
Compression techniques

David Bařina

February 22, 2013

David Bařina Compression techniques February 22, 2013 1 / 37

Contents

1 Terminology

2 Simple techniques

3 Entropy coding

4 Dictionary methods

5 Conclusion

David Bařina Compression techniques February 22, 2013 2 / 37

Introduction

multimedia data: text, documents, audio, image, animation, video,
medical data, geographic data, . . .
need for compression: single frame of HD video 1920×1080×3 ≈
6MB (at 60 FPS ≈ 360MB/s)
formats: BMP, PNG, JPEG, MPEG-4, . . .

David Bařina Compression techniques February 22, 2013 3 / 37

Terminology

Compression
reduce the amount of data, bitrate
lossless vs. lossy
reduce redundancy or irrelevance of data

Redundancy
reduce redundancy = lossless compression
original signal can be reconstructed without distortion

Irrelevance
with regard to human perception
elimination of irrelevant data = lossy compression
original signal cannot be exactly reconstructed

David Bařina Compression techniques February 22, 2013 4 / 37

Terminology

Coding
mutually unambiguous assignment of symbols
of one alphabet to symbols of other alphabet
block vs. stream codes
e.g. symbol ’A’ → code 0110

reduce redundancy = compression

Computer program
compressor/encoder
decompressor/decoder
codec
type of data (e.g. videocodec)

David Bařina Compression techniques February 22, 2013 5 / 37

Terminology

Data model
probabilistic (statistical) model
context oriented (Markov) model

Compression methods
symmetric vs. asymmetric (complexity)
block vs. stream (block of symbols), e.g. bzip2 ∼900 kB
single-pass, two-pass, multi-pass

static = 1 pass, data model declared in advance
semi-adaptive = 2 passes, model needs to be transferred
adaptive (dynamic) = 1 pass, model modified on the fly

David Bařina Compression techniques February 22, 2013 6 / 37

Terminology

Variable-length coding
short codes for more frequently occurring symbols
e.g. ’A’ → 1, ’B’ → 01, . . . , ’Z’ → 000000001
implemented by entropy coding
e.g. Huffman coding

Prefix code
property that no code word is a prefix of another code word
unambiguous decoding without delimiters
e.g. 1, 01, 001, 0001, . . .

David Bařina Compression techniques February 22, 2013 7 / 37

Terminology

Dictionary
data structure containing fragments of uncompressed file
e.g. 0 → "aa", 1 → "ba", 2 → "bc"
10021 → "baaaaabcba"

Compression methods
statistical (statistical data model)
context (context oriented model)
dictionary (dictionary)

David Bařina Compression techniques February 22, 2013 8 / 37

Terminology

Compression ratio

=
output size
input size

(< 1 ⇒ compression, > 1 ⇒ expansion)

Evaluation of compression methods
efficiency (compression ratio)
time and memory complexity
influence of data type on compression ratio
quality (lossy methods)

David Bařina Compression techniques February 22, 2013 9 / 37

Terminology

Compression methods
predictive (predictor, error)
transform (e.g. DCT)

Entropy
quantity indicating the amount of "information"
information content, necessary number of bits
number of yes/no questions that can reveal the content of message
unit is "bit"

H = −
∑
a∈A

p(a) · log2p(a)

entropy encoders compress data
almost optimally regarding to their entropy

David Bařina Compression techniques February 22, 2013 10 / 37

Multidimensional data

Linearization
raster order (line by line)
zig-zag, e.g. DCT in JPEG
Morton order (Z-curve), e.g. DWT tree

David Bařina Compression techniques February 22, 2013 11 / 37

RLE (Run-Length Encoding)

coding sequences of identical
characters
many modifications
part of complex methods
code contains the information
about the encoded symbol and
the number of repetitions
e.g. "A A A A B C D" → "4×A
B C D"
"escape" symbol, "escape"
sequence
used almost everywhere (BMP,
PCX, TIFF, TGA, JPEG, bzip2)

no

reset counter

increment counter

yes

write sequence

identical to previous?

read symbol

David Bařina Compression techniques February 22, 2013 12 / 37

Coding of differences

relative coding, delta coding
part of complex methods
replace input value with difference from the previous value
trivial predictive method
error of prediction is futher encoded
e.g.
17 16 18 32 35 35 34 28 28 → -1 +2 +14 +3 0 -1 -6 0

David Bařina Compression techniques February 22, 2013 13 / 37

Predictive coding

the coded symbol is predicted from already encoded symbols
error of prediction is futher encoded
order of predictor (1st, 2nd, . . .)
domains (1-D, 2-D, tree)

Predictors
linear (delta coding, Lossless JPEG, PNG)
non-linear (median, MED/LOCO-I, Paeth, GAP)

x̂ =


min(a, b) : c ≥ max(a, b)
max(a, b) : c ≤ min(a, b)
a + b − c

x
a

b
c

David Bařina Compression techniques February 22, 2013 14 / 37

Unary coding

very simple entropy coding
optimal for p(n) = 2−n

maps non-negative integers N to code words, e.g. N → N × 1, 0

0 → 0
1 → 10
2 → 110
3 → 1110
...

0 and 1 can be exchanged

David Bařina Compression techniques February 22, 2013 15 / 37

Golomb-Rice coding

special case of Golomb coding; fast implementation
used e.g. in JPEG-LS, FLAC, MPEG-4 ALS
maps non-negative integers N to code words
the code is adjustable with parameter M = 2C

for M = 1 the coding is unary coding
to obtain a code of number N, following variables have to be
determined

Q = bN/Mc R = N − Q ·M C = dlog2 Me

Q is futher encoded with unary code, R with binary code with C bits

David Bařina Compression techniques February 22, 2013 16 / 37

Golomb-Rice coding

for M = 4
N Q R code
0 0 0 1 00
1 0 1 1 01
2 0 2 1 10
3 0 3 1 11
4 1 0 01 00
5 1 1 01 01
6 1 2 01 10
7 1 3 01 11
8 2 0 001 00
9 2 1 001 01
10 2 2 001 10
11 2 3 001 11
12 3 0 0001 00

David Bařina Compression techniques February 22, 2013 17 / 37

Shannon–Fano coding

method creates the code-words according to probabilities of coded
symbols (adapts on the data)
best results are achieved for the power of 2 probabilities
in practice, Huffman coding has slightly better compresion ratio
symbols are leaves in binary tree with edges (0 and 1) which represent
code-words
tree construction:
1. sort symbols according their probabilities
2. split this set into two sets in such a way that these sets will have
equal or very similar sum of probabilities
3. recursively apply step 2 on both sets (nodes of tree) up to
decomposition to single symbols
used in ZIP/Implode

David Bařina Compression techniques February 22, 2013 18 / 37

Shannon–Fano coding

example
probability code
0.25 1 1 11
0.20 1 0 10
0.15 0 1 1 011
0.15 0 1 0 010
0.10 0 0 1 001
0.10 0 0 0 1 0001
0.05 0 0 0 0 0000

David Bařina Compression techniques February 22, 2013 19 / 37

Huffman coding

popular entropy coding method
can adapts to data
best results for the power of 2 probabilities
symbols are the leaves in a binary tree in which the edges indicate the
code word
used in bzip2, Deflate, JPEG, MP3
tree construction:
1. sort symbols according to their probability
2. take two symbols with lowest probabilities, link them to the new
node
3. continue with step 2 until there are unlinked nodes
in adaptive variant, the tree has to be corrected on the fly

David Bařina Compression techniques February 22, 2013 20 / 37

Huffman coding

example

p code
0.4 0 0
0.2 0 1 10
0.2 1 1 1 111
0.1 1 0 1 1 1101
0.1 0 0 1 1 1100

0,1 0,1 0,2 0,2 0,4

0,2

0,4

0,6

1,0

David Bařina Compression techniques February 22, 2013 21 / 37

Arithmetic coding

optimal codes for any symbol probability
method assign one code-word to the entire data, not only single
symbol
method starts with the interval which is narrowed according to the
probability of coded symbols
interval narrowing requires more bits, so the code-word length
increases progressively
the idea: symbol with higher probability narrow interval less in
comparison with symbol with lower probability
practical implementation have to work with integers
used in: context coders, JPEG, Dirac

David Bařina Compression techniques February 22, 2013 22 / 37

Arithmetic coding

example

David Bařina Compression techniques February 22, 2013 23 / 37

Context-oriented compression

most commonly using arithmetic coding or its modification
unlike the arithmetic coding, these methods do not encode the
probability of single symbol
instead, they encode the probability of symbol occurrence in a
particular context
context: several already encoded symbols, pixels, bits or coefficients
→ order of context
the context is used to predict a next symbol (assign probability to any
next symbol)
escape codes: switch of context (PPMx)
used in: MPEG-4 (CABAC, CAVLC), JPEG 2000 (EBCOT),
JPEG-LS, PPMx

David Bařina Compression techniques February 22, 2013 24 / 37

Context-oriented compression

example
string aabbbc

context of order of 1
this model predict e.g. after ’b’ symbol
occurence of ’b’ symbols with
probability of 66% and ’c’ symbol with
probability 33%

EBCOT
coder used in JPEG 2000
image compresion
standard

David Bařina Compression techniques February 22, 2013 25 / 37

LZ77

published by A. Lempel and J. Ziv in 1977
many modifications
used in Deflate
sliding window
two parts: dictionary and lookahead buffer
in practice, thousands vs. tens of symbols
encoder produces tags (offset, length, symbol)

←...east#easily#teases...←

"eas" found 2× on positions 8 and 13 (match)
encoder produce tag (13, 3, ’e’)

tag elements are encoded with corresponding number of bits
dlog2 Se, dlog2(L− 1)e, dlog2 Ae, where A is a size of used alphabet

David Bařina Compression techniques February 22, 2013 26 / 37

LZ77

←...east#easily#trashe...←

when fragment is not found in dictionary, encoder produces tag (0,
0, ’r’)

←...east#easily#tttttt...←

match may exceed the search buffer, here (1, 5, ’t’)

it is the reason for the number of bits dlog2(L− 1)e of length
LZ77 assumed that fragments occur close together
there are many enhancements: variable length tags, sophisticated
data structures, omit symbol in tag

David Bařina Compression techniques February 22, 2013 27 / 37

LZ78

published by A. Lempel and J. Ziv in 1978
many modifications, e.g. LZW
no sliding window, only the dictionary
is memory intensive, can be solved in different ways
suitable data structure to maintain the dictionary is trie
first item in the dictionary is an empty string
encoder creates tags (index, symbol)

during compression, longest string stored in dictionary is found in
input stream
now, tag with its index and next symbol is created
every tag indicates new string, this string is stored into dictionary

David Bařina Compression techniques February 22, 2013 28 / 37

LZ78

Example: ABRAKADAKABRA

at the beginning, the dictionary is
empty
’A’, ’B’, ’R’ are encoded like
(0, ’A’), (0, ’B’), (0, ’R’)

’AK’ and ’AD’ are stored unde node
with ’A’ and encoded like
(1, ’K’), (1, ’D’)

in the same way, ’AKA’, ’BR’ and last
’A’ are encoded like
(4, ’A’), (2, ’R’), (1, EOF)

0

B

2

R

4

A

5 7

31

6

RA

DK

David Bařina Compression techniques February 22, 2013 29 / 37

LZW
variant of LZ78 developed by T. Welch in 1984
used in GIF, TIFF, PDF
use dictionary initialized with every symbols of alphabet
tag has only one element: (index)
encoder:
1. in input stream, looks for longest string I stored in dictionary
2. thus, next symbol x causes that Ix is not found in dictionary
3. dictionary index of I is sent to output, Ix is stored into dictionary, I
is now x
4. go to step 1
decoder:
1. reads dictionary index of I and puts string I to output
2. string Ix should be stored into dictionary, however x is not known
3. reads next index of J and puts corresponding string J to output,
first symbol of J is x
4. now Ix can be stored into dictionary, J is now I
5. go to step 2.

David Bařina Compression techniques February 22, 2013 30 / 37

LZW: example
Example: sir#sid# (encoder)
input x=’s’ Ix=’s’ found I=Ix=’s’
input x=’i’ Ix=’si’ not found output idx. I=’s’ store Ix=’si’ I=x=’i’
input x=’r’ Ix=’ir’ not found output idx. I=’i’ store Ix=’ir’ I=x=’r’
input x=’#’ Ix=’r#’ not found output idx. I=’r’ store Ix=’r#’ I=x=’#’
input x=’s’ Ix=’#s’ not found output idx. I=’#’ store Ix=’#s’ I=x=’s’
input x=’i’ Ix=’si’ found I=Ix=’si’
input x=’d’ Ix=’sid’ not found output idx. I=’si’ store Ix=’sid’ I=x=’d’
input x=’#’ Ix=’d#’ not found output idx. I=’d’ store Ix=’d#’ I=x=’#’
input x=EOF Ix=’#EOF’ not found output idx. I=’#’ end

Dictionary:
0–255 characters 0–255
256 ’si’
257 ’ir’
258 ’r#’
259 ’#s’
260 ’sid’
261 ’d#’

David Bařina Compression techniques February 22, 2013 31 / 37

LZW: example

Example: sir#sid# (decoder)
input index J=’s’ output J=’s’ x=J(1)=’s’ store Ix=’s’ I=J=’s’
input index J=’i’ output J=’i’ x=J(1)=’i’ store Ix=’si’ I=J=’i’
input index J=’r’ output J=’r’ x=J(1)=’r’ store Ix=’ir’ I=J=’r’
input index J=’#’ output J=’#’ x=J(1)=’#’ store Ix=’r#’ I=J=’#’
input index J=’si’ output J=’si’ x=J(1)=’s’ store Ix=’#s’ I=J=’si’
input index J=’d’ output J=’d’ x=J(1)=’d’ store Ix=’sid’ I=J=’d’
input index J=’#’ output J=’#’ x=J(1)=’#’ store Ix=’d#’ I=J=’#’

Dictionary:
0–255 characters 0–255
256 ’si’
257 ’ir’
258 ’r#’
259 ’#s’
260 ’sid’
261 ’d#’

David Bařina Compression techniques February 22, 2013 32 / 37

Deflate

used in ZIP (originaly), zlib/gzip, 7-Zip, PNG, MNG, PDF
combination of LZ77 and Huffman coding
in contrast with LZ77, tags have only two elements (offset,
length)

missing item (symbol) is written into output stream separately
compressed stream consists of three entities: literals/symbols,
offsets/distances and lengths
these entities are encoded using Huffman codes using two tables:
literals/lengths and offsets
lengths are limited up to 258, literals are bytes (0–255); offsets up to
buffer size of 32 kB
data are compressed in blocks of various sizes

David Bařina Compression techniques February 22, 2013 33 / 37

Deflate

defines 3 modes of compression:
1. uncompressed (max. 65 535B)
2. compression with predefined Huffman tables
3. compression with tables stored in compressed stream
match selection is delayed (by one symbol)

←...she#needs#then#there#the#new...←

do not selects match (11,3) = "the"
"t" encodes like literal
selects "delayed" match (20,5) = "he#ne"

David Bařina Compression techniques February 22, 2013 34 / 37

Suitable combinations of methods

data (uncompressed)
data → RLE (BMP, TGA)
data → prediction → EC (JPEG-LS)
data → prediction → RLE → EC
data → prediction → dictionary method (PNG)
data → dictionary method (GIF)
data → transform → RLE+EC (JPEG)

David Bařina Compression techniques February 22, 2013 35 / 37

Summarization

terminology (redundancy, data model, types of compression methods,
prefix code, dictionary, compression ratio, entropy)
multidimensional data processing
basic methods: RLE, delta coding, prediction
entropy coders (unary, Golomb-Rice, Huffman and arithmetic coders)
context-oriented compression
dictionary methods (LZ77, LZ78, LZW and Deflate)
combinations of these methods

David Bařina Compression techniques February 22, 2013 36 / 37

Sources

David Salomon. Data Compression: The Complete Reference.
4th ed., Springer, 2006.
http://www.stringology.org/DataCompression/

specifications of formats

David Bařina Compression techniques February 22, 2013 37 / 37

http://www.stringology.org/DataCompression/

	Terminology
	Simple techniques
	Entropy coding
	Dictionary methods
	Conclusion

