
Chapter 7

Applications and Implementation

Although this book primarily represents a theoretically oriented treatment, most gram-
mars discussed in the previous chapters have quite realistic applications. Indeed, these
grammars are useful to every scientific field that formalizes its results by some strings and
studies how these strings are produced from one another under some permitting or, in
contrast, forbidding conditions. As numerous areas of science formalize and study their
results in this way, any description of applications that cover more than one of these areas
would be unbearably sketchy, if not impossible. Therefore, we concentrate our attention
on a single application area—microbiology, which appears of great interest at present. In
this intensively investigated scientific field, we give three case studies that make use of L
grammars with context conditions (see Chapter 4.2). Section 7.1 presents two case studies
of biological organisms whose development is affected by some abnormal conditions, such
as some virus infection. From even more practical point of view, Section 7.2 discusses
parametric 0L grammars (see [151]), which represent a powerful and elegant implemen-
tation tool in the area of biological simulation and modelling today. More specifically,
we extend parametric 0L grammars by context conditions and demonstrate their use on
models of growing plants.

7.1 Applications

Case Study 1. Consider a cellular organism in which every cell divides itself into two cells
during every single step of a healthy development. However, when a virus infects some
cells, all the organism stagnates until it is cured again. During the stagnating period,
all the cells just reproduce themselves without producing any new cells. To formalize
this development by a suitable simple semi-conditional L grammar (see Section 4.2.3), we
denote a healthy cell and a virus-infected cell by A and B, respectively, and introduce the
simple semi-conditional 0L grammar, G = ({A,B}, P,A), where P contains the following
productions:

(A → AA, 0, B), (B → B, 0, 0),
(A → A,B, 0), (B → A, 0, 0),
(A → B, 0, 0).

Figure 7.1 describes G simulating a healthy development while Figure 7.2 gives a devel-
opment with a stagnating period caused by the virus.

171

Figure 7.1: Healthy development.

Figure 7.2: Development with a stagnating period.

172

In the next case study, we reconsider the well known 0L grammar that simulate the
developmental stages of a red alga (see [162], [167]). By using context conditions, we
modify this system so it describes some unhealthy development of this alga, which leads
to its partial death or degeneration.

Case Study 2. Consider an 0L grammar, G = (V, P, 1), where V = {1, 2, 3, 4, 5, 6, 7, 8, [,]}
and the set of productions P contains

1 → 23, 2 → 2, 3 → 24, 4 → 54, [→ [,
5 → 6, 6 → 7, 7 → 8[1], 8 → 8,] →].

From a biological viewpoint, parenthesized expressions represent branches whose posi-
tion is indicated by 8s. These branches are shown as attached on alternate sides of the
branch on which they are born. Figure 7.3 gives a biological interpretation of the devel-
opmental stages formally specified by the next derivation, which contain thirteen strings
corresponding to stages (a) through (m) in the figure.

1 ⇒G 23
⇒G 224
⇒G 2254
⇒G 22654
⇒G 227654
⇒G 228[1]7654
⇒G 228[23]8[1]7654
⇒G 228[224]8[23]8[1]7654
⇒G 228[2254]8[224]8[23]8[1]7654
⇒G 228[22654]8[2254]8[224]8[23]8[1]7654
⇒G 228[227654]8[22654]8[2254]8[224]8[23]8[1]7654
⇒G 228[228[1]7654]8[227654]8[22654]8[2254]8[224]8[23]8[1]7654.

Death. Let us assume that the red alga occurs in some unhealthy conditions under
which only some of its parts survive while the rest dies. This dying process starts from
the newly born, marginal parts of branches, which are too young and weak to survive, and
proceeds towards the older parts, which are strong enough to live under these conditions.
To be quite specific, all the red alga parts become gradually dead except for the parts
denoted by 2s and 8s. This process is specified by the following 0L grammar, G, with
forbidding conditions. Let W = {a′ : a ∈ V }. Then, G = (V ∪ W,P, 1), where the set of
productions, P , contains:

(1 → 23,W), (1′ → 2′, {3′, 4′, 5′, 6′, 7′}),
(2 → 2,W), (2′ → 2′, ∅),
(3 → 24,W), (3′ → ε, {4′, 5′, 6′, 7′}),
(4 → 54,W), (4′ → ε, ∅),
(5 → 6,W), (5′ → ε, {4′}),
(6 → 7,W), (6′ → ε, {4′, 5′}),
(7 → 8[1],W), (7′ → ε, {4′, 5′, 6′}),
(8 → 8,W),
([→ [, ∅),
(] →], ∅),

173

Figure 7.3: Healthy development.

174

and for every a ∈ V ,
(a → a′, ∅), (a′ → a′, ∅).

Figure 7.4 pictures the dying process corresponding to the next derivation, whose last
eight strings correspond to stages (a) through (h) in the figure.

1 ⇒∗
G 228[228[1]7654]8[227654]8[22654]8[2254]8[224]8[23]8[1]7654

⇒G 2′2′8′[2′2′8′[1′]7′6′5′4′]8′[2′2′7′6′5′4′]8′[2′2′6′5′4′]8′[2′2′5′4′]8′[2′2′4′]8′[2′3′]8′[1′]7′6′5′4′

⇒G 2′2′8′[2′2′8′[1′]7′6′5′]8′[2′2′7′6′5′]8′[2′2′6′5′]8′[2′2′5′]8′[2′2′]8′[2′3′]8′[1′]7′6′5′

⇒G 2′2′8′[2′2′8′[1′]7′6′]8′[2′2′7′6′]8′[2′2′6′]8′[2′2′]8′[2′2′]8′[2′3′]8′[1′]7′6′

⇒G 2′2′8′[2′2′8′[1′]7′]8′[2′2′7′]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′3′]8′[1′]7′

⇒G 2′2′8′[2′2′8′[1′]]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′3′]8′[1′]
⇒G 2′2′8′[2′2′8′[1′]]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′]8′[1′]
⇒G 2′2′8′[2′2′8′[2′]]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′2′]8′[2′]8′[2′].

Degeneration. Imagine a situation in which the red alga is degenerated. During this
degeneration, only the main stem is able to give a birth to new branches while all the other
branches lengthen themselves without any branching out. This degeneration is specified
by forbidding 0L grammar G = (V ∪ {D,E}, P, 1) with P containing

(1 → 23, ∅) (2 → 2, ∅) (3 → 24, ∅) (4 → 54, ∅)
(5 → 6, ∅) (6 → 7, ∅) (7 → 8[1], {D}) (8 → 8, ∅)
([→ [, ∅) (] →], ∅) (7 → 8[D], ∅)
(D → ED, ∅) (E → E, ∅).

Figure 7.5 pictures the degeneration specified by the following derivation, in which the
last ten strings correspond to stages (a) through (j) in the figure.

1 ⇒∗
G 227654

⇒G 228[D]7654
⇒G 228[ED]8[D]7654
⇒G 228[E2D]8[ED]8[D]7654
⇒G 228[E3D]8[E2D]8[ED]8[D]7654
⇒G 228[E4D]8[E3D]8[E2D]8[ED]8[D]7654
⇒G 228[E5D]8[E4D]8[E3D]8[E2D]8[ED]8[D]7654
⇒G 228[E6D]8[E5D]8[E4D]8[E3D]8[E2D]8[ED]8[D]7654
⇒G 228[E7D]8[E6D]8[E5D]8[E4D]8[E3D]8[E2D]8[ED]8[D]7654
⇒G 228[E8D]8[E7D]8[E6D]8[E5D]8[E4D]8[E3D]8[E2D]8[ED]8[D]7654.

7.2 Implementation

In this section, we describe parametric 0L grammars (see [151]) and their extension by
context conditions. We make this description from a purely practical point of view to
clearly demonstrate how these grammars are implemented and used.

175

Figure 7.4: Death of marginal branch parts.

176

Figure 7.5: Degeneration.

177

Case Study 3. Parametric 0L grammars (see [151], [150]) operate on strings of modules
called parametric words. A module is a symbol from an alphabet with an associated
sequence of parameters belonging to the set of real numbers. Productions of parametric
0L grammars are of the form

predecessor [: logical expression] → successor.

The predecessor is a module having a sequence of formal parameters instead of real num-
bers. The logical expression is any expression over predecessor’s parameters and real
numbers. If the logical expression is missing, the logical truth is assumed. The successor
is a string of modules containing expressions as parameters; for example,

A(x) : x < 7 → A(x + 1)D(1)B(3 − x).

Such a production matches a module in a parametric word provided that the symbol of the
rewritten module is the same as the symbol of the predecessor module, both modules have
the same number of parameters, and the value for the logical expression is true. Then,
the module can be rewritten by the given production. For instance, consider A(4). This
module matches the above production since A is the symbol of production’s predecessor,
there is one actual parameter, 4, in A(4), which corresponds to the formal parameter x in
A(x), and the value for the logical expression x < 7 with x = 4 is true. Thus, A(4) can
be rewritten to A(5)D(1)B(−1).

As usual, a parametric 0L grammar can rewrite a parametric word provided that there
exists a matching production for every module that occurs in it. Then, all modules are
simultaneously rewritten, and we obtain a new parametric word.

Parametric 0L grammars with context conditions. Next, we extend the parametric 0L
grammars by permitting context conditions. Each production of a parametric 0L grammar
with permitting conditions has the form

predecessor [? context conditions] [: logical expression] → successor.

where the predecessor, the logical expression, and the successor have the same meaning as
in parametric 0L grammars, and context conditions are some permitting context conditions
separated by commas. Each condition is a string of modules with formal parameters. For
example, consider

A(x) ? B(y), C(r, z) : x < y + r → D(x)E(y + r).

This production matches a module in a parametric word w provided that the predecessor
A(x) matches the rewritten module with respect to the symbol and the number of pa-
rameters and there exist modules matching to B(y) and C(r, z) in w such that the value
for logical expression x < y + r is true. For example, this production matches A(1) in
C(3, 8)D(−1)B(5)H(0, 0)A(1)F (3) because there are C(3, 8) and B(5) such that 1 < 5+3
is true. If there are more substrings matching the context condition, any of them can be
used.

Having described the parametric 0L grammars with permitting conditions, we next
show how to simulate the development of some plants by using them.

In the nature, developmental processes of multicellular structures are controlled by
the quantity of substances exchanged between the modules. In case of plants, the growth

178

depends on the amount of water and minerals absorbed by the roots and carried upwards
to the branches. The model of branching structures making use of the resource flow was
proposed by Borchert and Honda in [24]. The model is controlled by a flux of resources,
that starts at the base of the plant and propagates the substances towards the apices. An
apex accepts the substances and when the quantity of accumulated resources exceeds a
predefined threshold value, the apex bifurcates and initiates a new lateral branch. The
distribution of the flux depends on the number of apices that the given branch supports
and on the type of the branch—plants usually carry greater amount of resources to straight
branches than to lateral branches (see [24] and [150]).

The following two examples illustrate the idea of plants simulated by parametric
0L grammars with permitting conditions.

(I) Consider the following model:

axiom : I(1, 1, eroot)A(1)
p1 : A(id) ? I(idp, c, e) : id == idp ∧ e ≥ eth

→ [+(α) I(2 ∗ id + 1, γ, 0)A(2 ∗ id + 1)]/(π) I(2 ∗ id, 1 − γ, 0)A(2 ∗ id)
p2 : I(id, c, e) ? I(idp, cp, ep) : idp == bid/2c

→ I(id, c, c ∗ ep)

This L grammar describes a simple plant with a constant resource flow from its roots and
with a fixed distribution of the stream between lateral and straight branches. It operates
on the following types of modules:

• I(id, c, e) represents an internode with a unique identification number id, a distribu-
tion coeficient c, and a flux value e;

• A(id) is an apex growing from the internode with identification number equal to id;

• +(φ) and /(φ) rotate the segment orientation by angle φ (for more information,
consult [150]);

• [and] enclose the sequence of modules describing a lateral branch.

Standardly, we assume that if no production matches a given module X(x1, . . . , xn), the
module is rewritten by an implicit production of the form

X(x1, . . . , xn) → X(x1, . . . , xn);

that is, it remains unchanged.
At the beginning, the plant consists of one internode I(1, 1, eroot) with apex A(1),

where eroot is a constant flux value provided by roots. The first production, p1, simulates
the bifurcation of an apex. If an internode preceding the apex A(id) reaches a sufficient
flux e ≥ eth, the apex creates two new internodes I terminated by apices A. The lateral
internode is of the form I(2∗id+1, γ, 0) and the straight internode is of the form I(2∗id, 1−
γ, 0). Clearly, identification numbers of these internodes are unique. Moreover, every child
internode can easily calculate the identification number of its parent internode; the parent
internode has idp = bid/2c. The coeficient, γ, is a fraction of the parent flux to be directed
to the lateral internode. The second production, p2, controls the resource flow of a given

179

(a)

12

(b)

12

0
0

(c)

12

4.8

7.2

(d)

12

4.8

0

0

7.2

0

0

(e)

12

4.8

1.9

2.9

7.2

2.9

4.3

(f)

12

4.8

1.90

0

2.9

0
0

7.2

2.9
0

0
4.3

0
0

(g)

12

4.8

1.90.77

1.2

2.9

1.2
1.7

7.2

2.9
1.2

1.7
4.3

1.7

2.6

(h)

12

4.8

1.90.77

1.2

0

0 2.9

1.2

0

0

1.7

0

0

7.2

2.9
1.2

0

0
1.7

0

0

4.3

1.7

0

0

2.6

0

0

(i)

12

4.8

1.90.77

1.2

0.46

0.69 2.9

1.2

0.46

0.69

1.7

0.69

1

7.2

2.9
1.2

0.46

0.69
1.7

0.69

1

4.3

1.7

0.69

1

2.6

1

1.6

(j)

12

4.8

1.90.77

1.2

0.46

0.69 2.9

1.2

0.46

0.69

1.7

0.69

1

0
0

7.2

2.9
1.2

0.46

0.69
1.7

0.69

1
0

0

4.3

1.7

0.69

1

0
0

2.6

1
0

0
1.6

0
0

(k)

12

4.8

1.90.77

1.2

0.46

0.69 2.9

1.2

0.46

0.69

1.7

0.69

1

0.41
0.62

7.2

2.9
1.2

0.46

0.69
1.7

0.69

1
0.41

0.62

4.3

1.7

0.69

1

0.41
0.62

2.6

1
0.41

0.62
1.6

0.62
0.93

(l)

12

4.8

1.90.77

1.2

0.46

0.69 2.9

1.2

0.46

0.69

1.7

0.69

1

0.41
0.62

7.2

2.9
1.2

0.46

0.69
1.7

0.69

1
0.41

0.62

4.3

1.7

0.69

1

0.41
0.62

2.6

1
0.41

0.62
1.6

0.62
0.93

0

0

Figure 7.6: Developmental stages of the plant generated by (I).

180

internode. Observe that the permitting condition I(idp, cp, ep) with idp = bid/2c matches
only the parent internode. Thus, p2 changes the flux value e of I(id, c, e) to c ∗ ep, where
ep is the flux of the parent internode, and c is either γ for lateral internodes or 1 − γ for
straight internodes. Therefore, p2 simulates the transfer of a given amount of parent’s
flux into the internode. Figure 7.6 pictures twelve developmental stages of this plant, with
eroot, eth, and γ set to 12, 0.9, and 0.4, respectively. The numbers indicate the flow values
of internodes.

It is easy to see that this model is unrealistically simple. Indeed, the model ignores
the number of apices, its flow distribution does not depend on the size of branches, and
the basal flow is set to a constant value. However, it sufficiently illustrates the technique
of a communication between adjacent internodes. Thus, it is intended to be a template
for more sophisticated models of plants, such as the following model.

(II) We discuss a plant development with a resource flow controlled by the number of
apices. This example is based on Example 17 in [150].

axiom : N(1) I(1, straight, 0, 1)A(1)
p1 : N(k) → N(k + 1)
p2 : I(id, t, e, c) ? N(k), A(id)

: id == 1

→ I(id, t, σ02
(k−1)ηk

, 1)
p3 : I(id, t, e, c) ? N(k), I(ids, ts, es, cs), I(idl, tl, el, cl)

: id == 1 ∧ ids == 2 ∗ id ∧ idl == 2 ∗ id + 1

→ I(id, t, σ02
(k−1)ηk

, cs + cl)
p4 : I(id, t, e, c) ? I(idp, tp, ep, cp), I(ids, ts, es, cs), I(idl, tl, el, cl)

: idp == bid/2c ∧ ids == 2 ∗ id ∧ idl == 2 ∗ id + 1
→ I(id, t, δ(t, ep, cp, c), cs + cl)

p5 : Id(id, t, e, c) ? I(idp, tp, ep, cp), A(ida)
: idp == bid/2c ∧ ida == id
→ I(id, t, δ(t, ep, cp, c), 1)

p6 : A(id) ? I(idp, tp, ep, cp)
: id == idp ∧ ep ≥ eth

→ [+(α) I(2 ∗ id + 1, lateral, ep ∗ (1 − λ), 1)A(2 ∗ id + 1)]
/(π) I(2 ∗ id, straight, ep ∗ λ, 1)A(2 ∗ id)

This L grammar uses the following types of modules:

• I(id, t, e, c) is an internode with a unique identification number id, where t is a type
of this internode, t ∈ {straight, lateral}, e is a flux value, and c is a number of apices
the internode supports;

• A(id) is an apex terminating the internode id;

• N(k) is an auxiliary module, where k is the number of a developmental cycle to be
done by the next derivation;

• +(φ), /(φ), [and] have the same meaning as in the previous example.

181

(a)

0

(b)

8

(c)

14
2.4

5.6

(d)

21

4.2

9.7
1.7

3.9

(e)

29

6.4

15
2.9

6.8

(f)

38

18
1.9

4.5
25

4.5

10
2

4.8

(g)

45

23

5.3

12

32

7.5

18

3.1

7.3

(h)

50

13

6.81.6

3.7
16

3.78.7

40

19
2.3

5.327

5.3

12
2.2

5.1

(i)

54

10
42

4.7
9.4

4.711
2.6

6.1

40

24
5.8

13

1.6
3.7

34

8.2
1.6

3.7
19

3.7

8.6
1.5

3.6

(j)

56

65

31.2
2.8

7

2.86.6
3.3

7.7

1.8
4.2

50

12
7.3

1.7
4

17

4
9.4

36

21
2.4

5.7

29

5.7

13

2.6

6

(k)

56

17

190.91
2.1

58

1.16
2

4.6

2.35.4

46

22
7.3

2.2
5.1

10

5.1
12

2.8

6.6

46

11
6.2

14

1.7
4

33

17
1.7

425

4

9.3
1.8

4.2

(l)

55

21
3.35.8

14 13

8.841
0.9

5.1

1.4
3.2

1.6

3.8

51

18
6.7

2.2
5.1

1.5
3.6

16

3.1
1.5

3.6

7.2
3.6

8.3

2
4.6

40

9.2
3.31.9

4.3
7.6

4.310

37

20
5.2

12
28

7.4

17

2.8

6.5

(m)

53

12
4.21

1.8
4.1

2.3

4.1
9.5 19

4
2.6

6.1

12
6.1

35

1.5
3.6

0.97
2.3

49

12
5.5

2
4.7

1.5
3.6

16

9.4
0.92

2.2

13
2.2

5

2.5
5.8

39

18

5.50.98
2.3

7.9

2.35.3
3

7.1

37

11
5.9

1.6
3.7

14

3.7
8.6

33

17
2.2

5.2

24

5.2

12

2
4.6

(n)

50

12
1.81.3

0.3
0.7

2.9

0.7
1.62.9

6.7

10

5.8
1.2

2.8
1.8

4.3

17

7.21.8

4.3 8.4

5.230
1.1
2.5

44

18
5.5

0.82
4.7

1.4
3.3

11

4.9
2.8

6.6

15
2

11

1.5
3.5

1.7

4.1

45

16

5.41.7

3.9
13

2.45.5
1.6

3.7

2.14.9

34

7.5
3.3

1.8
4.1

7.8

4.1
9.6

2.6

6

30

20

5

12

1.6
3.6

28

7.1
1.6

3.617

3.6

8.5

(o)

47

10
7.10.53

0.38
0.88

1.2

0.88
2.10.49

1.1

2
4.7

11

2
1.7

4.1
0.84

2

9.2
5.22.2

5.1
16

5.1
1.6

3.6

7.2

8.9

21

46

18
4.2

0.83
4.7

1.4
3.3

16

2.3
1.5

3.5
2

4.6

9.1
2.2

13

3.4
8

1.1
2.5

39

11
4.71.6

3.8
14

1.911
1.7

3.9

1.1
2.6

34

41
2.2

1
2.3

5.2

2.3
5.4

2.9

6.7

1.8
4.2

32

8.9
6

14

3.58.2

27

17
2.1

524

5

12
2.5

5.9

Figure 7.7: Developmental stages of the plant generated by (II).

182

The flux distribution function, δ, is defined as

δ(t, ep, cp, c) =

{
ep − ep(1 − λ)((cp − c)/c) if t = straight,

ep(1 − λ)(c/(cp − c)) if t = lateral.

The development starts from the axiom N(1) I(1, straight, 0, 1)A(1) containing one
straight internode with one apex. In each derivation step, by application of p4, every
inner internode I(id, t, e, c) gets the number of apices of its straight (I(ids, ts, es, cs)) and
lateral (I(idl, tl, el, cl)) descendant. Then, this number is stored in c. Simultaneously, it
accepts a given part of the flux ep provided by its parent internode I(idp, tp, ep, cp). The
distribution function δ depends on the number of apices in the given branch and in the
sibling branch, and on the type of this branch (straight or lateral). The distribution factor,
λ, determines the amount of the flux that reaches the straight branch in case that both
branches support the same number of apices. Otherwise, the fraction is also affected by
the ratio of apex counts. Productions p2 and p3 rewrite the basal internode, calculating
its input flux value. The expression used for this purpose, σ02

(k−1)ηk

, was introduced by
Borchert and Honda to simulate a sigmoid increase of the input flux; σ0 is an initial flux,
k is a developmental cycle and η is a constant value scaling the flux change. Production
p5 rewrites internodes terminated by apices. It keeps the number of apices set to 1 and,
by analogy with p4, it loads a fraction of parent’s flux by using the δ function. The
last production, p6, controls the addition of new segments. By analogy with p1 in the
previous example, it erases the apex and generates two new internodes terminated by
apices. Figure 7.7 shows fifteen developmental stages of a plant simulation based on this
model.

Obviously, there are two concurrent streams of information in this model. The bottom-
up (acropetal) stream carries and distributes the substances required for the growth. The
top-down (basipetal) flow propagates the number of apices which is then used for the flux
distribution. A remarkable feature of this model is the response of a plant to a pruning.
Indeed, after a branch removal, the model redirects the flux to the remaining branches
and accelerates their growth.

Let us note that this model is a simplified version of the model described in [150], which
is very complex. Under this simplification, however, cp − c may be equal to the zero as
the denominator in the distribution function δ. If this happens, we change this zero value
to the proper non-zero value so the number of apices supported by the parent internode
corresponds to the number of apices on the straight and lateral branches growing from the
parent internode. Consult [150] for a more appropriate, but also complicated solution of
this problem.

From the presented examples, we see that parametric 0L grammars with permitting
conditions can describe sophisticated models of plants in a very natural way. Particularly,
compared to the context-sensitive L grammars, they allow to refer to modules that are not
adjacent to the rewritten module, and this property makes them more adequate, succint
and elegant from a practical point of view.

183

