
First Steps Towards Unified Low-Power IoT Design:
The “DYNAMIC” Framework

Jakub Lojda, Josef Strnadel, Pavel Smrz and Vaclav Simek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
Email: {ilojda, strnadel, smrz, simekv}@fit.vut.cz

Abstract—This paper presents the development of a frame-
work named DYNAMIC (Dynamic Management Interface for
Power Consumption), designed for the dynamic selection of al-
ternative code implementations to minimize energy consumption
and extend battery life. The proposed solution works effectively in
situations where the device uses energy harvesting. In such cases,
the method plans the device power consumption to match the
available energy, minimizing the impact on device operation. It is
important to note that each device utilizing our framework will be
planning its energy budget in-field (and during run time), so each
device is optimized within a few days based on its environment
of usage. In the experimental section, we present simulation
results of experimental power management algorithms for our
framework. The results indicate that for our particular study
and energy harvester, it was possible to dynamically adjust power
consumption so that the user did not notice a significant difference
in device performance while achieving a balanced energy budget
– under simulated conditions and disregarding battery lifespan,
potentially allowing for indefinite operation.

Keywords—Internet of Things, Low Power, Energy Efficiency,
DYNAMIC Framework, Electronic Design, Energy Harvesting.

I. INTRODUCTION

During recent years, the word Internet of Things (IoT)
gained a high popularity. The IoT means a new era of inter-
connected devices (often called “smart” devices) that cooperate
fully autonomously on given tasks. In [1], the IoT is defined
as “An open and comprehensive network of intelligent objects
that have the capacity to auto-organize, share information,
data, and resources, reacting and acting in the face of sit-
uations and changes in the environment”. A very common
task for an IoT device is data acquisition and monitoring and
also transmission of measured data into a safe data storage,
usually a cloud computing platform. Wireless communication
is, however, one of the very expensive activities when it comes
to the energy consumption of a battery-powered device [2],
[3]. This makes it an important part to be considered and
managed when optimizing power consumption. The lack of
energy can be partially solved by utilizing the so-called Energy
Harvesting (EH) technologies [4], but still, in many cases, EH
can provide only a very small amount of energy in a limited
time.

The management of power consumption of low-power
IoT devices involves various techniques to minimize power
consumption while still maintaining the device’s functionality.
This can be achieved by making the device firmware aware
of the available energy stored in a battery and the energy

consumption required for the execution of different parts of the
firmware. However, integration of the information of energy
requirements into a code is a complex and challenging task,
often resulting in a hard-to-maintain programming source code,
possibly leading to inefficient power management and high
maintenance efforts needed to maintain the programming code.

The work presented in this paper aims to present a novel
framework to easily decouple the power management infor-
mation and logic from the main logic of the firmware. This
is because, generally, separation of code results in easier,
maintainable, and more readable code [5]. In this case, this
means easier optimization and adaptability of the code, allow-
ing developers to implement power-saving strategies without
modifying the firmware logic code. The framework is called
Dynamic Management Interface for Power Consumption (DY-
NAMIC). The DYNAMIC framework focuses on C++ as the
main implementation language. However, its key principles
are transformable to other languages as well. It is important
to note that the framework operates at the runtime and, as
its name suggests, dynamically selects the optimal implemen-
tation based on the energy consumption constraints and the
selected power management algorithm. In the experimental
part of this paper, three different optimization strategies are
shown that were simulated and are to be implemented into the
DYNAMIC framework.

Even the language used for programming influences the
energy efficiency of the resulting firmware [6]. In the literature,
many achievements are shown in the field of various low-
power and energy-efficient IoT devices. For example, in [7],
a cooperative approach to minimizing the energy consump-
tion of a complete network is shown. An approach to low-
power Over the Air (OTA) firmware update was presented
in [8]. Similarly to the previous approach, in [9], an OTA
update is presented; however, this time, with a focus on
updating TinyML models of machine learning, presented on
an agricultural IoT scenario. A low-power management of
power lines that are usually of-the-grid, using solar energy,
is presented in [10]. Very energy-efficient implementation of
an IoT gas meter is presented in [11]. An ultra-low power
Artificial Intelligence (AI) platform is presented in [12]. A low-
power AI platform for bird vocalization analysis is presented
in [13]. A bus tracker IoT system is presented in [14]. All these
undoubtedly very good achievements have only one common
aspect: Each of the platforms solves its low-power approach
in its own way, making it quite hard to update the power-
management algorithms, not to mention a complete switch of
the HW platform. A more generic approach is in [15], where
a low-power multi-sensor system is presented.



Our research aims to address the lack of a standardized and
unified approach to dynamic power management, particularly
for IoT devices. The primary motivation for this research
is to save significant resources in our environment, as [16]
predicted that by 2025, 78 million batteries will be discarded
daily only from IoT devices. Moreover, we want to make
IoT devices more convenient and practical, as the need for
battery replacement is a significant drawback in maintenance,
especially in places with many such devices.

Our framework aims to address the following issues often
present in the literature. To be fair, the cited literature does not
primarily attempt to solve these problems. However, it serves
as an example that current solutions for low-power IoT devices
lack the following aspects, which justifies our efforts:

1) It is crucial not to combine power management algorithms
with firmware application logic. This leads to unnecessary
code duplication across different products and reduces
the code’s maintainability. Furthermore, it increases code
complexity, making updates difficult.

⇒ In contrast to the methods commonly described in the
literature, our approach explicitly separates power man-
agement logic, power management data (i.e., the data used
for decision-making by the power management logic),
and the firmware logic itself (i.e., device application al-
gorithms). This separation, as implemented in our frame-
work, allows for easier integration and modification of
advanced power management algorithms without chang-
ing the core functionality of the device firmware. Our goal
is to enhance maintainability and simplify power manage-
ment integration into existing firmware algorithms.

2) Establishing a unified method for incorporating power
management algorithms into existing firmware logic is
very important.

⇒ A unified interface will allow portability of different algo-
rithms across platforms, as only the hardware abstraction
layer for switching power modes, etc., will need to be
re-implemented when porting the framework to a new
platform (microcontroller).

3) We strive to design and develop novel power management
algorithms that achieve better results and also consider
novel energy harvesting (EH) technologies.

⇒ Our focus is to reduce power consumption to extend
battery life (i.e., improve long-term user experience)
while maintaining the same level of functionality (i.e.,
short-term user experience). This can only be achieved
by carefully optimizing device behavior (i.e., power man-
agement).

This paper presents the initial work on a framework that
addresses the points mentioned above. This is our first publi-
cation on the topic. Our first step focuses on the design of the
interface, which will be briefly introduced in this paper, along
with the initial power management algorithms intended for use
within the framework. Additionally, we will demonstrate a sim-
ulation of a thermometer utilizing these algorithms, followed
by their evaluation. Naturally, we excluded algorithm ideas
from our simulation experiments that did not yield satisfactory
results, which highlights the importance of simulation when
pre-evaluating initial ideas.

This paper is organized as follows. A simple case study
in Section II presents the emerging framework approach. The
experiments and achieved results are presented in Section III.

The achievements are further analyzed in Section IV, with the
intention to outline the next steps in the development of the
framework. Section V concludes the paper and summarizes the
possibilities of the following research in this field.

II. POWER-AWARE DESIGN WITH DYNAMIC

The DYNAMIC framework is designed to assist both in the
design phase and in the practical implementation of energy-
efficient systems. Parameters for the framework settings can
be fine-tuned using a simulation (more on that later in the
experimental section of this paper). It is important to empha-
size that the pseudocode provided in this paper is illustrative
because, in the final version, the syntax may vary slightly
however, but most of the framework’s interfaces have already
been implemented, so only small changes might be necessary.

The process of power-aware firmware design can be di-
vided into three main phases: A) find the most power-hungry
parts of the algorithm; B) measure energy demands for these
most power-hungry parts; and C) alter the algorithm by insert-
ing the measured data into the implementation.

A. Locating Power-Hungry Parts of the Algorithm

Before using the framework, it is essential to identify the
energy-intensive parts of the algorithm. Typically, these include
data sensing, data processing, and communication [3]. Each of
these can be implemented in a less energy-intensive way, but
this often results in a decreased quality of user experience. For
example, less energy-demanding data sensing can be achieved
by reduced data resolution; this can, however, lead to decreased
accuracy of results. Similarly, for data processing, simplifying
can reduce the informative value of the results. And lowering
the frequency of communication can increase latency.

Code Snippet 1 shows a simple example of code for a
temperature-monitoring IoT device. And its UML AD is shown
in Figure 1.

#include "common.hpp"
uint8_t

buf[COMMON::BUF_SIZE];
time_t slp =

COMMON::DEFAULT_SLEEP;

int main() {
for(;;) {
measure(&buf);
send(&buf);
sleep(slp);

}
}

Code Snippet 1. Example of code from a very
simple temperature-monitoring device.

sleep(slp)

measure

send

slp =
 5

1.944 Joules per send

Figure 1. UML AD of
one iteration of the exam-
ple code.

If the UML AD of the algorithm is available, it can
be extended to include different implementation options and
configuration settings and their energy consumption; however,
in our case, most of the energy can be conserved by increasing
the length of sleep, in which the device is in a sleeping mode
of a neglect consumption.

It is important that the HW itself is capable of measuring
the current charge of the energy storage (battery or super-
capacitor) to enable dynamic power consumption planning.



Additionally, the hardware must be able to measure time (e.g.,
time elapsed since startup). This is crucial for planning power
consumption over time. When the hardware is in sleep mode, it
cannot keep track of time, so a built-in Real-Time Clock (RTC)
circuit is mandatory to ensure the framework can perceive time
accurately.

B. Measuring Energy Demands

Subsequently, it is necessary to create implementation
variants with lowered energy demands and measure the energy
consumption of each implementation variant. This can be done
experimentally [17] or estimated based on analysis. For tasks
that are related to a special HW (e.g., communication using
an external module), consumption can be measured directly
(e.g., by connecting a precise power analyzer between the
communication module and the power source). This allows
for profiling energy consumption based on variables such as
the number of packets sent, the distance from the base station,
etc. The data obtained can also be incorporated into the UML
AD as shown in Figure 1.

C. Modifying the Implementation

The next step involves integrating the collected data into
the implementation. A simplified example can be seen in
Figure 2, which demonstrates the previous implementation of
a temperature monitoring device with possible modifications
to the code.

sleep(slp)

measure

send

S
L

O
P

E
A

lg.
M

aintain 0.8 C
harge

slp-- no-op slp++

Figure 2. Part of the endless loop of the temperature-monitoring device UML
AD modified to include data for power management planning.

To keep power demands data and the firmware implemen-
tation separate, our DYNAMIC framework employs advanced
implementation techniques in C++, which extend the language
with the necessary constructs.

The framework can select the power management style ac-
cording to a chosen power-management algorithm. Currently,
there are two experimental implementations, both of which
are optimized for usage in combination with EH, although EH
usage is not mandatory. Both of these target optimization of
the power consumption while powering its impact on the user
experience (precision, latency, etc.):

1) The “Amount” algorithm: This algorithm tracks the abso-
lute amount of consumed energy and selects implementa-
tions based on that amount. A higher amount of consumed

energy results in a less energy-demanding implementation
executed and vice versa. These interval values for the
decision must be set by the designer. This algorithm allows
the setting of a border value of battery charge level, above
which the energy saving is not enforced.

2) The “Slope” algorithm: This algorithm monitors the slope
of the battery state development and selects energy-saving
or non-saving variants based on this. When EH is im-
plemented in the device, it can also select more energy-
intensive implementations (when available) to potentially
utilize the harvested energy that would be otherwise wasted
(as limited by the battery capacity). This algorithm also
allows the setting of a battery charge level, below which
the planning is much more aggressive to conserve energy.

An example of code modified to use the “Slope” power-
management algorithm be seen in Code Snippet 2.

#include "common.hpp"
#include "dynamic_lib/dynamic.hpp"
uint8_t buf[COMMON::BUF_SIZE];
time_t slp = COMMON::DEFAULT_SLEEP;
// capacity and pointers to measure functions
DYNAMIC_SOURCE(COMMON::BATT_CAPACITY_MAX,

COMMON::curr_power, COMMON::curr_time);
int main() {
for(;;) {
measure(&buf);
send(&buf);
// dynamic selection of sending interval
{
// p. manag. alg., preferred batt. charge
DYNAMIC_INIT(SLOPE, 0.8);
PRICE_BLOCK(DYNA::INF, +0.15, {

slp--;
});
// implicit no-op for uncovered interval
PRICE_BLOCK(-0.15, DYNA::INF, {

slp++;
});

} // point of the selected block execution
sleep(slp);

}
}

Code Snippet 2. Example of modified code using the DYNAMIC framework
for power management.

As can be observed, at the beginning, the DYNAMIC
library is included, which allows the use of the new constructs.
Then, the battery capacity must be set, subsequently with
methods used to obtain the current battery charge and the
current in real-time in seconds (a value of seconds from the
start of the system is sufficient). The following few lines
of code remain unchanged. Then, the new part increasing
the sleep interval is present within a block of alternative
implementations. As can be seen, a variant of decreasing the
sleep value is present as well. Using the Slope algorithm, it is
distinguished which of these alternative blocks is executed. The
actual execution of the selected block takes place exactly at
the end of the block, meaning that before the ending bracket,
the variable still holds its previous value. Within the block,
there is also a definition of the management algorithm and
the preferred charge level of a battery (0.8 equals 80% charge
level in this case) to conserve enough energy for “worse times”
when enough energy might not be provided by the EH.



III. EXPERIMENTS AND RESULTS

To research appropriate types of algorithms for power man-
agement, we developed a simulation in Python3 language [18]
with the help of the SimPy library [19], a process-based
discrete-event simulation framework.

Again, we focus on modeling a simple device that monitors
temperature. This device is equipped with a rechargeable bat-
tery (Li-Ion accumulator) of 1000 mAh, with a voltage range
of 3.4 to 4.2 Volts. It also includes a communication module,
where a single transmission consumes 1.944 Joules, which is
approximately 0.15 mAh charge at 3.6 V. For simplicity, we
neglect the sleep discharge current and the energy required for
a single temperature measurement.

The device is initially set to transmit temperature data every
5 minutes. Additionally, we consider this same device with and
without EH technology. We modeled EH technology capable
of supplying 10 mA to the battery for a total of four hours
within every 24-hour period, effectively increasing the battery
charge by 40 mAh daily.

We had three use cases in total: One use case fully
without any power management to serve as a reference and
two additional use cases implementing the power management
logic, one for each algorithm type.

No Power Management: In this use case, we created two
models of the temperature monitor, one model without and one
model with EH capability. Both are equipped with a battery
but without using the DYNAMIC framework.

“Amount” Algorithm: In this use case, the device moni-
tors the amount of energy consumed. When the battery charge
decreases by more than 0.5 mAh, the transmission interval
increases by one minute. The maximum interval is set at
60 minutes, beyond which no further increase occurs. In
contrast, if the battery is recharged by more than 0.5 mAh,
the transmission interval decreases, with a minimum value of
one minute as the fastest interval. Consumption planning is
dynamically adjusted with each execution of the scheduled
code block. However, when measuring consumption, the fifth
previous battery charge is considered (the framework imple-
ments a buffer of charge history), ensuring a slight smoothing
of the process. The algorithm was tested on two simulation
models with the same parameters: One for a device with and
one without EH technology. The preferred battery charge level
was set at 80% for both models.

“Slope” Algorithm: Here, the device monitors the slope
of battery charge decrease or increase over time. For this
algorithm to be applied, the device must be equipped with
an RTC module, as the slope in degrees is calculated from the
battery charge in time (similarly as on a chart). For devices
without EH, if a decline is lower than -0.15 degrees, the
sending interval increases by one minute per each sending
interval to conserve energy. In contrast, to decrease the interval,
an inclination of more than +0.15 degrees is required. The
interval is adjusted until the slope of the charge is just between
the interval of +0.15 and -0.15 degrees. It is important to
note that a positive slope value indicates an increase in battery
charge and vice versa; a zero-degree value means that the bat-
tery charge remains unchanged, and for instance, -90 degrees
represents an ideal short circuit: Immediate battery discharge.
For devices with EH, we adjusted these values to -1.75 and

+1.75 degrees, respectively. In both cases, the preferred battery
charge level was set at 80%.

The results of the battery charge simulations for each of
the models for the first 60 days after the device was put into
operation can be seen in Figure 3. The color of the line in
each plot corresponds to the color palette on the right side
of the chart and indicates user experience, specifically an
increase (or decrease) in communication latency. This value
is taken relative to the default setting, which was to transmit
temperature data every five minutes. This means that a zero
difference means the latency remains to be the expected one,
being denoted by the green color. The red denotes a worse
experience (i.e., higher latency), and the blue denotes an even
better experience than expected (i.e., latency smaller than
originally set).

As you can see from the simulation output, the worst
performance was observed in the device without power man-
agement (top left column). It operated with expected latency
for the first approximately 18 days, but then it fully discharged
and shut down permanently. In contrast, the version with EH
(bottom left column) discharged more slowly; however, it
began to experience outages, which are barely visible as a
red color in the bottom right corner of the corresponding plot.
These outages are due to the device recharging during the EH
activity, but the charge is insufficient, eventually leading to
repeated shutdowns of the device.

In the middle column, you can see the device utilizing the
“Amount” algorithm. For the version without EH (top center),
there was a significant extension of lifespan (12 times longer
than the version without planning, which corresponds to the
upper limit of sending temperature data every 60 minutes).
However, this also resulted in a considerable decrease in user
experience. The device with EH (bottom center) performed no-
tably better. The algorithm increases the transmission interval
due to EH energy generation outages, with a condition ensuring
that conservation measures are only implemented after the
battery charge drops below 80%. As can be observed, this
approach balanced energy intake and consumption, potentially
allowing the device to operate indefinitely, of course, if we
abstract from the battery and device wear (failure over time).

Devices utilizing the “Slope” algorithm are displayed in
the right column. As observed for the device without EH (top
right plot), the algorithm attempts to conserve energy because
it detects continuous battery discharge. On the contrary, in
the case of the device with EH (bottom right), there is a
slight increase in latency, which remains under 10 minutes,
stabilizing after a while and achieving a balanced battery
charge at the desired 80%. This solution maintains a balanced
intake and consumption of energy, implying that, provided the
regular function of EH is maintained and battery degradation
is ignored, the device could operate indefinitely. Additionally,
acceptable latency is preserved so the user does not experience
significant issues. When energy intake increases, the original
sleep interval is restored, and when energy intake decreases,
the interval is optimized. This behavior is observable in the
plot, where during EH charging, the interval returns to its
original state (i.e., the color changes from yellow-green to rich
green in the plot sections when the battery charge rises).

IV. ANALYSIS

The purpose of the DYNAMIC Framework, is to:



Battery Charge Over Time

 0

 200

 400

 600

 800

 1000

Day 0 Day 20 Day 40 Day 60

C
h
a
rg

e
 L

e
v
e
l 
(m

A
h
)

Time of Device Run (Days)

Battery Charge

Better
(Lower Lat.)

Expected
(Set Lat.)

 10

 20

 30

 40

 50

Bad
(Higher Lat.)

U
se

r 
E
x
p
e
ri

e
n
ce

 (
Δ

 L
a
te

n
cy

)

No Power Management
Without Energy Harvesting

 0

 200

 400

 600

 800

 1000

Day 0 Day 20 Day 40 Day 60

C
h
a
rg

e
 L

e
v
e
l 
(m

A
h
)

Time of Device Run (Days)

Battery Charge

No Power Management
With Energy Harvesting

 0

 200

 400

 600

 800

 1000

Day 0 Day 20 Day 40 Day 60

 

Time of Device Run (Days)

Battery Charge

"Amount" Power Management
Without Energy Harvesting

 0

 200

 400

 600

 800

 1000

Day 0 Day 20 Day 40 Day 60

 

Time of Device Run (Days)

Battery Charge

"Amount" Power Management
With Energy Harvesting

 0

 200

 400

 600

 800

 1000

Day 0 Day 20 Day 40 Day 60

 

Time of Device Run (Days)

Battery Charge

"Slope" Power Management
Without Energy Harvesting

 0

 200

 400

 600

 800

 1000

Day 0 Day 20 Day 40 Day 60

 

Time of Device Run (Days)

Battery Charge

"Slope" Power Management
With Energy Harvesting

Figure 3. Results of simulations for the battery charge during runtime for the first 60 days; the color of the chart line indicates the user experience (change in
latency from the expected setting).

1) simplify the integration of power management into exist-
ing firmware algorithms;

2) standardize the approach to implementing power manage-
ment in new firmware algorithms;

3) separate the power management logic from the firmware
logic in the code.

After presenting the interface, which was tested for fea-
sibility in C++, we began designing algorithms for power
management. For this, we employed a simulated approach,
which allowed us to inspect a device’s 60-day runtime in a
significantly shorter period. During the implementation and
analysis of the experimental results, we found out several
fundamental properties that will potentially shape the future
development of the framework:

1) Our solution stands out for its generality, offering a
level of unification while still maintaining a natural separation
between power management logic and the firmware algorithms
(where algorithm logic allows for it).

2) Using relatively simple algorithms embedded into the
simulated device, we were able to achieve a level of auton-
omy under certain conditions where the device could operate
without battery replacement (of course, when abstracted from
factors like battery aging or hardware degradation).

3) One limitation of our current solution is that it does not
yet cover scenarios where the device itself provides additional
data for power planning (e.g., a thermometer receiving input
that temperature reporting is unnecessary, e.g., triggered by
a button press or motion detection in a room). It would be
interesting to incorporate additional data-driven responses into
the framework. For example, a thermometer could only send
temperature data when a change occurs while using the power
management algorithm more intensively when the temperature

fluctuates frequently. For some applications, it might also be
helpful to plan based on external factors, such as whether a
room is occupied, a building is in operation, or an off-season
mode.

4) For more complex devices, it may be necessary to have
multiple sections of code with power planning. In the future,
we would like to test whether power management remains
reliable if we apply multiple algorithms within a single device.

5) A current drawback is the need for specific hardware to
inform the algorithms about the battery’s charge level (such as
a Coulomb Counter integrated circuit). While we would like
to enable implementation in devices without this hardware,
we have yet to find a way to maintain accuracy without such
feedback.

6) Estimating device power consumption can sometimes be
challenging. It might be interesting to explore the possibility of
the algorithm learning the device’s consumption pattern over
the first few days of operation. This could be advantageous
for specific applications, such as small-scale productions or
devices where the final location cannot be predetermined.
However, this somewhat contradicts our goal of keeping the
framework as "lightweight" as possible.

7) With the previous point, exploring the possibility of
automatically selecting the most suitable power management
algorithms could be interesting. This would eliminate manual
specification, allowing the framework to choose the best algo-
rithm automatically. However, this level of automation appears
to be a goal for distant future research.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we presented the initial steps towards de-
signing a framework for power consumption planning, which



allows for the abstraction of power management methods from
the rest of the useful code (i.e., the application logic). The
article further introduced two algorithms for this framework,
which were simulated on a model of a simple wireless ther-
mometer IoT device with and without EH technology.

The framework, once completed, will be usable to:

1) create devices with prolonged battery life easily and
in a unified way, saving significant resources in our
environment and

2) make IoT devices more convenient and usable, as the
need for battery replacement is a significant drawback
in maintenance, especially in places with many of such
devices.

The results suggest that by choosing the appropriate algo-
rithm and setting it correctly, it is possible to achieve a device
that dynamically balances the energy budget while minimizing
the negative impact on user experience (in our case, the latency
of conducting and sending temperature measurements). An
important aspect is that the device is planning its energy budget
in-field, so each device is optimized within a few days based
on its environment of usage.

Future research in this area could address the following
questions:

1) Will the algorithms conflict if different ones are used within
a single firmware?

2) Could the framework be improved by incorporating addi-
tional data into power planning, such as having the device
send data only when a change in measured data occurs or
when certain conditions are met? How could we integrate
these external factors, like room occupancy, into the power
management strategy?

3) Could the optimal algorithm be chosen automatically and
dynamically during a firmware operation? Although we do
not currently plan to implement this, it might be interesting
because the computational cost of determining the best
power management method is minimal compared to the
potential energy savings from proper configuration.

4) Would it be feasible to make the energy demands measure-
ments also on the device during run time? In such a case,
the corresponding step during the design could be removed,
potentially leading to easier development of power-efficient
devices.

In conclusion, we would like to mention that the provided
pseudocode of using the framework is still in development,
and the usage might change slightly, but the main interface
parts are already implemented, so any changes would be
minor. The primary contribution of this paper is the simulation,
which provides the foundation for implementing the algorithms
into the framework. The simulation enabled us to design and
optimize the initial set of energy management algorithms.

ACKNOWLEDGEMENTS

This work was supported by the Chips JU Project LoLiPoP-
IoT (Long Life Power Platforms for Internet of Things),
www.lolipop-iot.eu, grant agreement No. 101112286, which
is jointly funded by the Chips Joint Undertaking and national
public authorities.

REFERENCES

[1] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of things (iot):
A literature review,” Journal of Computer and Communications, vol. 3,
no. 5, pp. 164–173, 2015.

[2] “IoT power budgets: IoT Connectivity Technologies and Batter-
ies.” [Online]. Available: https://caburntelecom.com/iot-connectivity-
technologies-and-batteries/

[3] M. Enzinger, “Energy-efficient communication in wireless sensor
networks,” Sensor Nodes–Operation, Network and Application (SN),
vol. 25, no. 11, 2012.

[4] S. Priya and D. J. Inman, Energy harvesting technologies. Springer,
2009, vol. 21.

[5] J. K. Ousterhout, A philosophy of software design. Yaknyam Press
Palo Alto, CA, USA, 2018, vol. 98.

[6] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes,
and J. Saraiva, “Energy efficiency across programming languages: how
do energy, time, and memory relate?” in Proceedings of the 10th ACM
SIGPLAN international conference on software language engineering,
2017, pp. 256–267.

[7] S. R. Sarangi, S. Goel, and B. Singh, “Energy efficient scheduling in
iot networks,” in Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, 2018, pp. 733–740.

[8] O. Kachman and M. Balaz, “Optimized differencing algorithm for
firmware updates of low-power devices,” in 2016 IEEE 19th Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits &
Systems (DDECS), 2016, pp. 1–4.

[9] C. Nicolas, B. Naila, and R.-C. Amar, “Energy efficient firmware over
the air update for tinyml models in lorawan agricultural networks,” in
2022 32nd International Telecommunication Networks and Applications
Conference (ITNAC), 2022, pp. 21–27.

[10] X. Bu, C. Liu, S. Liu, Q. Wang, L. Lv, and W. Lu, “Low power
consumption and intelligent design of power line iot edge nodes,”
in 2021 IEEE 5th Information Technology,Networking,Electronic and
Automation Control Conference (ITNEC), vol. 5, 2021, pp. 1619–1624.

[11] Z. Wang, C. Hu, D. Zheng, and X. Chen, “Ultralow-power sensing
framework for internet of things: A smart gas meter as a case,” IEEE
Internet of Things Journal, vol. 9, no. 10, pp. 7533–7544, 2022.

[12] Y. Meng, Z. Xudong, Z. Jianwen, X. Xinxin, W. Changling, and
W. Fang, “A ultra-low power system design method of ai edge compu-
tation,” in 2023 19th International Conference on Natural Computation,
Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2023, pp. 1–5.

[13] L. Schulthess, S. Marty, M. Dirodi, M. D. Rocha, L. Rüttimann, R. H. R.
Hahnloser, and M. Magno, “Tinybird-ml: An ultra-low power smart
sensor node for bird vocalization analysis and syllable classification,” in
2023 IEEE International Symposium on Circuits and Systems (ISCAS),
2023, pp. 1–5.

[14] I. W. Mustika, A. Bejo, A. R. Fidiyanto, and D. W. Hapsari, “Develop-
ment of campus bus tracker firmware using gnss module on the stm32
platform,” in 2023 International Conference on Digital Business and
Technology Management (ICONDBTM), 2023, pp. 1–6.

[15] M. Hayashikoshi, H. Noda, H. Kawai, K. Nii, and H. Kondo, “Low-
power multi-sensor system with task scheduling and autonomous
standby mode transition control for iot applications,” in 2017 IEEE
Symposium in Low-Power and High-Speed Chips (COOL CHIPS),
2017, pp. 1–3.

[16] ENABLES Project, “Position paper,” 2024, accessed: 2024-09-21.
[Online]. Available: https://www.enables-project.eu/outputs/position-
paper/

[17] M. Rashid, L. Ardito, and M. Torchiano, “Energy consumption analysis
of algorithms implementations,” in 2015 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM),
2015, pp. 1–4.

[18] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

[19] Team SimPy, “SimPy: Discrete Event Simulation for Python,”
https://simpy.readthedocs.io/, 2023, accessed: 2024-07-10.


