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ABSTRACT

This paper presents the language identification (LID) sys-
tem developed in Speech@FIT. The system consists of two
parts: Acoustic LID determines the language directly on the
basis of features derived from the speech signal. We have
improved existing approaches by adding discriminative train-
ing of acoustic models. In phonotactic LID, speech is first
transcribed by phoneme recognizer into strings or graphs (lat-
tices) of phonemes. On these, “language” models are trained
to capture statistics of sequences of phonemes. We have pio-
neered the use of so called ”anti-models” for this task. All ex-
perimental results are reported on standard NIST 2003 data;
comparison with other published results is favorable to our
system.

1. INTRODUCTION

Automatic language identification (LID) has increasing im-
portance among speech processing applications. It can be
used to route calls to human operators (commerce, emer-
gency), pre-select suitable speech recognition system (infor-
mation systems) and has many uses in security applications.

The goal for Language Identification is to determine the
language a particular speech segment was spoken. The
algorithms for LID can be roughly divided [1] into two
groups. In phonotactic modeling, a tokenizer transcribes the
input speech into phonemes and the scoring is performed
on phoneme strings or lattices. This approach is mostly re-
ferred to as PRLM (Phoneme recognizer followed by lan-
guage model) or PPRLM (Parallel PRLM). In acoustic mod-
eling, the input features are modeled directly by Gaussian
mixture models (GMM), artificial neural networks, support
vector machines, or other techniques [2]. This paper deals
with both acoustic and phonotactic approaches.

In phonotactic approach [3], the quality of PRLM and
PPRLM heavily depends on the quality of phoneme recog-
nition and on the amount of available training data. We use
high-quality phoneme recognizer based on so called LC-RC
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FeatureNet approach and in [3], we have presented phoneme
recognizers trained on 4 languages from SpeechDat-East
database [4]. Although none of these languages is equiva-
lent to any of the target languages in NIST 2003 LID data, the
simple fact that these databases contain 10× more data than
OGI-Stories (usually used to train tokenizers in LID) greatly
improves the LID accuracy. We extended this work by using
phoneme lattices rather than strings for both training and scor-
ing by phonotactic models. This approach was pioneered by
LIMSI [6] with good results and our results with phoneme
lattices (though our approach was simpler) were also very
satisfactory. We further extended PRLM (PPRLM) by us-
ing of anti-models [8] — phonotactic models trained on mis-
recognized segments that should help to discriminate between
target and non-target language. Similar approach was used
by SRI in large vocabulary continuous speech recognition
(LVCSR) [7] to compensate for hypothesis that are acousti-
cally confusable with the correct transcriptions, we have how-
ever not seen any use of such technique in LID.

Our acoustic modeling using GMM complements our suc-
cessful PPRLM [3, 8]. In acoustic modeling, we were in-
spired by the advantages brought by discriminative train-
ing into large vocabulary continuous speech recognition
(LVCSR) systems [21].

The paper is organized as follows: section 2 reviews
the architecture of our acoustic system, where at first fea-
tures used for recognition and then acoustic modeling are de-
scribed. The following section 3 concentrates on the phono-
tactic system. Section 4 describes fusion and normalization
of scores from separate systems. Section 5 presents the data
and reports the evaluation and results. The paper is concluded
in section 6.

2. ACOUSTIC SYSTEM

2.1. Features

The most widely used features for LID (as well as for other
speech processing techniques) are Mel-Frequency Cepstral
Coefficients (MFCC). The works of Torres-Carasquillo [9]
and others have however shown the importance of broader
temporal information for LID. The shifted delta cepstra



(SDC) features are created by stacking delta-cepstra com-
puted across multiple speech frames. The SDC features are
specified by a set of 4 parameters: N, d, P and k, where N is
the number of cepstral coefficients, d is the advance and delay
for the delta-computation, k is the number of blocks whose
delta-coefficients are concatenated to form the final feature
vector, and P is the time shift between consecutive blocks. In
case we denote the original features oh(t)1, shifted deltas are
defined:

∆oh(t) = oh(t + iP + d) − oh(t + iP − d)

for i = 0, P, 2P, . . . , (k − 1)P . Obviously, these feature
vectors are heavily correlated — most elements are merely
copied from one vector to another when we go from t to t+1.

Two widely used enhancements of features for LID are
RASTA filtering of cepstral trajectories ensuring channel nor-
malization [1] and vocal-tract length normalization (VTLN)
[10] which is a simple speaker adaptation.

2.2. Acoustic modeling

Language recognition can be seen as a classification problem
with each language representing a class. The most straightfor-
ward way to model class s is to construct a Gaussian mixture
model that represents feature vectors by a weighted sum of
M multivariate Gaussian distributions:

pλ(o(t)|s) =

M∑

m=1

csmN (o(t); µsm, σ2
sm) (1)

where o(t) is the input feature vector and the parameters λ of
model of s-th class are csm, µsm and σ

2
sm: mixture weight,

mean vector and variance2 vector respectively. The log likeli-
hood of utterance Or given class s is then defined as:

log pλ(Or|s) =

Tr∑

t=1

log pλ(o(t)|s) (2)

where Tr is the number of feature vectors in Or.
In the standard Maximum Likelihood (ML) training

framework, the objective function to maximize is the total
(log) likelihood of training data given their correct transcrip-
tions:

FML(λ) =

R∑

r=1

log p(Or|sr) (3)

where λ denotes the set of model parameters, Or is r-th train-
ing utterance, R is the number of training utterances and sr

is the correct transcription (in our case the correct language
identity) of the r-th training utterance. To increase the objec-
tive function, the GMM parameters are iteratively estimated

1
oh(t) denotes the h-th element of feature vector o(t)

2we assume diagonal covariance matrices that can be represented by vari-
ances.

using well known Baum-Welch re-estimation formulae (see
for example [11]).

In discriminative training, the objective function is de-
signed in such a way that it is (or is believed to be) better
connected to the recognition performance. One of the most
popular discriminative training techniques is Maximum Mu-
tual Information (MMI) training where the objective function
is the posterior probability of correct label:

FMMI (λ) =

R∑

r=1

log
pλ(Or|sr)P(sr)∑
∀s

pλ(Or|s)P(s)
. (4)

We consider the prior probabilities of all classes equal and
drop the prior terms P(sr) and P(s). The denominator∑

∀s
p(Or|s) is the likelihood of utterance Or given the

“competing” model representing all possible transcriptions
(in our case all language labels). The derivation of parameter
update formulae is described in detail for example in [12].

The advantages of MMI are the following:

• It concentrates on precise modeling of decision bound-
ary and does not waste the parameters on highly over-
lapped features with low discriminative power (Fig. 1).

• It optimizes parameters for good recognition of whole
segments (not individual frames) and therefore takes
into account the enormous importance of correct
speech segmentation. We used segmentation generated
by our phoneme recognizer (see Sec. 3.1), where all
phonemes are linked to ‘speech’ class and pause and
speaker noises make the ‘silence’ class. The silence
segments are not used for training and testing.

The drawback of MMI is that it also learns the (undesirable)
language priors from training data. We equalize the amounts
of training data per language but rather than throwing out
training data, we appropriately weigh segments in MMI re-
estimation formulae.

Discriminative training techniques lead to consistent im-
provement in accuracy of LVCSR systems [13, 12]. To our
knowledge, MMI training of GMMs has not been tested in
LID so far. Dan and Bingxi [14] report results with Minimum
classification error (MCE) criterion for the training, but the
improvement they obtained was less than reported in our pa-
per. We have tested MCE training too, but the results were
also not satisfactory.

Our work on MMI training for LID was facilitated by
the experience with discriminative training applied in AMI-
LVCSR system3 [15]. We could also rely on our HMM toolkit
STK4 that implements MMI and other discriminative training
techniques.

3AMI is EC-sponsored project Augmented Multi-Party Interaction,
http://www.amiproject.org

4http://www.fit.vutbr.cz/speech/sw/stk.html
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Fig. 1. Highly overlapped feature distribution - differences between ML and MMI training

3. PHONOTACTIC SYSTEM

3.1. Phoneme recognizer

We use a hybrid system based on Neural Networks (NN). The
feature extraction makes use of long temporal context. First,
Mel filter bank energies are obtained in conventional way.
After sentence mean normalization in each band, temporal
evolution of critical band spectral densities are taken around
each frame. Based on our previous work in phoneme recog-
nition [16, 17], the context of 31 frames (310 ms) around
the current frame was selected. This context is split into 2
halves: Left and Right Contexts (hence the name “LCRC”).
This allows for more precise modeling of the whole trajectory
while limiting the size of the model (number of weights in
the NN) and reducing the amount of necessary training data.
Both parts are processed by discrete cosine transform to de-
correlate and reduce dimensionality. Two NNs are trained to
produce phoneme-state posterior probabilities for both con-
text parts. Third NN functions as a merger and produces final
set of phoneme-state posterior probabilities (Figure 2). All
neural networks 5 have 1500 neurons in hidden layer.

A simple Viterbi decoder from our STK toolkit with-
out any language model constraints processes output of the
merger and produces string of phonemes. Phoneme lattices
are generated using HTK toolkit6.

5All nets are trained using QuickNet from ICSI
http://www.icsi.berkeley.edu/Speech/qn.html

6http://htk.eng.cam.ac.uk/

3.2. N-gram language modeling

Smoothed trigram back-off language model was used to cap-
ture phonotactic statistics of each language. It was created
by passing training speech of all target languages through
phoneme recognizer and counting trigrams for each language
separately. Phoneme insertion penalty (PIP) in the decoder
was tuned on our development set with the best LID perfor-
mance as criterion. We use standard Witten-Bell discounting
[18] implemented in SRI LM toolkit 7 [19].

3.3. Lattices

Since phoneme recognizer is not 100% accurate on 1 best de-
cision, it is advantageous to use richer structure at the end of
decoder: lattices instead of strings. At first, acoustic likeli-
hoods contained in lattices are converted to phoneme poste-
riors. Then, the LM is computed from the new N -gram esti-
mates weighted by these posteriors. Gauvain at al. pioneered
this for LID [6].

3.4. Anti-models

Anti-model is a language model modeling the space where
target model makes mistakes [8]. Its training works in the
following way: we will denote all utterances belonging to
language L as set S+

L
and all utterances not belonging to lan-

guage L as set S−

L
. First, the training of phonotactic model

LM+

L
of each language L is done in standard way using only

7http://www.speech.sri.com/projects/srilm/
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Fig. 2. PRLM system based on phoneme recognizer with split temporal context

the set S+

L
. Then, all training utterances are scored by all

phonotactic models and posteriors of utterances are derived:

P(Or|L) =
L(Or|LM+

L
)∑

∀L
L(Or |LM+

L
)

(5)

where Or is the r-th training utterance and L(Or|LM+

L
) is

the likelihood provided by phonotactic model LM+

L
.

For language L, the parameters of anti-model LM−

L

should be trained on all segments from S−

L
mis-recognized

as L. We can however use all utterances Or ∈ S−

L
and

weight their trigram counts by the posteriors P(Or|L). Obvi-
ously, an utterance from S−

L
with high probability to be mis-

recognized as L will contribute more to the anti-model than an
utterance correctly recognized as language G where G 6= L.

Final score of utterance Or is obtained by subtracting the
weighted likelihood of anti-model from the target model:

logS(Or |L) = logL(Or |LM+

L
)−k logL(Or|LM−

L
), (6)

where the constant k needs to be tuned experimentally.

4. FUSION AND NORMALIZATION OF SCORES

To fuse scores from separate systems, a simple linear combi-
nation is done according to:

score = α GMMMMI + β PRLMHU + (7)
+γ PRLMRU + δ PRLMCZ

where weights α, β, γ, δ are tuned by simplex method on de-
velopment set.

To obtain the final score of language L, we perform the
following normalization using likelihoods of all individual
language detectors:

log P (L|O) ≈ log p(O|L)/T − log
∑

l

p(O|l)/T, (8)

where log p(O|L) is log-likelihood of speech segment O
given by GMM or LM for language L and T is either number

of frames (for GMMs) or phonemes (for PRLM) in speech
segment O. The term log

∑
l
p(O|l)/T can be interpreted as

background model.

5. EXPERIMENTS

5.1. Databases

All data used for experiments were recorded over telephone
line.

The phoneme recognizers used throughout this paper
were trained on Hungarian, Russian and Czech SpeechDat-
East [4] which performed the best in our previous work [3].
Only phonetically balanced items were used for the training
of phoneme recognizers.

Phonotactic language models and acoustic models
were trained on the CallFriend [5] containing telephone
speech of 15 different languages or dialects. Each of 12 target
languages (Table 1) contains 20 complete half-hour conversa-
tions.

Test Data comes from NIST 2003 LID evaluation [20].
This data set consists of 80 segments with durations of 3, 10
and 30 second in each of 12 target languages (Table 1). All
results in this paper are reported for 30s segments. This data
comes from conversations collected for the CallFriend Corpus
but not included in its publicly released version. In addition,
there are four additional sets of 80 segments of each dura-
tion selected from other LDC conversational speech sources,
namely Russian, Japanese, English and cellular English.

Development Data comes from NIST 1996 LID evalua-
tion and has similar structure.

5.2. Evaluation

The evaluation is done according to NIST [20] per-language,
considering each system is a language detector rather than
recognizer. A standard detection error trade-off (DET) curve
is evaluated as a plot of probability of false alarms against
the probability of misses with the detection threshold as pa-
rameter and equal priors for target and non-target languages.



Arabic (Egyptian) Japanese Farsi
French (Canadian French) German Hindi

English (American) Korean Mandarin
Spanish (Latin American) Tamil Vietnamese

Table 1. The twelve target languages in NIST 2003 LID evalua-
tions.

System EER [%]
PRLM string 3.08
PRLM+lattice 2.25
PRLM+lattice+anti.m. 1.83
PPRLM+lattice+anti.m. 1.42
GMM-ML 2048 4.8
GMM-MMI 128 1.92
Fusion BUT 2006=PPRLM+GMM-MMI 0.92

MIT-FUSE 2.8
LIMSI-NN 2.7
BUT-SPDAT 2005 2.4

Table 2. EER of different system for NIST LRE 2003 for
30sec condition

Equal error rate (EER) is the point where these probabilities
are equal. The total EER of the whole LID system is the av-
erage of language-dependent EERs.

5.3. Results

Table 2 summarizes the results. Conventional phonotac-
tic system using strings of phonemes based on Hungarian
phoneme recognizer performs with EER=3.08%. Replacing
string output representation by lattices yields an improvement
of more than 1% absolute: EER=2.25%. With anti-models,
the EER drops to 1.83% (the constant in Eq. 6 was set to
k = 0.3). Fusing scores from 3 phoneme recognizers brings
EER=1.42% which is 23% relative EER reduction.

For GMM model, only segments labeled ‘speech’ by
Czech phoneme recognizer were used. We used 128-
component GMM trained under Maximum Mutual Informa-
tion framework. This system (EER=1.92%) proves its su-
periority over the state-of-the-art highly dimensional (2048-
component) GMM (EER=4.8%) trained under conventional
Maximum Likelihood (ML) framework [21].

6. CONCLUSION

Table 2 compares our system to the best results published on
NIST 2003 data:

• MIT system [2] labeled MIT-FUSE was based on merg-
ing of outputs of PPRLM (6 languages from OGI Sto-

ries), Gaussian Mixture Model and Support Vector Ma-
chine trained on acoustic features.

• LIMSI-NN system [6] is a PPRLM trained on 3 lan-
guages (CallHome – Arabic, SwitchBoard – English
and CallHome – Spanish); it uses phoneme lattices
to train and score phonotactic models and neural-net
based merging of individual scores.

• Our system BUT-SPDAT 2005 [3] is a PPRLM trained
on 4 languages from SpeechDat-East with linear merg-
ing of individual scores.

The system described in this paper — BUT 2006 — in-
cludes PPRLM system based on Hungarian, Russian and
Czech phoneme recognizers and acoustic system based on
128-component GMM trained under Maximum Mutual Infor-
mation framework.

We see that our Hungarian PRLM and Acoustic GMM-
MMI as stand-alone systems significantly outperform the
other published systems. Merging these systems further im-
proves the performance.
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