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ABSTRACT While the previous work mainly focused on either effectiwgle-

We explore the performance of several types of language ImodeMentations of hybrid ASR systems or on defining and learnineg t
on the word-level and the character-level language mogatisks. ~ S€t of the subworq units, in our work we study models built om t
This includes two recently proposed recurrent neural netaechi-  Of the subword units.

tectures, a feedforward neural network model, a maximunoppt First, we compare the performance of several different-tech
model and the usual smoothed n-gram models. We then propogédues on character-level modelling tasks. We study théoper

a simple technique for learning sub-word level units frora trata, ~Mance of smoothed n-gram models, several types of neural net
and show that it combines advantages of both character antt wo Works (including two recently proposed recurrent arcttitees),
level models. Finally, we show that neural network baseduage and a maximum entropy model. We find that smoothing techsique
models can be order of magnitude smaller than compresseam-g Work relatively poorly for character-level language maudg| and
models, at the same level of performance when applied to addro Other character-level techniques perform significanthyere

cast news RT04 speech recognition task. By using sub-watd, un Next, we perform experiments with subword-level models. We
the size can be reduced even more. find that performance of the subword-level models is sigaifity

better than that of character-level models, while the OQ¥ isstill
zero (we can assign a sensible probability to any sequenckant
acters). We find that subword-level models can be competitith
word-based models, and the amount of parameters that nbecs

Index Terms— language modelling, compression, neural net-
work, maximum entropy

1. INTRODUCTION timated is significantly lower for the neural network basadduage
o models trained on subwords.
Most Sta“stlcal |anguage mOdels use WOde I’ather thamctﬁs as Fina"y, using these ﬁndingsy we propose a nove| Comprassio

their atomic units due to their superior performance in ®ohac-  technique for neural network language models. Using qaatitin,
curacy and the number of parameters to be estimated [1]. ttowe e reduce the memory requirements by around 90% which makes
Word'level mOdels are Unable to deal W|th new WOI’dS, Commonl the resu|ting mode|s Orders Of magnitude Sma”er than mg‘rmd_
called Out-of-Vocabulary words. Recently, there has bdenhafre- |5, while maintaining the same level of word error rate orraa8-
search effort aiming at the OOV problem in the context of wienkl  cast news RT04 speech recognition task. We then discusthe p
models [2], with subword units that are learned from the fBitaand  sibility of further reduction of size of the neural networkniguage

based on more linguistically motivated approaches [4]. dxdhgh  model by decomposing infrequent words into subwords.
overview of OOV modeling in automatic speech recognitiois

is given by Bazzi [5].
The root of the OOV problem lies in the complete inability of 2. CHARACTER-LEVEL MODELS
word-level language models to sensibly assign nonzerogitty )
to previously unseen words. The problem can be addressed usi Character-level language models are commonly used for limgde
smoothing techniques: for example, we could directly teamodel ~ New words in open-vocabulary speech recognition and in keyw
on the subword-level, or follow a hybrid approach, where tine ~ SPotting systems, and many successful phonotactic laegdagti-
known words are delegated to a character-level languagerigld  fication techniques use generative language models baselaon
Despite their intuitive appeal, hybrid approaches can lobpr acters or phonemes. Usually, smoothing techniques suchttenw
lematic for languages whose words make poor atomic uniis,tae  Bell discounting are used to build such models [7]. Alterredy, we
case for Czech, Finnish, and Turkish, among others. The Gé@ r C€&n apply neural network language models [8] (NNLM) to thistp
of such languages remains unacceptably high even when tiabdvo lem, because NNLMs have been reported to achieve the stéite-o
ularies exceed a million of word forms. art performance on several standard word-level languag#ettiog
Thus, in this paper we study language models trained on sug@sks [9, 10, 11]. Hybrid character-word-level NNLMs haweeh

plied to character-level language modeling in [13].

The paper was written while the first author was visiting thewvr-
sity of Montreal. The second author was supported by a Gdegt@vship.
This work was partly supported by Technology Agency of the@zRe-  2.1. Penn Treebank Corpus experiments
public grant No. TA01011328, Czech Ministry of Educatiorojpct No. . .
MSMO0021630528, and Grant Agency of the Czech Republic prdj®. We performed experiments on a tokenized Penn Treebank €orpu
102/08/0707. whose words were split to individual characters and the epae-



Table 1. Results on Penn Treebank corpus (test set) with character- Table 2. Results on text8 (test set) with character-level models.
level models.

Model Bits/character
Model Bits/character N-discounted n-gram 1.64
NNLM 1.57 ME 1.55
N-discounted n-gram 1.48 RNNME 1.55
BPTT-RNN 1.42 HE-MRNN 1.54
HF-MRNN 1.41 ME interpolated with HF-MRNN 1.47
Maximum Entropy n-gram (ME) 1.37

held-out set and the last 5M as test set. We were unable tothai
tween words were replaced by a special symbol. Sectionswe2®  BPTT-RNN models with a sufficiently large hidden layer, aslae
used as training data (5017k characters), sections 21-2dlidation  feedforward NNLM, in a reasonable amount of time. Howeues, t
data (393k characters) and sections 23-24 as test data ¢hé2kc-  HF-MRNN model was successfully trained with 1500 hiddertuni
ters). The original vocabulary size was 10K words and alldsor  thanks to the data-parallel nature of the HF optimizer aeditfe of
outside vocabulary were rewritten to a spesiahk> token. eight GPUs [13]. We trained maximum entropy models with up to
We trained n-gram models using SRILM [14] toolkit using a 20-gram features. We also used a novel architecture, whemead
number of smoothing techniques. We tuned the order and tiigtco RNN model is trained jointly with the ME model (we denote tais
cutoffs on the validation set, and found 8-grams with Ristadtu-  chitecture RNNME which is described in [10]). We report tegults
ral discounting to be the best n-gram model. We then traieedral  for all the models in Table 2.
neural network based language models; with feedforwarbitec With increased amounts of data, we still observe poor perfor
ture [8] (NNLM), recurrent architecture trained by stocti@gradi-  mance of standard smoothed n-gram models. The maximurrpgntro
entdescent[15, 16] (BPTT-RNN) and Hessian-free optimieedr-  model performs very well, and the HE-MRNN achieves the best r
rent network [17] with multiplicative connections [13] (HARNN). syt among single models. Moreover, it discovers compleargn
Also, we trained a hash-based maximum entropy model witroup tinformation to the ME model, as their linear interpolatiomyides
15-gram features [10]. The results are summarized in Table 1 fyrther significant improvement. Still, the individual meld seem to
The usual smoothing techniques work poorly when applied tqerform worse than word-level models — with Kneser-Ney stned
character-level language models, and even the best n-graielsn  5-gram, we obtained 1.43 bpc on the test set, with 1.17% O@ ra
perform significantly worse than the RNN models. The feedfor Thus, if we suppose that each OOV word can be encoded using 4x
ward neural network architecture was unable to achieve gedidr-  more bits than an average word, the entropy of word-levetarg
mance. Recurrent NNLMs work reasonably well, and both ingin  model would be 1.48 bpc.
techniques lead to similar results on this data set. The swgris-
ing fact is that a simple maximum entropy model (ME) with r@ugr
features is the best performing method on this task. Its etap 3. SUBWORD-LEVEL MODELS
tional complexity is orders of magnitude lower than of RNNdats
that use up to 1000 hidden units in the hidden layer (furtlenc It appears that training highly accurate character-levediets is dif-
parison and relationship between ME and NN models is pravide ficult and that performance is generally lower than of wardel
in [10], as well as description of the hash-based ME implamen models. Neural networks with recurrent architecture regjlarge
tion). On the other hand, the memory complexity of the RNN mod hidden layers (more than 1000 neurons), and feedforwardanks
els is much lower than that of models based on n-grams — we wilflo not provide good results at all. An alternative approachoi
study this interesting fact later. use subword-level models, that can potentially share thardeges
As the Penn Treebank does not contain any OOVs (all word9f word-level models and are as general as character-levekrs.
outside vocabulary are rewritten asunk>), we can compare While a simple approach is to start with syllables as subwuits,
character-level to word-level models. We can easily compghe  We learned the set of subwords from the data.
bits-per-character of the word-based models by calcigatine Elman showed that most of the entropy is concentrated at the
entropy of the entire test set and dividing it by the numbestafrac-  first few characters of each word [18]. It would therefore lnad
ters. This way, we obtained 1.32 bpc for the test set usingwft  if we could avoid making expensive predictions in settingsere
word-based LM with modified Kneser-Ney smoothing and no ¢ounthere is little to no uncertainty. Thus, to not waste comfiote!
cutoffs. This suggests that word-based models are gepdreiter  resources, we chose to kedp most frequent words, and split all the
for modeling text sequences, at least for English. It cande-h remaining words into syllable-like units based on very dienples
ever argued that character-level models reserve some Igitigpéor (we split words at vowels and limit the minimum size of subdvor
novel words, and thus the comparison is not completely fadaluse  to 2 characters). Then, we keep tHemost frequent syllables plus
their ability to sensibly assign probability to OOV wordslwiot be ~ Words and split all remaining tokens into individual chaess. It
utilized. is easy to convert regular text into this alphabet and batk wo
information loss. For example,

2.2. Large data set experiments new conpany dreamwrks interactive

We have performed additional experiments on 'text8’ datdrsgn ~ Ne€W conpany dre+ am+ wo+ rks: in+ te+ rat+ cti+ ve:
Matthew Mahoney’s website This data set contains 100M char-

acters, from which we used first 90M as train set, the next 5M as  Every word can be decomposed into subword units in multiple
ways; for example, a word can be spelled with characters tr wi

1Available atht t p: / / mat t mehoney. net/ dc/ t ext 8. zi p syllables. However, as long as we follow the above approach c




Table 3. Results on text8 (test set) with subword-level models. Table 4. Re-scoring experiments on RT04 Broadcast News (evalua-
tion set). Szes of n-gram models are in the ARPA text format.

Model Bits/fragment| Bits/character
Witten-Bell n-gram 471 1.58 Model WER | size size(MB)
ME 461 1.55 [%0] (MB) | compressed
HF-MRNN 4.44 1.49 unpruned 4-gram - 2792 242
RNNME 4.36 1.46 4.7M 4-gram 141 | 122 14
54M 4-gram 13.11 | 1862 162
RNN-80 (text format)| 12.98 | 130 -
sistently, the model will learn to assign negligible proititibs to RNN-80 (quantized) || 13.00 ] - 13

“incorrect” spellings.

For the following experiment performed on the 'test8’ dagh s
we usedW = 1000, S = 2000, and 26 unique characters, yielding We performed K-means clustering of the neural network wisigh
a vocabulary of size 2026. We can see in Table 3 that perfazenan with K=128. Every weight is replaced by index of the neardssc
of almost all models trained on word/subword units is imgav  ter, and can be encoded using 7 bits, instead of 64 bits (fdblde).
compared to character-based models (Table 2). Among ttram-g In Table 4, it can be seen that there is no significant degiadat
models, the Witten-Bell discounted 8-gram performed bestir ~ WER when using the quantized model. For comparison, we used
experiments. We trained ME models also with up to 8-gramufest  three baseline n-gram models: 4-gram without any pruning, b
(higher orders did not provide significant improvementshe RN-  using SRILM default cutoffs (all single occurring trigramasd four-
NME model was trained with 160 hidden units and the HF-MRNNgrams are discarded); 4-gram pruned down to 4.7 millionamgr
had 1500 hidden units and 1500 factors. entries that is used in the decoding, and a 4-gram pruned down
to 54M n-grams that is used for rescoring in the baselineesyst
In our experiments, we replaced the 54M n-gram model by RNN
model, using lattice rescoring technique described in.[ZXpring
the RNN model in plain text takes about 130 MB, while a binary
representation of the quantized RNN model takes as little3d€B.

In the previous experiments, we have observed that charante Thus, we can completely avoid using the huge 54M n-gram model
subword-level language models based on n-gram statiséceesly ;4 use much more compact RNN model instead.

memory inefficjent compared to neura] networks models, so W€ The baseline n-gram models can be of course compressed as
therefore consider ways of compressing language model®y usi \,a( To save space, we can use standard gzip which redueeizth
them. . . of the 54M n-gram model to 525 MB. However, many n-gram LM-
Compression of backoff n-gram language models is a wellspecific compression techniques were developed, and tharbesg
studied problem, as the size of a language model is usualbna v  them can reduce the size of the models to about 3 bytes perm-gr
significant part of LVCSR and MT systems [19, 20]. However, gniry [20]. In Table 4, we estimate the size of compressedamg
we are nqt aware of any successful attempt Fo compress lgaguamadels by counting 3 bytes for each n-gram entry. Nonethetae
models with neural networks. Most of the previous NNLM resba 54\ n-gram model takes more than 10 times the size of quahtize
was focused on obtaining the best possible accuracy anégsg  RNN-80 model, which even achieves slightly better perforcea
speed, while the size of models was not studied before. Hewfev We can push the idea even further: different parts of thealeur
practical ap_pllcatlpns_, the size of models can be an impbfeator. _ network very likely require different precision, as for exple infre-
~ The main motivation for neural networks for language maweli  quent words are associated in the model with the same ambpat o
lies in their continuous representations of words and iir tigility  rameters as frequent words. We can perform more aggressae g
to generalize to novel contexts. The NNLM's component tr@ts-  tjzation of parameters associated with the infrequent songthout

4. COMPRESSION OF NEURAL NETWORK LANGUAGE
MODELS

forms a context to a prediction is reused in all possibleextst(i.e.,  |osing much of precision. By quantizing different parts bé tnet-

the recurrent connections), causing substantial spadegsaever ok to different amount of bits, we were able to further reeithe

n-gram models which explicitly store every context evereshed. size of the model to 10 MB with no significant degradation afpe
formance.

4.1. Quantization

We found that after NNLMs are trained, weights can be quadtiz 4.2 Subword based neural network models

to very few bits with only small degradation of performanashigh  We can perform further compression by following the pregigu
precision weights (doubles) were needed only during tngibiut not  proposed approach for reducing the size of the vocabulayydib
for testing. viding all infrequent words into subword sequences, we gaatty

We used state-of-the-art setup for Broadcast News RTO4hpee reduce the number of parameters in the NNLM (the extent of the
recognition from IBM, based on Attila decoder [21]. The laage reduction is comparable for the feedforward and recurrecttitec-
models are trained on 400M words and vocabulary size is 84&. Wtures). Lettingl” be the size of the vocabulary atfl be the size of
have previously described experiments with RNNLMs on thisig  the hidden layer, the number of parameters of the basic RNtkmo
in [10] and found that with just 80 neurons in the hidden layegs is(2 xV + H) x H.
can obtain better speech recognition performance thanhaiteline Thus, by reducing the vocabulary from 100K words to 10K units
4-gram model. Although more neurons lead to better resuls ( and usingd = 100, we can reduce amount of parameters by almost
were able to obtain more than 10% reduction of WER inour mesi  90%. However, as was mentioned previously, the smallerdoaty
work), in this paper we focus just on comparison of modelshwit ulary is, the larger the hidden layer needs to be, at the saveé df
similar performance in speech recognition. accuracy. Clearly, the optimal size of vocabulary is a tsys&eific



Table 5. Re-scoring experiments on NIST RT05 Meeting recognition

setup with subword-level RNN models. [1]
Model WER | size | size (MB)
[%] | (MB) | compressed 2
Word-based bigram 27.0 93 11
Word-based 4-gram 25.1 | 464 43
Word-based 4-gram (pruned) 255 | 142 15 3l
Subword RNN-160 (text format)| 26.5 6.7 -
Subword RNN-160 (quantized)|| 26.5 - 0.6 (4]
Subword RNN-480 (text format)| 25.0 | 21.3 -
Subword RNN-480 (quantized)|| 24.9 - 1.7
[5]
parameter that needs to be tuned. [6]
For the following experiment, we used the setup for NIST RT05
Meeting recognition further described in [23]. We trainbd base- [71
line LM on 30M words (meeting transcriptions, Switchboartia
Fisher data) with a vocabulary size of 50K. We report theltesu [g]
after 300-best list rescoring in Table 5. The subword modalse
trained withW = 1000 and.S = 2000. With 480 neurons in the
hidden layer, the performance is already better than ofngnodel [9]
with Kneser-Ney smoothing, and the difference in size of ei®ds
substantial.
[10]
5. CONCLUSION
[11]
We performed experiments with different types of languagem
els for character-level language modeling task. We fourad the
usual smoothing techniques and the feedforward neuralarktar-  [12]
chitecture to not work well for such problem. Recurrent NN&M
performed much better, both the one trained by stochastidignt
descent and the one trained by Hessian-free optimizatiba.rost ~ [13l
surprisingly, maximum entropy model with n-gram featuresras
to do very well on character-level language modelling. [14]

Next, we performed experiments with models trained on words
and subword units, with limited size of the vocabulary. Warted ~ [15]
the subword units from the data, based on very simple rules an
frequency of occurrence of these units in the training ddéspite
simplicity of this approach, we have observed improved qrerf [16]
mance. This means that none of the studied models, including
RNNSs, is powerful enough to learn all discoverable pattéram

the character-level input. This provides further motiwatifor re-  [17]
search of training algorithms for recurrent neural netwaordels.

The subword-level models are interesting because of tleae r
sons: they outperform character-level models, they hare@gt-of- [18]
vocabulary rate, and their size is smaller. In fact, the whabrd-
based language modeling fails for many inflectional and @&ggi- (19]
tive languages. In contrast, subword-based language madeln-
likely to face difficulties with such languages because thighfocus (20]
on the meaningful morphological units that construct thieeswrely
large vocabularies of these languages. [21]

Finally, we have described experiments on Broadcast News
RT04 and Meeting recognition RTO5 setups. We have showrathat
simple quantization of weights is sufficient to reduce siZdbLMs
several times. We were able to obtain slightly lower worderate
with tiny RNN models, compared to huge 4-gram backoff madels
We believe that this result makes neural networks even more al
tractive for usage in practical applications, as it is polesto avoid
having huge n-gram models in the ASR systems.

(22]
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