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Abstract. This paper investigates into feature extraction for meeting
recognition. Three robust variants of popular HLDA transform are in-
vestigated. Influence of adding posterior features to PLP feature stream
is studied. The experimental results are obtained on two data-sets: CTS
(continuous telephone speech) and meeting data from NIST RT’05 eval-
uations. Silence-reduced HLDA and LCRC phoneme-state posterior fea-
tures are found to be suitable for both recognition tasks.

1 Introduction

The AMI project1 concentrates at processing and analysis of meetings. One of
key problems is to determine what was said in the meeting; this task is accom-
plished by large vocabulary continuous speech recognition (LVCSR). This paper
deals with the extraction of features from speech signal.

One of key problems in feature extraction is to reduce the dimensionality
of feature vectors while preserving the discriminative power of features. Linear
transforms such as Principal Component Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA) are mostly used for this task. In recent years, Heteroscedas-
tic Linear Discriminant Analysis (HLDA) has gained popularity in the research
community [2, 1] for its relaxed constraints on statistical properties of classes
(Unlike LDA, HLDA does not assume same covariance matrix for all classes).
To compute HLDA transformation matrix, however, more statistics need to be
estimated and the reliability of such estimations becomes an issue. Section 2
discusses robust variants of HLDA.

Second part of the paper is devoted to the use of posterior-features. Posteriors
generated by neural networks (NN) and converted into features are also increas-
ingly popular in small [7] and large [6] recognition systems for their complemen-
tarity with classical PLP or MFCC coefficients. Section 3 introduces phoneme-
state posterior estimator based on split temporal context [8, 9] that has already
proved its quality in different tasks ranging from language identification to key-
word spotting.

1 Augmented Multi-Party Interaction http://www.amiproject.org



Most of the development work was done on a continuous telephone speech
system (section 4). For the recognition of meetings, we used NIST RT’05 data
and took advantage of the AMI-LVCSR system [5]2. The results described in
section 5 are obtained by re-scoring LVCSR lattices generated by the AMI sys-
tem.

2 HLDA

HLDA allows to derive such projection that best de-correlates features associ-
ated with each particular class (maximum likelihood linear transformation for
diagonal covariance modeling [2]). To perform de-correlation and dimensional-
ity reduction, n-dimensional feature vectors are projected into first p < n rows,
ak=1...p, of n × n HLDA transformation matrix, A. An efficient iterative algo-
rithm [3, 1] is used in our experiments to estimate matrix A, where individual
rows are periodically re-estimated using the following formula:
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where Σ̂ and Σ̂
(j)

are estimates of global covariance matrix and covariance
matrix of jth class, γj is number of training feature vectors belonging to jth

class and T is the total number of training feature vectors. In our experiments,
the classes are defined by each Gaussian mixture component and γj are their
occupation counts.

Well known Linear Discriminant Analysis (LDA) can be seen as special case
of HLDA, where it is assumed that covariance matrices of all classes are the
same. In contrast to HLDA, closed form solution exists in this case. Basis of LDA
transformation are given by eigen vectors of matrix ΣAC × Σ

−1
WC , where ΣWC

is within-class covariance matrix and ΣAC is across-class covariance matrix.

2.1 SHLDA

HLDA requires the covariance matrix to be estimated for each class. The higher
number of classes is used, the fewer feature vector examples are available for
each class and class covariance matrix estimates become more noisy. We have

2 Brno University of Technology is a member of AMI-LVCSR development team, co-
ordinated by University of Sheffield.



recently proposed [1] a technique based on combination of HLDA and LDA,
where class covariance matrices are estimated more robustly, and at the same
time, (at least the major) differences between covariance matrices of different
classes are preserved. Smoothed HLDA (SHLDA) differs from HLDA only in the
way of class covariance matrices estimation. In the case of SHLDA, estimate of
class covariance matrices is given by:

Σ̌j = αΣ̂j + (1 − α)ΣWC (3)

where Σ̌j is “smoothed” estimate of covariance matrix for class j. Σ̂j is estimate
of covariance matrix, ΣWC is estimate of within-class covariance matrix and α
is smoothing factor — a value in the range of 0 to 1. Note that for α equal to 0,
SHLDA becomes LDA and for α equal to 1, SHLDA becomes HLDA.

2.2 MAP-SHLDA

SHLDA gives more robust estimation than standard HLDA but optimal smooth-
ing factor α depends on the amount of data for each class. In extreme case, α
should be set to 0 (HLDA) if infinite amount of training data is available. With
decreasing amount of data, optimal α value will slide up to LDA direction.

To add more robustness into the smoothing procedure, we implemented max-
imum a posteriori (MAP) smoothing [4], where within-class covariance matrix
ΣWC is considered as the prior. Estimate of the class covariance matrix is then
given by:

Σ̌j = ΣWC

τ

γj + τ
+ Σ̂j

γj

γj + τ
(4)

where τ is a control constant. Obviously, if insufficient data is available for cur-
rent class, the prior resource ΣWC is considered as more reliable than the class
estimation Σ̂j . In case of infinite data, only the class estimation of covariance

matrix Σ̂j is used for further processing.

2.3 Silence Reduction in HLDA

From the point of view of transformation estimation, silence is a “bad” class as
its distributions differ significantly from all speech classes. Moreover, training
data (even if end-pointed) contains significant proportion of silence. Therefore,
we have experimented with limiting the influence of silence.

Rather than discarding the silence frames, the occupation counts, γj , of si-

lence classes, which takes part in computation of global covariance matrix, Σ̂,
and in equation 2 are scaled by factor 1/SR

SR = ∞ corresponds to complete elimination of silence statistics.

3 Posterior features

Several works have shown that using posterior-features generated by NNs is ad-
vantageous for speech recognition [7, 6]. We have experimented with two setups
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Fig. 1. Phoneme-state posterior estimator based on split left and right contexts.

to generate posteriors. The first one is based on a simple estimation of phoneme
posterior probabilities from a block of 9 consecutive PLP-feature vectors (Fea-
tureNet).

The second one uses our state-of-the-art phoneme-state posterior estimator
based on modeling long temporal context[9]. Details of the posterior estimator
are shown in Fig. 1. Mel filter bank log energies are obtained in conventional way.
Based on our previous work in phoneme recognition [8], the context of 31 frames
(310 ms) around the current frame is taken. This context is split into 2 halves:
Left and Right Contexts (hence the name “LCRC”). This allows for more precise
modeling of the whole trajectory while limiting the size of the model (number
of weights in the NN) and reducing the amount of necessary training data. For
both parts, temporal evolutions of critical band log energies are processed by
discrete cosine transform to de-correlate and reduce dimensionality. Two NNs are
trained to produce phoneme-state posterior probabilities for both context parts.
We use 3 states per phoneme which follows similar idea as states in phoneme
HMM. Third NN functions as a merger and produces final set of phoneme-state
posterior probabilities3

For both approaches, the resulting posteriors are processed by log and by a
linear transform to de-correlate and reduce dimensionality (details are given in
experimental sections 4 and 5).

4 CTS experiments

Our recognition system was trained on ctstrain04 training set, a subset of the
h5train03 set, defined at the Cambridge University as a training set for Con-
versation Telephone Speech (CTS) recognition systems [5]. It contains about
278 hours of well transcribed speech data from Switchboard I, II and Call Home
English. All systems were tested on the Hub5 Eval01 test set composed of 3
subsets of 20 conversations from Switchboard I, II, and Switchboard-cellular
corpora, for a total length of about 6 hours of audio data.

The baseline features are 13th order PLP cepstral coefficients, including 0th
one, with first and second derivatives added. This gives a standard 39 dimension

3 Neural nets are trained using QuickNet from ICSI and SNet – a parallel NN training
software being developed in Speech@FIT
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Fig. 2. Dependency of WER on the SHLDA (left) and MAP-SHLDA (right) smoothing
factors.

feature vector. Cepstral mean and variance normalization was applied. Baseline
cross-word triphone HMM models were trained by Baum-Welch re-estimation
and mixture splitting. We used a standard 3-state left-to-right phoneme setup,
with 16 Gaussian mixtures per state. 7598 tied states were obtained by decision
tree clustering. Each Gaussian mixture was taken as a different class for HLDA
experiment. Therefore, we had N = 16×7598 = 121568 classes.

The tri-gram language model used in decoding setup was computed by inter-
polation from Switchboard I, II, Call Home English and Hub4 (Broadcast news)
transcriptions. The size of recognition vocabulary was 50k words.

The recognition output was generated in two passes: At first, lattice gen-
eration with baseline HMMs and bigram language model was performed. The
lattices were expanded by more accurate trigram language model. The prun-
ing process was applied to reduce them to reasonable size. In the second pass,
lattices were re-scored with tested features and models.

4.1 Flavors of HLDA

We added the third derivatives into the feature stream, which gave us 52 di-
mensional feature vectors. SHLDA transform was then trained to perform the
projection from 52 to 39 dimension. Smoothing factors α in Eq. 3 of 0.0 (LDA),
0.3, 0.4, 0.5, 0.7, 0.9, 1.0 (HLDA) were tested. Left panel of figure 2 shows de-
pendency of WER on SHLDA smoothing factor α. Pure LDA failed, probably
due to bad assumption of the same Gaussian distribution in all classes. The
best system performance (Table 1) was obtained for smoothing factor 0.9. The
relative improvement of this system is 7.9% compared to the baseline and 0.6%
compared to the clean HLDA setup.

MAP-SHLDA test setup was built in same way as SHLDA system, only the
smoothing procedure (Equation 3) was replaced by MAP approach (Equation 4).
The average value of all class occupation counts was 820. Therefore τ = 820



System WER [%]

Baseline (no HLDA) 36.7

HLDA 34.8

SHLDA 34.6

MAP-SHLDA 34.6

SR-HLDA 34.5
Table 1. Comparison of HLDA systems.

in MAP-SHLDA should have the same behavior as α = 0.5 in SHLDA if all
classes had the same number of observations. The optimal smoothing values for
SHLDA were in range 0.5—0.9 (left panel of Figure 2). Therefore, we decided
to test optimal smoothing control constant τ on values 0 (HLDA), 100, 200,
300, 400, 600, 800 and 1000. The results are shown in right panel of Figure 2.
The best system performance (Table 1) was obtained for τ = 400. The relative
improvement of this system is 8% compared to the baseline and 0.7% compared
to the clean HLDA setup.

Silence reduction in HLDA (SR-HLDA) was tested with factors SR
equal to 1 (no reduction), 2, 10, 100 and ∞ (removing all silence classes). For
SR = 1, the WER is obviously 34.8%, for SR = 2 it drops to 34.6% and from
SR = 10 . . .∞ it is constant: 34.5%.

4.2 Posterior features

Posterior features were always used together with base PLP features. Table 2
summarizes the results.

Upper part of Figure 3 shows the way the two feature streams were combined
in FeatureNet experiments. The upper branch corresponds to the previous sec-
tion. To compute posterior features, 9 frames of PLP+∆+∆∆ were stacked and
processed by a neural net with 1262 neurons in the hidden layer (this number was
chosen to have approximately 500k weights in the NN). There are 45 phoneme
classes, which determines the size of the output layer. Log-posteriors are pro-
cessed by KLT or HLDA and then concatenated with PLP+HLDA features to
form the final 64-dimensional feature vectors.

Lower panel of Figure 3 presents the setup with LCRC-posterior features.
The PLPs were derived directly with ∆, ∆∆ and ∆∆∆, and down-scaled by
HLDA to 39 dimensions. The detail of LCRC-posterior feature derivation is in
Fig. 1, all nets had 1500 neurons in the hidden layer. For each frame, the output of
LCRC system are estimates of 135 phoneme-state4 posterior probabilities. As the
number of phoneme-state posteriors is too high to fit the statistics necessary for
HLDA estimation into the memory, the output dimensionality of LCRC system
is first reduced by KLT from 135 to 70. The following HLDA reduces this size to

4 see [9] for details on splitting each of phonemes to 3 phoneme-states



System WER [%]

PLP SR-HLDA 34.5

PLP SR-HLDA + PLP-posteriors KLT 33.8

PLP SR-HLDA + PLP-posteriors HLDA 33.3

PLP SR-HLDA + LCRC-posteriors HLDA 32.6
Table 2. Performance of posterior features in the CTS system.
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Fig. 3. Configuration of the system with PLP- (upper panel) LCRC-posteriors (lower
panel).

25, and the results are concatenated with PLP+HLDA features to form again
64-dimensional feature vectors.

We see, that the posterior features improve the results by almost 1% abso-
lutely, and that there is clear preference of HLDA to KLT. With the new LCRC
features, we have confirmed good results they provide in phoneme recognition [9]
— with these features, the results are almost 2% better tha the PLP SR-HLDA
baseline.

5 Meeting data experiments

Training and test sets for these experiments are the same as those used by AMI-
LVCSR system for NIST RT’05 evaluations [5], therefore, we limit ourselves to
the most important details. The training data consists of more than 100 hours
of meeting data originating from ICSI meeting corpus (73h), NIST data (13h),
ISL (10h) and AMI preliminary development set (16h).

The test data comes from NIST RT’05 and consists of two 10-minute excerpts
from meetings collected by ICSI, NIST, ISL, AMI, and Virginia Polytechnic and
State University (VT). NIST RT’05 included audio from headset microphones



System WER [%]

PLP SR-HLDA 28.7

PLP SR-HLDA + LCRC-posteriors HLDA 26.0
Table 3. Performance of HLDA and posterior features in meeting recognition.

(Independent Headset Microphone, IHM) and from table-top microphones (Mul-
tiple Distant Microphones, MDM), in this work, only IHM condition was used.

The system architecture is described in detail in [5]. The system operates in
a total of 6 passes according to Fig. 4. The 4-gram lattices generated in step
P4 were taken as input for the tests described in this section and were re-scored
with different feature-extraction setups.

5.1 HLDA and posterior features in meeting recognition

Table 3 shows the results for different feature setups. The baseline for these
experiments are PLP features with VTLN (VTLN was applied also prior to any
posterior feature derivation) and SR-HLDA for de-correlation and dimensionality
reduction (PLP ∆∆∆ (52 dimensions) → 39). SR-HLDA was selected for good
and “cheap” performance in the CTS system.

Posterior features were generated with the LCRC-system accordingly to
Fig. 1 and lower panel of Fig. 3. The only changes from the CTS setup were
the use of 23 filters in the bank instead of 15 (wide-band speech) and consistent
application of VTLN prior to both PLP and Mel-filterbank computation. The
sizes of hidden layers in neural nets were the same (1500 neurons), the size of
input layers in left- and right-context nets increased due to increased numbers
of bands. The improvement obtained by LCRC-posterior features is again quite
impressive – 2.7%.

6 Conclusion

In this paper, we have investigated robust variants of HLDA and use of classical
and novel posterior features in telephone speech and meeting data recognition.

In the HLDA part, 2 approaches of HLDA smoothing were tested: Smoothed
HLDA (SHLDA) and MAP variant of SHLDA taking into account the amounts
of data available for estimation of statistics for different classes. Both perform
better than the basic HLDA. We have however found, that removing of silence
class from the HLDA estimations (Silence-reduced HLDA) is equally effective
and cheaper in computation. Testing SHLDA and MAP-SHLDA on the top of
SR-HLDA did not bring any further improvement, therefore we stick with SR-
HLDA as the most suitable transformation in our LVCSR experiments.

Two kinds of posterior features were tested – “classical” FeatureNet approach
with stacked 9 frames of PLPs and novel approach using more elaborate struc-
ture to phoneme-state posterior modeling. The later scheme provided significant
reduction of error rate in both CTS and meeting data experiments.
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Fig. 4. Processing stages of AMI system for 2005 NIST evaluations. The figure is
reprinted from [5] with permission of the author.

In our future work, we will investigate if the improvement obtained by
LCRC-posteriors is preserved after discriminative training and speaker adap-
tation (MLLR) applied on the top of such features. Preliminary results are quite
promising. The described features will be integrated into AMI-LVCSR system
in NIST RT’06 evaluations.
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