
T EC H N I C A L U N I VER S IT Y B R N O

Fa c u l t y o f I n f o rm a t i o n T e c h n o l o g y

Ad v a n c e d s o u n d c a r d d r i v e r

f o r C omp a q i PAQ

T om á š K a š p á r e k

B r n o 2 0 0 1– 2 0 0 2

I declare, that I worked on this project independently without the assistance of third party.
My project leader was Petr Lampa and main consultant for technical issues was Tomas Heran.
Publicly available information resources used in my project are listed in the bibliography.

Brno November 9, 2002

I would like to thank Petr Lampa (FIT VUT Brno), Tomáš Heran and Bořivoj Tydlitát (Voice
Technologies and Systems IBM), Jaroslav Kysela (ALSA Project), Russel M. King (ARM Linux
port) and many others for their technical (and other) support and taken pains while helping me
to solve problems related to this project.

i

Abstract

Goal of this diploma project is the improvement of quality of a specific speech recognizer
on a specific hardware platform. Selected hardware platform is Compaq iPAQ (model H3650).
It was selected because of its wide spread between users of handheld devices and its usable
performance for speech recognition. Software selection is based on the recognizer which is
special speech recognizer for embedded devices - Embeded ViaVoice (EVV) from IBM. Because
of it’s increasing role in the world of PDAs, the Linux operating system was selected. In this
environment the Qt GUI system is used for real applications and there is a related diploma
project for using this (improved) embedded speech recognizer in real applications on pocket
computers. The goals of this project are as follows. At first place it is new driver for the iPAQ
sound chip, that will facilitate full utilization of the abilities of that chip. Secondary goal is
a speech recognition library to offer these services for programing language level access. As
a side goal, it will be needed to solve problems with porting some software for iPAQ (ARM
architecture) such as minimizing the size of the Linux kernel and modifying it for these special
purposes. Some modifications of the Linux distribution used (Familiar) will be necessary too.

Keywords

Advanced Linux Sound Architecture (ALSA), ARM, Automatic Gain Control (AGC), boot
loader, Compaq iPAQ H3650, cross-compiling, digital audio, digital mixer, embedded devices,
Embeded ViaVoice (EVV), Familiar distribution, GCC 3.0.x, GNU/Linux, kernel branch 2.4.x
and 2.5.x, large samples (word length of 18 or 20 bits), Linux kernel, modularity, Memory
Technology Devices (MTD), open source, Open Sound System (OSS), personal digital assistant
(PDA), Philips UDA1341TS, porting, Programmable Gain Amplifier (PGA), serial-line connec-
tion, Software Gain Control, sound chip driver, speech boundary detection, speech recognition,
speech signal processing

ii

Contents

1 Introduction 1

2 Spoken Language Systems 4
2.1 Motivation for Communicating by Speech . 4
2.2 Application of Spoken Language Communication 5
2.3 Human Speech Systems . 6
2.4 Elements of Spoken Language . 6
2.5 Speech Signal Representation . 7

2.5.1 Speech Coding . 7
2.5.2 Linear Predictive Coding . 9
2.5.3 Cepstral Processing . 10

2.6 Speech Recognition . 11
2.6.1 Hidden Markov Models . 11

3 Embeded ViaVoice 13
3.1 Introduction to EVV . 13
3.2 EVV Modules . 13
3.3 Available Services . 14
3.4 Silence Detector . 15

4 Algorithms for SR Improvement 16
4.1 Input Gain Control . 16
4.2 Start and End of Speech Detection . 17
4.3 Large Samples Usage . 18

5 Linux Sound Subsystems 19
5.1 Sound Subsystem Basics . 19
5.2 Open Sound System . 20
5.3 Advanced Linux Sound Architecture . 21

5.3.1 Special Files . 21
5.3.2 ALSA Driver Package . 22
5.3.3 ALSA Library Package . 22
5.3.4 ALSA Utilities Package . 24
5.3.5 ALSA OSS Package . 25

6 Development Environment 26
6.1 Problems with iPAQ and Familiar 0.4 . 26
6.2 Upgrade to Familiar 0.5.1 . 27

iii

6.2.1 The CRL/OH ARM Bootloader Introduction 27
6.2.2 Backup of Old System . 29
6.2.3 Bootloader Upgrade . 29
6.2.4 Partitions Reconfiguration . 31
6.2.5 New Image Download and Modification 32

6.3 Cross-compiler Tools . 32
6.4 Selection of Linux Kernel . 33
6.5 Kernel Modifications . 34

7 Preparing ALSA for iPAQ 37
7.1 Modifications of ALSA-utils . 37
7.2 Modifications of ALSA-lib . 38
7.3 Modifications of ALSA-driver and ALSA-kernel 39

8 Driver Implementation 40
8.1 Configuration and Build System Update . 40
8.2 Basic Mixer Support . 42
8.3 PCM Device . 43
8.4 DMA Transfer Support . 45
8.5 Extensions to Sound Card Driver . 46

9 Library Implementation 48
9.1 Audio Recording Functions . 48
9.2 Audio Handler Contents . 49
9.3 Software Gain Control . 50
9.4 Histogram of Signal Levels . 53

10 Summary 54

A Description of used hardware 56
A.1 Compaq iPAQ . 56
A.2 Intel StrongARM SA1110 . 57
A.3 Philips UDA 1341TS . 58

B Familiar 0.5.1 Modification 59

iv

List of Tables

5.1 OSS special files . 21
5.2 ALSA special files . 22
5.3 ALSA utilities . 24

6.1 Minicom settings . 28
6.2 Bootloader commands . 28
6.3 Basic bootloader variables (version 2.14.5) . 28
6.4 Original partitions layout (Familiar 0.4) . 29
6.5 Additional bootloader variables (version 2.17.18) 31

8.1 Common L3 operations . 42
8.2 Supported sample rates . 43
8.3 Implemented ALSA PCM operations . 44
8.4 Implemented DMA operations . 46

A.1 iPAQ specification . 56
A.2 Intel StrongARM specification . 57
A.3 UDA1341TS specification . 58

v

List of Figures

5.1 ALSA configuration file syntax . 23
5.2 OSS code style . 24
5.3 ALSA code style . 24

6.1 Partition saving . 29
6.2 Bootloader partition loading . 30
6.3 Partition resetting . 31
6.4 New partitions layout . 31
6.5 GCC 3.0.4 configuration . 33

7.1 ALSA utilities cross-compilation . 37
7.2 Cross-compiling parameters for ALSA-lib . 38
7.3 Another possible parameters for ALSA-lib . 38

8.1 Modules.dep modification . 41
8.2 Makefile for sa11xx-uda1341 module . 41

9.1 Audio handle initialization . 48
9.2 Library usage example . 50
9.3 Audio handle elements . 51

vi

Chapter 1

Introduction

Spontaneous continuous communication of people to machines (and the same in reverse) is just
a dream these days. This diploma project deals with a sound driver specialized for speech
recognition. So why is speech recognition so difficult?

The main problem is, that human speech recognition is based on the data flow of the speech
signal as well as on the context in which the communication occurs and on the context of the
communication itself. This is the reason, why people can understand spoken language even if
there is high level of noise. Understanding the context of something is then solved using broad
knowledge of the surrounding world. And this is the source of difficulty and a topic for many
years of research.

Second thing, that is needed to be comprehend is the variety of science disciplines, that
anyone needs to know even for basic understanding of problems of speech recognition and spo-
ken language communication in general. To name the basic disciplines: signal processing for
such things like Fourier Transforms, acoustics for physics of sound and speech, pattern recogni-
tion for clustering and matching algorithms, artificial intelligence for knowledge representation,
computer science for implementation and optimization or linguistics for lexical representation,
syntax and semantics.

Fortunately, this project participates in just a small set of these problems using accomplished
recognizer with the goal of improving it’s performance and mainly ability to successfully rec-
ognize the speech. Another simplification is the orientation to specific hardware and software
configuration. How to gain this goal, should be divided into three steps. First we should use a
better sound subsystem, that extends the possibilities for developers of the recognizer, second
we should make capital out of the abilities of the sound chip in the hardware we use and third
we should implement some general algorithms into a special speech recognition support library.

Chapter 2 Here we explained the basis of the theory for speech recognition. It is included
to summarize basic background knowledge for speech recognition. We use [2] and [3] as
reference for this chapter. First we explain what is the motivation for teaching machines
to communicate by spoken language. We will look on basic description of human organs
for speaking, which should then be used in simulation of this process by machines. Next
a minimum of the background theory is mentioned for the impatient and for those, who
have not filled their desks with columns of specialized books on mathematics and signal
processing. A more detailed section about the speech signal representation follows. The
next important part of this chapter is dedicated to speech recognition. The environment
interaction, such as noise reduction is mostly discussed here.

Chapter 3 This chapter is dedicated to short introduction to Embeded ViaVoice. All infor-

1

mation is based on EVV manual from IBM. EVV is product of IBM, so you can read
about some basic principles. Another in-depth information could be found in first chapter,
where the general background technologies are introduced. We focus on basic EVV struc-
ture with respect to C language API. The API in available version includes four parts:
EVV control, Vocabulary manager, Audio control and Services.

Chapter 4 Algorithm for improving speech recognizing devised for this project are discussed
here. Automatic Gain Control (AGC) usage and purpose is showed first. Its positives and
negatives for speech recognition are presented and requirements for our own solution are
created. We use the good idea from the AGC and introduce a speech boundary detection
algorithm with respect to real speech signal (not just silence/no silence). Result from these
analyses is software gain control, but we notice, that it brings certain inefficiency because
some processing is done twice. Without access to the information from speech recognizer,
we must do our best to identify the real speech signal. Finally the possibility of using large
samples (with word length of 18 or 20 bits) is discussed theoretically, because of lack of
time for its implementation.

Chapter 5 Sound subsystems on Unix-like operating systems are based on the principles of
special files. Special files make the interface between kernel mode sound card drivers
and higher layers. Higher layer should be either end-user application or some additional
abstract layer, which simplify the task of programing such sound subsystem. First we will
introduce parts of a classic sound system and their function in speech recognition or in
speech language systems in general. Then we focus on two most used sound subsystems
on Linux. The first of them is Open Sound System (OSS), which is older and is based on
direct access to special files. Its main goal is (relative) simplicity and maximal portability.
It’s widely used on both Unix-like and non-Unix systems, but in Linux it will be replaced
by the other sound subsystem named ALSA. Advanced Linux Sound Architecture (ALSA)
was created by Czech programmer and it’s believed it is better then OSS. ALSA introduces
another model, where applications use an user land library. This library then interacts
with special files, but it also includes some extended functionality.

Chapter 6 The initial status of the hardware and software selected occupy the first part of this
chapter. Problems with the older Familiar distribution and older boot loader are described
and follow the process of upgrading to newer Familiar 0.5.1. Differences are discussed
and the unsolved problems mentioned. Second step was the creation of development
environment consisting of cross-compiler, cross-linker and other binary utilities and a basic
set of development libraries and support files. Description of common steps in the process
of developing the kernel takes place here. Briefly description of changes made and patches
created takes place here too. Some of the patches are still pending, but most of them were
applied into official Linux kernel.

Chapter 7 ALSA is available in several different fashions todays. For most users, prepared
tarballs of separate ALSA packages are the best choice. These could be downloaded
directly from ALSA homepage. Users need to configure them properly and build binaries
themselves. These packages are well prepared for native configuration and build. Second
possibility, how you could get ALSA working, is usage of development branch of Linux
kernel. In version 2.5.5-pre1, ALSA was integrated into official kernel branch. In current
kernel versions, it is (same as rest of the system) almost usable for most people. Relevant
ALSA package (alsa-kernel) is regularly merged into Linux kernel. The last chance is use

2

of CVS directly. None of necessary packages is prepared for cross-compilation, so we will
need to do some modifications (mostly in configuration files).

Chapter 8 One of main parts of this project is creating kernel-level driver for Philips UDA1341TS
sound chip used on Compaq iPAQ handheld. This chapter reviews whole process intending
to be HOWTO-like documentation for other ALSA driver writers. It discuss creation of
driver with basic functionality, first it’s mixer part and then PCM part. Then extensions
to this simple driver are shown, which enable full control over sound chip. At the end
some remaining problems, which are not essential, are discussed. These will be not solved
now and should be the goal of future improvements. Whole driver is now placed in ALSA
CVS, where is accessible to whole community for testing. It will be merged into Linux
kernel later when it will be clear that it works fine.

Chapter 9 Library implementation is to be divided into three parts. To make life of application
developers easier, we provide set of functions to setup and open audio device for capturing
audio signal. Available functions are described and small and simple example of its usage
is included. Another set of functions is offered for audio data acquisition. Whole system
is based on one big structure per audio handle that contain all necessary informations for
all subsystems. Main part of this chapter is dedicated to software gain control (SGC)
implementation and usage informations. Algorithms used are showed in depth. Histogram
of maximal signal values in each processed buffer offers statistical point of view on the
speech signal used.

3

Chapter 2

Spoken Language Systems

2.1 Motivation for Communicating by Speech

From forgotten ages to the present and probably to the future, speech communication was,
is and will be the prevailing form of human communication. First two people, who would
like to communicate using speech, must be on the same place to hear the other one well. As
technology extend (with Bell’s invention of phone), there is a way to speak to some person
everywhere over the world. In this sense, future technological progress preserve the ability of
speech communication.

Fifty years ago, when first computers originate, everyone was happy, that the machine can
do some work in place of people. None was excited, that to compute few numbers, team of
operators have to plug hundreds or thousands of wires to program the monster.

As the time went, managers want to earn money and scientists want to play, this was not
enough. To sell the computer to everyone in the world or even to solve difficult problems in
reasonable time, you would not like to spend hours with plugging the wires. So the computers
began to behave user friendly. First programing with punch cards, then graphical interface and
what next? As typing onto keyboard is tedious, slow and not natural for human, there should
be some next step. To free hands, relax eyes we should involve ears into controlling the machine.

There are generally two categories of users who can benefit from adoption of speech as a
control modality in parallel with others, such as the mouse or keyboard. For novice users,
functions that are conceptually simple could be directly accessible by voice. For expert users,
the GUI paradigm is sometimes perceived as an obstacle or nuisance and shortcuts are sought.
Frequently these shortcuts allow the power user’s hands to remain on the keyboard or mouse
while mixing content creation with system commands. Here, the speech may serve as another
input device (used in parallel) leaving your hands free for mouse and/or keyboard. For example
with graphical editor you could use speech to select actual tool and mouse with keyboard to use
this tool. Switching between individual tools is then possible without move of your hands. To
see both positives and negatives, speech driven command and control is not as fast as keyboard
shortcuts, so it should be used as supplement to other input devices and should not replace
them.

In some situations you must rely on speech as an input or output medium. For example,
with wearable computers, it may be impossible to incorporate a large keyboard. The same
situation is with pocket computers or advanced mobile phones. There are some possibilities, like
software keyboard, but taking a memo with these utilities takes too long. Other experiments,
like recognizing of text written with the pen and touch-screen are either occupying too much
place on small display or they are too complicated (or both of these) to be usable for all users.

4

To be rightful, usability for end-user is sometime satisfactory, but to obtain efficiency it require
training and some unnatural improvements (i.e. special alphabet of Graffiti system used in Palm
OS).

Certain manual tasks may also require full visual attention to the focus of the work. For
example when taking memo, it’s useful to watch the thing you are writing about and think
about what you are writing, rather than concentrate on how to store your ideas.

Finally, spoken language interfaces offer obvious benefits for individuals challenged with a
variety of physical disabilities, such as loss of sight or limitations in physical motion and motor
skills.

2.2 Application of Spoken Language Communication

When we do not focus just on computers, we should find more areas of use for the ability of the
machine to communicate with its neighborhood using speech.

A spoken language system has at least one of the following three subsystems: a speech
recognition system that converts speech into words, a text-to-speech system that conveys spoken
information, and a spoken language understanding system that maps words into actions and that
plans system-initiated actions.

Using these subsystems, we should define some classes of usage. Using just speech recognition
system from the trinity, we can build dictation. This is one of the best known application of
speech recognition. Today real systems exist, but just as relatively simple applications or simple
plugins for existing text processing programs. On this application, we should demonstrate one
of the main problem within speech recognition. It is dependency on the operator. Because each
set of human organs is unique, the sound signal produced by each human will differ from the
same words said by anyone else. There is big amount of similarity in the signal, as we know that
we are able to understand each other, but it’s not simple to find this similarity with algorithms.

Some other tasks to perform with speech recognition is speech driven control of classical
computer programs. The difference from the previous one is in the vocabulary, that the rec-
ognizer must accept. In dictation, each word must be transferred into its text form, but while
controlling application, we should use only (relatively) small set of words or simple sentences
to express our wishes. Language model is necessary for dictation whereas grammar is enough
for speech driven control. On the other hand, for speech driven control, we would need second
subsystem - that is spoken language understanding. In simple form, using few rules for the
grammar, describing possible combinations of commands, it’s possible to create it just now. But
as the vocabulary grows, we are not able to define the grammar in suitable form anymore or it
is too difficult.

The ultimate language understanding system should be able to be controlled with spoken
commands from very large vocabulary or selectible without any constraints. The system must
be able to reply using speech synthesis and be able to understand the context of the speech.
For now, this is just a dream, but as the knowledge about all included science discipline grows,
prototypes of such systems are better and better, and even now we can imagine the set of
presumptions that must be performed to be able to construct and use such systems in daily
traffic.

5

2.3 Human Speech Systems

Mainly from the beginning of the speech recognition and synthesis research scientists were inter-
ested in human (or animal) organs to get enough knowledge to simulate the speaking process.

Spoken language is used to communicate information from a speaker to a listener. Speech
production and perception are both important components of the speech chain. Speech begins
with a thought and intent to communicate in the brain, which activates muscular movements to
produce speech sounds. A listener receives it in the auditory system, processing it for conversion
to neurological signals the brain can understand. The speaker continuously monitors and controls
the vocal organs by receiving his or her own speech as feedback.

Speech is produced by air-pressure waves emanating from the mouth and the nostrils of a
speaker. Parts of human speech production apparatus are for example lips, upper and lower
teeth, nasal cavity and tongue. All of these are used, but not all for one sound. For each
sound, there is only some subset of these organs used and active. The others are either inactive
or are used passively without any motion. All sounds could be partitioned into groups based
on certain articulatory properties. These properties derive from the anatomy of a handful of
important articulators and the places where they touch the boundaries of the human vocal tract.
Additionally, a large number of muscles contribute to articulator positioning and motion.

The second part of whole system are organs for speech perception. There are two major
components in the auditory perception system: the peripheral auditory organs (ears) and the
auditory nervous system (brain). The ear processes an acoustic pressure signal by first trans-
forming it into a mechanical vibration pattern on the basilar membrane, and then representing
the pattern by a series of pulses to be transmitted by the auditory nerve. Perceptual information
is extracted at various stages of the auditory nervous system.

The human ear has three sections: the outer ear, the middle ear and the inner ear. The
outer ear consists of the external visible part and the external auditory canal that forms a tube
along which sound travels. When air pressure variations reach this first part from the outside,
it vibrates, and transmits the vibrations to bones adjacent to its opposite side. The vibration
is at the same frequency as the incoming sound pressure wave. The middle ear is an air-filled
space or cavity. The last part of the ear is the most complicated one, but for us, the only
relevant information is, that it communicates directly with the auditory nerve, conducting a
representation of sound to the brain.

2.4 Elements of Spoken Language

The scientific discipline, that study speech sounds and their production, classification, and
transcription is named phonetics. Basic building block for speech are than called phonemes.

In speech science, the term phoneme is used to denote any of the minimal units of speech
sound in a language that can serve to distinguish one word from another. We conventionally
use the term phone to denote a phoneme’s acoustic realization.

In most of the world’s languages, the inventory of phonemes can be split into two classes:

• consonants - articulated with use of constrictions in the throat or obstructions in the
mouth

• vowels - articulated without constrictions and obstructions

Vowels are characterized by two basic frequencies, major resonances of the oral and pharyn-
geal cavities, which are called F1 and F2, the first and the second formants respectively. They

6

are determined by tongue placement and oral tract shape in vowels, and they determine the
characteristic timbre or quality of the vowel. The relationship of F1 and F2 to one another
can be used to describe the vowels. While the shape of the complete vocal tract determines
the spectral outcome in a complex, nonlinear fashion, generally F1 corresponds to the back or
pharyngeal portion of the cavity, while F2 is determined more by the size and shape of the oral
portion, forward of the major tongue extrusion.

Consonants, as opposed to vowels, are characterized by significant constriction or obstruction
in the pharyngeal and/or oral cavities. Some consonants are voiced, others are not. Many
consonants occur in pairs, that is, they share the same configuration of articulators, and one
member of the pair additionally has voicing which the other lacks.

Phonemes are small building blocks. To contribute to language meaning, they must be
organized into longer cohesive spans, and the units so formed must be combined in characteristic
patterns to be meaningful, such as syllables and words.

2.5 Speech Signal Representation

As mentioned in previous paragraphs, the last part of speech recognition process, we will study
more detailed is creation of characteristic flags vector for each speech element. This is the goal
of signal representation techniques. Now we should look on two representatives which are used
for speech language systems. It looks, that cepstral analysis is one of the most useful, and we
mention LPC at least to compare both methods. They are based on speech production models.
We have other ones, inspired by speech perception models, like bilinear transform or perceptual
linear prediction. The other class is not discussed here anymore.

Basic signal processing is common for both presented methods. We want to transform time
spectrum representation of signal to another based on frequency. We would like to use Fourier
transform, but there are some problems. First - for FT we need periodic signal. Speech signal
is periodic, but only in small regions. Using large regions prohibit usage of FT. Second - exact
definition of FT requires knowledge of the signal for infinite time. For both reasons, a new
set of techniques called short-time analysis, are proposed. These techniques decompose the
speech signal into a series of short segments, referred to as analysis frames, and analyze each
one independently.

2.5.1 Speech Coding

To be able to work with audio signal in computer, we need to digitally encode it. Digital storage
of audio signals, which can result in higher quality and smaller size then the analog counterpart
is commonplace in many areas of interest. We should mention one of the best known example
- mp3 file format with MPEG compression. The goal is to have the best quality using the
smallest possible space on storage medium. And this is not problem of just storage media.
When transferring such data over network, small bit rate is very significant. On the other hand,
using such good compression level means, we need quite powerful hardware to encode and decode
it. In spoken language systems, we do not need to store the signal completely, often the first
thing we do is reduction of information included in the signal to necessary minimum and then
we are working with just a fraction of original data. But even with these conditions, we need to
select some coding for acquired or produced data. We should focus of methods with low cost.
Most popular are various modifications of scalar waveform coders.

We will not need to determine, which coding to use for acoustic speech signal as this is given
(or at least limited) by hardware used, but same coding techniques should be used to store

7

vectors with flags from FT and/or other transformations.

Linear Pulse Code Modulation

Analog-to-digital converters perform both sampling and quantization simultaneously. Quanti-
zation is the process, which encodes each sample with a fixed number of bits. Linear Pulse Code
Modulation is based on the assumption, that the input discrete signal x[n] is bounded and that
we use uniform quantization with quantization step size ∆ which is constant for all levels xi:

| x[n] | ≤ Xmax

xi − xi−1 = ∆

The output x̂[n] should be obtained from the code and step through

x̂[n] = c[n]∆

Being so simple, it’s commonly implemented directly in hardware, and used in many simple
formats for sound storage (.wav, .au, .snd, .aif). There is a theory about quality of audio
coder. The main result of it is property called signal-to-noise ratio (SNR). This give us the ratio
between the sound signal energy and noise energy (in dB). For pure PCM each bit contributes
to 6dB of SNR. For communications systems 37dB of SNR is acceptable, and that needs 11 bits
to store one sample. When selecting format parameters, we can scale either number of bits per
sample or sampling frequency. For some simple recognizer, 8 bits should be enough, but most
sound systems and sound formats use 16 bits as default value.

µ-law and A-law PCM

Human perception is affected by SNR, because adding noise to a signal is not as noticeable if the
signal energy is large enough. Ideally, we want SNR to be constant for all quantization levels,
which requires the step size to be proportional to the signal value. This can be done by using
a logarithmic compander - nonlinear function that compands one part of x-axis - followed by a
uniform quantizer.

y[n] = ln | x[n] |

ŷ[n] = y[n] + ε[n]

This type of quantization is not practical, because an infinite number of quantization steps
would be required. An approximation is the so-called µ-law compander which is approximately
logarithmic for large values of x[n] and approximately linear for small values of x[n]. A related
compander called A-law is also used which has greater resolution than µ-law for small sample
values, but a range equivalent to 12 bits. In practice, they both offer similar quality.

8

Adaptive PCM

When quantizing speech signals we confront a dilemma. On the one hand, we want the quan-
tization step size to be large enough to accommodate the maximum peak-to-peak range of the
signal and avoid clipping. On the other hand, we need to make the step size small to minimize
the quantization noise. One possible solution is to adapt the step size to the level of the input
signal.

We should let the step size ∆[n] be proportional to standard deviation of signal σ[n].

∆[n] = ∆0σ[n]

In practice it is advantageous to set limits on the range of values of ∆[n] where the ratio of
∆min/∆max should be 100 to obtain a relatively constant SNR over 40dB. This scheme require
to transmit the step size with the signal, but it’s values evolve slowly in time and could be
encoded effectively with low bit rate.

2.5.2 Linear Predictive Coding

Linear Predictive Coding is also known as LPC analysis or auto-regressive modeling. This
method is widely used for its simplicity and speed. On the other hand, is should effectively
estimate main parameters of speech signals. LPC predicts the current sample as a linear com-
bination of its past p samples.

An all-pole filter with a sufficient number of poles is a good approximation of speech signals.
When modeling speech creation as signal X(z) originated from some basic signal E(z) and
modified by vocal tract acting like signal filter H(z), we should write:

H(z) =
X(z)
E(z)

=
1

A(z)

Inverse filter A(z) is defined as

A(z) = 1−
p∑

k=1

akz
−k

Using inverse z-transform we should take

x[n] =
p∑

k=1

akx[n− k] + e[n]

Let s define xm[n] as a segment of speech selected in the vicinity of sample m:

xm[n] = x[m + n]

To estimate the predictor coefficients from a set of speech samples, we use the short-term
analysis technique. given a signal xm[n], we estimate its corresponding LPC coefficients as those
that minimize the total prediction error Em.

Em =
∑
n

e2
m[n]

Taking the derivative of this and equating to 0 we obtain:

9

< em, xi
m >=

∑
n

em[n]xm[n− i] = 0

This last equation should be expressed as a set of p linear equations. Solution of the set
of p linear equations results in the p LPC coefficients that minimize the prediction error. The
solution of equations can be achieved with any standard matrix inversion package. Because of
the special form of the matrix here, some efficient solutions are possible. As a result of LPC
analysis we obtain vector of p flags. The higher p, the more details of the spectrum are preserved.

2.5.3 Cepstral Processing

Cepstrum is one homomorphic transformation that allows to separate the source from the filter.
Complex cepstrum of signal x[n] is defined as

x̂[n] =
1
2π

π∫
−π

lnX(ejω) ejωn dω

where complex logarithm is used and real cepstrum of signal is defined as

c[n] =
1
2π

π∫
−π

ln | X(ejω) | ejωn dω

It can be shown, that c[n] is the even part of x̂[n]:

c[n] =
x̂[n] + x̂[−n]

2

For speech signal representation both real and complex spectrum could be used, but prop-
erties of real cepstrum are better, so it’s much wider used. Problems with complex cepstrum
are caused by computing complex logarithm - specially the phase. We will show two methods
of computing cepstral coefficient, which are the representation of speech signal (they represent
filter - vocal tract - and excitation - air flow at the vocal cords).

We can compute the cepstrum of speech segment by windowing the signal with a window of
length N and using DFT as follows:

X[k] =
N−1∑
n=0

x[n]e−j2πkn/N

c[n] =
1
N

N−1∑
k=0

ln | X[k] | e−j2πkn/N

Second and much more used variant of computing cepstral coefficient uses results of previ-
ously mentioned LPC analysis. Updating LPC filter equation with gain, we obtain

G = Em

H(ejω) =
G

A(ejω)

10

By some terrible mathematical modification (logarithm, derivation, and others) we should
obtain following equations for computing cepstral coefficients from LPC coefficients recursively.
While there are finite number of LPC coefficients, the number of cepstrum coefficients is infinite.
Fortunately, finite number of cepstral coefficients (from 10 to 20) is sufficient to obtain reasonable
results.

c[n] =

a1

an +
n−1∑
k=1

(
k

n

)
c[k]an−k 0 < n ≤ p

n−1∑
k=n−p

(
k

n

)
c[k]an−k n > p

As with LPC we got vector of flags < c0 . . . cp >, that can be used for further recognition.
Second presented technique of computing cepstral coefficients is more used in todays recognizer,
because using definition equations and DFT is performance hungry.

2.6 Speech Recognition

At this moment we should have vector of flags, generated by some speech analysis. These vectors
should be normalized and fixed length (though not necessary). Having some trained vocabulary,
we would like to map some unknown sample into the vocabulary of trained (learned) samples
(words or other sized utterances). We should now look on at least one of most used techniques
to get trained vocabulary and to map unknown samples to this vocabulary.

2.6.1 Hidden Markov Models

About 10 years ago, two main techniques were used for speech recognition. First of them is
Dynamic Time Warping (DTW) and the theory of dynamic programming. The second one
was Hidden Markov Models (HMM). DTW is based on calculating overall distortion which is
computed from accumulated distance between two vectors with flags - one which we would like
to recognize and the other from the vocabulary. Then we should say, that vocabulary sample
with smallest distance to tested sample is the right one.

Speech recognition based on DTW is simple to implement and fairly effective for small-
vocabulary speech recognition. Dynamic programming can temporally align patterns to account
for differences in speaking rates across speakers as well as across repetitions of the word by the
same speaker. However, it does not have a systematic way to derive an averaged template for
each pattern from a large amount of training samples. A multiplicity of reference training tokens
is typically required to characterize the variation among different utterances. As such, the HMM
is a much better alternative for spoken language processing.

Todays, it looks, that HMM is one of the most used methods for speech recognition. The
HMM is powerful statistical method of characterizing samples of a discrete-time series.

Let X = X1, X2, . . . , Xn be a sequence of random variables from a finite discrete alphabet
O = {o1, o2, . . . , oM}. The random variables X are said to form a first order Markov chain
provided, that

P (Xi | Xi−1
1) = P (Xi | Xi−1)

11

where Xi−1
1 = X1, X2, . . . , Xi−1. If we associate Xi to a state , the Markov chain can be

represented by a finite state process with transitions between states specified by the probability
function P (Xi = s|Xi−1 = s′). Consider a Markov chain with N distinct states 1, . . . , N , with
the state at time t denoted as st. Parameters of such model should be described as follows:

aij = P (st = j|st−1 = i) 1 ≤ i, j ≤ N

πi = P (s1 = i) 1 ≤ i ≤ N

where aij is the transition probability from state i to state j and πi is the initial probability
that the Markov chain will start in state i. Markov chain described below is called observable
Markov model - the output of the process is the set of all states in each time and each state
correspond to a deterministically observable event.

A natural extension to the Markov chain introduces a non-deterministic process that gen-
erates output observation symbols in any given state. Thus, the observation is a probabilistic
function of the state. This new model is known as a hidden Markov model.

A hidden Markov model is basically a Markov chain where the output observation is a
random variable X generated according to a output probabilistic function associated with each
state. There is no longer a one-to-one correspondence between the observation sequence and the
state sequence, so you cannot unanimously determine the state sequence for a given observation
sequence; i.e., the state sequence is not observable and therefore hidden.

Now, when we know, how HMM works, we need to solve to basic problems. We need to learn
the HMM and we need to evaluate HMM. Evaluation should be defined as probability of the
model, that it generate given sequence of observations. Learning means modifying parameters
of HMM to maximize the probability for given model and observations. If we could solve the
evaluation problem, we would have a way of evaluating how well a given HMM matches a given
observation sequence. Therefore, we could use HMM to do pattern recognition. To be able to
use this for speech recognition we must be able to decode the state sequence, as that is the
requested information giving us recognized element.

For evaluation we should use Forward algorithm for decoding Viterbi algorithm and for learn-
ing Baum-Welch algorithm. They are quiet complicated, so you should use another literature
to learn how they work (i.e. [2] or [3]).

And now, how to use HMM in speech recognition. We simply model elementary units with
hidden Markov models, and by evaluating models, we get the probability for each of them of
modeling used sample. Then we should select the most probable one, or more models. Then
we construct larger objects from these elements using another rules (represented in many cases
with grammar rules). Elements to be modeled with HMM should be words in simple cases
with small vocabulary or smaller entities like phonemes or sub-phoneme units to be able to
use larger vocabulary without complicated training. Complicated training is probably the only
disadvantage of this method of speech recognition. This can be partially solved by using smaller
units for models. Phonemes are fine, but such models achieve somewhat lower precision of
recognizing by lose some coarticulation information from the speech. This can be solved with
even smaller unit - sub-phonemes like alophonemes being the basic unit for hidden Markov
models.

12

Chapter 3

Embeded ViaVoice

3.1 Introduction to EVV

IBM has two product lines for spoken language systems. IBM ViaVoice suite is designed for
personal computers and workstations. It offers complete spectrum of speech services, from
speech recognition to TTS. It allows continuous speech recognition. It is intended to be used
on systems with sufficiency of computation power and fast and large storages. As the opposite,
Embeded ViaVoice - EVV is dedicated to another group of system. Embedded in its name means
at first less powerful. Compaq iPAQ, that is used in this project, could be marked as embedded
device, but with its equipment and performance, it should be called embedded workstation or
embedded mainframe. Compared to workstations or PCs, it is clear, that performance required
by EVV must be highly reduced against ViaVoice system. With almost 140 MIPS and suitable
fast Flash memory running EVV thread takes about 5 to 15 percent of CPU time. Second
and in some cases more painful problem is data stream bandwidth. EVV directly works with
one channel of audio stream with 16-bit samples at 11025Hz sample rate. That means in
other words 22KB/s continuous data stream. Again for PCs, this is not problem, and it’s not
problem with iPAQ, but for some embedded devices, this could be the bottleneck. And third,
about 600 to 800KB of memory is required for data of recognizer and audio data buffers. It
is necessary to have on mind, that there must be enough performance, data bandwidth and
memory for user’s applications, because having just EVV thread is not very useful (except for
simple demo or testing). All these limitations are achieved by allowing to recognize just limited
number of phrases from strictly defined vocabulary. This is the main difference against ViaVoice,
where continuous speech recognition could be achieved. Both ViaVoice and EVV products are
distributed as libraries with some additional utilities (e.g. grammar compiler and data files).

3.2 EVV Modules

Whole EVV API could be divided into four modules at the moment. Modularization is used to
separate logically independent parts of the API and thus allow easier development of EVV and
make its interface more user friendly.

1. EVV Control - this part of the API is used to initialize, start and stop whole engine. It
connects and disconnects audio stream from/to EVV services. It is responsible for in-
stalling and uninstalling of services. Furthermore, it adds and removes listeners. Listeners
are callback functions used by EVV to notify application about errors, speech detection,
successful recognition or rejection of current utterance.

13

2. Vocabulary Manager - all vocabularies are shared between instances of EVV engine and
between multiple services. The vocabulary is a set of acceptable words and their sentences
defined by grammar. It is stored in binary file, that is created by grammar compiler. To
allow sharing of vocabularies to be done effectively, Vocabulary Manager (VM) is designed
separately from the services. All data for EVV are stored in binary images produced by
off-line compilers of grammars. Second image you need contain baseform oriented data for
EVV. The application calls VM functions to register grammars only once. VM manages
all images and allows to manipulate with them using handles. Handles are obtained from
registration functions. Using these handles, you could then register and enable grammars
to recognizer engine.

3. Audio - same as Vocabulary Manager, Audio handling was separated from recognition
engine. EVV does not connect directly to some audio source (i.e. sound card), but instead
leave application to provide audio data from arbitrary source. This could be used for
multiplexing of both services and audio sources. Audio module does just encapsulation of
internal buffers (audio queues) for both services and application. Internal buffers brings
some additional overhead against zero-copy solution, but allow the application to be more
independent. Each audio instance could be connected to one or more services.

4. Services - available version of EVV API supports multiple services to be used. There is
some part of API, that is common to all services. Every service could be started, stopped
or paused. Each service must be first installed and then started. This allows to install all
requested services, but use just a subset of them at a moment. Some services could share
parts of the engine. For example signal processing unit is used by all (or most of) services.
By sharing, audio data buffers are processed only once, that saves system resources. The
API offers functions to enable and disable routing of audio stream to particular service,
so the application could have well-grained control over the engine.

3.3 Available Services

First available and mostly used service is recognition. The recognition service API is used
for installing, uninstalling, enabling and disabling vocabularies. Application is not allowed to
modify actual set of used vocabularies arbitrary. Set of vocabularies should be modified (i.e.
expanded or shortened) only after successful or unsuccessful recognition. In practice, this mean
in decoderListener callback or after (before) service stop (start). Another possibility to change
vocabularies offers pause and resume pair, that is able to suspend service and resume it after
requested changes. Apart of decoderListener callback, some other interfaces may be used by the
application. errorListener is designed to inform the application about errors of whole engine. For
single threaded applications, idleListener and peekListener may be used to perform another work
when EVV has nothing to do (idle) or regularly while data processing (peek). For each utterance,
whole work is divided into small peaces. These are queued and then performed one per step.
At the end of each step, peekListener is called. For good interactivity, peek code should return
immediately to end speech processing in short time after utterance. Recognition could be used in
two modes. For some application, push-button mode is suitable. In this mode, EVV expect, that
user mark start and end of utterance by pressing and releasing some (virtual) button. Having
precise knowledge about start of utterance, successful recognition ratio of recognizer increases
significantly. Second - Always-speak mode is used in those cases, where we do not have any
“button”. Usage of this mode results in worse successful recognition ratio.

14

Second service is called Acoustic baseforms. Current engine allows application to use speaker
independent recognition with vocabulary with about thousand of active words. These words
are prepared off-line (i.e. statically) in the form of binary image that is used by application.
Sometimes it is convenient to be able to resize or modify used vocabulary on-the-fly. This service
allows the user to pronounce some word, process this word and add it to set of vocabularies.
User must provide the value of newly defined utterance, that means spelling of the utterance in
most cases.

3.4 Silence Detector

Being important for this project, we should now focus on silence detector. At first glance, task
of silence detector is simple. It just mark segments of audio signal as either speech or silence.
This information is then used in following stages to save CPU cycles and bandwidth. Having
just two output states, the detector could not exactly says if the signal is silence, something
between or speech. It does not recognize general noise from speech signal well too. Resulting
information is that actual signal is closer to either speech or silence. Any probability nor other
informations are provided. Informations from silence detector are used internally by following
stages and are available to application via silenceDetectorListener callback.

15

Chapter 4

Algorithms for SR Improvement

One of the most important part of this project was devising of algorithms which allow improving
of accuracy of used recognizer. In this chapter, we will look at concept of introduced methods.
Detailed description of their implementation, API and application could be found later in this
thesis (in chapter 9). All improvements are designed mainly for iPAQ and UDA1341TS chip,
but could be usable for other sound devices as well. Some useful information about abilities of
UDA1341TS may be found in chapter 8 and appendix A.1.

4.1 Input Gain Control

As briefly described in section 8.5, the UDA1341TS chip contains Automatic Gain Control
(AGC) logic. This piece of hardware can be used to automatically modify some mixer controls
to obtain signal with predefined maximal amplitude. This may be used for recording to partially
hide changes in speaker’s volume. There are several controls to set requested behavior of AGC.

AGC timing constants - this is just one control, but there are two independent timings en-
coded inside. In UDA1341TS data sheet [11] you could see table with detailed specification.
First timing constant is Attack time. It ranges from 11 to 21 ms and it says how long is
the window used to determine, that signal amplitude is either lower or higher then ex-
pected value. In another words, this determine, how long will the logic wait, before it
decides to change level of internal input gain control. The second timing parameter is
Decay time. This one says how long it will take to modify internal input gain controls to
obtain requested signal value. It could be set in range from 100 to 400 ms.

AGC output level - with this control, you can set requested level of basic input gain. It is
proportional to initial setting of internal input gain control. It should be seen as prefixed
control decreasing input gain in ranges from -9dB to -17.5dB.

Mixer sensitivity level - is intended for manipulating with final volume. You could set re-
quested level of recorded signal and AGC will try to initiate its state to obtain it.

Again, please refer to UDA1341TS data sheet [11] for precise values, combinations and
meaning of all referred controls. I am not sure, what should be AGC used for exactly. For
speech recording (i.e. dictaphone) it can be useful but is it good for speech recognition? Idea
of the algorithm used is clear, but as you can imagine without deeper knowledge, for speech
recognition, this is not very useful. Let imagine this situation. You are walking with your iPAQ
down the street and are trying to command it through speech. At some moment a tram or noisy

16

big car drive near around you. With AGC enabled, level of input gain is lowered because of
this newly recognized (or better recorded) noise (or in fact just another level of input signal).
With the same microphone sensitivity, level of your recorded speech will decrease dramatically.
At first glance, this doesn’t matter at all. You will be speaking either with base tone of voice
resulting in rejection from speech recognizer or you will try to solve this situation by increasing
tone of your voice. In this second case, you will got the same result (rejected) from the recognizer
probably, because distance of speech signal from noise would be probably not sufficient. As the
second miss, you will decrease tone of your voice some measurable time after the problematic
noise is over. Seeing from either first or second side, the recognizer will feel dizzy.

Well, we have some reasons why AGC is not the right choice. But something like this will
be useful. Have another simple example. While watching the town, you were holding the iPAQ
in front of your mouth in distance about 20 or 30 centimeters. Expect, that signal recording is
optimal for this “configuration”. Now you enter your office and place your iPAQ into its sleeve.
This sleeve will be placed somewhere on your table, but rarely directly before you in some
reasonable distance. Some corner of your table is more realistic forecast of its placement. Now
speaking with the same intensity as before, recorded signal will have much smaller amplitude.
You may notice, that in (relatively) calm office (e.g. after the dinner) you will seldom need to
speak so aloud. But recognizer likes its level of signal to do its best, so some mechanism to
modify input gain would be useful.

From both examples the conclusion should be, that we must care about the signal only if it
is speech. Second idea should be, that we need to change input gain level much more slowly the
AGC to have resulting signal smooth without great peaks from trams and trucks. Now let have
a look at the problem of speech boundary detection. This is what we need - to find speech (or
utterance) in input signal and handle input gain according to this signal.

4.2 Start and End of Speech Detection

In part about recognizer description we mentioned silence detector (section 3.4). This should
be ideal instrument for speech boundary detection. Unfortunately, it could not be used at
all. Really it should be, but it does not help us. Where is the problem? For speech driven
command and control, that is main target on embedded platforms, we would like to use short
and descriptive utterances. They should consist of one (in best case) up to three words to be still
useful. As an example, let imagine speech controlled graphics program like Adobe Photoshop or
GNU Gimp. We would like to select tools with speech control, because tool bar is to far away
from workspace and keyboard is too outdated for us. Selecting new tool with “I would like to
use a pencil” seems like bad idea to me. Just “pencil” is enough. This is just stupid example,
but to be usable, speech command and control must be as quick as possible because even then
it is still n-times slower then keyboard, mouse and other traditional input devices.

So let’s dig deeper. Having about one second long utterances results in starting with pro-
cessing of input signal when utterance is over. We are signaled about speech start just when
signal level is back on silence level. When we use current level to compute input gain control
update, whole process idea would be inverted. This is not the right way. We must choose.
Either implement speech signal detection ourselves or got more information from recognizer.
The second possibility looks easier. We could forgot all signal processing if we should got just
value of peak of previous utterance. Then we could control input gain with just this one value
reasonably and everything would be fine. But in the real world, we do not have information like
this.

We rather implement our own speech/silence detector. Now we need to think a bit more

17

about our needs. Silence detector from recognizer was discussed above and in previous chapter.
Main problem with this solution was unpredictable delay of detected state. But there is another
problem. We suppose, that two-state information in the form “is silence” or “is not silence” is
enough. In silenceDetectorListener we could obtain one of two predefined types of transitions.
Either speech-to-silence or silence-to-speech. This sounds good, but in practice, naming these
events start-silence and end-silence would be more realistic. For information whether non-silence
was (with some probability) speech, we need to bring next occurred decodedListener event to
game. These two events would be enough to decide if actual signal should be used to compute
input gain modification. But as is, the implementation of this model us unusable because of
non-deterministic delay between signal occurrence and both events.

The question now stands on: Are we able to implement the optimal model? Of course we
are, but we will need our own speech recognizer (but do not need silence detector). It does not
take sense to solve it this way. For now we will implement some mechanism to decide at our
best whether actual signal is important for input gain modifications of not. We take no care
of speech recognition at all to be independent on used speech recognizer. Our goal is to create
algorithm, which will select interesting signal (where interesting means speech signal) without
interaction with recognizer. Actual implementation is described in chapter 9.

4.3 Large Samples Usage

The UDA3141TS chip offers one additional feature, which should be used to improve results
of speech recognizer. There are three sample formats that are important for us. All referred
formats are signed little endian integers and differ only in sample size. Each sample can be
16, 18 or 20 bits large. From both empirical and exact studies we know, that sample rate
for speech recognition varies in range from 8000 to 11025Hz. Less is not enough to properly
reconstruct speech signal and more is wasting of memory and bandwidth. Similar information is
available for sample size. 8 bits is minimal requested size and 16 bits is maximal acceptable (for
powerful system like workstations or PCs both parameters could be greater but improvement
of recognizer ratio is not considerable). This means, that we would not like to provide 20-bit
samples to recognizer, but instead we create 16-bit samples in all cases.

This additional processing may seem as unhelpful generating just more CPU load, but we
show some sense in cost paid. In the first place, we get better resolution for our signal processing.
But that is not very important. The second reason is more important. We get the ability of
digital amplifying of speech signal (or better signal for speech recognizer). This should be
important at most in situations where we got weak signal regardless of maximal input gain of
microphone. In this situations we may provide just lower 16 bits of wider sample to increase
amplitude of signal for recognizer. In fact, lower 16 bits are used always, but for normal signal
we must shift the content right few times (until the mean significant bit moves on the position
of MSB of 16-bit word). Performing less divisions, we strengthen the signal. This technique
should improve results of recognizer significantly in marginal situations. Unfortunately it was
not implemented, because of complexity of changes needed for ALSA system. It should be added
later as part of following driver improvements.

18

Chapter 5

Linux Sound Subsystems

5.1 Sound Subsystem Basics

Being just another piece of hardware, sound cards needs some support from operating system to
be useful for application programmers. Sound cards normally have several different devices or
ports which are able to produce or record sound. There are differences between various cards,
but most have the devices described below.

• The digitized voice device (also referred to as a codec, PCM, DSP or ADC/DAC device)
is used for recording and playback of digitized sound. This is one of the most used part of
each sound card, present in most music playing like playback of mp3s or recording sound
via microphone. The main element of this part is analog-digital converter for recording
sound and digital-analog converter for playing digital sound formats. On digital side of
this device, sound is stored as set of samples created by ADC/DAC. Basic parameters
for configuration of this device is sample rate, number of samples taken per second which
could vary from as low as 8kHz up to 48kHz (or 96kHz for professional hardware) and
depth of samples, number of bits used to store one sample. Another parameter is number
of channels of sound. For some application one is enough - we have mono sound, mostly
used is stereo sound - two channels and for realistic sound up to five channels may be
used. As present in almost every card (except some special purpose or customer cards),
each driver contains set of routines to manipulate with this device and to configure it. For
speech recognition this is the most useful device (together with mixer).

• The mixer device is used to control various input and output volume levels. The mixer
device also handles switching of the input sources from microphone, line-level input or CD
input. Cheaper cards are able to use one source for input and one for output at any time.
Better card support receiving or playing two or more streams at once. For the others,
there is software support to do this. Being another very useful part of sound cards for
speech recognizing and for any other usage, it will be second point of interest in our driver.
Except from traditional mixer manipulation as known for all sound cards, UDA1341 has
some extended support for gain control. Control code for this special hardware abilities
will be the basic goal of our efforts. As output sound subsystem on iPAQ is poor without
headphones, we should focus on sound recording.

• The synthesizer device is used mainly for generating music. It is also used to generate sound
effects in games. One of the well known synthetizer devices is the Yamaha FM synthesizer
chip which is available on most sound cards. Another type of synthesizer devices are

19

the so-called wave table synthesizers. These devices produce sound by playing back pre-
recorded instrument samples. This method makes it possible to produce extremely realistic
instrument timbres. Again this is not very useful for speech recognizing, but programmable
wave table could be successfully used with speech synthesis.

• A MIDI interface is a used to communicate with devices, such as external synthesizers,
that use the industry standard MIDI protocol. MIDI uses a serial interface running at
31.5 kbps which is similar to (but not compatible with) standard PC serial ports. The
MIDI interface is designed to work with on-stage equipment like external synthesizers,
keyboards, stage props, and lighting controllers. MIDI devices communicate by sending
messages through a MIDI cable. For speech recognition this is not very useful device, even
it should be used for speech synthesis with external speech synthetizer.

• Most sound cards also provide a joystick port. Some older cards (introduced before ATAPI
interface for CD-ROM was devised) contain interface (IDE, SCSI, or proprietary) for a
CD-ROM drive. These devices are not controlled by sound card driver and are not wide
spread todays.

5.2 Open Sound System

The Open Sound System (OSS) is a device driver for sound cards and other sound devices. OSS
was derived from the sound driver written for the Linux operating system kernel years ago. OSS
is commercial product used for variety of operating systems. It’s main feature is portability of
applications written using OSS API. Communication and controlling of sound devices is based
on usage of traditional Unix special files for each feature of sound card. As so, the API is
very simple using just about five functions to manipulate devices. Advantage of this practice is
simplicity of applications. They fully support traditional Unix style of thinking. For everything,
there are just files. To record some sound you should use command

cat /dev/dsp > my_sound.raw

To play this sound you will just copy it back to special file /dev/dsp. Well, in most cases this
is poor theory and is not usable in practice. If nothing else matter, almost nobody would like
to use raw data samples. Controlling of sound card devices (like mixer) is not trivial this way.
But on the other hand, you don’t need any special purpose library or services available just in
one operating system. The principle of special files is well known and accepted over variable
different platforms. Being so simple it could be emulated in cases when special files are not
supported.

As you can presume, the functions used in OSS API are open(), close(), read(), write() and
swiss-knife ioctl(). The remaining functionality of OSS API is implemented using large header
files with definitions of constants for ioctl() call. This is nearly absolutely portable, but (without
some exceptions) this API does not offer any advanced services. Using so much constants, our
source code becomes a bit unreadable quickly.

For its missing advanced services and specially for future evolution of Linux sound oriented
on following sound subsystem this will not be our choice and therefore we don’t need to describe
it in details.

To avoid mismatch, we need to mention, that there are two “versions” of OSS. On web
page http://www.opensound.com you should find basic drivers. Commercial subject (4Front
Technologies) is maintaining these drivers same as documentation and other support. These

20

drivers are fully OSS compliant and should support all features of OSS. Sound drivers shipped
with Linux kernel are the second “version”. The are maintained independently and they are
called OSS drivers, because they implement OSS interface. For most of application, small subset
of OSS functions is needed. Linux kernel drivers implement just /dev/snd and /dev/mixer
interface in most cases. Rarely MIDI interface is supported too. Other features are either not
supported at all or their implementation is limited.

5.3 Advanced Linux Sound Architecture

Originated from specialized sound driver, Advanced Linux Sound Architecture (ALSA) is sim-
ilar to OSS in its evolution. From beginning it was designed to be modular, scalable and
flexible. ALSA is compatible with OSS sound drivers using OSS emulation layer modules, but
it’s application interface is even better. As the main difference, there is not so strong pressure for
portability, so more programmer friendly interface is used. ALSA package should be divided into
parts. Replacement of OSS drivers are ALSA kernel level drivers for sound cards. Middle level
is made by ALSA user-level library that provide C language API to application programmer.
Higher level forms basic utilities for manipulating with mixer, playing sound and manipulate
some sound card’s specific features.

The lowest level will be at highest interest while writing sound card driver, so take a bit
closer look on it.

5.3.1 Special Files

As OSS does, ALSA uses special files to interact between kernel space code (sound cards drivers)
and userland code (library and user written application). Here we will discuss the difference in
special file naming and usage. First short overview of OSS special files.

/dev/sndstat human readable information about sound card
/dev/mixerX setting of volume and source of sound
/dev/dspX,dev/audioX digitized voice - record and playback
/dev/sequencer,/dev/music synthetizer
/dev/midi raw MIDI interface

Table 5.1: OSS special files

As mentioned in the previous section, OSS uses special files directly. Most frequently used are
/dev/mixer and /dev/snd. On the other hand, most drivers does not implement /dev/sndstat at
all. X in file names is number. It’s used to distinguish between more devices on one board. Sound
card should have two mixers for example and they will be named /dev/mixer0 and /dev/mixer1.
Same situation is with /dev/dsp and /dev/audio. These two device types are very similar. They
only differ in used default encoding after opening them (8-bit unsigned linear encoding versus
µ-law with resolution of 12 or 16 bits). The /dev/audio device is provided for compatibility with
sound devices introduced in Sun’s workstations running SunOS.

For ALSA another naming scheme was devised. Special files used by ALSA should be divided
into two major classes. First ale global devices and second are devices which should be present
multiple times. Multiple times should be per a card or per a device. All special files are listed
in following table.

21

/dev/snd/seq synthetizer device (global)
/dev/snd/timer global timer device (global)
/dev/snd/controlCn control device for card n
/dev/snd/mixerCnDm mixer m of card n
/dev/snd/pcmCnDmp digitized sound device m of card n - playback
/dev/snd/pcmCnDmc digitized sound device m of card n - recording (capture)
/dev/snd/midiCnDm MIDI and synthetizer interface for raw access
/dev/snd/hwCnDm hardware dependent device m of card n

Table 5.2: ALSA special files

As you can see, names are more complicated, then ones in OSS. The system is better, because
you can precisely say, what is the device for and where it may be found. ALSA fully support
devfs - device filesystem. For now, to offer compatible solution, device files are created under
/proc/asound/dev and symbolic link is made here as /dev/snd. Difficult naming convention does
not matter, because it’s not used directly by application programmer. There is user level library
to access ALSA API from applications. So the code, where these names are used is only inside
ALSA library.

5.3.2 ALSA Driver Package

Whole ALSA project is well modularized and divided into (actually) four (relatively indepen-
dent) packages. On the lowest level, in the kernel-land, operate device drivers for individual
cards. They are implemented as kernel modules, and this package has strong dependencies on
kernel source code. After significant changes in kernel, ALSA developers need some time to up-
grade driver package to be conforming with new kernel. This should be one of the most obvious
reason for integration of ALSA into Linux kernel.

Common kernel module for ALSA sound system creates asound entry in proc filesystem. In
underlying files and directories we should find detailed information about actual hardware and
software configuration.

Other common modules are dedicated to implement OSS compatibility. They observe special
files for OSS and transform their requests to ALSA API calls which are then dispatched to ALSA
library.

Main part of driver package makes device drivers for supported cards. Each driver should
ideally consist of two modules. There should be one module for each chipset and one module
for each sound card (or sound card set) using this chipset. This should avoid repetition of code
in drivers for cards with same chipset and just few differences. For driver package there exists
strict naming convention for file names, functions and data objects. Module for sound card X
should be named snd-X.[co]. Header file should be named X.h. Exported (and in best case all)
functions should follow the convention snd X something() and defined types snd X something t.
And at the end just list of sound kernel modules:

snd.o, snd-mixer.o, snd-pcm.o, snd-midi.o, snd-timer.o, snd-hwdep.o

5.3.3 ALSA Library Package

We can look on ALSA driver package as substitution of OSS drivers from Linux kernels. It will
be possible to program user level applications with just kernel modules of ALSA. But this is not

22

the goal of ALSA developers. They provide specialized library even for low level programing.
Other layers of abstraction should be added with sound systems like esound daemon or arts.
We should focus ourselves on two parts of ALSA library interface. In the center of our interest,
there will be PCM (digital audio) interface of ALSA library. We should say something about
configuration possibilities too.

We should look on configuration abilities of ALSA. Whole configuration is designed to define
data structures required for ALSA library and core. You can modify (or overload) big set of
runtime parameters. Syntax used is relatively intuitive but configuration files are huge, so it
could take time to make sense of it. Simple example of ALSA configuration language possibilities
follows. Expressions in square brackets are optional:

Include a new configuration file
<filename_to_include>

Simple assign
name [=] value [,|;]

Compound assign
name.name1 [=] value [,|;]

Array assign
name.0 [=] value0 [,|;]
name.1 [=] value1 [,|;]

Figure 5.1: ALSA configuration file syntax

This is just very simple example to gain basic overview. To learn more, read ALSA library
documentation (for version 0.9.x) [9]. Basic configuration file is $prefix/share/alsa/alsa.conf,
where $prefix is either /usr or /usr/local or any other directory selected when compiling ALSA
package from sources. Main configuration file is used to set default values for basic data struc-
tures for all used interfaces (PCM, mixer, hwdep, timer, MIDI). It includes specialized configu-
ration files for single sound card models.

Default values of all configuration files are fine for most users (basically all except some
ALSA developers).

For PCM interface, there is no sense in listing all supported functions. Reference documenta-
tion generated directly from source codes is quite good (but it does not describe referred objects
deeper). I would like to focus on basic different in programming style for ALSA using library
API and for OSS using special files directly. This should be best viewed on another examples,
which have no sense at all, but demonstrate the difference well. To have smaller code, all test
for errors were removed. First code is for OSS sound system (Figure 5.2).

Now similar (but not equal) code for ALSA sound system using C library API (Figure
5.3). The main difference is, that instead of many symbolic constants, we have many functions.
Question, if code for ALSA is more readable is topics for a discussion. Main gain should be the
fact, that for OSS every operation is call to kernel and all code is placed in kernel level. For
ALSA significant parts of code should be placed directly in library and for some functions no
system calls are required. Userland code is also easier to debug.

23

audio_fd = open ("/dev/dsp", open_mode, 0);

int mask;
ioctl(audio_fd, SNDCTL_DSP_GETFMTS, &mask);

int format = AFMT_S16_LE;
ioctl(audio_fd, SNDCTL_DSP_SETFMT, &format);

Figure 5.2: OSS code style

err = snd_pcm_open(&handle, device, SND_PCM_STREAM_PLAYBACK, 0));

/* get current swparams */
err = snd_pcm_sw_params_current(handle, swparams);

/* start transfer when the buffer is full */
err = snd_pcm_sw_params_set_start_threshold(handle, swparams, buffer_size);

/* align all transfers to 1 samples */
err = snd_pcm_sw_params_set_xfer_align(handle, swparams, 1);

/* write the parameters to device */
err = snd_pcm_sw_params(handle, swparams);

Figure 5.3: ALSA code style

5.3.4 ALSA Utilities Package

Most of currently available programs are written for OSS sound API. There is OSS emulation
in ALSA, but native applications are welcomed. They could serve as examples and first aid
utilities when OSS support does not work. ALSA utilities package consist of five basic utilities
for manipulation with sound systems and sounds at all. Summary of included utilities is in
following table.

alsactl an utility for sound card setting management
aplay/arecord utilities for the playback and capture of .wav files
amixer a command line mixer
alsamixer another mixer with ncurses interface

Table 5.3: ALSA utilities

The most important one of all is command line mixer. We need them, after we have suc-
cessful installed ALSA drivers and library. First step we need to do is unmute the card. This
step is described in installation documentation in details [10]. It’s recommended to try to use

24

aplay/arecord pair to test full functionality of native ALSA interfaces and correctness of instal-
lation. Specialized utilities for some sound cards or chips could be found in ALSA tools package
(includes setup tool for SoundBlaster 16, Envy24 (ise1712) cards, OPL2/3 FM instrument loader,
assembler for emu10k1 DSP chip and possibly others).

5.3.5 ALSA OSS Package

ALSA and OSS introduce similar features. Both are sound systems with same basic abilities.
Just small effort is necessary to implement the API of the other system. To be able to win
in the battle field of open source software, ALSA needs to offer backward compatibility. Main
functionality of OSS compatibility layer is covered in kernel modules. But there exist user land
library too named libaoss, which acts as middle layer between kernel modules and ALSA library.
To run programs with OSS sound system interface you may need both kernel modules and
this library in some special cases (if you would like to apply some routing settings from ALSA
configuration files). When you need to place this library on some nonstandard place, there is
a script in the package which should act as simple wrapper to facilitate the use of the OSS
compatibility library.

25

Chapter 6

Development Environment

After obtaining the iPAQ device, the first step we need to undertake is to setup some usable
development environment. This should be divided into two main parts. First we need to get
the iPAQ up and running and next we must have cross-compiling tools on the workstation that
we use for the whole development.

6.1 Problems with iPAQ and Familiar 0.4

The Compaq originally supply it’s PDA with preinstalled Microsoft Windows CE. When I got
the device it was equipped with Linux (Familiar distribution). So I do not need to undergo the
unhealthy process of replacing the product of Microsoft with Linux. But there was still need
to upgrade the Linux system of the iPAQ. The old distribution used there and mainly the boot
loader have some nuts I need to dispose of. The main problem was partition layout.

Most of PDAs have two kinds of memory. First traditional SDRAM memory, as we know it
from workstations, but they have no fixed disk. Instead of the winchester, non-volatile memory
is used. To advantages of this solutions we should count at least small dimensions and no
mechanical components. This memory named flash, is then used as stable storage medium.
Even when sized to around tens of megabytes, to keep similarity of I/O layers of operating
system, the same structure is used. The flash device is divided into few independent parts called
partitions. On the old Linux system, there were four partitions. First one was dedicated for boot
loader, small program for booting the operating system after power up. The second partition
was used for storing parameters of the boot loader. The third one was used for Linux kernel
and the last one was for regular filesystem.

For the simplicity the layout of the partitions, their sizes and placing was fixed. With 16MB
of flash, there was 2 ∗ 256KB for boot loader and it’s parameters, then come 512KB for the
kernel and the rest (15MB) was free for the filesystem.

There are two problems with this. One is waste of expensive flash when using smaller boot
loader (it should have around 160KB) and just a few kilobytes of the parameter partition. On
the other hand, having the kernel smaller than 512KB is not easy to achieve. Even when all
possible parts of the kernel ale created as modules and stored on the filesystem, the core of the
kernel should have around 600KB or more todays (with kernels 2.4.x or 2.5.x). We do not need
big amount of code like parts for IDE or SCSI devices and others, but as penalty we must use
special drivers for flash or some special input devices (e.g. touch screen).

Another minor problem we should take on mind is the fact, that the image of core kernel
is not accessible as normal file via the filesystem. All partitions are visible (for both reading

26

and writing) as special (block) devices, but this behavior differs from that one we know from
workstations.

There are two solutions of the most painful problem. Either we could make the partitions
variable-sized or simply change their sizes to meet new requirements, or we could move the
kernel image on the regular filesystem and reduce actual number of partitions.

After studying the state of according parts of kernel sources (that time branch 2.4.x in ver-
sion 2.4.16-rmk1), it was clear, that code of partition support was devised without any mean of
changing the size of partitions. Address of the beginning same as the size of partitions was ex-
plicitly written in the source code, so any modification will be very difficult and time consuming.
It will be not expandable to other modification of layout or other versions of hardware.

At the same time, the next release of Linux distribution used on iPAQ was released. One
of new component is the boot loader, which was dramatically changed and now offer much new
possibilities. One of which is booting the kernel image placed on the filesystem. Even it’s not
so simple as one may think, this second variant was selected for solving the problem with size
of kernel core.

6.2 Upgrade to Familiar 0.5.1

This section should be divided into few independent parts. First we should say something about
manipulation with partitions and possibilities of the bootloader at all. Next we should save old
state of iPAQ. Then, the main and most dramatic step comes on the scene. After this is done,
we need to reconfigure the partition layout and finally the new distribution could be placed on
newly created partition. As the last thing to be at the same functionality as before this whole
process, we will need to modify default configuration of Familiar distribution.

6.2.1 The CRL/OH ARM Bootloader Introduction

The bootloader is first software, that takes its role after iPAQ is powered on. There is possibility
of selection between few bootloaders, but for iPAQ one of the most used is the ARM Bootloader
from Cambridge Research Laboratory and Open Handhelds. Full but unfortunately not very
up-to-date documentation can be found at [4]. As there is source code available it is the best
way in the case of troubles. Most of PDAs have no keyboard at all. iPAQ is the exception,
Compaq offers external keyboard, but it’s not shipped in default configuration. Because of this,
there must be any other possibility to control the bootloader. In this phase of system startup,
the touchscreen or software keyboard it just a dream. Offered solution is console accessible via
available ports. The iPAQ has both IrDA port and either serial or USB port via the cradle.
At this time, the bootloader has support for IrDA and serial console. As you can presume, the
second one is the winner of very hard selection. After connecting the serial cable into standard
serial port of workstation, you need just some terminal emulator, which then communicate
with the bootloader. There are plenty of such programs, name kermit or minicom just two
of most known in the world of Unix. RedHat distribution (and all other major distributions)
used for workstation contains the minicom package. Second package, we will need is lrzsz for
implementation of xmodem protocol for file upload and download.

Default determination of minicom terminal emulator is to work with modems, testing of their
configuration and remote logging on servers. For use with the bootloader we will need to change
default configuration a bit. For security reasons, the special file for serial ports are accessible
just for the owner, that is the root. Naturally we would like to use minicom under normal user,
so we should either make minicom SUID root, or modify access rights for serial port.

27

As the least painful solution I choose to set the group of serial port’s special file to uucp
and add read and write rights for this group. Users, that should work with iPAQ this way were
added into group uucp. Now minicom is usable for (selected) standard users. Next we need to
create configuration for communication with bootloader. Requested settings are listed below:

serial device: /dev/ttyS0
lockfile location: /var/lock

speed: 115200 bps
number of data bits: 8

parity: none
stopbits: 1

HW/ SW flow control: none

Table 6.1: Minicom settings

The serial port device should differ (depends at least on used serial port). The location of
locking files needs to be the same as for pppd - a PPP daemon discussed later. Now we have
minicom prepared for accessing the bootloader.

When iPAQ is powered on, the splash screen of the bootloader is displayed. By pressing the
calendar button, the serial console is activated. Now running minicom we should see the prompt
of the console. Type command help, and all possible commands are displayed with some short
hint. Now type command show to display content of variables, which may be used to adjust
bootloader’s behavior. Next tables summarize the most important commands and variables for
our next work.

help lists all supported commands with short description
load load the image of given partition
boot boot using default or specified type (nfsroot | flash | jffs2 [kernel image])
show show all or specified parameter’s value

set set specified parameter to given value
params (save | reset) saves user defined parameters or reset them to default values

partition (reset | show | define | save) used to manipulate with flash partitions

Table 6.2: Bootloader commands

In the table of variables, the values in brackets if any are the default ones.

baudrate [115200] speed of serial communication.
boot type [flash] where to boot from (nfs | flash)
linuxargs [noinitrd root=/dev/mtdblock1 init=/linuxrc console=ttySA0]

parameters passed to the kernel

Table 6.3: Basic bootloader variables (version 2.14.5)

The most important variable for us will be the variable linuxargs to be able to set the
Linux kernel appropriately. Usage of main commands and variables will be demonstrated on the
process of upgrading the bootloader same as the rest of whole system.

28

6.2.2 Backup of Old System

Because this will be dancing on very thin ice, first think we need is to make some backdoor.
When everything will be wrong we should be able to get on the start line and begin again.

Creation of backup on the workstation is quite easy. We just need to store the images of
defined partitions and the original partition layout. Then whenever we want, we will be able to
construct the content of the flash again. The layout of partitions is fixed as explained above.
Original system has four partitions with these parameters:

name start size flags
bootldr 0x000000 0x040000 0x02
params 0x040000 0x040000 0x02
kernel 0x080000 0x080000 0x00
root 0x100000 0xf00000 0x16

Table 6.4: Original partitions layout (Familiar 0.4)

Now how to store images on the workstation. We will use bootloader’s command save. It
has one argument - name of the partition to send using xmodem protocol. After typing the
command, we need to instruct minicom to receive the image. Using keys CTRL-A-R, we say
minicom we would like to receive file. Then we must select protocol, for us xmodem is the right
choice. Finally enter name of file, where to store received data and that’s all. You should see
dialog window with informations about progress of the transfer. Using serial cable you may get
about 20KB/s, so be patient.

boot> save params
About to xmodem send root

flashword=50000000
base=00040000
nbytes=00040000

totalPackets=00000866

Upload Successful

Bytes Transferred=00040000
ackcnt=00000866
nakcnt=00000001

Figure 6.1: Partition saving

Using this approach, save partitions params, kernel and root. You should have files named
params.img, kernel.img, root.img of the same size as their partitions now (real names of your
files are not important of course).

6.2.3 Bootloader Upgrade

Having way back open, we can continue with bootloader upgrade without worry. Until now, it
is possible to use documentation from the Familiar Distribution for installation of whole system

29

[5]. Installation of new bootloader is not difficult in number of steps or their complexity. The
only one bugaboo is the fact, that when you admit the failure, you can end with totally unusable
piece of iron and silicon named iPAQ. There is just one advice. Do not, under any circumstances,
reset the iPAQ during this process. Ensure that the battery is fully charged, cross your fingers
and let begin.

The approach is de facto just reverse of backup process. First we shall instruct the (yet
old) bootloader to receive image of some partition, then say minicom to send the right file. For
bootloader we use command load with the name of partition (now bootldr) as one parameter.
Then instruct minicom to send file using CTRL-A-S. In file selection dialog you can use arrow to
select the right file and G like Go to to change directory. As for receiving, progress information
are shown during transfer.

We use bootloader version 2.17.18, so the right file should be named bootldr-2.17.18.bin. You
need to download it from www.handhelds.org with the rest of Familiar distribution [5]. After
transfer is done, bootloader informs you about storing data info flash:

load bootldr
loading flash region bootldr
using xmodem
ready for xmodem download..
BSD sum value is: 00000000
programming flash...
unlocking boot sector of flash
Protect=00000000
erasing ...
Erasing sector 00000000
writing flash..
addr: 00000000 data: EA00008E
addr: 00010000 data: E1A0C00D
verifying ... done.
startAddress :00000000
limitAddress :00018980
Protecting sector 00000000
Protect=00010001

Figure 6.2: Bootloader partition loading

Your numbers can be quite different, but you need to see messages about erasing, verifying
and writing the flash. If you don’t see whole listing but just few last lines, you don’t accept
progress dialog quickly enough after transfer and some lines dismiss. But don’t panic, this makes
no troubles.

At this point, hit the reset button at the bottom right hand corner of the iPAQ. You should
now see the new bootloader splash screen. Check the version number on last line and compare
it with suggested version. To use some new features (booting from filesystem and no parameters
partition) you need bootloader version 2.17.13 or later.

New version of bootloader has few additional variables to set up boot from JFFS2 filesystem
properly. Meaning or default values of others should be quite different. The most important
follows:

30

boot type [jffs2] where to boot from (nfs | flash | jffs2)
kernel partition [root] on which partition to search for kernel
kernel filename [boot/zImage] name of kernel image file within the filesystem

Table 6.5: Additional bootloader variables (version 2.17.18)

6.2.4 Partitions Reconfiguration

Layout of partitions has changed, so we need to configure it. Default partition layout is good
enough for us, so the only one step we need to do is this command of bootloader:

boot> partition reset
argv[1]=reset
defining partition: bootldr
defining partition: root

Figure 6.3: Partition resetting

As you can see from the listing, just two partitions were created. Bootldr partition is the
same as for previous version and the rest of flash is occupied by the other one. Whole root
partition is used for JFFS2 filesystem. Kernel image and user modified parameters are stored
there. Complex view of new layout should be obtained with partition show:

boot> partition show
argv[1]=show
npartitions=00000002
bootldr

base: 00000000
size: 00040000
end: 00040000

flags: 00000002
root

base: 00040000
size: 00FC0000
end: 01000000

flags: 00000018

Figure 6.4: New partitions layout

Using just two partitions we save some space and solve the problem with larger kernel images
than the size of previously used kernel partition.

31

6.2.5 New Image Download and Modification

Using same approach as with bootloader image, we download image of new system. File is named
task-bootstrap.jffs2. Again there should be some message about erasing, verifying and writing
the flash on the console of bootloader. When done, the last step of upgrade is to reset iPAQ
pushing reset button at the bottom right corner of the iPAQ. Splash screen of new bootloader
will be shown. Type boot on your serial console or press calendar button on iPAQ to boot
Familiar distribution version 0.5.1.

To use iPAQ for development, we need to modify its configuration slightly. Without any
text editor, it’s difficult to modify configuration files a bit, but we have sed, echo and cut. That
is enough to configure whole system properly.

Because the serial line is the only one connection to the iPAQ, we will need some emergency
scenario but another communication channel for comfortable work. For emergency the commu-
nication must be the easiest possible, so we will use serial port for Linux console and minicom
for manipulation with iPAQ. For comfortable work we would like to establish full network con-
nectivity to be able to use ssh for remote access and NFS for file sharing. These two modes are
exclusive, so we need to be able to switch between them.

First iPAQ will boot with console on its touchscreen and with terminal directed to serial
port (/dev/ttySA0). When everything is fine, we switch to fine work mode and free the serial
port for PPP connection. We will start ssh and NFS daemons at the end.

For detailed description of Familiar root image modification and configuration changes see
Appendix B. After all do not forget to backup whole new image using bootloader’s upload.

6.3 Cross-compiler Tools

Using native compiler running on iPAQ is possible, but performance of iPAQ is nothing wonder-
ful, so better alternative is cross-compiler running on workstation. With NFS we should leave
ARM binaries on workstation and run it on iPAQ from shared filesystem.

We need to undertake three steps. Create cross-compiler, cross-linker and another utilities
for manipulation with binary objects and last we will need basic libraries compiled for ARM
architecture. Recommended compiler for ARM (mainly kernel) development is GCC version
2.95.X. Last versions of binutils (2.11.2) and GNU libc version 2.1.X make the toolchain com-
plete. All these may be downloaded from Internet as single package that is ready to use. This
is uncomplicated way, but as we would like to get deeper into ARM development, let’s create
our own binaries for the toolchain.

Creation (or better compilation) of toolchain is perfect example of chicken-egg problem. To
compile standard C library we will need cross-compiler to work, but to create it, we will need
some parts of that library. In creating linker, there is no sequence with the others. Clearly, there
is a solution for this. Even two variants. We can use one of “eggs” from standard distribution,
or we can follow instructions contained in GCC package or on the Internet to produce all part
in one step.

For doing everything with own hands, we simply put all components into one directory
and compilation process will be able to recognize the chicken-egg problem and solve it using
more stages of cross-compiler creation. First temporary cross-compiler is created. It is used to
compile necessary parts of libc, and then final version of cross-compiler tool is built using results
of previous stages.

When I went into all these troubles, I decided to use proper C library from ARM port of
Debian Linux distribution to make my task a bit easier. On the other hand, using newer version

32

of GCC for workstation with success, I’d like to try it for iPAQ too. I choose GCC 3.0.2, because
newer version has problems with cross-compiling itself. From my test emerged, that GCC 3.0.X
for ARM is not completely stable and without bugs. Problems are concentrated around the part
for C++ and it’s library, so it’s still useful for kernel development using C language. Later GCC
version 3.0.4 was released, repairing most of previous bugs concerning with ARM architecture
specific parts. This version looks good for both C and C++ language, but as GCC 3.0.2 looks
sufficient for kernel development, I don’t expect moving to this new version. Finally I give you
at least used configuration for GCC:

Configured with: --enable-threads=posix --with-cpu=strongarm1100
--target=arm-linux

Thread model: posix
gcc version 3.0.2

Figure 6.5: GCC 3.0.4 configuration

Used ARM distribution is ARM port of Debian Linux version 2.2 Release 3. Apart from
development package for GNU libc, other libraries like libncurses, libm, libproc, libz, libcrypto
or libwrap are used.

6.4 Selection of Linux Kernel

In the time of this project, two main branches of the Linux kernel are on the scene. Currently
stable version 2.4.x and newly created development version 2.5.x. As they differ in significant
parts, it will not be possible (or reasonably achievable) to produce code for both of them.

First it looks that 2.4.x branch will be better choice, because for 2.5.x I need to study
modified parts and probably modify the code to obtain working Linux kernel. In the time of
deciding between these two alternatives, information about involving ALSA sound system info
development series of Linux kernel was officially published. Because I would like to offer results
of my work to Linux community, I will prefer progressive versions of Linux kernel and ALSA to
avoid work with porting my work when done.

For workstation Linus’ kernel and for iPAQ branch from Russel King are used. Currently
that means these kernel versions:

• Intel x86 kernel - 2.5.7-pre1

• Arm kernel port - 2.5.6-rmk1

Both kernels will be upgraded only if there will be serious bugs repaired or necessary fea-
tures added. Russel’s port come out from Linus’ branch and is continuously merged with it.
Main information and download sources for both kernels are web pages www.kernel.org and
www.arm.linux.org.uk respectively.

Until now, whole 2.5.x branch of Linux kernel go through the phase of implementing new
features and modifying significant parts of code. Changes in block I/O layer and other major
modification has deep impact on kernel functionality. Although all new improvements bring
better performance and/or greater abilities to the kernel, there are lot of new bugs in modified
or new code. Fortunately all changes was discussed well enough, to allow quick revision of new

33

code and successful bugs removal. In version 2.5.4 of Linus’ tree (thus in Russel’s tree too) most
of bugs are caught and removed, so it looks like current kernel versions are stable enough to be
used at least for kernel development.

In kernel version 2.5.5-pre1 ALSA sound subsystem was integrated into the kernel being
now recommended sound platform for future development of Linux kernel. For short time it is
intended to be used by testers and developers only, until the process of it’s integration into the
kernel will complete. Because both ALSA and OSS are fully modularized, it is possible to have
both sets of modules compiled and switch between them using one kernel without rebooting.
After integration, it is expected, that ALSA will be used by much more installations. Thus there
is an effort to improve web pages of the project as well as additional documentation. Even with
new kernel it is possible to use old standalone packages of ALSA (stable 0.5 version same as
development version 0.9). ALSA sources integrated into kernel were derived from version 0.9.

6.5 Kernel Modifications

Using pure kernel versions discussed above, I was not able to boot or even compile them. That’s
why I need to create few patches with modifications to be able to use them properly. For kernel
of workstation (x86), there were minor problems with new block I/O layer and yet unmodified
drivers for some end devices. I created a patch for ZIP driver (ppa) and send it to responsible
person (author of changes in block layer - J. Axboe). For ARM kernel I need to modify driver
for MTD device (mtdblock for read only access) to be able to boot the kernel. Patch was sent to
Russel King and it was included in one of next releases of -rmk branch. All patches are included
into project sources. Brief description of patches content follows.

spin locks - In 2.4.x kernels, there was one big lock for exclusive access to data structures
of block I/O layer for I/O request serving. The lock was named io request lock and was
common for all block devices over the system. This solution was not easily extendible
and scalable. In 2.5.x branch, there are two major modification to solve these problems.
Common lock was removed and replaced with one lock per request queue, which is exclusive
for each block device. With this change, other minor trouble is repaired. Before, the lock
for request queue was locked too early and in many cases is was held unneeded wasting
system resources. This makes multiprogramming less effective. In some cases the lock
was unlocked in lower level routines and has no effect at all, so locking it was completely
unneeded at all. For ppa driver (older parallel port IOmega ZIP drive) some calls of
spin [un]lock irq(io request lock) call was removed and in others, lock from the request
queue is used instead of global one.

Second major difference is in collecting buffers for scatter/gather mode of data transfers.
The main thought is to offer buffers per disk sector (512B), but gain one page that is data
unit for page cache. In computing layout of buffers, field named address was used in 2.4.x
kernels. For full support of high memory, this was changed in 2.5.x to couple page and its
offset. Address field is supposed to be removed in the early future. While stepping through
kernel call graph, I do not find any asserts for badly prepared buffers. This caused NULL
pointer dereference and because of this I added simple test of buffer address before reading
data into it.

kdev t - For unambiguous identification of devices, pair of minor and major numbers is used in
Linux kernel. In 2.4.x tree, these two numbers were coded into one integer using its lower
and higher half independently. As number of different devices grows, there is a need to

34

make scope of both numbers wider. In the future, this may be solved using few different
techniques, but for now, at least some abstraction is needed. This will offer to change
implementation independently on the rest of code. New type kdev t was introduced to
accomplish this goal, which is now defined as unsigned short, but in the future structure
with items for minor and major numbers is expected. To be able to manipulate with
device numbers, set of macros or functions is introduced to convert the pair to integer,
compare two devices and so. Another problem with this is existence of macros for access
minor and major numbers from device number in standard include files (sys/sysmacros.h).
These definition of macros major() and minor() are not the right one and should not be
used in the kernel. Correct versions are named MAJOR() and MINOR() and are placed
in linux/kdev t.h. Now the definition is the same as in system includes, and it’s intended
to be copy for source code, that has access just to kernel includes, but it should be better
to use the definition placed here. Some problems with kdev t was needed to solve with
ALSA sources too, but that is discussed in another chapter.

Unfortunately, patches for kdev t modification I prepared were not used. Critical parts of
code were replaced before I was able to send my patches to dedicated persons. For now,
these patches repairing kdev t problems in Reiser file system and other parts are useless
and are not involved in project sources anymore.

The only patch, that was applied is kdev t and spinlock modification for MTD block read-
only access. The patch was supplied to maintainer of MTD CVS and applied there. It
should be merged into Linux kernel some day in the future.

MTD partitions - In kernels from 2.5.x-rmk branch, the support for dynamic partition lay-
out detection via partition table parsing is broken. In Familiar distributions, kernels are
patched to solve this. These patches add the parser’s code into the kernel. Because
the bootloader itself needs to parse the partition table before any other action could be
taken, the kernel should not contain this code anymore. This is the reason, why the patch
from Familiar distribution was not accepted and applied. Recent versions of boot loaders
contain support for passing information about partitions layout to kernel (via kernel pa-
rameter), but unfortunately the code which will handle this options and sets the partition
information correctly is not completely finished in current -rmk kernel. As the reason, new
kernels are not able to boot on iPAQ. To solve this problem I created a patch which add
and option to the kernel configuration to allow to switch between two most used statically
defined partitions layouts. Appropriate changes were made in other parts of kernel sources.
The patch was accepted by Russel King and is part of ARM Linux kernel since 2.5.4-rmk1.

broken modularity - In latest Russel’s kernel, there was some work on cleaning architecture
dependent code. As a sider-effect, some symbols were no more exported from the kernel and
so SA1100 RTC and APM features can not be build as modules anymore. Patch solving
this was accepted and applied in 2.5.4-rmk1 and 2.5.5-rmk2. For RTC, requested symbol
was just exported from it’s new location, but for APM the changes are deeper, because
of file name collision. Original file pm.c was renamed to pm-sa1100.c and appropriate
Makefile was updated to compute module versions from this new file. Patch with these
changes was pending when updates to build system of the kernel allow me to undo renaming
of pm.c and update just missing symbol.

others - for ARM kernel there was an error in Makefile for fastfpe - smaller of two floating point
emulators used in ARM port. As there are no floating point instruction, code need to be

35

compiled with -msoft-float option for GCC. For C source files, this was fine using default
rules in Rules.make. Main parts of floating point emulator are written in assembler, and
default rule for assembler to object file translation was not the right one. First, special
rule was added to Makefile in fastfpe directory, but after discussion with Russel King, this
was changed to definition of USE STANDARD AS RULE symbol, which should be used
to change the behavior.

In macros definition for assabet board, which are used for iPAQ too, there was some
mistype in ASSABET BCR frob() macro. Newly it used two parameters, nevertheless it’s
only one empty command for actual configuration and iPAQ hardware. Definition in used
ARM kernel has just one parameter, so the compiler was not satisfied. I just add the
second parameter to the definition of this macro. Later is was removed from the patch,
when Russel King notified me, that he has repaired this already.

36

Chapter 7

Preparing ALSA for iPAQ

Currently ALSA can be found in development branch of Linux kernel. But for our sound driver
development we will use ALSA sources directly from CVS tree. Four packages from ALSA will
be in the center of our interest. We would like to integrate new driver into alsa-driver package
first to enable other developers to comment our work. After integration into Linux kernel, most
files in alsa-driver are just links to appropriate ones in alsa-kernel. The strategy of creating new
driver is: place it in alsa-driver first and as late as it relatively work move all source code to alsa-
kernel, leave just link in alsa-driver. Except the driver itself, we will need ALSA library (alsa-lib)
and some basic utils (like amixer, aplay and arecord) to work with ALSA from alsa-utils.

7.1 Modifications of ALSA-utils

All ALSA packages were developed in native environment, so there is no support for cross-
compiling now. First we need to add this to be able to get binaries for iPAQ.

For alsa-utils, I will do any modifications, because all utilities we will need consist of just
one source file. It’s simpler to show requested command line to cross-compile needed file:

arm-linux-gcc -DHAVE_CONFIG_H -I. -I../include -O2 -Wall -pipe -g \
-o alsactl alsactl.c -lasound -lm -ldl

arm-linux-gcc -DHAVE_CONFIG_H -I. -I../include -O2 -Wall -pipe -g \
-o alsamixer alsamixer.c -lncurses -lasound -lm -ldl

arm-linux-gcc -DHAVE_CONFIG_H -I. -I../include -O2 -Wall -pipe -g \
-o amixer amixer.c -lasound -lm -ldl

arm-linux-gcc -DHAVE_CONFIG_H -I. -I../include -O2 -Wall -pipe -g \
-o aplay aplay.c -lasound -lm -ldl

rm -f arecord && ln -s aplay arecord

Figure 7.1: ALSA utilities cross-compilation

We will need these libraries installed to compile and use these utilities properly: libdl, libm,

37

libncurses and ALSA library libasound. Being pure user-land code, we do not need to modify it
for ARM architecture at all.

7.2 Modifications of ALSA-lib

More seriously we will worry about alsa-lib package. It is much more difficult, so we will need
to solve this using support of autoconf for cross-compiling.

When you would like to cross-compile the alsa-lib package, you will need to configure it with
additional parameters. You should run configure script as follows:

CC=arm-linux-gcc ./configure --target=arm-linux \
--with-soundbase=/usr/local/arm/src/linux/include

Figure 7.2: Cross-compiling parameters for ALSA-lib

In this example host where the library is built is guessed (should be given with –host=platform
and target for which is the library build is Linux on ARM architecture. You need to specify the
location of kernel sources configured for target architecture. This is used to find ALSA include
files and so it should be set to prefix where /sound directory is to be found. You should omit
setting CC variable and cross-compiler will be guessed too. You should also use option prefix to
specify ALSA include directory if $prefix/include/sound exists.

So the simplest version would be one of these two lines:

./configure --target=arm-linux --with-soundbase=/usr/local/arm/include

./configure --target=arm-linux --prefix=/usr/local/arm

Figure 7.3: Another possible parameters for ALSA-lib

As you will likely specify the prefix, the last possibility would be the best if everything
match. On the listing of configure script, it’s good to check correctness of detected values. The
most important for cross-compiling is cross-compiler used, appropriate processor type and used
kernel sources. For platform names in the form cpu-vendor-os (or aliases for these) you should
look in config.guess script.

To get this behavior, We need to modify basic configuration script a bit. First, for comfort-
able work, we would like to detect cross-compiler automatically. To enable basic cross-compiling
support for autoconf, which is used for whole ALSA system, we add macro AC CANONICAL HOST
at the beginning of configure.in script. Then comes part for cross-compiler guessing. We will
look for program named $target-gcc, which is one of the most used names for cross-compiler
binary. Then we will try some other variants created with parts of canonical system name of the
target. If unsuccessful, user must set compiler manually using $CC variable. Last, we must re-
place $host cpu variable in architecture dependent settings with $target to allow cross-compiling
build. I created patch with all these modifications that was later integrated into ALSA CVS.

38

7.3 Modifications of ALSA-driver and ALSA-kernel

Because whole driver will be placed in alsa-driver package, no modifications of alsa-kernel are
needed now. We should use this package just to provide help and templates for us. I prepared
necessary patches to integrate new driver into kernel, like Config.in and Config.help files, but
they were not used in first stage of driver creation. After driver integration into the kernel, the
patch was applied to ALSA CVS and later to Linux kernel.

For alsa-driver, we need to modify present configuration scripts and Makefiles to include
new directories and then create these directories with its content. First we add the definition of
CONFIG SND ARM variable which should control inclusion of directories with ARM specific
sources. For configure.in script the way of alsa-lib is not followed, because we need to parse kernel
configuration. This is best done using C preprocessor and compiler. But with cross-compiler it
is not possible to run created binaries on host system. Thus we will leave configuration to be
performed like if we are building native drivers. The only difference is new option –with-cross,
that should be set to cross-compiler name prefix (e.g. arm-linux-). This value is then used with
basic compiler name to get name for cross-compiler. The name of host compiler is modified
to not contain path to obtain reasonable name of cross-compiler. The same solution is used
for cross-preprocessor (mostly gcc -E is used for this), cross-linker (arm-linux-ld) and assembler
(arm-linux-as).

Although we do not use support of autoconf, this solution is so simple, that it should work
with most system configurations. Presented solution expects, that native and cross tools are
built from the same source (i.e. both are one version of GCC) the same and they are placed in
common locations. For alsa-kernel, this process is obsoleted by general kernel configuration and
after inclusion into kernel, this problem will not pain anymore.

Last of general files which needs to be modified is Modules.dep. This covers kernel module
dependency in ALSA subsystem. The same file is included in alsa-kernel package and both
files are then used in alsa-driver (that one from alsa-kernel is linked into alsa-driver). For the
beginning the only useful dependency is snd-pcm. That is one of basic modules, enabling whole
PCM support same as all common routines through its dependency on other parts of sound
core. We add both modules for our driver into Modules.dep. It is used for dependency building.

Actually, all created patches are included in ALSA CVS tree and accessible to all other
developers and users of ALSA sound system. While preparing ALSA system for iPAQ, other
minor bugs were found and repaired.

39

Chapter 8

Driver Implementation

All sound card driver source files will be placed somewhere in alsa-driver package until the
driver will be stable enough to include it to Linux kernel. Then sources will move to alsa-kernel
package.

For driver development we use information from data sheet for UDA1341TS from Philips [11].
Other sources of information are OSS driver for UDA1341 and ALSA source files. Questions and
specific problems could be discussed at ALSA developers’ mailing list alsa-devel@list.sourceforge.org.
Mainly in first phase, sources for Intel 8x0 integrated audio cards and ESS1938 card are used
as this hardware is used in my workstation.

Driver for UDA1341TS is divided into two modules. Module snd-uda1341.o contains mixer
part of the driver, because this is common to all sound cards, that uses this sound codec. This
module should finally contain all parts of code, which are specific directly to UDA1341 codec and
are not dependent on underlying hardware. Second module (snd-sa11xx-uda1341) is used for
ARM and mainly iPAQ H3600 specific parts. Control of DMA transfers and card initialization
is placed here. Source files for snd-uda1341.o module are placed in i2c/l3/ directory and source
files for snd-sa11xx-uda1341 module are in arm/ directory. Include files could be found in
include/ directory. The driver and some of its files were renamed during development. Older
name was h3600-uda1341. These names could be found in some initial versions in ALSA CVS.
Later, the name was changed following common schema DMA bridge-codec chip. Some other
minor changes was made through whole source tree, these will be summarized in next part.

8.1 Configuration and Build System Update

First, we need to update configuration and Makefile files to add new card and as new architecture
to ALSA. Some basic updates were mentioned in previous chapter, these were used mainly to
allow common cross-compiling. Now we add some other changes to include newly created driver.

In configure script, the only one thing we add is detection for CPU type and model. When
Intel StrongARM SA1100 is found variable CONFIG SND ARM is set to ‘y’. This variable
is then used in Makefile to enable whole directory arm/ and in i2c/Makefile to enable i2c/l3/
directory.

To add our new card to list of supported cards (i.e. list of cards for configure script) we need
to modify one more file. We add these lines to utils/Modules.dep.

This file has the same meaning as equally named bigger brother in alsa-kernel. This one is
used for cards (modules), that are not yet placed in Linux kernel, or are somewhat specific to
alsa-driver. First item is used just to get ALSA to know about snd-uda1341 module. The other

40

%dir linux/sound/i2c/l3
snd-uda1341 snd-pcm

%dir linux/sound/arm
|snd-sa11xx-uda1341 snd-uda1341 snd-pcm

Figure 8.1: Modules.dep modification

describes dependency for main module (see the ‘ | ’ character on the beginning of line). Main
module uses the mixer part and common routines from ALSA core (its PCM part).

Last but not least, Makefiles for our card. Both files (arm/Makefile, i2c/l3/Makefile) have
similar structure, they only differ in names of objects used.

TOPDIR = ..
include $(TOPDIR)/toplevel.config
include $(TOPDIR)/Makefile.conf
TOPDIR = $(MAINSRCDIR)

O_TARGET := arm.o

list-multi := snd-sa11xx-uda1341.o

snd-sa11xx-uda1341-objs := sa11xx-uda1341.o

Toplevel Module Dependency
obj-$(CONFIG_SND_H3600_UDA1341) += snd-sa11xx-uda1341.o

include $(TOPDIR)/Rules.make

snd-sa11xx-uda1341.o: $(snd-sa11xx-uda1341-objs)
$(LD) $(LD_RFLAG) -r -o $@ $(snd-sa11xx-uda1341-objs)

Figure 8.2: Makefile for sa11xx-uda1341 module

Inclusion of common files is identical in almost all Makefiles in ALSA. These contain con-
figuration and common targets. O TARGET object is used when compiling into kernel image
and not to modules (see Documentation/kbuild/makefiles.txt in kernel source tree for details).
snd-sa11xx-uda1341-objs defines list of objects that will result in kernel module (though we have
only one object file). System will create the module in dependency on definition and value of
CONFIG SND H3600 UDA1341. It should have value ‘n’ to disable our feature, ‘m’ to build it
as module or ‘y’ to include it into kernel image. After including common rules, last thing we
need to do is definition of process of creation of our module. Default rules are enough for us, so
no peculiarities are found here.

Makefile for snd-uda1341.o module is modified, just changing all sa11xx-uda1341 to uda1341.

41

Once created, there is small probability we will need to modify these file anymore. When no
other files will be added or present one renamed. For now, it is assumed, that whole driver
will be compiled into modules (at least until it will be stable and usable to other people then
developers), so configuration and compilation into kernel image is not tested (but should work
as long as all standard makefile variables are regularly defined).

8.2 Basic Mixer Support

Whole mixer is placed in i2c/l3/uda1341.c with include file include/uda1341.h. In this part, we
will look on basic mixer, which will enable just Master volume control to be able to test PCM
part. Other controls will be discussed in related part.

We need three entry points for the mixer. We must be able to init the mixer and shutdown it
on sound card startup and shutdown respectively. Then we must have some interface to control
the behavior of mixer part.

Being L3 device, few common operations need to be implemented. These are send to upper
common L3 layer via l3 add driver() call. This function takes pointer to struct l3 driver as its
parameter. This structure describes L3 interface of our driver. Following operations are defined:

uda1341 attach attach L3 client to system - initialization of client
uda1341 detach detach L3 client from system - de-initialization of client
uda1341 open L3 device opened - initialization of device
uda1341 close L3 device closed - shutdown device
uda1341 command control L3 device

Table 8.1: Common L3 operations

The Open-Close pair is used to set/clear activity flag, so the rest of driver knows whether the
device is on or off. In Open function we should set default values to all UDA1341TS registers.
Similarly Attach/Detach pair allocate/free and set proper (default) values to register images in
driver. Command function in our case just calls another functions to update requested registers
both in driver and on chip.

Sound driver oriented interface consists of two exported functions - snd uda1341 mixer new()
and snd uda1341 mixer del(). These are used in main driver module to initialize and shutdown
the mixer part. Control of mixer in main module is done via L3 interface - the uda1341 command()
function. mixer new() function allocates memory for driver structure, attach the L3 client and
enable controls. It also enable the /proc interface and passes pointer to mixer part driver struc-
ture to main driver module. Proc interface contains files /proc/asound/cardX/uda1341 and
/proc/asound/cardX/uda1341-regs, that show status of all registers in human readable form (or
as binary numbers respectively). mixer del() frees memory, stops /proc interface and detach the
L3 client.

Each control is defined by its name, register used and position of information in that register.
There are three methods to work with control. We have get() and put() to read and write values
from/to control and info() to initialize control. get() function uses driver image of registers
to obtain value of requested register. put() must set driver image same as on-chip register to
correct value. There is macro for easy definition of new controls. They are all placed into array,
that is processed in mixer new() function.

Rest of the driver is made by routines to write values to registers on chip. High layer -
function snd uda1341 cfg write() offers translation between service numbers (which is used by

42

main module) and register numbers. Middle layer - snd uda1341 update bits (used by put() in
controls) modify requested bits in copy of selected register in driver and if new value differs, low
level function is called. Writing value to register in direct or extended addressing mode is work
of snd uda1341 codec write().

In this first stage, we define just one control - Master Playback Volume to control DAC gain
for playback. This allow us to implement PCM part of the driver and then we come back and
finish mixer part. Then we will be able to check behavior of additional mixer control.

8.3 PCM Device

PCM device implementation can be found in arm/sa11xx-uda1341.c. Origin of main module is
in snd sa11xx uda1341 init() and snd sa11xx uda1341 exit() functions. The latter free memory
and mixer and it is pretty simple. But the former is the heart of whole module. Here we first
test, if the system is some version of iPAQ (i.e. H3100, H3600, H3700, H3800). If we have the
right hardware for our driver, we can create sound card device and allocate memory for structure
with internal driver informations. Then we activate mixer part calling snd uda1341 mixer new().
This sets registers on default values and prepares rest of mixer part. Then we activate PCM
device, power management support and after setting card names (long, short and driver name)
we register the driver in ALSA sound system.

Function snd sa11xx uda1341 pcm() must set up both playback and capture stream. We use
snd pcm ops t structure to define set of possible operations for both streams. We call another
functions to initialize audio (snd sa11xx uda1341 audio init()) and DMA (audio dma request()).
We use two DMA channels - one for playback stream and second for capture stream.

snd sa11xx uda1341 audio init() opens L3 device and powers the UDA1341 chip on. We call
reset function and then set clock divisors for default sample rate (44100Hz). We use QMUTE
feature of the chip to mute it while performing initialization. Following table summarizes possible
sample rates with used clock divisor and frequency.

divisor/clock 12.288MHz 11.2896 MHz 4.096 MHz 5.6245 MHz
512 fs 24000Hz 22050Hz 8000Hz 10985Hz
384 fs 32000Hz 29400Hz 10666Hz 14647Hz
256 fs 48000Hz 44100Hz 16000Hz 21970Hz

Table 8.2: Supported sample rates

Center of main module consist of a set of ALSA callback functions. These are called for
card specific work in proper operations. Inside this operations rest of module code - the DMA
framework is used. Now, let see which operations are used and what functions are they bound
to. Summary can be found in table 8.3. Being important, we describe each function in details,
mainly as help for other ALSA developers. These set of operations is used twice, once for
each sound stream. Where not mentioned otherwise, both functions from the pairs (both for
playback and capture) are very similar. We discuss capture operations, because they are a bit
more difficult (for our driver - not generally).

43

• snd sa11xx uda1341 capture open(snd pcm substream t * substream)

This function is called, when some userland application opens PCM device. In ALSA this
is not done by user application. Instead ALSA library does this job and offers C language
API. We have three goals in this function. First we must initialize driver related structure
for newly created stream. This means cleaning of period counters and setting internal
stream pointer. Second we need to reset the chip and DMA by calling audio reset()
function. Last we need to check HW and SW parameters of newly created stream for
ALSA. We do some tests and send descriptive structure to ALSA defining constraints
of our hardware and driver. These constraints include possible formats (for UDA1341
on iPAQ only unsigned 16-bit little endian is usable now), available sampling rates (see
table 8.3), number of channels (for us only stereo is interesting - ALSA should then offer
transformations to/from mono) and period description. For periods, we must specify
minimal and maximal number of periods same as minimal and maximal number of bytes
in one period. When processing sound, we got one big buffer, that is virtually divided
into several smaller called periods. One period is processed in one DMA transfer. Size of
one period is limited from bottom to value about 64 bytes to have some time to do all
other work and from top by hardware. On StrongARM SA1100, maximal size of one DMA
transfer is limited by MAX DMA SIZE symbolic constant (<asm/arch-sa1100/dma.h>)
with actual value 8191B (0x1fff). Minimal number of periods is two, because we must
have one period for actual transfer and another to fill up in the time of transfer of the first
one. Using all these rules we got these equations:

buffer bytes max = period bytes min ∗ periods max

buffer bytes max = period bytes max ∗ periods min

UDA1341TS offers some non-standard sampling rates (table 8.3). We must say to ALSA,
which rates are available. This is done by defining array of possible rates and setting
SNDRV PCM RATE KNOT flag in rates field. This ensures, that ALSA will go through
our table and use all accessible rates.

open: snd sa11xx uda1341 capture open
close: snd sa11xx uda1341 capture close
ioctl: snd sa11xx uda1341 capture ioctl
hw params: snd sa11xx uda1341 hw params
hw free: snd sa11xx uda1341 hw free
prepare: snd sa11xx uda1341 capture prepare
trigger: snd sa11xx uda1341 capture trigger
pointer: snd sa11xx uda1341 capture pointer

Table 8.3: Implemented ALSA PCM operations

• snd sa11xx uda1341 capture close(snd pcm substream t * substream)

Here, we must do just cleaning. This means clearing stream field for capture/playback
sound stream. We should clear some other fields in driver structures too, but it’s pointless
as the stream filed acts for us busy state indicator.

44

• snd sa11xx uda1341 capture ioctl(snd pcm substream t * substream,
unsigned int cmd, void *arg)

We have no special IOCTLs to handle by the driver itself, so we just pass control down to
generic ALSA function (snd pcm lib ioctl()).

• snd sa11xx uda1341 hw params(snd pcm substream t * substream,
snd pcm hw params t * hw params)

This function is responsible for allocating memory for ALSA hardware and software param-
eters of playback or capture stream. We do not add any special items to these structures,
so standard ALSA core function is everything we need to call.

• snd sa11xx uda1341 hw free(snd pcm substream t * substream)

Same as in previous case, freeing allocated memory is done using standard core function.

• snd sa11xx uda1341 capture prepare(snd pcm substream t * substream)

Prepare function is called immediately before start of data transfer (playback or capture).
Here we know some other information, which are now stored in substream parameter and
runtime element of substream structure. In runtime structure, we should find information
about requested number of channels and sampling rate. We set the chip according to these
requests. This is the only one step, we need to undertake here, because number of channels
and data format is fixed for UDA1341 (at least for now).

• snd card sa11xx uda1341 capture trigger(snd pcm substream t * substream, int cmd)

Being one of the most important, its task is to start DMA transfer. cmd parameter says,
which case should we handle - start or stop of DMA transfer. Now substream parameter
is fully initialized and we should use information about DMA buffer and periods to set up
DMA controller properly. We have informations about period and buffer sizes, number of
periods and base of DMA buffer. We need to look out to units of these properties. Main
problem should be with sizes, which are not handled in bytes (for both buffer and period)
but are in frames instead. Size of one frame can differ in dependence of data format and
number of channel. This makes our live easier, having just one combination. Our frame
size is always 4 bytes (stereo with 16 bits per channel). This function must do its work
quickly, so we just fire needed DMA transfer (or transfers as mentioned later) or stop
active transfer(s) and return back to caller.

• snd card sa11xx uda1341 capture pointer(snd pcm substream t * substream)

Pointer function is used to tell ALSA where we are in DMA transfer. It expect number
of frames from the start of DMA buffer, that are sent/received yet. We use one of DMA
services for this to keep this function really simple. The audio get dma pos() function is
able to get address of actually transferred byte and with the knowledge of DMA buffer
base we can simply compute requested offset in frames.

8.4 DMA Transfer Support

Another set of operations is used to control DMA transfers in this driver. Wrapper functions
and SA1100 operations used there can be found in table 8.4. DMA controller for SA1100 is quite
simple, so we are able to start and stop actual transfer only. No pausing and other features,
that are usually found on greater computers, are not available here.

45

For DMA transfer, we use one channel for each direction. On iPAQ there is DMA Ser4SSPWr
channel for writing to sound chip and DMA Ser4SSPRd for reading from it. These channels are
configured in snd sa11xx uda1341 audio init() and snd sa11xx uda1341 pcm() functions.

audio dma request() → sa1100 request dma()
audio dma free() → sa1100 free dma()
audio get dma pos() → sa1100 get dma pos()
audio stop dma() → sa1100 stop dma()
audio process dma() → sa1100 start dma()
audio dma callback() → -

Table 8.4: Implemented DMA operations

When audio process dma() function is called to start DMA, we try to transfer as much
periods as possible. SA1100 DMA controller is able to receive two periods at once. After both
buffers are occupied, we will leave this function and try later again. We must manage counter
of sent periods in buffer. This counter is incremented after each processed period with modulo
of periods in DMA buffer. When we reach half of the buffer, ALSA fill the first half with next
portion of samples (or reads the samples on capture).

When DMA transfer of one period is done, registered callback is called. This callback is in-
voked in interrupt context. We need to acknowledge proceeding of DMA transfer to ALSA. This
is done by calling snd pcm period elapsed() function. At the end, we calls audio process dma()
one more time to process pending periods. We do not care of the end. ALSA takes care and
call our trigger when there is time to stop. This should mean, that one more period will be
transferred, but never mind.

One special trick is used for capture stream transfer. UDA1341TS chip does not have its own
clock. It gets its synchronization pulses from DMA stream. With playback, there is a stream
from clock source (DMA controller - or better SA1100), but with capture, this is not possible.
This is solved with one auxiliary data stream. This stream is started whenever someone wants
capture and do not play something in same time. In this case, we run special mode playback
stream sending buffers of zeros to UDA1341 chip to satisfy its needs for clock pulses.

This special mode is started automatically from trigger() function. We have to solve situa-
tions, when one stream is started when the other is running (e.g. we are running capture and
starting playback) or some stream is stopped while the other still runs (stopping playback while
recording).

8.5 Extensions to Sound Card Driver

Things we discussed until now are present in OSS driver for UDA1341TS. But our ALSA driver
offers much more. Our goal is full control over the chip, same as all features of ALSA. There are
19 controls on the chip, which can be used to set its exact behavior. All possible controls are:
Soft Mute, Playback Volume, Bass Boost, Treble, Input and Output Gain switch, Mixer gain for
channel 1 and for channel 2, Microphone sensitivity level, AGC (Automatic Gain Control) switch,
AGC output level, AGC time constant, DAC Power, ADC Power, Peak detection position, De-
emphasis, Mixer mode, Filter Mode and Input Amplifier Gain for channel 2. Just the listing
is quite long. The OSS driver right now supports just Playback Volume, Bass, Treble, Mixer
gain channels and AGC switch. Let study some control mode deeply. For speech recognition,

46

capture stream is in the center of our interest, so some controls (for playback or other advanced
features) are not involved.

• Playback Volume

This control is used to adjust volume for playback stream. It ranges from value 0 (which
means maximal gain) to value 61 (which means -60dB attenuation). Used step is 1dB.
Complete tables for this (and all other) control could be found in [11].

• Filter mode

Filter mode can be selected from three possible values. Flat mode does no sound processing.
Min mode and Max mode add some sound processing filters with influence on Bass boost
and Treble.

• Bass Boost and Treble

For Flat mode these controls have no effect. For Max mode, gain up to 24dB (for Bass)
or 6dB (for Treble) may be reached. In Min mode maximal values are 18dB and 6dB
respectively.

• Mixer mode

Digital mixer in UDA1341TS could work in one of four modes. First mode - double
differential is not widely used. Next second and third mode enables channel one (or channel
two) only. On this place, one detail should be explicitly said. Channel in documentation
to this driver is not meant as Left and Right channel of stereo sound. Channel one is first
input (named “line in”) and channel two is connected to microphone. In iPAQ channel
number one is not used nor connected and appropriate controls have no effect. Last mode
of the mixer is digital mixer mode. Here two coefficients (Mixer gain channel 1 and 2) are
used to set the ratio between two available channels.

• Mixer Gain channel 1 and 2

For both channel one and two (line-in and microphone) coefficients for digital mixer mode
are in range from 0 to 31, that mean 0 to -45dB attenuation with step of 1.5dB.

• Input and Output gain switch

Apart the mixer mode, independent switches are available to obtain 6dB gain on input
and output (i.e. on ADC and DAC). These should be switched on (the 6dB gain is active)
or off (and no gain is added).

• ADC feature

The UDA1341 chip is equipped with Automatic Gain Control feature. This feature could
be switched on and off. If AGC is not used, output level is computed as combination
of AGC output level and Gain Input Amplifier. If enabled, AGC is able to control level
of input gain. We should set its behavior with Microphone sensitivity control and AGC
output level control for desired input gain. AGC Time constant is used to set attack and
decay time for AGC. These are in range of 11 to 21ms for attack time and 100 to 400 ms
for decay time.

47

Chapter 9

Library Implementation

9.1 Audio Recording Functions

Comparing to OSS, ALSA brings more possibilities to application developer, but there is some
price. Apart of increased computation power consumed by ALSA core driver and ALSA library,
API of ALSA for application developer becomes more difficult and larger. To make life of
application programmer easier wrapper for common audio tasks is included in the library with
much simpler API. It is intended to be used in situations, where lot of lines of code for audio
handling makes main program difficult to read and/or debug.

Whole audio API is build about audio handler structure, that contain all informations needed
to initialize and use audio services. In main program you just need to update items of this
structure that do not fit your needs. API is as simple as it should be. There are three functions
to handle the audio state:

• audio handle t *audio new(void)

Creates new audio handle structure and fills it with default values.

handle->format = SND_PCM_FORMAT_S16
handle->device = "default:0,0"
handle->rate = 11025
handle->channels = 1
handle->buffer_time = 500000
handle->period_time = 200000
handle->sleep_time = 0
handle->mic_gain = 60

handle->upper_limit = 70
handle->lower_limit = 40

handle->debug = 0

Figure 9.1: Audio handle initialization

Just significant fields are shown here. Rest of them is just cleared to avoid unacceptable

48

usage. For field descriptions see structure definition. It returns newly created audio handle
or NULL if some error occurs while allocating memory.

• int init audio(audio handle t *handle)

Opens audio device and prepares it for recording. All parameters for ALSA core are set
from audio handle structure. They should have correct values before calling this function.
Both pcm and mixer devices are prepared and proper fields in audio handle structure are
initialized (handle→pcm, handle→mixer)

CAUTION: All values except handle.micGainId could be left on their default values. The
only one field, that must be initialized properly is handle.micGainId. You can get micro-
phone gain ID using amixer utility from alsa-utils package.

• int done audio(audio handle t **handle)

Closes all audio devices (both pcm and mixer) and frees audio handle structure. It sets
the audio handle to NULL to disable its future usage.

Complete example of API usage could be found in erec.cpp. Just simple outline to make
basic idea is in figure 9.2

After audio initialization, you have two possibilities. Either you could use predefined audio
data gather function that uses signal processing internally or you could use signal processing
function stand alone with your own data buffers.

• int audio read(audio handle t *handle, unsigned char *buffer, int size)

This function reads samples from capture audio device into given buffer to fill it completely.
For now the routine expects 16-bit samples so the size parameter should be number of
samples times two. This function returns number of bytes read (greater or equal to zero)
or error code from recovery routines (negative value). For reading data from audio device
it uses zero-copy technology (snd pcm mmap readi()) to speed up audio processing.

It should always read whole buffer and may block inside if there are not enough data
available in sound card buffers.

• void audio wait(audio handle t *handle)

To lower CPU utilization, this function is introduced. After audio data are read, the audio
gather thread (if any) should block for a while until significant amount of new data will
be available in sound card buffers. This ensure, that samples will be transferred in greater
chunks with greater efficiency. This function sleeps handle.sleep time microseconds. For
default this is set to zero and if this feature is used it should be set to time needed to fill
half of buffer used in audio read() function (see above example). ALSA audio initialized
with audio init() uses buffered blocking I/O, but this function makes the CPU utilization
significantly lower providing more effective thread scheduling.

9.2 Audio Handler Contents

Now it’s right time to show whole audio handler structure. Description is included as C language
comments (Figure 9.3). Fields not commented are described later (or sooner) in proper sections
(applies mainly for Software Gain Control - SGC). For details of implementation see source files
of the library.

49

audio_handle_t *audio_handle=NULL;

io_handle = audio_new();
audio_handle->mic_gainId = ID_MIC_GAIN;

if ((c = getopt_long(...) < 0)
break;

switch (c) {
case ’D’:

audio_handle->device = strdup(optarg);
break;

case ’r’:
err = val = atoi(optarg);
val = val < 4000 ? 4000 : val;
val = val > 196000 ? 196000 : val;
if (err != val) printf("Requested rate modified to %d\n", val);
audio_handle->rate = val;
break;

case ’d’:
audio_handle->debug++;
break;

...
audio_handle->sleep_time = \

int(1.0/(double)(audio_handle->rate) // one sample duration (in sec)
* BUFFER_SAMPLES // number of samples in buffer
* sleep_part/100.0 // wait just part of audio buffer time
* 1E6); // we need this in microseconds

init_audio(audio_handle);
...
done_audio(&audio_handle);

Figure 9.2: Library usage example

9.3 Software Gain Control

Motivation and requirements for software gain control were discussed in chapter 4. Now we focus
on SGC API and implementation. SGC API consists of only one function that process current
buffer and if necessary modify input gain control. Because it should be useful to application,
internally used function for microphone gain changing is added to exported API too.

• void process period(audio handle t *handle, short *ptr, int frames)

Process actual buffer and modify microphone input gain if needed. It is used internally
by read audio(). If used standalone it should be called immediately after buffer is filled.
Every delay means longer latency in microphone gain setting. It does not modify data in
actual buffer. The buffer is expected to contain 16-bit samples for now and size of used

50

typedef struct audio_handle audio_handle_t;
struct audio_handle {

snd_pcm_format_t format; // sample format
char *device; // capture device
int rate; // stream rate
int channels; // count of channels
int buffer_time; // buffer length in us (for ALSA)
int period_time; // period time in us (for ALSA)
snd_pcm_sframes_t buffer_size; // used internally by ALSA
snd_pcm_sframes_t period_size; // used internaly by ALSA

int sleep_time; // sleep time in us for audio thread
int mic_gain; // volume for Gain Input Amplifier
unsigned int mic_gainId; // which control handle for Gain control

snd_output_t *log; // output device for ALSA errors (stdout)
snd_pcm_t *pcm; // handle to PCM device (ALSA)
snd_hctl_t *mixer; // handle to mixer device (ALSA)
snd_hctl_elem_t* elem_mic_gain; // handle to input gain control

unsigned int histo[101]; // histogram 0 .. 100 %

int long_run; // SGC internal
float long_param; // SGC parameter
int is_speech; // SGC internal
int after_end; // SGC parameter
float speech_max; // SGC internal
int upper_limit; // SGC parameter
int lower_limit; // SGC paramete

int debug; // debug flag - set to >0 to see debug messages
};

Figure 9.3: Audio handle elements

buffer is given in number of samples in last parameter (frames).

• int set mic gain(audio handle t *handle, int delta)

This function may be used for additional microphone gain modifications. Control handle
and actual state is determined from audio handle. Control value ranges from 0 meaning
no gain to 99 meaning maximal available gain.

Now we know how to use the API, so let see how it works internally. First of all maximal value
is selected from all samples in current buffer. This value is referred as max later. With buffers
small enough (256 . . . 512 samples) it should represent some kind of envelope of given signal.
Then we express the maximum as percent of maximal available value (SHRT MAX for 16-bit

51

samples). This is used for histogram update, where counter for this percent is incremented.
From now, when not explicitly said something else, sequence of maximal values will be treated
as new signal with particular maximums as samples. Current sample then means maximal value
of current buffer and so on.

Except from real signal (of maximal values) we use another one referred as long run signal.
Samples of this new signal are computed with equation:

long run = (long param ∗max) + (1− long param) ∗ long run

It is signal that tend to basic signal but with some delay. This new one is used for most
computations because it filter peaks with very short duration that could not be speech. Default
value for long param is 0.1 but it is modified in dependency of utterance presence.

There is a flags for current state. Its name is is speech and it is set whenever speech begin
occur and cleared at speech end.

Computing speech boundary is done independently for start and end of utterance. Start of
utterance occurs when current signal (max) is two times greater then current long run signal
and flag s speech is not set. When start of utterance occurs, we just set this flag and start to
search maximal signal value within utterance. End of utterance occurs, when actual signal is
smaller then actual long run signal. Note, that in utterance speech signal is increased rapidly,
so if the utterance takes some time (it is speech), long run signal starts to increase too. This
ensures right behavior - reacting on longer duration signal increase.

In speech end event, more important things take place. We must clear the is speech flag
and modify input gain control if necessary. Modification is done as follows. We use maximal
value from utterance (that we start searching in speech start event). We must ensure this
value is both not too small (speech signal is too weak) and not to big (peaks of signal during
utterance are lost). Two parameters of audio handle are used for this purpose. lower limit
and upper limit qualify both boundaries. Default values are 40% and 70% respectively. If
maximal value of current utterance gets over or under these boundaries microphone input gain
is changed by the difference (but at most by GAIN STEP). Limited modification is used to
avoid to fast modifications of microphone signal characteristics that could confuse recognizer.
Currently GAIN STEP means 5% of maximal speech signal.

Above described system works quite well, but have some weakness. If there is long(er)
utterance with high maximal value and then some other with much smaller one follows, long run
signal does not have enough time to decrease below maximum of the second utterance and it
is not detected. This problem is solved by adding another parameter - after end. It is set to
value greater then zero in speech end event and decreased in each call to process period(). It
is decreased until greater then zero each call and one more time per function call if current
signal is greater then long run (possible start of new speech). In each function call, long param
is computed using this rule:

• if current signal is smaller the long run and after end is positive

long param = 2 ∗ after end ∗ LONG PARAM DEFAULT

• else
long param = LONG PARAM DEFAULT

Where LONG PARAM DEFAULT is default value for long param currently set to 0.1 (10%
of new value is used for long run).

52

When debugging is on, some statistical information are printed at the end of each call
to process period. It contains one line with scope of maximum of current buffer in percent
(displaying just range from 0 to 50% with step of 0.5%). At the end of line current maximum
and long run values as numbers and percents are added. With other debug messages (e.g. speech
begin and speech end) this gives good idea about actual state of whole system.

9.4 Histogram of Signal Levels

For statistical purposes, histogram of maximal values for each data buffer is saved. It is side
effect of software gain control (SGC), so it could not be used standalone. After initialization
histogram is empty and it is updated with each call to process period() function.

Used histogram does not count occurrence of all possible levels of input signal. Instead we
express maximal value of current buffer in percent of main available value (e.g. SHRT MAX for
16-bit samples). There are 101 different levels of signal being counted (from 0% to 100% with
step of 1%). Histogram API consist of two functions:

• void dump histo(audio handle t *handle, FILE *out)

Used to print actual histogram to file out. out could be stdout for screen output. Histogram
is internal part of audio handle handle. Let see example of histogram dump:

--- sum: 355 --------------------------------

0 ### 28.17% 100
2 ### 26.20% 93
4 ## 24.23% 86
5 ####################################### 21.41% 76

First number is sum of all measurements (sum printed in delimiter). Then for each non-
zero counter one line is reserved. First item says what counts this counter for (e.g. % of
signal maximal value). Then scope for quick orientation is printed. At the end of each line,
number of samples in this counter at the rate of all samples (sum) in percent and number
of samples in this counter absolutely are displayed. Counters with no samples (zero value)
are not printed at all to make whole histogram simpler.

• void clear histo(audio handle t *h)

This function clears whole histogram. It sets counters for all saved values to zero.

53

Chapter 10

Summary

Though there are number of scientific groups all over the word that are interested in spoken
language systems, current state of our knowledge in this topic is far from our ideas and dreams.
Most efforts are made at speech modeling systems. It is really scientific and long-term work.

This project does not have such noble goals. Having just limited background and time,
simpler targets were marked out. For our Compaq iPAQ we update Linux kernel to unstable
developer branch (2.5.x) to be usable for this project and prepare whole developer environment.

Then we choose newly integrated ALSA sound system as target platform for our improve-
ments. This selection could be now revised as good with respect to future of Linux kernel and
its abilities. On the other hand this system is new, not fully completed and poorly documented
for both application and mainly driver developers. It needs much time to study internals of
ALSA to get basic knowledge of sound driver implementation model. Writing the driver itself
does not take so much time, but catching and removing of bugs was extremely time consum-
ing. Absence of usable documentation and even comments in source code is main negative of
this system. The same problem was solved again in example preparation, but for application
programmers at least some documentation is available. Mailing lists and support from ALSA
founders Jaroslav Kysela and Takashi Twai was the most useful source of information.

Second key component in this project - Embeded ViaVoice is much better documented.
Having direct support from members of EVV development team Tomáš Heran and Bořivoj
Tydlitát means it was easy to get in deep enough.

Two main problems were meant to be solved in this project. Unfortunately, although there
are some results, it was not possible to reach expected improvements in its full scale. With
software gain control, there was not problem how and when to modify proper controls. It was
shown, that for good efficiency knowledge about speech occurrence in acoustic signal is essential.
This information could be given just by used recognizer and used version of EVV does not offer
such feature. Whole problem was discussed with EVV developers and designers and API updates
of future versions were devised.

For wide samples, analysis and propositions were prepared, but for absence of time it was
not implemented. Offered implementation expected huge modifications in ALSA system. This
is impossible without detailed knowledge of whole ALSA sound system and that knowledge is
hard to be achieved without any documentation. The implementation is scheduled for future
improvements of complete spoken language system.

54

Bibliography

[1] Matthew, M., Stones, R.: Linux zač́ınáme programovat, Praha, Computer Press, 2000

[2] Psutka, J.: Komunikace s poč́ıtačem mluvenou řeč́ı, Praha, Academia, 1995

[3] Huang, X., Acero, A., Hon, H.: Spoken Language Processing: A Guide to
Theory, Algorithm, and System Development, Prentice Hall, 2001

[4] Hicks, J.: Cambridge Research Laboratory/Open Handhelds ARM Bootloader,
htp://www.handhelds.org/Compaq/bootldr.html (July 26, 2000)

[5] Guy, A.: Familiar v0.5.1 Installation Instructions,
htp://familiar.handhelds.org/familiar/releases/v0.5.1/H3600/install.html (Jan 24, 2002)

[6] WWW of Open Sound System, http://www.opensound.com

[7] Tranter, J.: Open Sound System Programmer’s Guide, version 1.11, 4Front Technologies,
Jan 5, 2000

[8] Bartels, S.: ALSA 0.5.0 Developer documentation, revision Nov 21, 1999
http://www.math.tu-berlin.de/˜sbartels/alsa

[9] Kysela, J. and others: ALSA project - the C library reference, Jan 3, 2002
(for library version 0.9) http://www.alsa-project.org/alsa-doc/alsa-lib

[10] Sessink, V.: Alsa-sound-mini-HOWTO, revision v2.0-pre1, 12 November 1999
http://www.alsa-project.org/˜valentyn

[11] UDA1341TS Economy audio CODEC for MiniDisc home stereo and
portable applications, Philips Semiconductors, June 29, 2001
http://www-us9.semiconductors.com/acrobat/datasheets/UDA1341TS 3.pdf

[12] ViaVoice for multiplatform - product documentation , internal document of IBM

55

Appendix A

Description of used hardware

A.1 Compaq iPAQ

Compaq iPAQ is inspiration for all producers of PDA today, mainly because of its elegant
design. Main part of the device is occupied by LCD display and there are just five general
buttons and one special 5-way joystick. Even when originally shipped only with preinstalled
Microsoft Windows CE, it’s not so difficult to overwrite the flash with prepared image of Linux
system. Because all manipulations with the flash memory are extremely dangerous, and there
is possibility to damage the OS Loader, Compaq offers special services for customers with so
broken devices. When you got over initial troubles, you got fully-featured Linux machine with
usable performance. Project of porting Linux to ARM architecture (even not only and specially
to embedded devices) is very successful and it takes just days between the version for Intel x86
branch is out and that one for ARM architecture is ready to use.

Model Compaq iPAQ PocketPC H3650
Processor 206-MHz Intel StrongARM SA-1110 32-bit RISC Processor
Memory 32-MB SDRAM, 16-MB Flash ROM Memory
Display Color (4096 colors (12 bit) touch-sensitive reflective TFT LCD
Power Supply 950 mAh Lithium Polymer, rechargeable in docking cradle or with

AC Adapter
Operating System Familiar Linux distribution ver. 4.0

TFT Color Display Number of Colors 4096
Resolution (WxH) 240 x 320
Dot Pitch 0.24 mm
Viewable Image (WxH) 57.6 x 76.82 cm (96 mm diagonal)
Display Type Color (4096 colors (12 bit) reflective TFT LCD

System Unit Dimensions (HxWxD) 12.99 x 8.33 x 1.57 cm
Weight 178.6 g (including battery)

Battery Life 32 MB up to 12 hours, 950 mAh Lithium Polymer rechargeable battery

Table A.1: iPAQ specification

56

A.2 Intel StrongARM SA1110

Intel Strong ARM was devised to meet the requirements of embedded devices and it’s appli-
cations. It has rich palette of power management routines, and good performance even for
multimedia applications. There is only one penalty. Because of its complexity and power de-
mands, there is no floating point unit. All floating point operations must be done via software
library, that provides emulation for basic routines. Whole ARM architecture is based on RISC
principles. Model named SA-1110 is used in the iPAQ PDA. It’s little enhanced variant of the
basic model of this product line named SA-1100. The SA1100 and SA1110 processors implement
the ARM v4 architecture standard. Architectural enhancements beyond the ARM v4 are im-
plemented through use of coprocessor. Control register of coprocessor provide access to MMU,
cache, and write and read buffer.

The SA-1110 MMU provide separate 32-entry translation look-aside buffers (TLBs) for the
instruction and data streams. The SA-1110 contains 16 KB of instruction cache and 8 KB of
data cache. In addition to this, a minicache is provided to prevent periodic large data transfers
from thrashing the main data cache.

The SA-1110 also provides a write buffer and a read buffer. The read buffer allows critical
data to be prefetched under software control, preventing pipeline stalls from occurring during
external memory reads. The write buffer provides additional system efficiency by buffering
between the CPU clock frequency and the actual bus speed when data is being written by the
CPU to external memory.

Power management provides three modes of operation: normal, idle, and sleep. In normal
mode, the CPU and peripherals are fully powered, but receive active clocks only when in use. In
idle mode, clocks to the CPU are stopped, but the clocks to the peripheral functions are active.
In sleep mode, once DRAM is placed in self-refresh, all functions are disabled except for the
real-time clock. Wake-up from sleep occurs upon a preprogrammed interrupt.

High performance 235 MIPS @ 206 MHz (Dhrystone 2.1)
Low power (normal mode) < 400 mW @1.75 V/206 MHz
Power-management features Normal (full-on) mode

Idle (power-down) mode
Sleep (power-down) mode

Big and little endian op. modes
3.3-V I/O interface
Memory bus Interfaces to ROM, synchronous mask ROM (SMROM),

Flash, SRAM, SRAM-like variable latency I/O, DRAM,
and synchronous DRAM (SDRAM)

32-way set-associative caches 16 KB instruction cache
8 KB write-back data cache

32-entry MMU Maps 4 KB, 8 KB, or 1 MB
Write buffer 8-entry, between 1 and 16 bytes each
Read buffer 4-entry, 1, 4, or 8 words

Table A.2: Intel StrongARM specification

57

A.3 Philips UDA 1341TS

The UDA1341TS contains single-chip stereo Analog-to-Digital Converter (ADC) and Digital-
to-Analog Converter (DAC) with signal processing features employing bitstream conversion
techniques. Its fully integrated analog front end, including Programmable Gain Amplifier (PGA)
and a digital Automatic Gain Control (AGC). Digital Sound Processing (DSP) features with the
virtue of its low power and low voltage characteristics make it a very good choice for embedded
and portable devices which are devised to use some kind of speech interaction with the user. DSP
features include de-emphasis, volume bass boost, treble and soft mute. The chip is controlled
via L3 interface.

The chip accommodates slave mode only, this means that in all applications the system
devices must provide the system clock. It supports multiple data formats as shown in table A.3.

General Low power consumption
3.0 V power supply
256fs , 384fs or 512fs system clock frequencies (fsys)
Small package size (SSOP28)
Fully integrated analog front end including digital AGC
ADC plus integrated high-pass filter to cancel DC offset
Overload detector for easy record level control
Separate power control for ADC and DAC
Functions controllable via L3-interface

Data interface I2S-bus, MSB-justified and LSB-justified format compatible
Three combinational data formats with MSB data output
and LSB 16, 18 or 20 bits data input
1fs input and output format data rate

DAC digital sound processing Digital dB-linear volume control
Digital tone control, bass boost and treble
Soft mute

Table A.3: UDA1341TS specification

58

Appendix B

Familiar 0.5.1 Modification

Default runlevel for Familiar distribution is 2. We will use it for emergency communication
mode. We define new run level 3 for network communication over serial line.

First we need to change default parameters of the bootloader. Last versions of CRL/OH
bootloader does not need params partition anymore. There is regular file named /boot/params
on the filesystem:

set linuxargs=noinitrd root=/dev/mtdblock1 init=/linuxrc
lcdlight 1

Content of this file are commands for bootloader as they will be put to serial console command
line. The main reason is to set kernel argument console to kernel’s default value to free serial
port. Be careful of error while editing this file, because it can make you troubles. Be sure, you
are not using default params file from Familiar website. It’s prepared for configuration with
params partition and it could completely destroy your root image.

Next we set switching of runlevels. As the last command run in runlevel 2 initialization there
will be call to

#!/bin/sh
/etc/init.d/lvl3 &

File with this should be named S99lvl3, placed in /etc/rc2.d directory and have rights set to
766. Running command lvl3 in the background is very important, it allows the init process to run
login prompt and to log in the system when there is some problem. Command /etc/init.d/lvl3
is also executable and it waits for 30 second and then switch the runlevel to 3. Printing PID of
lvl3 is very useful, because in the case of troubles we will log in and kill it to stay in runlevel 2.

#!/bin/sh
echo "" > /dev/console
echo "Waiting 30s before switching to lvl 3!" > /dev/console
echo "lvl3 pid: $$" > /dev/console

for i in 5 10 15 20 25 30
do

sleep 5
echo -n . >/dev/console

done

59

init 3

Other scripts that run in runlevel 2 should be turned off by renaming them from SXXname
to KXXname. Next step will be preparing run level 3 for first run when we need to update or
add some files from workstation. In runlevel 3 we will need network configuration, PPP daemon
and at least SSH daemon. Mounting some volumes from workstation and offering others via
NFS will be helpful. Here is listing of /etc/rc3.d:

S05networking -> /etc/init.d/networking
S10ppp -> /etc/init.d/ppp
S15mount -> /etc/init.d/mount
S20copy
S50ssh -> /etc/init.d/ssh
S60nfslock -> /etc/init.d/nfslock
S65nfs -> /etc/init.d/nfs

Scripts from /etc/init.d that differ from distribution of Debian ARM port follows. Script
S20copy is used to add missing files by copying them from mounted volume from workstation.
We need portmap, nfs daemons, ssh daemon with configuration files, bash and necessary libraries
for these programs to name just some of the basic. First listing is ppp:

#!/bin/sh
modprobe ppp0
/usr/sbin/pppd

The second one is mount for mounting volume from the workstation:

#!/bin/sh
modprobe nfs
mount /mnt/sirion
echo "NFS sirion:/usr/local/arm -> /mnt/sirion"

Next important thing is modification of PPP options file. New content of /etc/ppp/options
is:

updetach
nocrtscts
lock
lcp-echo-interval 5
lcp-echo-failure 3
/dev/ttySA0
115200
local
defaultroute
passive
persist

To wake this system up, changes in /etc/inittab are primary. We need to add one line for
newly defined runlevel (3) and restrict serial port usage of console to runlevel 2:

60

...
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l6:6:wait:/etc/init.d/rc 6
...
T0:2:respawn:/sbin/getty -L ttySA0 115200 vt100

Minor but also important modifications include changes in /etc/fstab, /etc/hosts, /etc/modules.conf,
creating directories to mount NFS volumes in and symbolic links for shell or /usr/local directory.

When we complete everything, reboot iPAQ few times to add missing lines somewhere and
add some more useful software and iPAQ will be as good developer’s machine as any workstation.
(Just a bit slower :)

61

