Creating the set of graph edges EV such that SV = (VS , EV) is a tree of text
elements and for any ei, ej ∈ VS ei is an ancestor of ej iff the corresponding visual
area identifier vi is an ancestor of vj in the tree of visual areas Ml. We call SV a
frame of the logical document structure.

2. Creating ES by copying all the edges (ei, ej) from EV and replacing ei by one
of its descendants if needed, so that the element of a higher weight is always an

Figure 5.10: Visual areas in the sample document

47

s ∆f b o u c z l p v x w

Structure 0 0 0 0 0 0 0 0 0 0 0
Sample document 8 1 0 0 0 0 1 0 0 41 41
This is the beginning. 0 0 0 0 0 0 1 0 0 0 0
Text 5 1 0 0 0 0 1 0 0 26 26
Various text follows: 0 0 0 0 0 0 1 1 0 0 5
bold 0 1 0 0 0 0 0 0 0 1 0
italics 0 0 1 0 0 0 0 0 0 1 0
and underlined 0 0 1 1 0 0 0 0 0 2 0
There can also be 0 0 0 0 0 0 1 0 0 0 0
some link 0 1 0 0 0 0 0 0 0 1 0
. 0 0 0 0 0 0 0 0 0 0 0
Table 5 1 0 0 0 0 1 0 0 26 26
Some tabular data: 0 0 0 0 0 0 1 1 0 0 5
Name 0 1 0 0 0 0 1 0 4 1 1
John Smith 0 0 0 0 0 0 1 0 6 0 0
E-mail 0 1 0 0 0 0 1 0 7 1 1
john@johnsmith.com 0 0 0 1 0 0 1 0 9 1 1

Table 5.3: Text elements in the sample document

ancestor of all the elements with a lower weight within the visual area.

The algorithms for both steps follow.

Algorithm 1 Creating a frame of the logical structure

Input: VS = {e1, e2, . . . en} – the set of text elements
Ml – page layout model

Output: SV = (VS , EV) – a frame of the logical structure
current = e1

For each ei = e2, e3, . . . en; ei = (si, vi, xi, wi) do
if vi 6= vi−1 then

if vi descendant of vi−1 then

current = ei−1

else

current is the nearest ej such that
ej is ancestor of ei−1 in SV and
vj is ancestor of vi in Ml

Add (current, ei) to EV

Algorithm 2 Applying the element weight

Input: SV = (VS , EV) – a frame of the logical structure where

48

Figure 5.11: Sample document with the corresponding logical structure

ep ∈ VS is a root of SV

ec1, ec2, . . . ecn ∈ VS are child nodes of ep;
ec1 < ec2 < . . . < ecn

Output: S = (VS , ES) – the logical structure tree
if n > 0 then

current = ep

Add (ep, ec1) to ES

For each eci = ec2, ec3, . . . ecn; eci = (si, vi, xi, wi) do
Recursively apply algorithm 2 for ep = eci

if wi < wi−1 then

current = eci−1

if wi > wi−1 then

current = nearest ecj such that
ecj is ancestor of eci−1 and
ep is ancestor of ecj and
wcj > wi

when such ecj doesn’t exist then current = ep

Add (current, eci) to ES

The resulting model of the logical structure exhibits an important feature that can
be described as follows. Let text be the whole text of an HTML document that can be
obtained by taking the contents of the <body> tag of the document and discarding all
the embedded HTML tags. Let e1, e2, . . . en be a string of text elements obtained by a
pre-order traversal of the resulting tree S and let si be the text string contained in the

49

text element ei. Then, it holds that

text =
n

∏

i=2

si (5.14)

In other words, when concatenating all the text strings except the first one (the title)
in the logical document structure during the pre-order traversal of the tree, we obtain
the complete text of the document.

5.6 Information Extraction from the Logical Model

As defined in the previous section, the logical structure of a document is a tree whose
nodes are formed by all the text elements contained in the document. When using the
logical structure model for information extraction, the task is to locate the nodes of the
tree that contain the desired information. We assume that the document is designed to
be understandable by a user and we analyze the way in which the visual information
is used by the user when looking for a particular data in the document.

The first assumption is that the user usually knows an approximate form of the
information he is looking for. For example, when looking for a price, we are trying to
find a number preceded or followed by a code of currency. The second assumption is
that there is a hierarchy of headings and labels provided by the author of the document
that allows the user to interpret the document contents effectively. The user is thus
provided with three types of navigational cues:

1. The relations among the text elements in the document that correspond to the
logical document structure and that are expressed using the visual design of the
document.

2. The labels provided by the author of the document.

3. The expected format of the desired information.

When looking for a particular information, the user typically navigates through
the logical structure of the document as suggested by the visual means and tries to
choose the path leading to the desired information by classifying the headings and
labels that in our case correspond to the nodes of the structure tree. Normal user can
use the natural language understanding for choosing the best path. Since the natural
language processing is a non-trivial task, we propose a simplified solution based on
regular expressions and approximate tree matching algorithms.

Let’s return back to the original idea of information extraction from data-intensive
documents that is based on the extraction of the complete data records rather than
on extracting the single data values. Further we will assume that each data value,
when it is present in the document, forms exactly one text element. This assumption
is somewhat simplifying because it doesn’t allow the situations when the information
is split to several text elements or, on the contrary, when there is an additional text
present in the same text element. However, as follows from the text element definition
(5.4) on the page 38, this assumption corresponds to the following situation:

50

• The data value is visually consistent (thus it forms a single text element)

• The data value is visually separated from the surrounding text by any HTML tag
so that the surrounding text doesn’t form part of the text element

In the data intensive documents, the acceptance of these rules can be expected. The
impact of this simplification to the performance of the information extraction method
is discussed in the evaluation part of this thesis.

Let’s assume that each data record r to be extracted consists of |r| data values (an
example of such a data record is given on the page 3). When we admit that some
data values can be missing in the document, when extracting the data record, the
task is to locate m text elements in the logical document structure that correspond to
the appropriate data values; N ≤ m ≤ |r| where N is the minimal number of values
that must be located for considering the data record to be found. All the located text
elements that form a single data record are located in certain subtree of the logical
structure tree. Aside from the data values, this subtree contains the text elements that
correspond to the labels that denote the value in the documents and some remaining
text elements that can contain additional notes etc.

From this perspective, the information extraction task can be viewed as a task of
locating the subtrees of logical structure tree that meet following requirements:

• The subtree contains the data values of the expected form and the expected labels.

• The data values are logically related to the appropriate labels; i.e. the text ele-
ment containing the potential data value is a descendant of an element containing
the appropriate label.

For locating the appropriate subtrees of the logical structure tree, we propose an
approach based on tree matching algorithms.

5.6.1 Using Tree Matching

The proposed approach is based on the specification of a template of a subtree that is
to be located. This specification consists of two steps:

1. We specify the expected logical structure of the extracted data record

2. We add the information about the expected labels and the format of the data
values. Regular expressions are used for this specification.

The result of this specification is a template of a tree that can be interpreted as a
structured query to the database of all the subtrees of the logical structure tree.

Let’s consider a simple example in the Figure 5.12. From a personal page, we
want to extract the name, department and the e-mail address of that person. The
left tree defines an expected logical structure of the extracted information. In case
of the personal pages, the name of the person is usually presented as a superior text
(heading) and the remaining data is placed further in the document. We extend the tree
by replacing the fields with the regular expressions that denote their expected format

51

[Ee]−?mail

^[a−zA−Z\ \.]+$

^[a−zA−Z\ \.]+$

^[A−Za−z0−9_\.]+@[A−Za−z0−9_\.]+$

[Dd]epartment
Name

Department

E−mail

Figure 5.12: An example extraction query with regular expressions

and we add the expressions that denote expected labels of these data. The resulting
tree can be viewed as a structured query and tree matching algorithms can be used for
identifying all matching subtrees of the logical document structure.

For simple extraction tasks, we can simply estimate the logical structure of the
data records as shown on the previous example. For more complex task, it is necessary
to obtain at least one sample document in order to determine the logical structure
of the contained data records. Furthermore, there usually exist several variants of
structuring the data records. For example, the previous example shown in the figure
5.12 could be changed so that the name is presented at the same level as the remaining
data. For this reason, it may be necessary to modify the expected data structure when
processing a new set of documents. By adapting the extraction task for further sets of
documents, we obtain several variants of the template subtree that cover all possible
variants of presenting the extracted data. However, in comparison to wrappers, where
the number of possible variants is extremely high and therefore the wrappers must be
re-generated for each set of documents, in our case, there are only a few variants of the
logical structure and with the increasing number of processed data sets, the frequency
of the modifications decreases rapidly. For example, for the sample task shown in the
figure 5.12, two variants of the task specification are sufficient as shown in the method
evaluation part in section 7.1.1.

5.6.2 Approximate Unordered Tree Matching Algorithm

For tree matching, we use a modification of the pathfix algorithm published by Shasha
et al. [56]. This algorithm solves approximate searching in unordered trees based on
the root-to-leaf path matching. The original problem is to find all data trees D from
a database D that contain a substructure D′ which approximately matches a query
tree Q within distance DIFF . The distance measure is defined as the total number of
root-to-leaf paths from Q that do not appear in D′. Let’s consider an example of the
query tree Q in Figure 5.13, which has two paths. The query tee matches data tree D1

with distance of 0 (both paths from Q are present in D1). For the tree D2, there are
two possible matches with distance of 1 (the path A-D is not present in the tree but
the path A-B has two occurrences in D2).

In order to use this algorithm for our purpose, we introduced following modifica-

52

B

C

A

B D

D1 D2

A

A

B C

B

A

B D

Q

A−D

A−BPaths:
C−A−B

C−A−D

A−A−B

A−A−C

A−BC−BPaths: Paths:

Figure 5.13: Pathfix algorithm illustration

tions:

• Instead of the database of trees we have only one tree (the logical structure tree)
and we want to locate the subtrees (data records) that match the query tree. Thus
in our case, the database D is formed by all the subtrees of the logical document
structure S with the root node that matches the root node of the query tree.

• The values in the nodes of the trees don’t have to match exactly since the query
tree Q contains regular expressions in its nodes. We define, that a node in the
logical structure tree S matches a node in the query tree Q iff the appropriate
text element matches the regular expression in the query tree node.

• Since the exact form of the logical document structure may differ in some range
among the web sites, we have extended the path matching algorithm by intro-
ducing two more parameters:

– QSKIP – number of nodes from the query path that don’t match any node
from the matched path in S. This corresponds to the situation that some
labels or data values that are expected by the tree template but they are
missing in the document.

– MSKIP – number of nodes in the matched path from S that don’t match
any node in the query path. This corresponds to the situation that there
are some extra nodes in the logical structure tree that are not expected by
the tree template.

These parameters allow to consider the paths as they were matching event if there
is certain number of missing or excessive nodes.

The accuracy of the results depends on the values of the QSKIP and MSKIP
parameters and on the allowed number of missing paths DIFF . More detailed analysis

53

of the influence of the parameters to the precision and recall of the method is given in
Chapter 7.

5.7 Information Extraction from Logical Documents

Analogous to the physical documents, the logical documents also exhibit a hierarchi-
cal organization for similar reasons (see the discussion at page 25, section 3.3.3). In
contrast to the physical documents, the hypertext allows to give the logical document
any organization that can be modeled using a directed graph. On the other hand, the
organization must be easily understandable to the document users. From the practical
point of view, considering this requirement, it is not advisable to use a more complex
organization than the hierarchical one. As observed by [60], when we extract only
the links intended to be the routes through which the readers go forward within a
document, in most cases, we obtain a sequence or a hierarchy of pages.

Let’s represent the logical document D as a tuple

D = (Dp, I) (5.15)

where Dp is a set
Dp = {d1, d2, . . . , dn} (5.16)

where di; 1 ≤ i ≤ n are the physical documents and I ∈ Dp is the main (index) page. In
the context of using the information extraction method described in the above chapters,
the physical document di can be defined as a tuple

di = (urii, Si, Li) (5.17)

where urii is the unified resource identifier of the physical document, Si is the model
of the logical structure as defined on page 46 and Li is the set of links defined on the
page 40.

The extension of our information extraction method from physical to logical doc-
uments is straightforward. We assume, that the user specifies the URI of a document
when invoking the information extraction process. For discovering the logical docu-
ments, we adopt the method published in [60], which is also discussed in the section
3.3.2. The information extraction process consists of following steps:

• We consider the document whose URI has been specified by the user the index
page I of the logical document. We use the method [60] for obtaining the URIs
of the remaining physical documents di ∈ Dp.

• We create the models of the logical structure Si for each physical document di

separately using our method proposed in the above sections. Simultaneously, we
create the set of links Li for each di.

• We create a single model of the logical structure S for the whole logical document
D by joining the logical structure trees Si of the physical documents to a single
tree.

54

When joining the logical structure trees Si to the global model of the logical struc-
ture S, we proceed following way:

• Let the root node of I (the logical structure tree of the index page) be the root
node of S.

• Let’s assume that the index page I corresponds to a physical document dj =
(urij , Sj , Lj). For each link l = (url, T); l ∈ Lj we select the text element e ∈ T
that precedes all remaining elements contained in T (see the definition (5.4) on
the page 38). If the uri of the link corresponds to the URI of any document
dk ∈ Dp, then we add the logical structure tree Sk to S as a subtree of the
selected element e.

• We repeat the process recursively for each added subtree.

After finishing this process, we have created the model of the logical structure for
the whole logical document. This model can be used for information extraction as
specified in section 5.6. We can see, that this approach abstracts from the physical
organization of the information to documents by creating an unified model for all the
physical documents.

55

Chapter 6

Experimental System

Implementation

In order to evaluate the proposed information extraction method in the real world
wide web environment, we have implemented an experimental system for extracting
information from the data intensive documents in the web.

6.1 System Architecture Overview

General architecture of our information extraction system is shown in the figure 6.1.
The system consists of four basic modules:

• Interface module implements an interface between the system and the Internet.
It is responsible to download the necessary HTML documents and to store them
for further analysis.

• Logical document module implements the discovery of logical documents. Given
a URI of the main page, it analyzes the hypertext links and creates a list of URIs
of the documents that form the logical document.

• Analysis module provides the analysis of the HTML code in order to create the
model of the visual information. Further, it implements the transformation of the
visual information model to the logical structure model. Finally, it provides uni-
fication of the logical structure models to the unified tree of the logical structure.

• Extraction module implements the information extraction from the logical struc-
ture model using the tree matching algorithms. The input is the user-specified
extraction template and the output is the extracted data.

In order to reach maximal flexibility of the system and in order to be able to evalu-
ate the individual parts separately, the modules are implemented as standalone pieces
of software that communicate witch each other. The communication with the interface
module is simple – the module works as an HTTP proxy, so that the communication
is implemented using the HTTP protocol. The communication among the remaining

56

Logical document
discovery

Logical document module

HTML document

repository

Interface module

URI
Starting

Tree matching

Extraction module

data
Extracted

template
Extraction

analyzer
Visual information

HTML parser

analyzer
Logical structure

Analysis module

Internet

URI list (XML)

Logical structure model (XML)

HTML

documents
HTML HTTP

HTTP

requests

Figure 6.1: System architecture overview

57

<?xml version="1.0" encoding="iso-8859-2"?>

<!DOCTYPE logical_documents SYSTEM "ld.dtd">

<logical_document url="http://www.xyz.cz/">

<document url="http://www.xyz.cz/index.php" />

<document url="http://www.xyz.cz/aboutus.php" />

<document url="http://www.xyz.cz/contact.php" />

</logical_document>

Figure 6.2: XML representation of a logical document

modules is based on the use of XML. This solution allows to achieve maximal inter-
operability of the modules – each module can be used separately and the produced
output can be used for any task. This is particularly useful for representing the logical
document structure, which can be used not only for information extraction but also for
other tasks where the existing XML processing technologies such as XSLT or XQuery
can be used. For this reason, we now describe the use of XML in our system in more
detail.

6.2 Using XML for Module Communication

The XML based communication is used in two points of the system. First, XML is used
for transferring lists from the logical document module to the analysis module. Sec-
ondly, the most important use of XML is the representation of the global model of the
logical structure. Furthermore, XML is also used for the extraction task specification.
This application of XML is discussed below in the section 6.3.4. Formal definitions of
the used XML formats are given in appendix B.

6.2.1 Representing the Logical Documents

The data to be represented is formed by a simple list of URIs of the physical documents
that form the logical document. We represent each physical document by a <document>
tag with an attribute uri that contains the URI of the physical document. The root
tag <logical document> encloses the list of physical documents. An example XML
representation of a logical document is shown in the figure 6.2. The full DTD (Doc-
ument Type Definition) of the logical document XML representation can be found in
appendix B.2.

6.2.2 Logical Structure Representation

Since the logical document model is a tree of text elements, the XML representation is
straightforward. Each text element e = (s, v, x, w) is represented by a single XML tag
<text> with the attributes that represent individual values of the tuple: the content

attribute carries the text content of the elements and the attributes visual, expr and

58

<document title="Sample" url="http://sample.org">

<text content="Personal data" visual="2"

expr="3" weight="3">

<text content="Name" ...>

<text content="John Smith" .../>

</text>

<text content="E-mail" ...>

<text content="john@johnsmith.org" .../>

</text>

</text>

</document>

Figure 6.3: XML representation of the logical structure model

weight contain the values of v, x and w respectively. Furthermore, a <document> tag
is used as a root element. Figure 6.3 shows an example representation of a logical
structure of the document shown in the figure 5.6. The attributes of some elements
have been omitted for greater clarity. The full DTD of the logical structure XML
representation can be found in appendix B.3.

6.3 Implementation

All the system modules have been implemented on the Java platform. The main reasons
for this choice were:

• Portability of the resulting product

• HTTP protocol support

• HTML parser available

• Large set of suitable data structures, mainly trees

On the other hand, Java brings a drawback in the form of slightly worse performance
of the running application. However, this point is not critical for the prototype.

Each module is implemented as a standalone application. Each of the modules
except the interface module can run either separately as an application with a graph-
ical user interface or together with other modules. We will now briefly describe the
implementation of each module.

6.3.1 Interface Module

This module provides the interface between the system and the Internet. It works as
an HTTP proxy, the communication with the remaining modules is implemented using
the HTTP protocol [24]. Each module sends a request on a document with a certain

59

URI. The interface module downloads the document and stores it locally for later use.
Then it generates an HTTP reply containing the code of the document. The stored
documents are valid for a single information extraction task only. For improving the
reliability of the downloading process, any publicly available general HTTP cache can
be used as for example Squid1.

6.3.2 Logical Document Module

When provided with a URI, this module analyzes the structure of links leading from this
document and discovers the boundaries of the documents. As the result, it produces
the list of the URIs of physical documents.

Figure 6.4: Logical document module

6.3.3 Analysis Module

This module implements the methods of HTML code parsing proposed in the section
5.4, visual information modeling in documents that has been proposed in section 5.2
and transforming this model to the logical structure model as proposed in section 5.5.
The resulting model of the logical structure is represented using an XML document as
described in section 6.2.2.

6.3.4 Extraction Module

The extraction module implements the tree matching algorithm defined in section 5.6.
Given the logical structure of the document obtained from the analysis module, it

1http://www.squid-cache.org

60

Figure 6.5: Analysis module

attempts to locate subtrees of the logical structure that correspond to the extraction
task specification.

The task specification corresponds to a template of a subtree as shown on an ex-
ample in the figure 5.12 (page 52). Again, we use XML for defining the information
extraction task. The XML specification has following format:

<task name="...">

<input>

<!-- Element format specifications -->

</input>

<model name="...">

<!-- data and label hierarchy spec. -->

</model>

</task>

The whole specification is enclosed in the <task> tag and it is assigned an unique
name. The specification consists of two parts. In the <input> part, the formats of text
elements are specified. Each format specification consists of a name that identifies the
format and a regular expression that specifies the format itself. Additionally, it can
be specified if the regular expression is compared in a case sensitive or case insensitive
manner. For example, the format for a name of a department can be specified as

<spec case="lower" name="dept">^[a-z0-9\ $]+</spec>

The <model> part of the task specification defines the template tree. In this defi-
nition, two tags can be used: the <label> tags corresponds to a label in the template,
<data> tag corresponds to a text field containing a data value. These tags can be
arbitrarily nested in order to create the corresponding hierarchy. Both these tags spec-
ify an expected format of a logical structure tree node by using one or more format
specification from the <input> section, for example

<label spec="poslabel|joblabel"/>

61

means that the node matches to a node in the logical document structure that has either
the “poslabel” or the “joblabel” format that have been previously specified using regular
expressions in the <input> sections. The difference between <label> and <data> is
that the label is just matched to a structure tree node whereas the data forms part of
the extracted output data. Therefore, a data node must have a name attribute set, e.g.

<data spec="posval" name="position"/>

that corresponds to the name of the field in the output data. An example of a complete
extraction task specification is in Appendix A.

The module provides a graphical user interface (see the figure 6.6) that allows to
browse the information extraction task and the tree of the logical structure and to
browse the paths in the trees that correspond to each other.

Figure 6.6: Extraction module

6.3.5 Control Panel

Control panel is a simple application that provides an unified user interface for all the
modules. It allows to specify the target URL and the extraction task specification
file. Then, it calls subsequently the individual modules and finally, it displays the
information extraction results.

62

Figure 6.7: Control panel

6.4 Information Extraction Output

The output of the information extraction task is a sequence of data records where each
data record consists of the values of named data fields that have been defined in the
extraction task specification. In our systems, two output formats are supported: a
XML file and SQL script for storing the data to a relational database.

6.4.1 Extracted Data as an XML Document

The format of the resulting XML file is derived from the extraction task specification:

• The sequence of all the output records is enclosed in a root tag whose name
corresponds to the specified extraction task name.

• Each output record is enclosed in a tag whose name corresponds to the name of
the extraction model.

• Each record consists of data fields that are enclosed in tags whose names corre-
spond to the specified data field names in the model section of the task specifi-
cation.

An output document for the example task shown in Appendix A would have fol-
lowing structure:

<?xml version="1.0" encoding="iso-8859-2"?>

<staff>

<person>

<name>...</name>

<department>...</department>

<email>...</email>

</person>

<person>

...

</person>

...

</staff>

6.4.2 Extracted Data as an SQL Script

The resulting SQL script consists of a sequence of INSERT commands that store the
extracted records to a database table. The commands have following format:

63

• The name of the target table corresponds to the name of the name of the extrac-
tion model specified using the <model> tag in the extraction task specification.

• The names of the table columns correspond to the specified data field names in
the model section of the task specification.

An output script for the example task in Appendix A would have following format:

INSERT INTO person (name, department, email) VALUES (..., ..., ...);

INSERT INTO person ...

...

We assume that the corresponding database table has been created in advance by
the user. In order to create the appropriate SQL commands automatically, it would be
necessary to extend the extraction task specification by a posibility of specifying the
data types of individual fields.

64

Chapter 7

Method Evaluation

In order to evaluate the functionality of the proposed method, we have first tested the
proposed information extraction method on selected sets of physical HTML documents
available in the World Wide Web. As the next step, we have run the tests on larger
logical documents on the same web sites.

7.1 Experiments on Physical Documents

We have tested the method on two different cases. The first experiment was extracting
the personal information from various university staff member pages. These pages
are usually very strictly formatted and regular. The second experiment deals with
stock quote servers. In this case the documents are significantly more complex, contain
various kinds of data and their structure exhibits various irregularities.

7.1.1 Experiment 1 - Personal Information

We have tested the proposed method on a simple task that consists of processing the
directory pages of various universities and extracting the name, e-mail and department
of the persons listed in these pages. We have defined two extraction models that differ
in the expected logical structure of the presented information in the page. The two
possibilities are shown in the figure 7.1.

Department E−mail

Name

Name Department E−mail

*

Figure 7.1: Two variants of the expected logical structure

The first variant corresponds to the situation where the name of the person is used
as a page title or a heading. The second variant corresponds to the situation where

65

URL Precision % Recall % Variant

1 fit.vutbr.cz 91 100 a
2 mff.cuni.cz 100 100 a
3 is.muni.cz 100 52 a
4 mit.edu - - a
5 cornell.edu 100 100 a
6 yale.edu 100 100 a
7 stanford.edu 100 100 b
8 harvard.edu 100 100 b
9 usc.edu - - b
10 psu.edu 100 100 b

Table 7.1: Sample extraction task results

the name is presented on the same level as the remaining data fields. By adding the
expected field formats and the expected labels as discussed in section 5.6 we obtain
a template tree for each variant (we will call these variants A and B) as shown in
the figure 7.2. The XML extraction task specification of both variants is included in
Appendix A. For simplicity, all the regular expressions except the name value have
the case=lower attribute set in the specification so that the text is always converted
to lowercase before being matched with the regular expression. The format of name is
matched in the case-sensitive manner since the name should start with a capital letter.

name e−?maile−?mail

^[a−z\ \.]+$

^[a−z0−9_\.]+@[a−z0−9_\.]+$

department
dept

^[A−Z][A−Za−z,\.\]+$

^[a−z0−9_\.]+@[a−z0−9_\.]+$

^[a−z\ \.]+$

department
dept

^[A−Z][A−Za−z,\.\]+$

.*

Figure 7.2: Template trees (variants A and B)

As the data source we have used sets of staff personal pages from various universities.
Table 7.1 shows values of precision (3.1) and recall (3.2) as defined in section 3.1.3.
From each listed site, we have taken 30 random personal pages. The only input for the
information extraction is the URI of the document and the appropriate tree template
A or B.

There are three basic reasons that may cause the extraction process to fail:

• The extracted data is not labeled as expected; e.g. in the testing set 3 the e-mail
addresses are not denoted by any label

66

• The data to be extracted is contained inside of larger text elements; e.g. the
appropriate data at mit.edu (4) is presented as unformatted text only and at
usc.edu the labels are not distinguished from the values

• Various anti-spam techniques used in the documents such as writing e-mail ad-
dresses in some non-standard form or presenting is as an image

During the tests, the parameters have been set to QSKIP = 0 and MSKIP = 1.
Increasing QSKIP and MSKIP can improve the recall in case that the format of the
data fields specific enough; e.g. the e-mail address can be discovered by its format only
so that it is not necessary to require any label. Generally, increasing these values causes
a significant loss of precision.

7.1.2 Experiment 2 - Stock Quotes

As a second experiment we have extracted some quote data from publicly available
quote servers. The template tree with the regular expressions is given in the figure 7.3.
The task consisted of extracting the last price, the change of the last price, the opening
price, the last bid and the traded volume. Examples of some of the documents are
shown in the figure 7.4.

.*

^last change open bid vol

[0−9\.]+ [0−9\.]+ [0−9\.]+

N/A

[0−9\.]+ [1−9][0−9,]+

Figure 7.3: Template tree for extracting the quote data

The results are summarized in the table 7.2. The testing sets 2 and 6 both use tables
for presenting the data in quite complicated way so that the logical structure of the
table is not detected properly. It would be necessary to further improve the algorithms
for the table analysis in order to obtain the proper results. The lower recall for the
testing sets 3, 4 and 5 has the usual reason – the data is not labeled as expected by the
extraction task specification. The solution is to create more variants of the expected
logical structure as discussed in section 5.6.1.

7.2 Independence on Physical Realization

In the figure 7.5 we can see a comparison of the web directories of two different univer-
sities that correspond to the yale.edu and cornell.edu testing sets. The data from
both these sites have been correctly extracted using a single template tree definition
although each of them uses a distinct way of data presentation and the HTML codes

67

finance.yahoo.com quote server

quote.com server

Figure 7.4: The designs of two different quote servers

68

URL Precision % Recall %

1 finance.yahoo.com 100 100
2 dbc.com 0 0
3 quote.com 100 63
4 pcquote.com 100 59
5 money.cnn.com 100 44
6 uk.finance.yahoo.com 0 0

Table 7.2: Sample extraction task results

of both documents are significantly different. Thus, the proposed extraction method is
to a great extent independent on the physical realization of the HTML documents.

However, the method still depends on the way of the data presentation; i.e. on
the logical structure of the documents. Considering the experiments described in the
previous section, this difference causes the necessity of two variants of the template
tree in the “personal data” experiment and, when only a single template tree is used,
it causes lower recall of the results as show the results of the second, “stock quote”
experiment. The difference between the logical structures of the documents is apparent
from a visual comparison of the samples. Let’s compare the examples of the variant A
of the first experiment that are shown in the figure 7.5 with the example of the variant
B that is in the figure 7.6. We can notice that in the former case, the name of the person
is presented as being superior to the remaining data (it is used as a title) whereas in
the later case, the name of the person is listed in the same way as the remaining data.

The results show that in the proposed method, the independence on the HTML code
is partially replaced by the dependence on the logical document structure. However,
comparing with the number of various wrappers that would be necessary for extracting
the same data from the listed web sites (typically, one for each site), our method brings
a significant improvement.

7.3 Information Extraction from Logical Documents

The proposed method for extracting data from logical documents has been developed
for processing the logical documents that consist of static web pages. However, in the
real World Wide Web, it is not easy to find static logical documents containing large
amounts of data. In both cases – the university staff directories and the quote servers,
it is impossible to present all the data in static document due to its great amount.
Instead, the data is stored in a database and the documents are generated dynamically
upon a user query. For example, the staff directories typically require entering at least
the last name of a person and return a document containing the data of all the staff
members of that last name. Therefore, the entire directory content cannot be accessed
directly through the web interface. At this point, we face the problem of the hidden
web as mentioned in section 2.3.

For the mentioned reasons, we have used following method for obtaining the logical

69

Yale University Directory

Cornell University Directory

Figure 7.5: Different designs of a university directory (variant A)

70

Figure 7.6: An example of the variant B – Stanford University Directory

documents from the staff directories in order to evaluate the proposed method.
We have chosen some frequent last names, namely “Novak”, “Dvorak”, “Smith”

and “Johnson”. With the standard web browser we used these names for querying the
web directories of the above listed universities. In all the tested directories, the query
results in a dynamic document, that contains the list of matching staff members and
the searched name is contained in the URI of this document. For example, the list
of all the staff members of Stanford University with the name containing “Novak” is
available in a document with the following URI:

https://stanfordwho.stanford.edu/lookup?search=Novak&submit=Search

This example shows an URI of a dynamically generated document with two arguments:
search and submit. From this point, no user queries are necessary and we can regard
this document as the main page of a logical document that contains the data of all
the listed persons that match the query. Note that this procedure is not required by
the proposed information extraction method as such; it is only a way of obtaining a
sufficient amount of logical documents for the method evaluation.

Once we have determined the URI of the main page of the logical document, we can
run the information extraction task on this URI. Since this logical document contains
the personal pages of all the matching persons and the logical structures of the indi-
vidual personal pages will appear as subtrees in the logical structure tree of the whole
logical document, the results of infirmation extraction should be the same as if the in-
dividual personal pages of the listed persons were processed individually. This fact has
been confirmed by the practical tests – the information extraction results correspond

71

to the results for the individual physical documents that have been processed during
the tests described in section 7.1.1 and that are summarized in the table 7.1. The used
logical document discovery algorithm (section 5.7) however tends to include more ad-
ditional pages to the logical document that do not influence the information extraction
result but the download and processing of these excessive pages is time-consuming.
For example, in case of the Harvard University, 62 documents have been downloaded
during the logical document discovery whereas the data to be extracted was contained
in 4 of them.

In case of the quote servers, no summary pages are available that could be used as
the main pages of some logical documents. For obtaining the data, the quote symbols
must be entered exactly and therefore, the generated documents must be analyzed
separately.

72

Chapter 8

Conclusions

Proposed method of information extraction is usable for real data-intensive documents
available through the World Wide Web. With data-intensive documents we mean the
documents that are primarily intended for presenting data in a relatively regular and
structured form where the visual information plays an important role for the readers’
understanding of the document. These documents often contain up-to-date data that
are worth extracting and typically, the documents are automatically generated from a
back end database. On the other hand, the method is not suitable for processing the
documents where the desired information is buried in large blocks of unformatted or
poorly formatted text. For such documents, the traditional text document processing
and natural language processing methods are more applicable.

There is one more important issue in information extraction as such that has not
a technical nature. Quite often, the provider of the information that is presenting it
on the web prefers browsing the documents by people rather than the automatic tools,
mainly for marketing reasons (advertisement etc.). Such subjects often use various
techniques that complicate automatic processing of the documents such as detection
and blocking of the client or “hiding” the information in the document. There are,
however, still many areas where the information extraction is justifiable and useful.

8.1 Summary of Contributions

Proposed method presents a novel approach to information extraction from HTML
documents. In contrast to current methods based mainly on the direct analysis of the
HTML code, our method has following important features:

• Independence on the underlying HTML code of the document. The document is
described by a abstract model, which is then used for extracting information.
This abstraction avoids the dependence on particular HTML tags, which is the
bottleneck of the wrapper approach.

• Resistance to the changes of documents. The use of abstract model ensures that
the method is resistant to changes in the data presentation in the document unless
the logical structure of the document changes.

73

• No training phase required. The information extraction process can start as soon
as the extraction task specification is finished. There is no training set of exam-
ple documents needed. The method allows processing new, previously unknown
documents that correspond to the extraction task specification.

Aside from this main contribution, there are some issues in the method proposal
that we consider a significant or novel contributions:

• Formal models of the visual information in the document. To the author’s best
knowledge, this is a first attempt to formally describe the information

that is given to the user by visual means. We propose formal models of
two components of this information – the page layout and the visual attributes
of the text.

• Modeling the logical structure on the basis of the visual model. This approach is
unique for the processing of HTML documents although similar idea has been pro-
posed for other types of documents. The model of the logical structure presents
an important information about the document that can be used (aside from infor-
mation extraction) in many other areas such as information retrieval (searching
documents based on structured queries instead of single keywords) or alternative
document presentation (e.g. structure-aware voice readers for blind people).

• Application of the tree matching algorithms. Although the hierarchical organi-
zation of HTML documents is commonly accepted, the use of tree matching
algorithms for this task can be considered a novel contribution to this area.

Finally, the contribution of the thesis is an experimental information extraction
system that implements the proposed techniques. This system has been implemented
in the Java environment and has been used for verifying the method in the real world.

8.2 Possible Improvements and Future Work

From the point of view of further improvements of the method, the most important
point seems to be the proposed algorithm for analyzing the logical structure of HTML
tables. Although these algorithm works satisfactorily for most of the documents, there
exist more complex ways of presenting data in a table that are not recognized properly
as results for example from the test results given in the section 7.1.2. For being able to
process a larger set of possible variants, a more sophisticated analysis method should
be developed.

The second issue is the way of using the logical document structure for information
extraction. In our method, we use the tree matching algorithms and we avoid any
machine learning phase. However, for some applications, it would be interesting to
use some machine learning algorithms for inferring the extraction task specification
automatically.

74

Bibliography

[1] Adelberg, B. NoDoSe – A Tool for Semi-Automatically Extracting Structured
and Semistructured Data from Text Documents. In Proceedings of the 1998 ACM
SIGMOD international conference on Management of data Seattle, Washington,
United States, 1998

[2] Anjewierden, A. AIDAS: Incremental Logical Structure Discovery in PDF Doc-
uments In 6th International Conference on Document Analysis and Recognition
(ICDAR). Seattle, USA, 2001

[3] Ashish, N., Knoblock, C. Wrapper Generation for Semi-structured Internet
Sources. In Workshop on Management of Semistructured Data. Tucson, Arizona,
1997

[4] Atzeni, P., Mecca, G., Merialdo, P. Semistructured and Structured Data in the
Web: Going Back and Forth. In Proceedings of ACM SIGMOD Workshop on
Management of Semi-structured Data. 1997

[5] Baumgartner, R., Flesca, S., Gottlob, G. Visual Web Information Extraction with
Lixto. In Proceedings of the 27th International Conference on Very Large Data
Bases. Roma, Italy, 2001

[6] Berners-Lee, T. The Semantic Web. Scientific American. May 2001

[7] Bos, B., Lie, H.W., Lilley, C., Jacobs, I. (editors). Cascading Style
Sheets, level 2, CSS2 Specification. W3C Recommendation 12 May 1998.
http://www.w3.org/TR/1998/REC-CSS2-19980512

[8] Burget, R. Analyzing Logical Structure of a Web Site. In Proceedings of 5th In-
ternational Conference ISM ’02 - Information Systems Modelling. Ostrava, CZ,
MARQ, 2002, p. 29-35, ISBN 80-85988-70-4

[9] Burget, R. HTML Document Analysis for Information Extraction. In Proceedings
of 8th EEICT conference. Brno, CZ, FIT VUT, 2002, p. 426-430, ISBN 80-214-
2116-9

[10] Burget, R. Information Extraction from WWW Based on the Data Structure
Knowledge (in czech language). In Proceedings of the 2nd conference Znalosti 2003.
Ostrava, CZ, FEI VSB, 2003, p. 271-280, ISBN 80-248-0229-5

75

[11] Burget, R. Hierarchies in HTML Documents: Linking Text to Concepts. Accepted
for 3rd International Workshop on Web Semantics - WebS ’04. Zaragoza, Spain,
2004

[12] Buttler, D., Liu, L., Pu, C. A Fully Automated Object Extraction System for
the World Wide Web. In Proc. of IEEE International Conference on Distributed
Computing Systems. 2001

[13] Carchiolo, V., Longheu, A., Malgeri, M. Extracting Logical Schema from theWeb”,
In PRICAI Workshop on Text and Web Mining. Melbourne, Australia, 2000

[14] Chung, C.Y., Gertz. M., Sundaresan, N. Reverse Engineering for Web Data: From
Visual to Semantic Structures. In 18th International Conference on Data Engi-
neering (ICDE 2002). IEEE Computer Society, 2002.

[15] Ciravegna, F. (LP)2, an Adaptive Algorithm for Information Extraction fromWeb-
related Texts. In Proceedings of the IJCAI-2001 Workshop on Adaptive Text Ex-
traction and Mining. Seattle, USA, 2001

[16] Clark, P., Niblett, T. The CN2 Induction Algorithm.Machine Learning, 3:261-283,
1989

[17] Cohen, W.W., Hurst, M., Jensen, L.S. A Flexible Learning System for Wrapping
Tables and Lists in HTML Documents. In Proceedings of the Eleventh International
World Wide Web Conference. Honolulu, Hawaii, USA, 2002

[18] Crescenzi, V., Mecca, G., Merialdo, P. RoadRunner: Towards automatic data ex-
traction from large web sites. Technical Report n. RT-DIA-64-2001, D.I.A. Uni-
versità di Roma Tre, 2001

[19] Crescenzi, V., Mecca, G., Merialdo, P. Automatic Web information Extraction in
the RoadRunner System. In International Workshop on Data Semantics in Web
Information Systems. Yokohama, Japan, 2001

[20] Deogun, J.S., Sever, H., Raghavan, V.V. Structural Abstractions of Hypertext
Documents for Web-based Retrieval In Proceedings of DEXA 98 - 9th International
Conference on Database and Expert Systems Applications. Vienna, Austria, 1998

[21] DiPasquo, D. Using HTML Formatting to Aid in Natural Language Processing on
the World Wide Web. School of Computer Science, Carnegie Mellon University,
Pittsburgh, 1998

[22] Embley, D.W., Campbell, D.M., Jiang, Y.S., Ng, Y.-K., Smith, R.D., Liddle, S.W.,
Quass, D.W. A conceptual-modeling approach to extracting data from the web.
In Proc. of the 17th International Conference on Conceptual Modeling (ER’98).
Singapore, 1998

[23] Embley, D.W., Jiang, Y.S., Ng, Y.-K. Record-boundary discovery in Web docu-
ments. In Proc. of the 1999 ACM SIGMOD International Conference on Manage-
ment of Data 1999

76

[24] Fielding, R., et al. Hypertext Transfer Protocol – HTTP/1.1. RFC2616, The Com-
puter Society, 1999. http://rfc.net/rfc2616.html

[25] Freitag, D. Using Grammatical Inference to Improve Precision in Information Ex-
traction. In ICML-97 Workshop on Automata Induction, Grammatical Inference,
and Language Acquisition. 1997

[26] Freitag, D. Information extraction from HTML: Application of a general learning
approach. In Proc. of the Fifteenth Conference on Artificial Intelligence AAAI-98.
1998

[27] Freitag, D., McCallum, A. Information Extraction with HMMs and Shrinkage.
In Proceedings of the AAAI-99 Workshop on Machine Learning for Information
Extraction. 1999

[28] Fuhr, N., Grossjohann, K. XIRQL: An XML Query Language Based on Informa-
tion Retrieval Concepts. In Proc. of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval. New Orleans,
USA, 2001

[29] Gibson, D., Kleinberg, J., Raghavan, P. Infering Web Communities from Link
Topology. In Proc. of 6th Intl. Conference on Database Systems for Advanced Ap-
plications (DASFAA’99). IEEE Computer Society, 1999

[30] Gold, E.M. Language Identification in the Limit. Information and Control,
10(5):447-474. 1967

[31] Grishman, R., Sundheim, B. Message Understanding Conference – 6: A Brief
History. In Proceedings of the 16th International Conference on Computational
Linguistics. Copenhagen, Denmark, 1996

[32] Gu, X.-D., Chen, J., Ma, W.-Y., Chen, G.-L. Visual Based Content Understanding
towards Web Adaptation. In Proc. Adaptive Hypermedia and Adaptive Web-Based
Systems. Malaga, Spain, 2002, pp. 164-173

[33] Guan, T., Wong, K.F. KPS – a Web Information Mining Algorithm. In The 8th
International World Wide Web Conference. Toronto, Canada, 1999

[34] Güttner, J. Object Database on Top of the Semantic Web. In Proceedings of the
WI/IAT 2003 Workshop on Applications, Products and Services of Web-based Sup-
port systems. Halifax, CA, 2003, pp. 97-102

[35] Hong, T.W., Clark, K.L. Using Grammatical Inference to Automate Information
Exraction from the Web. In Principles of Data Mining and Knowledge Discovery.
2001

[36] Kan, M.-Y. Combining visual layout and lexical cohesion features for text segmen-
tation. Columbia University Computer Science Technical Report, CUCS-002-01.
2001

77

[37] Kosala, R., Van den Bussche, J., Bruynooghe, M., Blockeel, H. Information Ex-
traction in Structured Documents using Tree Automata Induction, In Principles
of Data Mining and Knowledge Discovery, Proceedings of the 6th International
Conference (PKDD-2002). 2002

[38] Kushmerick, N., Weld, D.S., Doorenbos, R.B. Wrapper Induction for Information
Extraction, In International Joint Conference on Artificial Intelligence. 1997

[39] Kushmerick, N. Wrapper Induction: Efficiency and Expressiveness. Arfiticial In-
telligence vol. 118, no. 1-2, pp. 15-68, 2000

[40] Kushmerick, N. Wrapper Verification. World Wide Web Journal vol. 3, no. 2, pp.
79-94, 2000

[41] Kushmerick, N., Thomas, B. Adaptive information extraction: Core technolo-
gies for information agents In Intelligent Information Agents R&D in Europe: An
AgentLink perspective Lecture Notes in Computer Science 2586, Springer 2002.

[42] Lin, S.-H., Ho, J.-M. Discovering Informative Content Blocks from Web Doc-
uments. In The Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD’02). 2002

[43] Liu, B., Grossman, R., Zhai, Y. Mining Data Records in Web Pages In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-2003). Washington, DC, USA, 2003

[44] Manola, F., Miller, E. (editors) RDF Primer. W3C Working Draft 11 November
2002
http://www.w3.org/TR/2002/WD-rdf-primer-20021111/

[45] May, W. Modeling and Querying Structure and Contents of the Web. In Proceed-
ings of the 10th International Workshop on Database and Expert Systems Appli-
cations Florence, Italy, 1999

[46] Mello, R., Heuser, C.A. A Bottom-Up approach for Integration of XML Sources In
International Workshop on Information Integration on the Web. Rio de Janeiro,
Brasil, 2001

[47] Morkes, J., Nielsen, J. Concise, SCANNABLE, and Objective: How to Write for
the Web, 1997
http://www.useit.com/papers/webwriting/writing.html

[48] Mukherjee, S., Yang, G., Tan, W., Ramakrishnan, I.V. Automatic discovery of Se-
mantic Structures in HTML Documents. In International Conference on Document
Analysis and Recognition (ICDAR). 2003

[49] Muslea, I., Minton, S., Knoblock, C.A. Hierarchical Wrapper Induction for
Semistructured Information Sources. Journal of Autonomous Agents and Multi-
Agent Systems 4:93-114, 2001

78

[50] Nahm, U.Y., Mooney, R.J. Text Mining with Information Extraction. In Proceed-
ings of the AAAI 2002 Spring Symposium on Mining Answers from Texts and
Knowledge Bases. 2002.

[51] Nelson, T.H. Complex information processing: a file structure for the complex, the
changing and the indeterminate. In ACM/CSC-ER, Proceedings of the 1965 20th
national conference. Cleveland, USA, 1965

[52] Niu, C., Li, W., Ding., J., Srihari, R. A Bootstrapping Approach to Named Entity
Classification Using Successive Learners. In Proceedings of the ACL-2003 Confer-
ence. Sapporo, Japan, 2003

[53] Quinlan, J.R., Cameron-Jones, R.M. FOIL: A Midterm Report,Machine Learning:
ECML-93, Vienna, Austria, 1993

[54] Raggett, D., Le Hors, A., Jacobs, I. (editors). HTML
4.01 Specification. W3C Recommendation 24 December 1999.
http://www.w3.org/TR/1999/REC-html401-19991224

[55] Salton, G. Recent Studies in Automatic Text Analysis and Document Retrieval.
JACM, 20(2):258-278, Apr. 1973

[56] Shasha, D., Wang, J.T.L, Shan, H., Zhang, K. ATreeGrep: Approximate Searching
in Unordered Trees. In 14th International Conference on Scientific and Statistical
Database Management. Edinburgh, Scotland, 2002

[57] Soderland, S. Learning to Extract Text-based Information from the World Wide
Web, In Proceedings of Third International Conference on Knowledge Discovery
and Data Mining (KDD-97). 1997

[58] Summers, K. Toward a Taxonomy of Logical Document Structures. In Electronic
Publishing and the Information Superhighway: Proceedings of the Dartmouth Insti-
tute for Advanced Graduate Studies (DAGS ’95). Boston, USA, 1995, pp. 124-133

[59] Summers, K. Automatic Discovery of Logical Document Structure. PhD thesis.
Cornell Computer Science Department Technical Report TR98-1698, 1998

[60] Tajima, K., Tanaka, K. New Techniques for the Discovery of Logical Documents
in Web. In International Symposium on Database Applications in Non-Traditional
Environments (DANTE’99). 1999

[61] World Wide Web Consortium (W3C) pages. http://www.w3.org/

[62] Yang, Y., Zhang, H. HTML Page Analysis Based on Visual Cues. In Proc. of 6th
International Conference on Document and Analysis. Seattle, USA, 2001

[63] Zizi, M., Lafon, M. Hypermedia exploration with interactive dynamic maps. In-
ternational Journal on Human Computer Interaction Studies. 1995

79

Appendix A

Example Task Specification

This example shows an XML specification of two information extraction tasks described
in the section 7.1.

Experiment 1 - Personal Information

Variant A

<?xml version="1.0" encoding="iso-8859-2"?>

<task name="staff">

<!-- Input field spec and path specification -->

<input>

<spec case="lower" name="namelabel">name</spec>

<spec case="sensitive"

name="nameval">^[A-Z][A-Za-z,\.\]+$</spec>

<spec case="lower" name="deplabel">department</spec>

<spec case="lower" name="dptlabel">dept</spec>

<spec case="lower" name="depval">^[a-z0-9\ $]+</spec>

<spec case="lower" name="maillabel">e-?mail</spec>

<spec case="lower"

name="mailval">^[a-z0-9_\.]+@[a-z0-9_\.]+</spec>

</input>

<!-- Inspecion model (field hierarchy) -->

<model name="person">

<data spec="nameval" name="name">

<label spec="deplabel|dptlabel">

<data spec="depval" name="department"/>

</label>

<label spec="maillabel">

<data spec="mailval" name="email"/>

80

</label>

</data>

</model>

</task>

Variant B

<?xml version="1.0" encoding="iso-8859-2"?>

<task name="staff">

<!-- Input field spec and path specification -->

<input>

<spec case="lower" name="namelabel">name</spec>

<spec case="sensitive"

name="nameval">^[A-Z][A-Za-z,\.\]+$</spec>

<spec case="lower" name="deplabel">department</spec>

<spec case="lower" name="dptlabel">dept</spec>

<spec case="lower" name="depval">^[a-z0-9\ $]+</spec>

<spec case="lower" name="maillabel">e-?mail</spec>

<spec case="lower"

name="mailval">^[a-z0-9_\.]+@[a-z0-9_\.]+</spec>

</input>

<!-- Inspecion model (field hierarchy) -->

<model name="person">

<label spec="namelabel">

<data spec="nameval" name="name"/>

</label>

<label spec="maillabel">

<data spec="mailval" name="email"/>

</label>

<label spec="deplabel|dptlabel">

<data spec="depval" name="department"/>

</label>

</model>

</task>

Experiment 2 - Stock Quotes

<?xml version="1.0" encoding="iso-8859-2"?>

<task name="quotes">

<!-- Input field spec and path specification -->

<input>

<spec case="lower" name="float">[0-9\.]+</spec>

81

<spec case="lower" name="int">[1-9][0-9,]+</spec>

<spec case="lower" name="na">N/A</spec>

<spec case="lower" name="lastlabel">^last</spec>

<spec case="lower" name="chglabel">change</spec>

<spec case="lower" name="openlabel">^open</spec>

<spec case="lower" name="bidlabel">bid</spec>

<spec case="lower" name="vollabel">vol</spec>

</input>

<!-- Inspecion model (field hierarchy) -->

<model name="quote">

<label spec="lastlabel">

<data spec="float" name="last"/>

</label>

<label spec="chglabel">

<data spec="float" name="change"/>

</label>

<label spec="openlabel">

<data spec="float" name="open"/>

</label>

<label spec="bidlabel">

<data spec="na" name="bid"/>

</label>

<label spec="vollabel">

<data spec="int" name="volume"/>

</label>

</model>

</task>

82

Appendix B

Document Type Definitions

In following sections we give the formal Document Type Definitions (DTD) for all the
XML document formats used in our experimental information extraction system.

B.1 Task Specification

Following DTD defines the XML document format of the extraction task specification.
An example of such specification is given in Appendix A. It allows to specify the formats
of all fields by regular expressions in the <input> section and to define the template
tree in the <model> section. This tree consists of the <label> and <data> nodes. Both
these tags specify an expected format of a logical structure tree node by using one or
more format specification from the <input> section. The difference between label and
data is that the label is just matched to a structure tree node whereas the data forms
part of the extracted output data.

<?xml version="1.0" encoding="UTF-8"?>

<!-- The root element -->

<!ELEMENT task (input, model)>

<!ATTLIST task

name CDATA #REQUIRED>

<!-- Field format specifications -->

<!ELEMENT input (spec*)>

<!-- Specification of a named field format. The #PCDATA contains

a regular expression. The comparison may be either case

sensitive or lowercase. -->

<!ELEMENT spec (#PCDATA)>

<!ATTLIST spec

name CDATA #REQUIRED

case (lower|sensitive) "lower">

83

<!-- Template tree specification -->

<!-- A hierarchy of labels (not included in the output) and data

(included in the output). The spec attribute must correspond

to a name of any <spec> element above, logical disjunction

can be denoted by "name1|name2". -->

<!ELEMENT model (label*, data*)>

<!ATTLIST model

name CDATA #REQUIRED>

<!ELEMENT label (label*, data*)>

<!ATTLIST label

name CDATA ""

spec CDATA "">

<!ELEMENT data (label*, data*)>

<!ATTLIST label

name CDATA #REQUIRED

spec CDATA "">

<!-- End of the DTD -->

B.2 Logical Document Representation

This DTD defines the XML document format for representing the set of URIs that form
a logical document. The <logical document> element represents the whole logical
document with the URI of the main page, the contained <document> elements contain
the URIs of the physical documents an example of the document is shown in section
6.2 on page 58.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT logical_document (document+)>

<!ATTLIST logical_document

url CDATA #REQUIRED>

<!ELEMENT document EMPTY>

<!ATTLIST document

url CDATA #REQUIRED>

<!-- End of the DTD -->

B.3 Logical Structure Representation

This is a Document Type Definition for the XML representation of the resulting logical
document structure model that is the product of the logical structure analysis. The

84

format of this file is described in detail in section 6.2.2 on page 58.

<?xml version="1.0" encoding="UTF-8"?>

<!-- The root element, structure of a logical document -->

<!ELEMENT document (text*)>

<!ATTLIST document

title CDATA ""

url CDATA "">

<!-- A node of the logical structure tree -->

<!ELEMENT text (text*)>

<!ATTLIST text

content CDATA ""

visual CDATA #REQUIRED

expr CDATA #REQUIRED

weight CDATA #REQUIRED>

<!-- End of the DTD -->

85

