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Outline

• Context
• Class-Based and Prototype-Based Object Orientation
• Exploratory programming (and image-based systems)
• DEVS formalism for modeling
• Prototype-Based OO Modeling, Exploratory Modeling
• Summary

On the Prototype-Based Object Orientation in Modeling and Simulation – p.2/22



Context

• OOPN/PNtalk
high-level visual formalism used as a full-featured programming
language

• SmallDEVS
hierarchical component framework based on systems theory
featuring openness, reflectivity, interactivity

• PNtalk is now being nested to SmallDEVS as one of high-level
languages for component specification

• App. area:
Model-based development, Model continuity
Multiparadigm modeling
Evolvable and reflective models

• Prototype-Based OO and reflectivity are the SmallDEVS aspects
being discussed in this talk
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Approaches to the Object Orientation

• Class-based OO
◦ Simula
◦ Smalltalk (classes are objects, methods are objects, image),
◦ C++, Java - mainstream

• Prototype-based OO
◦ Self (Smalltalk-like system)
◦ JavaScript, ... (for scripting)
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Prototype-Based Object Orientation

• No key feature of class-based approach is lost
• More flexibility in object building, reusability and behavior sharing.
• Real bottom-up development - abstracions are obviously

constructed after some experience with the concrete individuals.
• One problem: Not in mainstream
◦ hardly integrable with file-based approach,
◦ not supported by UML sufficiently yet,
◦ nothing is static, everything can change - more metamodeling is needed more

sofisticated tools are needed
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Exploratory programming

• Exploring a state of a running system, editing live objects at run
time

• Reflectivity - objects can explore and edit objects
• Image-Based systems - live objects in persistent object memory
• Source code is not important - text can be generated from live

objects
• Incremental development (classes and methods in Smalltalk,

objects and slots in Self)
• Tools for programming - browsers, inspectors, workspaces,

outliners
• The gap between ’what is programmed’ and ’what is running’ is

eliminated.
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DES Modeling and Simuation

Popular approaches
• Quasi-parallel processes - Simula, ...
• State-centered formalisms - DEVS, Petri nets

- well suitable for reflectivity studies
(simplicity, explicit state, clonable)

DEV S = (X,S, Y, δint, δext, λ, ta)

X is a set if input values
S is a set of states
Y is a set of output values
δint : S −→ S is the internal transition function
δext : Q×X −→ S is the external transition function, where

Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the set of all states
e is the time passed since the last transition

λ : S −→ Y is the output function
ta : S −→ R+

0,∞ is the time advance function
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DEVS

• hierarchical component architecture, static or dynamic structure

• state machines represent a lower level approach than processes,
but it is very well suited for exploring and modification (in theory,
as well as in real implementations)

• higher-level paradigms can be mapped or wrapped (processes,
PNs, statecharts)
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DEVS Implementation

• Mainstream approach:
◦ Atomic components are defined as classes
◦ Coupled components as well
◦ Structure of coupled components can obviously change

(ports, coupling, instantiation)
◦ No new atomic components can be introduced at run time

• SmallDEVS approach:
◦ Both Class-based and prototype-based OO modeling

supported
◦ All components can arbitrarily change at runtime, new

components can arise
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Prototypes in Smalltalk

• Object creation:
aPrototypeObject := PrototypeObject new.
anotherPrototypeObject := aPrototypeObject clone.

• Slots and methods exploring:
aPrototypeObject slotNames
aPrototypeObject methodNames
aPrototypeObject perform: aSlotName
aPrototypeObject methodSourceAt: methodName

• Slots and methods editing:
aPrototypeObject addSlots:{

’name1’ -> anObject.
’name2’ -> anotherObject}.

aPrototypeObject addMethod:
’messageSelector codeOfTheMethod’.

aPrototypeObject removeSlots: { ’name1’.’name2’}.
aPrototypeObject removeMethod: ’messageSelector’.
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Behavior Sharing

traits + delegation (dynamic inheritance):

aPrototypeObject addDelegates:{
’name1’ -> aTrait.
’name2’ -> anotherTrait}.

aPrototypeObject removeDelegates:{ ’name1’. ’name2’ }
aPrototypeObject delegateNames.

well-known objects (traits and prototypes) are stored in some globally
available structure
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Atomic DEVS Incremental Construction

model := AtomicDEVSPrototype new.
model addSlots: {...}.
model addInputPorts: {...}.
model addOutputPorts: {...}.
model addDelegates: {...}.
model intTransition: ’...’.
model extTransition: ’...’.
model outputFnc: ’...’.
model timeAdvance: ’...’.

Exploring and editing slots, ports, methods, delegates:
slotNames, removeSlots, ....
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Coupled DEVS Incremental Construction

model := CoupledDEVSPrototype new.
model addInputPorts: { name1. name2.. ... }.
model addOutputPorts: { name1. name2. ... }.
model addComponents: {

name1 -> aComponent1.
name2 -> aComponent2. ... }.

model addCouplings: {
#(component1 port1) -> #(component2 port2).
#(component3 port3) -> #(component4 port4). .... }.

Exploring and editing ports, components, couplings:
inputPortNames, removeInputPorts, couplings, removecouplings ....
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Operating system

Support for manipulation with models and simulations

s := model getSimulatorRT.
s stopTime: Float infinity.
s RTFactor: 1.
s start.

aModel2 := aModel copy.
aSimulation2 := aSimualtion copy.

Editig ports, couplings, slots, methods, delegates is possible even
during simulation

A snapshot of a simulation can be used as a model

Persistent repository for models and simulations:
MyRepository at: ’/Simulations/MySimulation’ put: s.
(MyRepository at: ’/Simulations/MySimulation’) inspect.

Serialization of models and simulations
(for storing to disk or for migration)
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SmallDEVS System
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Visual tools for exploratory modeling
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Visual tools for exploratory modeling

On the Prototype-Based Object Orientation in Modeling and Simulation – p.18/22



Conclusion

Why DEVS?
• computer supported systems theory
• inteligent systems modeling, simulation, design (NASA)
• DEVS standardization in progress, HLA compatibility
• other formalism can be mapped and/or wrapped

Why prototype-based exploratory modeling with SmallDEVS?
• real bottom-up approach (from concrete examples to abstractions)
• "understanding by modeling" is more concrete - live objects,

no "dead source code"
• reflectivity and concretness of prototype-based approach makes

no difference between a model and any snapshot of a running
simulation

• almost unlimited automatic evolution of models during simulation
is possible and the resulting model is fully available for exploration
by standard tools for modeling
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Relations with PNtalk

Object orientation vs. DEVS

• OO deals with dynamically appearing and disappearing instances
of classes.

• Message sendings.
• No explicit of object interconnections, no visible structure.
• Only classes are static. Only classes are maintainable.

• DEVS deals with static hierarchical structures of objects.
Dynamic structure???

• No direct message sending.
Explicit, visible connections.
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Relations with PNtalk

Merging dynamic objects (e.g. PNtalk) and DEVS
• DEVS focusses to objects (similarly to Prototype Objects).

Classes are not needed.
• DEVS can be animated using reflection (dynamic structure,

dynamic atoms). Structure remains visible.
• DEVS offers component structure to object systems
◦ atomic component can encapsulate communicating objects
◦ atoms can be simple state machines as well as complex and

dynamic object structures
◦ simple event-based component interface allows for effective

composability
◦ hierarchical component structures can be dynamic and visible

at the same time
◦ component level is easily maintainable and has sound

theoretical background
◦ atomic level maintainability depends on particular formalism

(FSA, ASM, Statecharts, Petri nets, LISP, Prolog, ...)
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PNtalk TO DO

To be fully interoperable with SmallDEVS, verification tools and
external world

• Asynchronous ports compatible with DEVS ports
• Reflective access to state for clonning and serialization
• ...

Partially done.
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