
PARALLEL TRAINING OF NEURAL NETWORKS FOR SPEECH 
RECOGNITION 

 
Stanislav Kontár 

 
Speech@FIT, Dept. of Computer Graphics and Multimedia, FIT, BUT, Brno, Czech Republic 

E-mail: xkonta00@stud.fit.vutbr.cz 
 
 
In speech recognition, forward multi-layer neural networks are used as classifiers for phoneme recognizers, for speech 
parameterization, in language models, and for language or speaker recognition. This paper discusses possibilities of 
training forward multi-layer neural networks using parallel algorithms. The need for parallel training of neural 
networks is caused by huge quantity of training data used in speech recognition. Synchronous and asynchronous 
variants of the training are discussed and experimental results are reported on a real speech processing task. 
 
Keywords: Artificial neural networks, speech recognition, parallel training algorithms 
 
 
Introduction 
Forward multilayer neural networks can be used in a lot of applications, usually for classification, pattern recognition, 
prediction, dimension reduction or control. In speech recognition, neural networks are used as classifiers and for their 
training, large amounts of input data are used. Typical neural network trained for a speech recognition task has three 
layers, 253 inputs, 1500 neurons in hidden layer and 129 neurons in output layer. It is trained using 40 hours of speech 
data (about 14.5 million vectors). This task takes 84 hours on Pentium 4 2.8GHz processor. If we extrapolate this 
training time to 2000 hours of speech data used in some applications, we will obtain training time of about 5 months. 
This implies urgent need for parallelization of neural network training. 
The organization of the paper is as follows: the first part describes matrix implementation of common back-propagation 
algorithm and optimization options of that algorithm. After, typical parallel approaches and implementation details are 
discussed. Results gained from testing of all implementations and comparison to QuickNet (NN training software 
typically used in speech recognition), are described afterwards. Possibilities for future work and improvements are 
discussed in the conclusion. 
 
Back-propagation training algorithm and its matrix implementation 
The basic unit of NN is a neuron, which can be described by:  
 

y = g(x · w) + b, 
 

where y is neuron output, g is activation function, x is input vector, w is vector of weights and b is bias value of the 
neuron. It is advantageous to represent whole layer of neurons in matrix notation: one layer can be represented by 
weight matrix W, where weights of individual neurons are stored in rows, and by bias vector b, with all biases. In the 
implementation, each layer has a matrix of weights, a vector of biases and a few auxiliary matrices for forward and 
backward computations.  
Usually, the network processes input vectors one-by-one, but from the implementation point of view, it is advantageous 
to work with sequences of input vectors – so called bunches. Each vector in the algorithm is replaced by matrix of 
vectors and every vector-matrix multiplication is replaced by matrix-matrix multiplication. Matrix multiplications are 
computed faster; and in the training, weight updates are done only after each bunch. The size of bunch-size, e.g. number 
of rows of matrices, could affect accuracy of neural network. Depending on data set used for training, bunch size can be 
set up to thousands. In speech recognition tasks, bunch-size=1000 is considered as safe value. 
When computing forward pass using bunch-size and matrix multiplications, matrix of input vectors Xl is multiplied 
with transposed weight matrix Wl

T and result is added to bias matrix Bl which consists of all rows equal to layer bias 
vector bl. On all rows of resulting matrix, the output function gl of neurons in this layer is applied. So, output matrix Yl 
of layer l can be computed as: 
 

Yl = gl(XlWl
T + Bl) 

Xl+1 = Yl  , 
 

where X0 is a matrix consisting of input vectors. The training of network consists of two basic steps:  
• First, a bunch of training data is forwarded through the network. An error matrix at the output of neural 

network EL is computed as difference between real output of neural network YL and desired output OL, where 
L is the number of the last layer.  

mailto:xkonta00@stud.fit.vutbr.cz


• Then, the error is propagated through neural network:  
o First, derivation of output function is applied on each row of error matrix. Derived error matrix Edl is 

then multiplied by weight matrix Wl to obtain error for previous layer: 
 

EL = YL – OL 
Ed sigmoid ij = (1 – Yij) Yij Eij 

El-1 = EdlWl 
 

Derivation and multiplication are repeated in inverse sense through all layers.  
o Transposed derived error matrices Edl are multiplied by input matrices of corresponding layers Xl to 

obtain update matrices Ul. Update matrices are multiplied by learning-rate η and subtracted from 
weight matrix Wl: 

 
Ul = Edl

TXl 
Wl new = Wl old – ηUl 

 
Changes of biases are obtained in similar way. The whole procedure is repeated for all training chunks of the training 
data. One pass on the training data is called an epoch of training. 
 
Optimization of the training algorithm 
Most of computational time is consumed by matrix multiplications and computation of output functions. Output 
functions, in speech recognition usually sigmoids and softmaxes [3], are containing exponentials responsible for slow 
computations. 
BLAS (Basic Linear Algebra Subprograms) library [2] is used to speed up matrix multiplications. BLAS consists of 
basic blocks for programs which use matrix and vector operations. BLAS is highly optimized, effective and portable, so 
it can be advantageously used. BLAS distribution ATLAS (Automatically Tuned Linear Algebra Software) was used in 
our implementation – actually, only one routine from BLAS is needed: the one which computes matrix multiplications 
and can transpose any of these matrices. Additional speed up can be gained, if every row of matrix is aligned in memory 
to 16 bytes. 
A fast and compact approximation of the exponential function [1] is used for speeding up computations of exponentials. 
The method uses the following principle: a double precision floating point number is saved in memory using 64 bits 
(IEEE-754 standard). It is read as two 32-bit integer numbers and one of them (containing exponent) is specifically 
changed to handle exponent part in a way, which causes exponentiation of written number. The written number is 
changed beforehand, so the number gained by backward read of memory as double in fact corresponds to exponential 
function. 
 
Parallel training algorithms 
The back-propagation algorithm for neural network training can not be easily parallelized, as the values from nearly 
whole neural network are needed during computations. There are two approaches in parallel neural network training 
which are bypassing the principal needs of this algorithm: 

1. The network division method violates the first need, e.g. necessity to know values from whole neural network 
during forward and backward propagation. The processor works only with part of network for given time. 
After this time, superior entity merges networks. If partial networks form disjoint sets, merged network will 
report better results. In the best case this merged network will be comparable with sequentially learned neural 
network. The size of data exchanged between individual processors is main advantage of this method. Only 
N-th fraction of neural network weights must be sent from clients to server, where N is number of neural 
network parts. The main disadvantage is that it is not known if trained parts will be disjoint. This algorithm 
also can not be easily compared to non-parallel version of back-propagation algorithm, and therefore it was not 
implemented. 

2. The second approach called data division is focusing on the second need of back-propagation algorithm, 
namely the necessity of knowing values from whole network in every training step. Change of weights can be 
scheduled to every bunch-size vectors as explained above. So it is possible to divide training data among 
copies of neural network and compute parts of update matrixes separately. After this, the server merges update 
matrices, computes new weights and sends them to all clients. Bunch-size has to be divided with regard to 
number of training computers in order to achieve the same results as for 1-processor training. The main 
advantage of this method is that it is perfectly comparable to sequential back-propagation algorithm with 
bunch-size used. On the other hand, bigger amounts of data have to be sent between server and clients.  

 



Implementation of parallel training 
Only the data division method was considered for the implementation. The training data have to be divided most 
accurately for separate computers. After each bunch-size, fractions of update matrix have to be added together and 
weight updates on all computers have to be done. For each bunch, every computer processes bunch-size/N vectors 
where N is number of computers. One of them (a server) performs synchronization and weight change; it also sends 
new weights to all other computers. 
Technically, input and output training vectors are loaded to a cache, whose size has to be a multiple of bunch-size. The 
vectors loaded to this cache are always randomized to increase convergence speed of back-propagation algorithm. 
It is also needed to handle the possibility that training data are not perfectly divided. After each cache is processed (with 
synchronization after each bunch-size), the numbers of vectors in all caches are checked and the size of computed cache 
is set to the smallest value. The rest of vectors are discarded; this loss is not important for large training sets. 
Nevertheless, it is best to divide training data among training computers as accurately as possible. 
There is a number of possibilities how to synchronize computers and to implement their communications. For 
communication, the TCP/IP protocol was chosen, because it solves packet order and communication errors, so packet 
loss is not possible (for this reason, using UDP protocol is not recommended). Client-server model was used in the 
implementation. 
Data structure called ‘element’ was used for communication. It contains all needed information about neural network, 
weights and biases. It can be used for two types of information:  

1. copy of neural network (sent from server to clients) 
2. needed updates of weights and biases (sent from clients to server). 

The following table shows two common sizes of neural networks and corresponding sizes of elements. 
 

Neural network 
(inputs, hidden and output neurons) Element size 

39 / 500 / 42 164 kB 
351 / 1262 / 45 2004 kB 

Table 1: Common element sizes 
 
SNet v1.0 
SNet v1.0 was the first implemented variant of parallel neural network. It uses data division method and system uses 
one server and any number of clients. It was implemented in C programming language. The clients join server using 
TCP/IP sockets. A separate thread is created for each client. Each client computes update matrices for his part of data 
(bunch-size/N), sends it to server and then waits for reply. When server knows all update matrices, the main thread 
performs weight update. When update is finished, server sends new weights to clients using threads for client 
communication. After new weights are received, clients carry on computing. Until that, computations are stopped. The 
details of communication can be seen in figure 1. 
 
 

 
Figure 1: SNet v1.0 communications 



 
The advantage of SNet v1.0 is easy verification of the system. A disadvantage is the need of waiting for weight 
synchronization. If one of clients is late, all other clients have to wait – this situation is shown in figure 2. If we add 
more clients, this problem becomes more probable, as even IBM Blade servers we are using are not absolutely 
symmetric. See Results chapter for more details. 
 

 
Figure 2: SNet v1.0 major slowdown situation 

 
SNet v2.0 
The second version of parallel neural network called SNet v2.0 was designed to overcome this performance problem 
and also some other disadvantages of SNet v1.0. The system is put together in same fashion, e.g. it consists of a server 
and any number of clients. C++ language and object oriented implementation were used to ensure better maintainability 
of the code. 
In SNet v2.0, the server establishes connection with client and sends a copy of neural network as in SNet v1.0. The 
server runs one thread for each client. The server has also a queue of received elements from clients and a queue of free 
elements which are allocated but not used. If new element is needed for received data, it is taken from queue of free 
elements if possible, else new memory is allocated. Allocated memory is freed at the end of training. 
The main difference against SNet v1.0 is that clients contain two threads. The first thread performs computations and 
the second is used only for receiving elements from the server. Each client has two queues for elements too, one for 
received and one for free elements. The client processes its part of data which is bunch-size/N vectors. After that, it 
sends an update element to server. At this moment, computations are not stopped, but the client continues to work 
with its old weights and starts to compute a new bunch. The server uses its client threads for receiving elements from 
clients. If the main thread detects that there are enough elements (N) for an update, it stops receiving for a while, adds 
elements together and makes weight update. It does not matter from what clients elements have come, because they are 
equally important. A copy of the updated weights is sent to all clients, and used elements are marked as free. 
At any time during computations, any client can receive element with new network weights. It adds this elements to its 
own queue until bunch-size/N vectors are computed. After that, it takes the last (the newest) weight configuration from 
its queue and marks everything else as free. A flow-chart of SNet 2.0 structure and communication is shown in figure 3. 
 



 
Figure 3: SNet v2.0 structure and communications 

 
Results 
Implementations of parallel training were tested on IBM Blade cluster at Faculty of Information Technology, BUT. The 
Blade cluster consists of 12 two-processor computers with Pentium 4 2.8GHz connected with gigabit Ethernet. Sun 
Grid Engine was used for scheduling processes on Blades servers.  Test data consisted of about 1,000,000 training 
vectors in training set and 100,000 vectors in cross-validation set. Used network had 39 inputs, 500 neurons in hidden 
layer and 42 neurons in output layer. At the input of neural network, normalization was performed. Test was repeated 
three times and the resulting training times and accuracies were averaged. 
Every time, only one epoch of neural network training was performed. The number of accurately classified vectors was 
compared with QuickNet usually used in speech recognition. The difference of accuracy on the training set was below 
2% (depends on randomization) and the difference on cross-validation data was insignificant. It was verified that 
sequential variant of SNet works with the same speed as QuickNet. 
The following graphs show the speedups gained by parallel algorithms.  SNet v1.0 results can bee seen at figure 4. Due 
to latencies caused by all computers waiting for the server, it is recommended to use maximum 3 computers for this 
version,  only 2-times speedup can be gained. SNet v2.0 is more powerful. Even when using synchronous mode of SNet 
v2.0, some gain can be seen thanks to the better program structure. With 4 computers, it is possible to obtain nearly 
3-times speed up with the “safe” synchronous mode. If asynchronous mode of SNet v2.0 is used, the speedup is always 
better with more processors: with 5 computers working on the same neural network, the speedup can be nearly 4-times. 
More tests have to be performed with more CPUs, different network sizes, bunch-sizes, etc.  
 



1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Number of CPUs

Sp
ee

d 
up

Synchronous v1.0
Synchronous v2.0
Asynchronous v2.0

 
Figure 4: Comparison of speedups of implemented programs 

 
Conclusion 
The sequential variant of neural network training was implemented using BLAS library; we have verified that its speed 
and accuracy is similar to reference software QuickNet. We have continued with implementation of asynchronous 
parallel neural network SNet v2.0 which uses parallelization on training data. On 5 computers connected with gigabit 
Ethernet, SNet v2.0 reaches 4-times speedup against sequential version without noticeable decrease in accuracy.  
As SNet it is based on Speech toolkit (STK) developed in Speech@FIT group at Faculty of Information Technology, 
BUT, it can easily work with common data files and options used in speech recognition. STK also allows to easily use 
any input transformations. SNet is already in routine use for fast neural network training in speech recognition tasks.  
 
Future work on SNet will focus on the following tasks: 
• As volumes of data involved in communications are relatively big when large neural networks are used, it slows 

down whole training process. It seems that fast and computationally undemanding compression can be used. It does 
not matter, if some accuracy is lost, neural networks are robust against small changes. Moreover, we could 
experiment with UDP protocol and multicast to gain smaller load on communications. The cost of more complicated 
protocol and program structure will however have to be taken into account. 

• Parallel training can bring unusual situations, so it would be nice to have a visualization tool to see what happens 
during the training. External program or linked library could be used. 

• There are some unchangeable parameters in SNet. It would be useful to have possibilities to dynamically (and 
automatically) tune these parameters during training to get better results. As stated above, more experiments are 
needed in parallel neural networks. 

 
References 
[1] Schraudolph, N. N.: A fast, compact approximation of the exponential function. 1999. 

URL http://users.rsise.anu.edu.au/~nici/pubs/exp.pdf (april 2006). 
[2] Composite authors: Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard. 2001. 

URL http://www.netlib.org/blas/blast-forum/blas-report.pdf (april 2006). 
[3] Bourlard, H. and Morgan, N. (1994), Connectionist Speech Recognition - A Hybrid Approach, Kluwer 

Academic Publishers, ISBN 0-7923-9396-1. 

http://users.rsise.anu.edu.au/~nici/pubs/exp.pdf
http://www.netlib.org/blas/blast-forum/blas-report.pdf

