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{imikolov,kombrink,cernocky}@fit.vutbr.cz

ilya@cs.utoronto.ca, adeoras@jhu.edu, lehaison@limsi.fr

ABSTRACT

We explore the performance of several types of language models
on the word-level and the character-level language modeling tasks.
This includes two recently proposed recurrent neural network archi-
tectures, a feedforward neural network model, a maximum entropy
model and the usual smoothed n-gram models. We then propose
a simple technique for learning sub-word level units from the data,
and show that it combines advantages of both character and word-
level models. Finally, we show that neural network based language
models can be order of magnitude smaller than compressed n-gram
models, at the same level of performance when applied to a Broad-
cast news RT04 speech recognition task. By using sub-word units,
the size can be reduced even more.

Index Terms— language modelling, compression, neural net-
work, maximum entropy

1. INTRODUCTION

Most statistical language models use words rather than characters as
their atomic units due to their superior performance in terms of ac-
curacy and the number of parameters to be estimated [1]. However,
word-level models are unable to deal with new words, commonly
called Out-of-Vocabulary words. Recently, there has been alot of re-
search effort aiming at the OOV problem in the context of word-level
models [2], with subword units that are learned from the data[3], and
based on more linguistically motivated approaches [4]. A thorough
overview of OOV modeling in automatic speech recognition (ASR)
is given by Bazzi [5].

The root of the OOV problem lies in the complete inability of
word-level language models to sensibly assign nonzero probability
to previously unseen words. The problem can be addressed using
smoothing techniques: for example, we could directly traina model
on the subword-level, or follow a hybrid approach, where theun-
known words are delegated to a character-level language model [6].

Despite their intuitive appeal, hybrid approaches can be prob-
lematic for languages whose words make poor atomic units, asis the
case for Czech, Finnish, and Turkish, among others. The OOV rate
of such languages remains unacceptably high even when the vocab-
ularies exceed a million of word forms.

Thus, in this paper we study language models trained on sub-
word units, which are applicable to the vast majority of languages.
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While the previous work mainly focused on either effective imple-
mentations of hybrid ASR systems or on defining and learning the
set of the subword units, in our work we study models built on top
of the subword units.

First, we compare the performance of several different tech-
niques on character-level modelling tasks. We study the perfor-
mance of smoothed n-gram models, several types of neural net-
works (including two recently proposed recurrent architectures),
and a maximum entropy model. We find that smoothing techniques
work relatively poorly for character-level language modeling, and
other character-level techniques perform significantly better.

Next, we perform experiments with subword-level models. We
find that performance of the subword-level models is significantly
better than that of character-level models, while the OOV rate is still
zero (we can assign a sensible probability to any sequence ofchar-
acters). We find that subword-level models can be competitive with
word-based models, and the amount of parameters that need tobe es-
timated is significantly lower for the neural network based language
models trained on subwords.

Finally, using these findings, we propose a novel compression
technique for neural network language models. Using quantization,
we reduce the memory requirements by around 90% which makes
the resulting models orders of magnitude smaller than n-gram mod-
els, while maintaining the same level of word error rate on a Broad-
cast news RT04 speech recognition task. We then discuss the pos-
sibility of further reduction of size of the neural network language
model by decomposing infrequent words into subwords.

2. CHARACTER-LEVEL MODELS

Character-level language models are commonly used for modeling
new words in open-vocabulary speech recognition and in keyword
spotting systems, and many successful phonotactic language identi-
fication techniques use generative language models based onchar-
acters or phonemes. Usually, smoothing techniques such as Witten-
Bell discounting are used to build such models [7]. Alternatively, we
can apply neural network language models [8] (NNLM) to this prob-
lem, because NNLMs have been reported to achieve the state-of-the-
art performance on several standard word-level language modelling
tasks [9, 10, 11]. Hybrid character-word-level NNLMs have been
already investigated in [12] and recurrent neural networkswere ap-
plied to character-level language modeling in [13].

2.1. Penn Treebank Corpus experiments

We performed experiments on a tokenized Penn Treebank Corpus
whose words were split to individual characters and the spaces be-



Table 1. Results on Penn Treebank corpus (test set) with character-
level models.

Model Bits/character
NNLM 1.57
N-discounted n-gram 1.48
BPTT-RNN 1.42
HF-MRNN 1.41
Maximum Entropy n-gram (ME) 1.37

tween words were replaced by a special symbol. Sections 0-20were
used as training data (5017k characters), sections 21-22 asvalidation
data (393k characters) and sections 23-24 as test data (442kcharac-
ters). The original vocabulary size was 10K words and all words
outside vocabulary were rewritten to a special<unk> token.

We trained n-gram models using SRILM [14] toolkit using a
number of smoothing techniques. We tuned the order and the count
cutoffs on the validation set, and found 8-grams with Ristad’s natu-
ral discounting to be the best n-gram model. We then trained several
neural network based language models; with feedforward architec-
ture [8] (NNLM), recurrent architecture trained by stochastic gradi-
ent descent [15, 16] (BPTT-RNN) and Hessian-free optimizedrecur-
rent network [17] with multiplicative connections [13] (HF-MRNN).
Also, we trained a hash-based maximum entropy model with up to
15-gram features [10]. The results are summarized in Table 1.

The usual smoothing techniques work poorly when applied to
character-level language models, and even the best n-gram models
perform significantly worse than the RNN models. The feedfor-
ward neural network architecture was unable to achieve goodperfor-
mance. Recurrent NNLMs work reasonably well, and both training
techniques lead to similar results on this data set. The mostsurpris-
ing fact is that a simple maximum entropy model (ME) with n-gram
features is the best performing method on this task. Its computa-
tional complexity is orders of magnitude lower than of RNN models
that use up to 1000 hidden units in the hidden layer (further com-
parison and relationship between ME and NN models is provided
in [10], as well as description of the hash-based ME implementa-
tion). On the other hand, the memory complexity of the RNN mod-
els is much lower than that of models based on n-grams – we will
study this interesting fact later.

As the Penn Treebank does not contain any OOVs (all words
outside vocabulary are rewritten as<unk>), we can compare
character-level to word-level models. We can easily compute the
bits-per-character of the word-based models by calculating the
entropy of the entire test set and dividing it by the number ofcharac-
ters. This way, we obtained 1.32 bpc for the test set using a 5-gram
word-based LM with modified Kneser-Ney smoothing and no count
cutoffs. This suggests that word-based models are generally better
for modeling text sequences, at least for English. It can be how-
ever argued that character-level models reserve some probability for
novel words, and thus the comparison is not completely fair because
their ability to sensibly assign probability to OOV words will not be
utilized.

2.2. Large data set experiments

We have performed additional experiments on ’text8’ data set from
Matthew Mahoney’s website1. This data set contains 100M char-
acters, from which we used first 90M as train set, the next 5M as

1Available athttp://mattmahoney.net/dc/text8.zip

Table 2. Results on text8 (test set) with character-level models.

Model Bits/character
N-discounted n-gram 1.64
ME 1.55
RNNME 1.55
HF-MRNN 1.54
ME interpolated with HF-MRNN 1.47

held-out set and the last 5M as test set. We were unable to train the
BPTT-RNN models with a sufficiently large hidden layer, as well as
feedforward NNLM, in a reasonable amount of time. However, the
HF-MRNN model was successfully trained with 1500 hidden units
thanks to the data-parallel nature of the HF optimizer and the use of
eight GPUs [13]. We trained maximum entropy models with up to
20-gram features. We also used a novel architecture, where asmall
RNN model is trained jointly with the ME model (we denote thisar-
chitecture RNNME which is described in [10]). We report the results
for all the models in Table 2.

With increased amounts of data, we still observe poor perfor-
mance of standard smoothed n-gram models. The maximum entropy
model performs very well, and the HF-MRNN achieves the best re-
sult among single models. Moreover, it discovers complementary
information to the ME model, as their linear interpolation provides
further significant improvement. Still, the individual models seem to
perform worse than word-level models – with Kneser-Ney smoothed
5-gram, we obtained 1.43 bpc on the test set, with 1.17% OOV rate.
Thus, if we suppose that each OOV word can be encoded using 4x
more bits than an average word, the entropy of word-level 5-gram
model would be 1.48 bpc.

3. SUBWORD-LEVEL MODELS

It appears that training highly accurate character-level models is dif-
ficult and that performance is generally lower than of word-level
models. Neural networks with recurrent architecture require large
hidden layers (more than 1000 neurons), and feedforward networks
do not provide good results at all. An alternative approach is to
use subword-level models, that can potentially share the advantages
of word-level models and are as general as character-level models.
While a simple approach is to start with syllables as subwordunits,
we learned the set of subwords from the data.

Elman showed that most of the entropy is concentrated at the
first few characters of each word [18]. It would therefore be good
if we could avoid making expensive predictions in settings where
there is little to no uncertainty. Thus, to not waste computational
resources, we chose to keepW most frequent words, and split all the
remaining words into syllable-like units based on very simple rules
(we split words at vowels and limit the minimum size of subword
to 2 characters). Then, we keep theS most frequent syllables plus
words and split all remaining tokens into individual characters. It
is easy to convert regular text into this alphabet and back with no
information loss. For example,

new company dreamworks interactive
new company dre+ am+ wo+ rks: in+ te+ ra+ cti+ ve:

Every word can be decomposed into subword units in multiple
ways; for example, a word can be spelled with characters or with
syllables. However, as long as we follow the above approach con-



Table 3. Results on text8 (test set) with subword-level models.

Model Bits/fragment Bits/character
Witten-Bell n-gram 4.71 1.58
ME 4.61 1.55
HF-MRNN 4.44 1.49
RNNME 4.36 1.46

sistently, the model will learn to assign negligible probabilities to
“incorrect” spellings.

For the following experiment performed on the ’test8’ data set,
we usedW = 1000, S = 2000, and 26 unique characters, yielding
a vocabulary of size 2026. We can see in Table 3 that performance
of almost all models trained on word/subword units is improved,
compared to character-based models (Table 2). Among the n-gram
models, the Witten-Bell discounted 8-gram performed best in our
experiments. We trained ME models also with up to 8-gram features
(higher orders did not provide significant improvements). The RN-
NME model was trained with 160 hidden units and the HF-MRNN
had 1500 hidden units and 1500 factors.

4. COMPRESSION OF NEURAL NETWORK LANGUAGE
MODELS

In the previous experiments, we have observed that character and
subword-level language models based on n-gram statistics are very
memory inefficient compared to neural networks models, so we
therefore consider ways of compressing language models using
them.

Compression of backoff n-gram language models is a well-
studied problem, as the size of a language model is usually a very
significant part of LVCSR and MT systems [19, 20]. However,
we are not aware of any successful attempt to compress language
models with neural networks. Most of the previous NNLM research
was focused on obtaining the best possible accuracy and processing
speed, while the size of models was not studied before. However for
practical applications, the size of models can be an important factor.

The main motivation for neural networks for language modeling
lies in their continuous representations of words and in their ability
to generalize to novel contexts. The NNLM’s component that trans-
forms a context to a prediction is reused in all possible contexts (i.e.,
the recurrent connections), causing substantial space savings over
n-gram models which explicitly store every context ever observed.

4.1. Quantization

We found that after NNLMs are trained, weights can be quantized
to very few bits with only small degradation of performance,as high
precision weights (doubles) were needed only during training but not
for testing.

We used state-of-the-art setup for Broadcast News RT04 speech
recognition from IBM, based on Attila decoder [21]. The language
models are trained on 400M words and vocabulary size is 84K. We
have previously described experiments with RNNLMs on this setup
in [10] and found that with just 80 neurons in the hidden layer, we
can obtain better speech recognition performance than withbaseline
4-gram model. Although more neurons lead to better results (we
were able to obtain more than 10% reduction of WER in our previous
work), in this paper we focus just on comparison of models with
similar performance in speech recognition.

Table 4. Re-scoring experiments on RT04 Broadcast News (evalua-
tion set). Sizes of n-gram models are in the ARPA text format.

Model WER size size(MB)
[%] (MB) compressed

unpruned 4-gram - 2792 242
4.7M 4-gram 14.1 122 14
54M 4-gram 13.11 1862 162
RNN-80 (text format) 12.98 130 -
RNN-80 (quantized) 13.00 - 13

We performed K-means clustering of the neural network weights,
with K=128. Every weight is replaced by index of the nearest clus-
ter, and can be encoded using 7 bits, instead of 64 bits (for doubles).
In Table 4, it can be seen that there is no significant degradation in
WER when using the quantized model. For comparison, we used
three baseline n-gram models: 4-gram without any pruning, but
using SRILM default cutoffs (all single occurring trigramsand four-
grams are discarded); 4-gram pruned down to 4.7 million n-gram
entries that is used in the decoding, and a 4-gram pruned down
to 54M n-grams that is used for rescoring in the baseline system.
In our experiments, we replaced the 54M n-gram model by RNN
model, using lattice rescoring technique described in [22]. Storing
the RNN model in plain text takes about 130 MB, while a binary
representation of the quantized RNN model takes as little as13 MB.
Thus, we can completely avoid using the huge 54M n-gram model,
and use much more compact RNN model instead.

The baseline n-gram models can be of course compressed as
well. To save space, we can use standard gzip which reduces the size
of the 54M n-gram model to 525 MB. However, many n-gram LM-
specific compression techniques were developed, and the best among
them can reduce the size of the models to about 3 bytes per n-gram
entry [20]. In Table 4, we estimate the size of compressed n-gram
models by counting 3 bytes for each n-gram entry. Nonetheless, the
54M n-gram model takes more than 10 times the size of quantized
RNN-80 model, which even achieves slightly better performance.

We can push the idea even further: different parts of the neural
network very likely require different precision, as for example infre-
quent words are associated in the model with the same amount of pa-
rameters as frequent words. We can perform more aggressive quan-
tization of parameters associated with the infrequent words, without
losing much of precision. By quantizing different parts of the net-
work to different amount of bits, we were able to further reduce the
size of the model to 10 MB with no significant degradation of per-
formance.

4.2. Subword based neural network models

We can perform further compression by following the previously
proposed approach for reducing the size of the vocabulary: by di-
viding all infrequent words into subword sequences, we can greatly
reduce the number of parameters in the NNLM (the extent of the
reduction is comparable for the feedforward and recurrent architec-
tures). LettingV be the size of the vocabulary andH be the size of
the hidden layer, the number of parameters of the basic RNN model
is (2 × V + H) × H .

Thus, by reducing the vocabulary from 100K words to 10K units
and usingH = 100, we can reduce amount of parameters by almost
90%. However, as was mentioned previously, the smaller the vocab-
ulary is, the larger the hidden layer needs to be, at the same level of
accuracy. Clearly, the optimal size of vocabulary is a task-specific



Table 5. Re-scoring experiments on NIST RT05 Meeting recognition
setup with subword-level RNN models.

Model WER size size (MB)
[%] (MB) compressed

Word-based bigram 27.0 93 11
Word-based 4-gram 25.1 464 43
Word-based 4-gram (pruned) 25.5 142 15
Subword RNN-160 (text format) 26.5 6.7 -
Subword RNN-160 (quantized) 26.5 - 0.6
Subword RNN-480 (text format) 25.0 21.3 -
Subword RNN-480 (quantized) 24.9 - 1.7

parameter that needs to be tuned.
For the following experiment, we used the setup for NIST RT05

Meeting recognition further described in [23]. We trained the base-
line LM on 30M words (meeting transcriptions, Switchboard and
Fisher data) with a vocabulary size of 50K. We report the results
after 300-best list rescoring in Table 5. The subword modelswere
trained withW = 1000 andS = 2000. With 480 neurons in the
hidden layer, the performance is already better than of 4-gram model
with Kneser-Ney smoothing, and the difference in size of models is
substantial.

5. CONCLUSION

We performed experiments with different types of language mod-
els for character-level language modeling task. We found that the
usual smoothing techniques and the feedforward neural network ar-
chitecture to not work well for such problem. Recurrent NNLMs
performed much better, both the one trained by stochastic gradient
descent and the one trained by Hessian-free optimization. The most
surprisingly, maximum entropy model with n-gram features seems
to do very well on character-level language modelling.

Next, we performed experiments with models trained on words
and subword units, with limited size of the vocabulary. We learned
the subword units from the data, based on very simple rules and
frequency of occurrence of these units in the training data;despite
simplicity of this approach, we have observed improved perfor-
mance. This means that none of the studied models, including
RNNs, is powerful enough to learn all discoverable patternsfrom
the character-level input. This provides further motivation for re-
search of training algorithms for recurrent neural networkmodels.

The subword-level models are interesting because of three rea-
sons: they outperform character-level models, they have zero out-of-
vocabulary rate, and their size is smaller. In fact, the whole word-
based language modeling fails for many inflectional and agglutina-
tive languages. In contrast, subword-based language models are un-
likely to face difficulties with such languages because theywill focus
on the meaningful morphological units that construct the extremely
large vocabularies of these languages.

Finally, we have described experiments on Broadcast News
RT04 and Meeting recognition RT05 setups. We have shown thata
simple quantization of weights is sufficient to reduce size of NNLMs
several times. We were able to obtain slightly lower word error rate
with tiny RNN models, compared to huge 4-gram backoff models.
We believe that this result makes neural networks even more at-
tractive for usage in practical applications, as it is possible to avoid
having huge n-gram models in the ASR systems.
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