
On the Prototype-Based Object Orientation in
Modeling and Simulation

ASIS 2006
Vladimír Janoušek

On the Prototype-Based Object Orientation in Modeling and Simulation – p.1/22

Outline

• Context
• Class-Based and Prototype-Based Object Orientation
• Exploratory programming (and image-based systems)
• DEVS formalism for modeling
• Prototype-Based OO Modeling, Exploratory Modeling
• Summary

On the Prototype-Based Object Orientation in Modeling and Simulation – p.2/22

Context

• OOPN/PNtalk
high-level visual formalism used as a full-featured programming
language

• SmallDEVS
hierarchical component framework based on systems theory
featuring openness, reflectivity, interactivity

• PNtalk is now being nested to SmallDEVS as one of high-level
languages for component specification

• App. area:
Model-based development, Model continuity
Multiparadigm modeling
Evolvable and reflective models

• Prototype-Based OO and reflectivity are the SmallDEVS aspects
being discussed in this talk

On the Prototype-Based Object Orientation in Modeling and Simulation – p.3/22

Approaches to the Object Orientation

• Class-based OO
◦ Simula
◦ Smalltalk (classes are objects, methods are objects, image),
◦ C++, Java - mainstream

• Prototype-based OO
◦ Self (Smalltalk-like system)
◦ JavaScript, ... (for scripting)

On the Prototype-Based Object Orientation in Modeling and Simulation – p.4/22

Prototype-Based Object Orientation

• No key feature of class-based approach is lost
• More flexibility in object building, reusability and behavior sharing.
• Real bottom-up development - abstracions are obviously

constructed after some experience with the concrete individuals.
• One problem: Not in mainstream
◦ hardly integrable with file-based approach,
◦ not supported by UML sufficiently yet,
◦ nothing is static, everything can change - more metamodeling is needed more

sofisticated tools are needed

On the Prototype-Based Object Orientation in Modeling and Simulation – p.5/22

Exploratory programming

• Exploring a state of a running system, editing live objects at run
time

• Reflectivity - objects can explore and edit objects
• Image-Based systems - live objects in persistent object memory
• Source code is not important - text can be generated from live

objects
• Incremental development (classes and methods in Smalltalk,

objects and slots in Self)
• Tools for programming - browsers, inspectors, workspaces,

outliners
• The gap between ’what is programmed’ and ’what is running’ is

eliminated.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.6/22

Exploratory programming

• Exploring a state of a running system, editing live objects at run
time

• Reflectivity - objects can explore and edit objects

• Image-Based systems - live objects in persistent object memory
• Source code is not important - text can be generated from live

objects
• Incremental development (classes and methods in Smalltalk,

objects and slots in Self)
• Tools for programming - browsers, inspectors, workspaces,

outliners
• The gap between ’what is programmed’ and ’what is running’ is

eliminated.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.6/22

Exploratory programming

• Exploring a state of a running system, editing live objects at run
time

• Reflectivity - objects can explore and edit objects
• Image-Based systems - live objects in persistent object memory

• Source code is not important - text can be generated from live
objects

• Incremental development (classes and methods in Smalltalk,
objects and slots in Self)

• Tools for programming - browsers, inspectors, workspaces,
outliners

• The gap between ’what is programmed’ and ’what is running’ is
eliminated.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.6/22

Exploratory programming

• Exploring a state of a running system, editing live objects at run
time

• Reflectivity - objects can explore and edit objects
• Image-Based systems - live objects in persistent object memory
• Source code is not important - text can be generated from live

objects

• Incremental development (classes and methods in Smalltalk,
objects and slots in Self)

• Tools for programming - browsers, inspectors, workspaces,
outliners

• The gap between ’what is programmed’ and ’what is running’ is
eliminated.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.6/22

Exploratory programming

• Exploring a state of a running system, editing live objects at run
time

• Reflectivity - objects can explore and edit objects
• Image-Based systems - live objects in persistent object memory
• Source code is not important - text can be generated from live

objects
• Incremental development (classes and methods in Smalltalk,

objects and slots in Self)

• Tools for programming - browsers, inspectors, workspaces,
outliners

• The gap between ’what is programmed’ and ’what is running’ is
eliminated.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.6/22

Exploratory programming

• Exploring a state of a running system, editing live objects at run
time

• Reflectivity - objects can explore and edit objects
• Image-Based systems - live objects in persistent object memory
• Source code is not important - text can be generated from live

objects
• Incremental development (classes and methods in Smalltalk,

objects and slots in Self)
• Tools for programming - browsers, inspectors, workspaces,

outliners

• The gap between ’what is programmed’ and ’what is running’ is
eliminated.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.6/22

Exploratory programming

• Exploring a state of a running system, editing live objects at run
time

• Reflectivity - objects can explore and edit objects
• Image-Based systems - live objects in persistent object memory
• Source code is not important - text can be generated from live

objects
• Incremental development (classes and methods in Smalltalk,

objects and slots in Self)
• Tools for programming - browsers, inspectors, workspaces,

outliners
• The gap between ’what is programmed’ and ’what is running’ is

eliminated.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.6/22

DES Modeling and Simuation

Popular approaches
• Quasi-parallel processes - Simula, ...
• State-centered formalisms - DEVS, Petri nets

- well suitable for reflectivity studies
(simplicity, explicit state, clonable)

DEV S = (X,S, Y, δint, δext, λ, ta)

X is a set if input values
S is a set of states
Y is a set of output values
δint : S −→ S is the internal transition function
δext : Q×X −→ S is the external transition function, where

Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the set of all states
e is the time passed since the last transition

λ : S −→ Y is the output function
ta : S −→ R+

0,∞ is the time advance function

On the Prototype-Based Object Orientation in Modeling and Simulation – p.7/22

DES Modeling and Simuation

Popular approaches
• Quasi-parallel processes - Simula, ...
• State-centered formalisms - DEVS, Petri nets

- well suitable for reflectivity studies
(simplicity, explicit state, clonable)

DEV S = (X,S, Y, δint, δext, λ, ta)

X is a set if input values
S is a set of states
Y is a set of output values
δint : S −→ S is the internal transition function
δext : Q×X −→ S is the external transition function, where

Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the set of all states
e is the time passed since the last transition

λ : S −→ Y is the output function
ta : S −→ R+

0,∞ is the time advance function

On the Prototype-Based Object Orientation in Modeling and Simulation – p.7/22

DEVS

• hierarchical component architecture, static or dynamic structure

• state machines represent a lower level approach than processes,
but it is very well suited for exploring and modification (in theory,
as well as in real implementations)

• higher-level paradigms can be mapped or wrapped (processes,
PNs, statecharts)

On the Prototype-Based Object Orientation in Modeling and Simulation – p.8/22

DEVS

• hierarchical component architecture, static or dynamic structure
• state machines represent a lower level approach than processes,

but it is very well suited for exploring and modification (in theory,
as well as in real implementations)

• higher-level paradigms can be mapped or wrapped (processes,
PNs, statecharts)

On the Prototype-Based Object Orientation in Modeling and Simulation – p.8/22

DEVS

• hierarchical component architecture, static or dynamic structure
• state machines represent a lower level approach than processes,

but it is very well suited for exploring and modification (in theory,
as well as in real implementations)

• higher-level paradigms can be mapped or wrapped (processes,
PNs, statecharts)

On the Prototype-Based Object Orientation in Modeling and Simulation – p.8/22

DEVS Implementation

• Mainstream approach:
◦ Atomic components are defined as classes
◦ Coupled components as well
◦ Structure of coupled components can obviously change

(ports, coupling, instantiation)
◦ No new atomic components can be introduced at run time

• SmallDEVS approach:
◦ Both Class-based and prototype-based OO modeling

supported
◦ All components can arbitrarily change at runtime, new

components can arise

On the Prototype-Based Object Orientation in Modeling and Simulation – p.9/22

DEVS Implementation

• Mainstream approach:
◦ Atomic components are defined as classes
◦ Coupled components as well
◦ Structure of coupled components can obviously change

(ports, coupling, instantiation)
◦ No new atomic components can be introduced at run time

• SmallDEVS approach:
◦ Both Class-based and prototype-based OO modeling

supported
◦ All components can arbitrarily change at runtime, new

components can arise

On the Prototype-Based Object Orientation in Modeling and Simulation – p.9/22

Prototypes in Smalltalk

• Object creation:
aPrototypeObject := PrototypeObject new.
anotherPrototypeObject := aPrototypeObject clone.

• Slots and methods exploring:
aPrototypeObject slotNames
aPrototypeObject methodNames
aPrototypeObject perform: aSlotName
aPrototypeObject methodSourceAt: methodName

• Slots and methods editing:
aPrototypeObject addSlots:{

’name1’ -> anObject.
’name2’ -> anotherObject}.

aPrototypeObject addMethod:
’messageSelector codeOfTheMethod’.

aPrototypeObject removeSlots: { ’name1’.’name2’}.
aPrototypeObject removeMethod: ’messageSelector’.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.10/22

Prototypes in Smalltalk

• Object creation:
aPrototypeObject := PrototypeObject new.
anotherPrototypeObject := aPrototypeObject clone.

• Slots and methods exploring:
aPrototypeObject slotNames
aPrototypeObject methodNames
aPrototypeObject perform: aSlotName
aPrototypeObject methodSourceAt: methodName

• Slots and methods editing:
aPrototypeObject addSlots:{

’name1’ -> anObject.
’name2’ -> anotherObject}.

aPrototypeObject addMethod:
’messageSelector codeOfTheMethod’.

aPrototypeObject removeSlots: { ’name1’.’name2’}.
aPrototypeObject removeMethod: ’messageSelector’.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.10/22

Prototypes in Smalltalk

• Object creation:
aPrototypeObject := PrototypeObject new.
anotherPrototypeObject := aPrototypeObject clone.

• Slots and methods exploring:
aPrototypeObject slotNames
aPrototypeObject methodNames
aPrototypeObject perform: aSlotName
aPrototypeObject methodSourceAt: methodName

• Slots and methods editing:
aPrototypeObject addSlots:{

’name1’ -> anObject.
’name2’ -> anotherObject}.

aPrototypeObject addMethod:
’messageSelector codeOfTheMethod’.

aPrototypeObject removeSlots: { ’name1’.’name2’}.
aPrototypeObject removeMethod: ’messageSelector’.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.10/22

Behavior Sharing

traits + delegation (dynamic inheritance):

aPrototypeObject addDelegates:{
’name1’ -> aTrait.
’name2’ -> anotherTrait}.

aPrototypeObject removeDelegates:{ ’name1’. ’name2’ }
aPrototypeObject delegateNames.

well-known objects (traits and prototypes) are stored in some globally
available structure

On the Prototype-Based Object Orientation in Modeling and Simulation – p.11/22

Atomic DEVS Incremental Construction

model := AtomicDEVSPrototype new.
model addSlots: {...}.
model addInputPorts: {...}.
model addOutputPorts: {...}.
model addDelegates: {...}.
model intTransition: ’...’.
model extTransition: ’...’.
model outputFnc: ’...’.
model timeAdvance: ’...’.

Exploring and editing slots, ports, methods, delegates:
slotNames, removeSlots,

On the Prototype-Based Object Orientation in Modeling and Simulation – p.12/22

Coupled DEVS Incremental Construction

model := CoupledDEVSPrototype new.
model addInputPorts: { name1. name2.. ... }.
model addOutputPorts: { name1. name2. ... }.
model addComponents: {

name1 -> aComponent1.
name2 -> aComponent2. ... }.

model addCouplings: {
#(component1 port1) -> #(component2 port2).
#(component3 port3) -> #(component4 port4). }.

Exploring and editing ports, components, couplings:
inputPortNames, removeInputPorts, couplings, removecouplings

On the Prototype-Based Object Orientation in Modeling and Simulation – p.13/22

Operating system

Support for manipulation with models and simulations

s := model getSimulatorRT.
s stopTime: Float infinity.
s RTFactor: 1.
s start.

aModel2 := aModel copy.
aSimulation2 := aSimualtion copy.

Editig ports, couplings, slots, methods, delegates is possible even
during simulation

A snapshot of a simulation can be used as a model

Persistent repository for models and simulations:
MyRepository at: ’/Simulations/MySimulation’ put: s.
(MyRepository at: ’/Simulations/MySimulation’) inspect.

Serialization of models and simulations
(for storing to disk or for migration)

On the Prototype-Based Object Orientation in Modeling and Simulation – p.14/22

Operating system

Support for manipulation with models and simulations

s := model getSimulatorRT.
s stopTime: Float infinity.
s RTFactor: 1.
s start.

aModel2 := aModel copy.
aSimulation2 := aSimualtion copy.

Editig ports, couplings, slots, methods, delegates is possible even
during simulation

A snapshot of a simulation can be used as a model

Persistent repository for models and simulations:
MyRepository at: ’/Simulations/MySimulation’ put: s.
(MyRepository at: ’/Simulations/MySimulation’) inspect.

Serialization of models and simulations
(for storing to disk or for migration)

On the Prototype-Based Object Orientation in Modeling and Simulation – p.14/22

Operating system

Support for manipulation with models and simulations

s := model getSimulatorRT.
s stopTime: Float infinity.
s RTFactor: 1.
s start.

aModel2 := aModel copy.
aSimulation2 := aSimualtion copy.

Editig ports, couplings, slots, methods, delegates is possible even
during simulation

A snapshot of a simulation can be used as a model

Persistent repository for models and simulations:
MyRepository at: ’/Simulations/MySimulation’ put: s.
(MyRepository at: ’/Simulations/MySimulation’) inspect.

Serialization of models and simulations
(for storing to disk or for migration)

On the Prototype-Based Object Orientation in Modeling and Simulation – p.14/22

Operating system

Support for manipulation with models and simulations

s := model getSimulatorRT.
s stopTime: Float infinity.
s RTFactor: 1.
s start.

aModel2 := aModel copy.
aSimulation2 := aSimualtion copy.

Editig ports, couplings, slots, methods, delegates is possible even
during simulation

A snapshot of a simulation can be used as a model

Persistent repository for models and simulations:
MyRepository at: ’/Simulations/MySimulation’ put: s.
(MyRepository at: ’/Simulations/MySimulation’) inspect.

Serialization of models and simulations
(for storing to disk or for migration)

On the Prototype-Based Object Orientation in Modeling and Simulation – p.14/22

Operating system

Support for manipulation with models and simulations

s := model getSimulatorRT.
s stopTime: Float infinity.
s RTFactor: 1.
s start.

aModel2 := aModel copy.
aSimulation2 := aSimualtion copy.

Editig ports, couplings, slots, methods, delegates is possible even
during simulation

A snapshot of a simulation can be used as a model

Persistent repository for models and simulations:
MyRepository at: ’/Simulations/MySimulation’ put: s.
(MyRepository at: ’/Simulations/MySimulation’) inspect.

Serialization of models and simulations
(for storing to disk or for migration)

On the Prototype-Based Object Orientation in Modeling and Simulation – p.14/22

Operating system

Support for manipulation with models and simulations

s := model getSimulatorRT.
s stopTime: Float infinity.
s RTFactor: 1.
s start.

aModel2 := aModel copy.
aSimulation2 := aSimualtion copy.

Editig ports, couplings, slots, methods, delegates is possible even
during simulation

A snapshot of a simulation can be used as a model

Persistent repository for models and simulations:
MyRepository at: ’/Simulations/MySimulation’ put: s.
(MyRepository at: ’/Simulations/MySimulation’) inspect.

Serialization of models and simulations
(for storing to disk or for migration)

On the Prototype-Based Object Orientation in Modeling and Simulation – p.14/22

SmallDEVS System

On the Prototype-Based Object Orientation in Modeling and Simulation – p.15/22

Visual tools for exploratory modeling

On the Prototype-Based Object Orientation in Modeling and Simulation – p.16/22

Visual tools for exploratory modeling

On the Prototype-Based Object Orientation in Modeling and Simulation – p.17/22

Visual tools for exploratory modeling

On the Prototype-Based Object Orientation in Modeling and Simulation – p.18/22

Conclusion

Why DEVS?
• computer supported systems theory
• inteligent systems modeling, simulation, design (NASA)
• DEVS standardization in progress, HLA compatibility
• other formalism can be mapped and/or wrapped

Why prototype-based exploratory modeling with SmallDEVS?
• real bottom-up approach (from concrete examples to abstractions)
• "understanding by modeling" is more concrete - live objects,

no "dead source code"
• reflectivity and concretness of prototype-based approach makes

no difference between a model and any snapshot of a running
simulation

• almost unlimited automatic evolution of models during simulation
is possible and the resulting model is fully available for exploration
by standard tools for modeling

On the Prototype-Based Object Orientation in Modeling and Simulation – p.19/22

Conclusion

Why DEVS?
• computer supported systems theory
• inteligent systems modeling, simulation, design (NASA)
• DEVS standardization in progress, HLA compatibility
• other formalism can be mapped and/or wrapped

Why prototype-based exploratory modeling with SmallDEVS?
• real bottom-up approach (from concrete examples to abstractions)
• "understanding by modeling" is more concrete - live objects,

no "dead source code"
• reflectivity and concretness of prototype-based approach makes

no difference between a model and any snapshot of a running
simulation

• almost unlimited automatic evolution of models during simulation
is possible and the resulting model is fully available for exploration
by standard tools for modeling

On the Prototype-Based Object Orientation in Modeling and Simulation – p.19/22

Relations with PNtalk

Object orientation vs. DEVS

• OO deals with dynamically appearing and disappearing instances
of classes.

• Message sendings.
• No explicit of object interconnections, no visible structure.
• Only classes are static. Only classes are maintainable.

• DEVS deals with static hierarchical structures of objects.
Dynamic structure???

• No direct message sending.
Explicit, visible connections.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.20/22

Relations with PNtalk

Merging dynamic objects (e.g. PNtalk) and DEVS
• DEVS focusses to objects (similarly to Prototype Objects).

Classes are not needed.
• DEVS can be animated using reflection (dynamic structure,

dynamic atoms). Structure remains visible.
• DEVS offers component structure to object systems
◦ atomic component can encapsulate communicating objects
◦ atoms can be simple state machines as well as complex and

dynamic object structures
◦ simple event-based component interface allows for effective

composability
◦ hierarchical component structures can be dynamic and visible

at the same time
◦ component level is easily maintainable and has sound

theoretical background
◦ atomic level maintainability depends on particular formalism

(FSA, ASM, Statecharts, Petri nets, LISP, Prolog, ...)
On the Prototype-Based Object Orientation in Modeling and Simulation – p.21/22

PNtalk TO DO

To be fully interoperable with SmallDEVS, verification tools and
external world

• Asynchronous ports compatible with DEVS ports
• Reflective access to state for clonning and serialization
• ...

Partially done.

On the Prototype-Based Object Orientation in Modeling and Simulation – p.22/22

	Outline
	Context
	Approaches to the Object Orientation
	Prototype-Based Object Orientation
	Exploratory programming
	DES Modeling and Simuation
	DEVS
	DEVS Implementation
	Prototypes in Smalltalk
	Behavior Sharing
	Atomic DEVS Incremental Construction
	Coupled DEVS Incremental Construction
	Operating system
	SmallDEVS System
	Visual tools for exploratory modeling
	Visual tools for exploratory modeling
	Visual tools for exploratory modeling
	Conclusion
	Relations with PNtalk
	Relations with PNtalk
	PNtalk TO DO

