
4.2.2 Forbidding ET0L Grammars

In this section, we discuss forbidding ET0L grammars (see [138]). First, we define forbid-
ding ET0L grammars. Then, we establish their generative power.

Definition 17. Let G = (V, T, P1, . . . , Pt, S) be a CET0L grammar. If every p = (a →
x, Per, For) ∈ Pi, where i = 1, . . . , t, satisfies Per = ∅, then G is said to be forbidding
ET0L grammar (an FET0L grammar for short). If G is a propagating FET0L grammar,
than G is said to be an FEPT0L grammar. If t = 1, G is called an FE0L grammar. If G
is a propagating FE0L grammar, G is called an FEP0L grammar.

Convention 4. Let G = (V, T, P1, . . . , Pt, S) be an FET0L grammar of degree (r, s).
Clearly, (a → x, Per, For) ∈ Pi implies Per = ∅ for all i = 1, . . . , t. By analogy with
sequential forbidding grammars, we thus omit the empty set in the productions. For
simplicity, we also say that G’s degree is s instead of (r, s).

The families of languages defined by FE0L grammars, FEP0L grammars, FET0L
grammars, and FEPT0L grammars of degree s are denoted by FE0L(s), FEP0L(s),
FET0L(s), and FEPT0L(s), respectively. Moreover,

FEPT0L =

∞⋃

s=0

FEPT0L(s), FET0L =

∞⋃

s=0

FET0L(s),

FEP0L =
∞⋃

s=0

FEP0L(s), FE0L =
∞⋃

s=0

FE0L(s).

Example 8. Let
G = ({S,A,B,C, a, ā, b}, {a, b}, P, S)

be an FEP0L grammar, where

P = {(S → ABA, ∅),
(A → aA, {ā}),
(B → bB, ∅),
(A → ā, {ā}),
(ā → a, ∅),
(B → C, ∅),
(C → bC, {A}),
(C → b, {A}),
(a → a, ∅),
(b → b, ∅)}.

Obviously, G is an FEP0L grammar of degree 1. Observe that for every word from L(G),
there exists a derivation of the form

S ⇒G ABA
⇒G aAbBaA
⇒+

G am−1Abm−1Bam−1A
⇒G am−1ābm−1Cam−1ā
⇒G ambmCam

⇒+
G ambn−1Cam

⇒G ambnam,
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with 1 ≤ m ≤ n. Hence,

L(G) = {ambnam : 1 ≤ m ≤ n}.

Note that L(G) 6∈ E0L (see page 268 in Volume 1 of [158]); however, L(G) ∈ FEP0L(1).
As a result, FEP0L grammars (of degree 1) are more powerful than ordinary E0L gram-
mars.

Next, we investigate the generative power of FET0L grammars of all degrees.

Theorem 36. FEPT0L(0) = EPT0L, FET0L(0) = ET0L, FEP0L(0) = EP0L, and
FE0L(0) = E0L.

Proof. It follows from the definition of FET0L grammars.

Lemmas 13, 14, 15, and 16 inspect the generative power of forbidding ET0L grammars
of degree 1. As a conclusion, in Theorem 37, we demonstrate that both FEPT0L(1) and
FET0L(1) grammars generate precisely the family of ET0L languages.

Lemma 13. EPT0L ⊆ FEP0L(1).

Proof. Let
G = (V, T, P1, . . . , Pt, S)

be an EPT0L grammar, where t ≥ 1. Set

W = {〈a, i〉 : a ∈ V, i = 1, . . . , t}

and
F (i) = {〈a, j〉 ∈ W : j 6= i}.

Then, construct an FEP0L grammar of degree 1,

G′ = (V ′, T, P ′, S),

where
V ′ = V ∪ W, (V ∩ W = ∅),

and the set of productions P ′ is defined as follows:

1. for each a ∈ V and i = 1, . . . , t, add (a → 〈a, i〉, ∅) to P ′;

2. if a → z ∈ Pi for some i ∈ {1, . . . , t}, a ∈ V , z ∈ V +, add (〈a, i〉 → z, F (i)) to P ′.

Let us demonstrate that L(G) = L(G′).

Claim 23. For each derivation S ⇒n
G′ x, n ≥ 0,

(I) if n = 2k + 1 for some k ≥ 0, x ∈ W +;

(II) if n = 2k for some k ≥ 0, x ∈ V +.
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Proof. The claim follows from the definition of P ′. Indeed, every production in P ′ is
either of the form (a → 〈a, i〉, ∅) or (〈a, i〉 → z, F (i)), where a ∈ V , 〈a, i〉 ∈ W , z ∈ V +,
i ∈ {1, . . . , t}. Since S ∈ V ,

S ⇒2k+1
G′ x implies x ∈ W +

and
S ⇒2k

G′ x implies x ∈ V +;

thus, the claim holds.

Define the finite substitution g from V ∗ to (V ′)∗ such that for every a ∈ V ,

g(a) = {a} ∪ {〈a, i〉 ∈ W : i = 1, . . . , t}.

Claim 24. S ⇒∗
G x if and only if S ⇒∗

G′ x′ for some x′ ∈ g(x), x ∈ V +, x′ ∈ (V ′)+.

Proof.

Only If : By induction on n ≥ 0, we show that for all x ∈ V +,

S ⇒n
G x implies S ⇒2n

G′ x.

Basis: Let n = 0. Then, the only x is S; therefore, S ⇒0
G S and also S ⇒0

G′ S.

Induction Hypothesis: Suppose that

S ⇒n
G x implies S ⇒2n

G′ x

for all derivations of length n or less, for some n ≥ 0.

Induction Step: Consider S ⇒n+1
G x. Because n + 1 ≥ 1, we can express

S ⇒n+1
G x

as
S ⇒n

G y ⇒G x [p1, p2, . . . , pq]

such that y ∈ V +, q = |y|, and pj ∈ Pi for all j = 1, . . . , q and some i ∈ {1, . . . , t}. By the
induction hypothesis,

S ⇒2n
G′ y.

Suppose that y = a1a2 . . . aq, aj ∈ V . Let G′ make the derivation

S ⇒2n
G′ a1a2 . . . aq

⇒G′ 〈a1, i〉〈a2, i〉 . . . 〈aq, i〉 [p′1, p
′
2, . . . , p

′
q]

⇒G′ z1z2 . . . zq [p′′1 , p
′′
2, . . . , p

′′
q ]

where p′j = (aj → 〈aj , i〉, ∅) and p′′j = (〈aj , i〉 → zj, F (i)) such that pj = aj → zj , zj ∈ V +,
for all j = 1, . . . , q. Then, z1z2 . . . zq = x and, therefore,

S ⇒
2(n+1)
G′ x.
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If : The converse implication is established by induction on the length of derivations in
G′. We prove that

S ⇒n
G′ x′ implies S ⇒∗

G x

for some x′ ∈ g(x), n ≥ 0.

Basis: For n = 0, S ⇒0
G′ S and S ⇒0

G S; clearly, S ∈ g(S).

Induction Hypothesis: Assume that there exists a natural number m such that the claim
holds for every 0 ≤ n ≤ m.

Induction Step: Let
S ⇒m+1

G′ x′.

Express this derivation as

S ⇒m
G′ y′ ⇒G′ x′ [p′1, p

′
2, . . . , p

′
q],

where y′ ∈ (V ′)+, q = |y′|, and p′1, p
′
2, . . . , p

′
q is a sequence of productions from P ′. By the

induction hypothesis,
S ⇒∗

G y,

where y ∈ V +, y′ ∈ g(y). Claim 23 says that there exist the following two cases:

(i) Let m = 2k for some k ≥ 0. Then, y′ ∈ V +, x′ ∈ W+, and every production

p′j = (aj → 〈aj , i〉, ∅),

where aj ∈ V , 〈aj , i〉 ∈ W , i ∈ {1, . . . , t}. In this case, 〈aj , i〉 ∈ g(aj) for every aj

and any i (see the definition of g); hence, x′ ∈ g(y) as well.

(ii) Let m = 2k + 1. Then, y′ ∈ W+, x′ ∈ V +, and each p′j is of the form

p′j = (〈aj , i〉 → zj, F (i)),

where 〈aj , i〉 ∈ W , zj ∈ V +. Moreover, according to the forbidding conditions
of p′j, all 〈aj , i〉 in y′ have the same i. Thus, y′ = 〈a1, i〉〈a2, i〉 . . . 〈aq, i〉 for some

i ∈ {1, . . . , t}, y = g−1(y′) = a1a2 . . . aq, and x′ = z1z2 . . . zq. By the definition of P ′,

(〈aj , i〉 → zj , F (i)) ∈ P ′ implies aj → zj ∈ Pi.

Therefore,
S ⇒∗

G a1a2 . . . aq ⇒G z1z2 . . . zq [p1, p2, . . . , pq],

where pj = aj → zj ∈ Pi such that p′j = (〈aj , i〉 → zj, F (i)). Obviously, z1z2 . . . zq =
x = x′.

This completes the induction and establishes Claim 24.

By Claim 24, for any x ∈ T +,

S ⇒∗
G x if and only if S ⇒∗

G′ x

Therefore, L(G) = L(G′), so the lemma holds.
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In order to simplify the notation in the following lemma, for a set of productions

P ⊆ {(a → z, F ) : a ∈ V, z ∈ V ∗, F ⊆ V },

define
left(P ) = {a : (a → z, F ) ∈ P}.

Informally, left(P ) denotes the set of left-hand sides of all productions in P .

Lemma 14. FEPT0L(1) ⊆ EPT0L.

Proof. Let
G = (V, T, P1, . . . , Pt, S)

be an FEPT0L grammar of degree 1, t ≥ 1. Let Q be the set of all subsets O ⊆ Pi,
1 ≤ i ≤ t, such that every (a → z, F ) ∈ O, a ∈ V , z ∈ V +, F ⊆ V , satisfies F ∩left(O) = ∅.
Create a new set, Q′, so that for each O ∈ Q, add

{a → z : (a → z, F ) ∈ O}

to Q′. Express
Q′ = {Q′

1, . . . , Q
′
m},

where m is the cardinality of Q′. Then, construct the EPT0L grammar

G′ = (V, T,Q′
1, . . . , Q

′
m, S).

Basic Idea. To see the basic idea behind the construction of G′, consider a pair of
productions p1 = (a1 → z1, F1) and p2 = (a2 → z2, F2) from Pi, for some i ∈ {1, . . . , t}.
During a single derivation step, p1 and p2 can concurrently rewrite a1 and a2 provided that
a2 6∈ F1 and a1 6∈ F2, respectively. Consider any O ⊆ Pi containing no pair of productions
(a1 → z1, F1) and (a2 → z2, F2) such that a1 ∈ F2 or a2 ∈ F1. Observe that for any
derivation step based on O, no production from O is blocked by its forbidding conditions;
thus, the conditions can be omitted. Formal proof is given next.

Claim 25. S ⇒n
G x if and only if S ⇒n

G′ x, x ∈ V ∗, n ≥ 0.

Proof. The claim is proven by induction on the length of derivations.

Only If : By induction on n, n ≥ 0, we prove that

S ⇒n
G x implies S ⇒n

G′ x

for all x ∈ V ∗.

Basis: Let n = 0. Then, S ⇒0
G S and S ⇒0

G′ S.

Induction Hypothesis: Suppose that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Consider a derivation S ⇒n+1
G x. Because n + 1 ≥ 1, there exists y ∈ V +,

q = |y|, and a sequence p1, . . . , pq, where pj ∈ Pi for all j = 1, . . . , q and some i ∈ {1, . . . , t},
such that

S ⇒n
G y ⇒G x [p1, . . . , pq].
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By the induction hypothesis, S ⇒n
G′ y. Let O = {pj : 1 ≤ j ≤ q}. Observe that y ⇒G

x [p1, . . . , pq] implies alph(y) = left(O). Moreover, every pj = (a → z, F ) ∈ O, a ∈ V ,
z ∈ V +, F ⊆ V , statisfies F ∩alph(y) = ∅. Hence, (a → z, F ) ∈ O implies F ∩ left(O) = ∅.
Inspect the definition of G′ to see that there exists

Q′
r = {a → z : (a → z, F ) ∈ O}

for some r, 1 ≤ r ≤ m. Therefore,

S ⇒n
G′ y ⇒G′ x [p′1, . . . , p

′
q],

where p′j = a → z ∈ Q′
r such that pj = (a → z, F ) ∈ O, for all j = 1, . . . , q.

If : The if-part demonstrates for every n ≥ 0,

S ⇒n
G′ x implies S ⇒n

G x,

where x ∈ V ∗.

Basis: Suppose that n = 0. Then, S ⇒0
G′ S and S ⇒0

G S.

Induction Hypothesis: Assume that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Let
S ⇒n+1

G′ x.

As n + 1 ≥ 1, there exists a derivation

S ⇒n
G′ y ⇒G′ x [p′1, . . . , p

′
q]

such that y ∈ V +, q = |y|, each p′i ∈ Q′
r for some r ∈ {1, . . . ,m}, and, by the induction

hypothesis,
S ⇒n

G y.

Then, by the definition of Q′
r, there exists Pi and O ⊆ Pi such that every (a → z, F ) ∈ O,

a ∈ V , z ∈ V +, F ⊆ V , statisfies a → z ∈ Q′
r and F ∩ left(O) = ∅. Since alph(y) ⊆ left(O),

(a → z, F ) ∈ O implies F ∩ alph(y) = ∅. Hence,

S ⇒n
G y ⇒G x [p1, . . . , pq],

where pj = (a → z, F ) ∈ O for all j = 1, . . . , q.

From the above claim,

S ⇒∗
G x if and only if S ⇒∗

G′ x

for all x ∈ T ∗. Consequently, L(G) = L(G′).

The following two lemmas can be proven by analogy with Lemmas 13 and 14. The
details are left to the reader.

Lemma 15. ET0L ⊆ FE0L(1).

96



Lemma 16. FET0L(1) ⊆ ET0L.

Theorem 37. FEP0L(1) = FEPT0L(1) = FE0L(1) = FET0L(1) = EPT0L =
ET0L.

Proof. By Lemmas 13 and 14, EPT0L ⊆ FEP0L(1) and FEPT0L(1) ⊆ EPT0L, re-
spectively. Since FEP0L(1) ⊆ FEPT0L(1), FEP0L(1) = FEPT0L(1) = EPT0L.
Analogously, from Lemmas 15 and 16, FE0L(1) = FET0L(1) = ET0L. However,
EPT0L = ET0L (see Theorem V.1.6 on page 239 in [156]). Therefore,

FEP0L(1) = FEPT0L(1) = FE0L(1) = FET0L(1) = EPT0L = ET0L;

thus, the theorem holds.

Next, we investigate the generative power of FEPT0L grammars of degree 2. The
following lemma establishes a normal form for context-sensitive grammars so that the
grammars satisfying this form generate only sentential forms containing no nonterminal
from NCS as the leftmost symbol of the string. We make use of this normal form in
Lemma 18.

Lemma 17. Every context-sensitive language, L ∈ CS, can be generated by a context-
sensitive grammar, G = (N1 ∪NCF ∪NCS ∪T, T, P, S1), where N1, NCF , NCS, and T are
pairwise disjoint alphabets, S1 ∈ N1, and every production in P has one of the following
forms:

(i) AB → AC, where A ∈ (N1 ∪ NCF ), B ∈ NCS, C ∈ NCF ;

(ii) A → B, where A ∈ NCF , B ∈ NCS;

(iii) A → a, where A ∈ (N1 ∪ NCF ), a ∈ T ;

(iv) A → C, where A,C ∈ NCF ;

(v) A1 → C1, where A1, C1 ∈ N1;

(vi) A → DE, where A,D,E ∈ NCF ;

(vii) A1 → D1E, where A1, D1 ∈ N1, E ∈ NCF .

Proof. Let
G′ = (NCF ∪ NCS ∪ T, T, P ′, S)

be a context-sensitive grammar of the form defined in Lemma 4. From this grammar, we
construct a grammar

G = (N1 ∪ NCF ∪ NCS ∪ T, T, P, S1),

where

N1 = {X1 : X ∈ NCF },
P = P ′ ∪ {A1B → A1C : AB → AC ∈ P ′, A,C ∈ NCF , B ∈ NCS , A1 ∈ N1}

∪ {A1 → a : A → a ∈ P ′, A ∈ NCF , A1 ∈ N1, a ∈ T}
∪ {A1 → C1 : A → C ∈ P ′, A,C ∈ NCF , A1, C1 ∈ N1}
∪ {A1 → D1E : A → DE ∈ P ′, A,D,E ∈ NCF , A1, D1 ∈ N1}.
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Basic Idea. G works by analogy with G′ except that in G′ every sentential form starts
with a symbol from N1 ∪T followed by symbols that are not in N1. Notice, however, that
by AB → AC, G′ can never rewrite the leftmost symbol of any sentential form. Based
on these observations, it is rather easy to see that L(G) = L(G′); a formal proof of this
identity is left to the reader. As G is of the required form, Lemma 17 holds.

Lemma 18. CS ⊆ FEP0L(2).

Proof. Let L be a context-sensitive language generated by a grammar

G = (N1 ∪ NCF ∪ NCS ∪ T, T, P, S1)

of the form of Lemma 17. Let

V = N1 ∪ NCF ∪ NCS ∪ T,
PCS = {AB → AC : AB → AC ∈ P,A ∈ (N1 ∪ NCF ), B ∈ NCS , C ∈ NCF},
PCF = P − PCS .

Informally, PCS and PCF are the sets of context-sensitive and context-free productions in
P , respectively, and V denotes the total alphabet of G.

Let f be an arbitrary bijection from V to {1, . . . ,m}, where m is the cardinality of V ,
and let f−1 be the inverse of f .

Construct an FEP0L grammar of degree 2,

G′ = (V ′, T, P ′, S1),

with V ′ defined as

W0 = {〈A,B,C〉 : AB → AC ∈ PCS},
WS = {〈A,B,C, j〉 : AB → AC ∈ PCS , 1 ≤ j ≤ m + 1},
W = W0 ∪ WS,
V ′ = V ∪ W.

where V , W0, and WS are pairwise disjoint alphabets. The set of productions P ′ is defined
as follows:

1. for every X ∈ V , add (X → X, ∅) to P ′;

2. for every A → u ∈ PCF , add (A → u,W ) to P ′;

3. for every AB → AC ∈ PCS , add the following productions to P ′:

(a) (B → 〈A,B,C〉,W );

(b) (〈A,B,C〉 → 〈A,B,C, 1〉,W − {〈A,B,C〉});

(c) (〈A,B,C, j〉 → 〈A,B,C, j + 1〉, {f−1(j)〈A,B,C, j〉}) for all 1 ≤ j ≤ m such
that f(A) 6= j;

(d) (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, ∅);

(e) (〈A,B,C,m + 1〉 → C, {〈A,B,C,m + 1〉2}).
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Basic Idea. Let us informally explain how G′ simulates the non-context-free productions
of the form AB → AC (see productions of (3) in the construction of P ′). First, chosen
occurences of B are rewritten with 〈A,B,C〉 by (B → 〈A,B,C〉,W ). The forbidding
condition of this production guarantees that there is no simulation already in process.
After that, left neighbors of all occurences of 〈A,B,C〉 are checked not to be any symbols
from V − {A}. In more detail, G′ rewrites 〈A,B,C〉 with 〈A,B,C, i〉 for i = 1. Then, in
every 〈A,B,C, i〉, G′ increments i by one as long as i is less or equal to the cardinality
of V ; simultaneously, it verifies that the left neighbor of every 〈A,B,C, i〉 differs from
the symbol that f maps to i except for the case when f(A) = i. Finally, G′ checks that
there are no two adjoining symbols 〈A,B,C,m + 1〉. At this point, the left neighbors
of 〈A,B,C,m + 1〉 are necessarily equal to A, so every occurence of 〈A,B,C,m + 1〉 is
rewritten to C.

Observe that the other symbols remain unchanged during the simulation. Indeed, by
the forbidding conditions, the only productions that can rewrite symbols X 6∈ W are of the
form (X → X, ∅). Moreover, the forbidding condition of (〈A,B,C〉 → 〈A,B,C, 1〉,W −
{〈A,B,C〉}) implies that it is not possible to simulate two different non-context-free pro-
ductions at the same time.

To establish the identity of languages generated by G and G′, we first prove Claims 26
through 30.

Claim 26. S1 ⇒n
G′ x′ implies first(x′) ∈ (N1 ∪ T ) for every n ≥ 0, x′ ∈ (V ′)∗.

Proof. The claim is proven by induction on n.

Basis: Let n = 0. Then, S1 ⇒0
G′ S1 and S1 ∈ N1.

Induction Hypothesis: Assume that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Consider a derivation

S1 ⇒n+1
G′ x′,

where x′ ∈ (V ′)∗. Because n + 1 ≥ 1, there is a derivation

S1 ⇒n
G′ y′ ⇒G′ x′ [p1, . . . , pq],

y′ ∈ (V ′)∗, q = |y′|, and, by the induction hypothesis, first(y ′) ∈ (N1 ∪ T ). Inspect P ′ to
see that the production p1 that rewrites the leftmost symbol of y ′ is one of the following
forms: (A1 → A1, ∅), (a → a, ∅), (A1 → a,W ), (A1 → C1,W ), or (A1 → D1E,W ), where
A1, C1, D1 ∈ N1, a ∈ T , E ∈ NCF (see (1) and (2) in the definition of P ′ and Lemma 17).
It is obvious that the leftmost symbols of the right-hand sides of these productions belong
to (N1 ∪ T ). Hence,

first(x′) ∈ (N1 ∪ T ),

so the claim holds.

Claim 27. S1 ⇒n
G′ y′1Xy′3, X ∈ WS, implies y′1 ∈ (V ′)+ for any y′3 ∈ (V ′)∗.

Proof. Informally, the claim says that every occurence of a symbol from WS has always a
left neighbor. Clearly, this claim follows from the statement of Claim 26. Since WS∩(N1∪
T ) = ∅, X cannot be the leftmost symbol in a sentential form and the claim holds.
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Claim 28. S1 ⇒n
G′ x′, n ≥ 0, implies that x′ has one of the following three forms:

(I) x′ ∈ V ∗;

(II) x′ ∈ (V ∪ W0)
∗ and #W0

x′ > 0;

(III) x′ ∈ (V ∪ {〈A,B,C, j〉})∗ , #{〈A,B,C,j〉}x
′ > 0, and {f−1(k)〈A,B,C, j〉 : 1 ≤ k < j,

k 6= f(A)} ∩ sub(x′) = ∅, where 〈A,B,C, j〉 ∈ WS, A ∈ (N1 ∪ NCF ), B ∈ NCS,
C ∈ NCF , 1 ≤ j ≤ m + 1.

Proof. We prove the claim by the induction on n ≥ 0.

Basis: Let n = 0. Clearly, S1 ⇒0
G′ S1 and S1 is of type (I).

Induction Hypothesis: Suppose that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Let us consider any derivation of the form

S1 ⇒n+1
G′ x′.

Because n+ 1 ≥ 1, there exists y′ ∈ (V ′)∗ and a sequence of productions p1, . . . , pq, where
pi ∈ P ′, 1 ≤ i ≤ q, q = |y′|, such that

S1 ⇒n
G′ y′ ⇒G′ x′ [p1, . . . , pq].

Let y′ = a1a2 . . . aq, ai ∈ V ′.
By the induction hypothesis, y′ can only be of forms (I) through (III). Thus, the

following three cases cover all possible forms of y ′:

(i) Let y′ ∈ V ∗ (form (I)). In this case, every production pi can be either of the form
(ai → ai, ∅), ai ∈ V , or (ai → u,W ) such that ai → u ∈ PCF , or (ai → 〈A, ai, C〉,W ),
ai ∈ NCS , 〈A, ai, C〉 ∈ W0 (see the definition of P ′).

Suppose that for every i ∈ {1, . . . , q}, pi has one of the first two listed forms. Ac-
cording to the right-hand sides of these productions, we obtain x′ ∈ V ∗; that is, x′

is of form (I).

If there exists i such that pi = (ai → 〈A, ai, C〉,W ) for some A ∈ (N1 ∪ NCF ),
ai ∈ NCS , C ∈ NCF , 〈A, ai, C〉 ∈ W0, we get x′ ∈ (V ∪W0)

∗ with #W0
x′ > 0. Thus,

x′ belongs to (II).

(ii) Let y′ ∈ (V ∪ W0)
∗ and #W0

y′ > 0 (form (II)). At this point, pi is either (ai →
ai, ∅) (rewriting ai ∈ V to itself) or (〈A,B,C〉 → 〈A,B,C, 1〉,W − {〈A,B,C〉})
rewriting ai = 〈A,B,C〉 ∈ W0 to 〈A,B,C, 1〉 ∈ WS , where A ∈ (N1 ∪ NCF ),
B ∈ NCS, C ∈ NCF . Since #W0

y′ > 0, there exists at least one i such that
ai = 〈A,B,C〉 ∈ W0. The corresponding production pi can be used provided that
#(W−{〈A,B,C〉})y

′ = 0. Therefore, y′ ∈ (V ∪ {〈A,B,C〉})∗ and hence x′ ∈ (V ∪
{〈A,B,C, 1〉})∗ , #{〈A,B,C,1〉}x

′ > 0; that is, x′ is of type (III).

(iii) Assume that y′ ∈ (V ∪ {〈A,B,C, j〉})∗ , #{〈A,B,C,j〉}y
′ > 0, and

sub(y′) ∩ {f−1(k)〈A,B,C, j〉 : 1 ≤ k < j, k 6= f(A)} = ∅,
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where 〈A,B,C, j〉 ∈ WS, A ∈ (N1∪NCF ), B ∈ NCS , C ∈ NCF , 1 ≤ j ≤ m+1 (form
(III)). By inspection of P ′, we see that the following four forms of productions can
be used to rewrite y′ to x′:

(a) (ai → ai, ∅), ai ∈ V ;

(b) (〈A,B,C, j〉 → 〈A,B,C, j + 1〉, {f−1(j)〈A,B,C, j〉}), 1 ≤ j ≤ m, j 6= f(A);

(c) (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, ∅);

(d) (〈A,B,C,m + 1〉 → C, {〈A,B,C,m + 1〉2}).

Let 1 ≤ j ≤ m, j 6= f(A). Then, symbols from V are rewritten to themselves (case
(a)) and every occurence of 〈A,B,C, j〉 is rewritten to 〈A,B,C, j+1〉 by (b). Clearly,
we obtain x′ ∈ (V ∪{〈A,B,C, j+1〉})∗ such that #{〈A,B,C,j+1〉}x

′ > 0. Furthermore,
(b) can be used only when f−1(j)〈A,B,C, j〉 6∈ sub(y′). As

sub(y′) ∩ {f−1(k)〈A,B,C, j〉 : 1 ≤ k < j, k 6= f(A)} = ∅,

it holds that

sub(y′) ∩ {f−1(k)〈A,B,C, j〉 : 1 ≤ k ≤ j, k 6= f(A)} = ∅.

Since every occurence of 〈A,B,C, j〉 is rewritten to 〈A,B,C, j+1〉 and other symbols
are unchanged,

sub(x′) ∩ {f−1(k)〈A,B,C, j + 1〉 : 1 ≤ k < j + 1, k 6= f(A)} = ∅;

therefore, x′ is of form (III).

Assume that j = f(A). Then, all occurences of 〈A,B,C, j〉 are rewritten to 〈A,B,C, j+
1〉 by (c) and symbols from V are rewritten to themselves. As before, we obtain
x′ ∈ (V ∪ {〈A,B,C, j + 1〉})∗ and #{〈A,B,C,j+1〉}x

′ > 0. Moreover, because

sub(y′) ∩ {f−1(k)〈A,B,C, j〉 : 1 ≤ k < j, k 6= f(A)} = ∅

and j is just f(A),

sub(x′) ∩ {f−1(k)〈A,B,C, j + 1〉 : 1 ≤ k < j + 1, k 6= f(A)} = ∅

and x′ belongs to (III) as well.

Finally, let j = m + 1. Then, every occurence of 〈A,B,C, j〉 is rewritten to C (case
(d)) and, therefore, x′ ∈ V ∗; that is, x′ has form (I).

In (i), (ii), and (iii), we have considered all derivations that rewrite y ′ to x′, and in each
of these cases, we have shown that x′ has one of the requested forms. Therefore, Claim 28
holds.

To prove the following claims, we need a finite letter-to-letters substitution g from V ∗

into (V ′)∗ defined as

g(X) = {X} ∪ {〈A,X,C〉 : 〈A,X,C〉 ∈ W0}
∪ {〈A,X,C, j〉 : 〈A,X,C, j〉 ∈ WS, 1 ≤ j ≤ m + 1}

for all X ∈ V , A ∈ (N1 ∪ NCF ), C ∈ NCF . Let g−1 be the inverse of g.
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Claim 29. Let y′ = a1a2 . . . aq, ai ∈ V ′, q = |y′|, and g−1(ai) ⇒hi

G g−1(ui) for all
i ∈ {1, . . . , q} and some hi ∈ {0, 1}, ui ∈ (V ′)+. Then, g−1(y′) ⇒r

G g−1(x′) such that
x′ = u1u2 . . . uq, r =

∑q
i=1 hi, r ≤ q.

Proof. First, consider a derivation g−1(X) ⇒h
G g−1(u), X ∈ V ′, u ∈ (V ′)+, h ∈ {0, 1}.

If h = 0 then g−1(X) = g−1(u). Let h = 1. Then, there surely exists a production
p = g−1(X) → g−1(u) ∈ P such that g−1(X) ⇒G g−1(u) [p].

Return to the statement of this claim. We can construct a derivation

g−1(a1)g
−1(a2) . . . g−1(aq) ⇒h1

G g−1(u1)g
−1(a2) . . . g−1(aq)

⇒h2

G g−1(u1)g
−1(u2) . . . g−1(aq)

...

⇒
hq

G g−1(u1)g
−1(u2) . . . g−1(uq)

where g−1(y′) = g−1(a1) . . . g−1(aq) and g−1(u1) . . . g−1(uq) = g−1(u1 . . . uq) = g−1(x′).
In such a derivation, each g−1(ai) is either left unchanged (if hi = 0) or rewritten to
g−1(ui) by the corresponding production g−1(ai) → g−1(ui). Obviously, the length of this
derivation is

∑q
i=1 hi.

Claim 30. S1 ⇒∗
G x if and only if S1 ⇒∗

G′ x′, where x ∈ V ∗, x′ ∈ (V ′)∗, x′ ∈ g(x).

Proof.

Only if : The only-if part is established by induction on the length of derivations in G.
That is, we show that

S1 ⇒n
G x implies S1 ⇒∗

G′ x

where x ∈ V ∗, for n ≥ 0.

Basis: Let n = 0. Then, S1 ⇒0
G S1 and S1 ⇒0

G′ S1 as well.

Induction Hypothesis: Assume that the claim holds for all derivations of length n or less,
for some n ≥ 0.

Induction Step: Consider a derivation

S1 ⇒n+1
G x.

Because n + 1 > 0, there exists y ∈ V ∗ and p ∈ P such that

S1 ⇒n
G y ⇒G x [p],

and, by the induction hypothesis, there is also a derivation

S1 ⇒∗
G′ y.

Let y = a1a2 . . . aq, ai ∈ V , 1 ≤ i ≤ q, q = |y|. The following cases (i) and (ii) cover all
possible forms of p.
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(i) p = A → u ∈ PCF , A ∈ (N1 ∪ NCF ), u ∈ V ∗. Then, y = y1Ay3 and x = y1uy3,
y1, y3 ∈ V ∗. Let s = |y1| + 1. Since we have (A → u,W ) ∈ P ′, we can construct a
derivation

S1 ⇒∗
G′ y ⇒G′ x [p1, . . . , pq]

such that ps = (A → u,W ) and pi = (ai → ai, ∅) for all i ∈ {1, . . . , q}, i 6= s.

(ii) p = AB → AC ∈ PCS , A ∈ (N1 ∪ NCF ), B ∈ NCS, C ∈ NCF . Then, y = y1ABy3

and x = y1ACy3, y1, y3 ∈ V ∗. Let s = |y1| + 2. In this case, there is the following
derivation:

S1 ⇒∗
G′ y1ABy3

⇒G′ y1A〈A,B,C〉y3 [ps = (B → 〈A,B,C〉,W )]
⇒G′ y1A〈A,B,C, 1〉y3 [ps = (〈A,B,C〉 → 〈A,B,C, 1〉,

W − {〈A,B,C〉})]
⇒G′ y1A〈A,B,C, 2〉y3 [ps = (〈A,B,C, 1〉 → 〈A,B,C, 2〉,

{f−1(1)〈A,B,C, j〉})]
...

⇒G′ y1A〈A,B,C, f(A)〉y3 [ps = (〈A,B,C, f(A) − 1〉 → 〈A,B,C, f(A)〉,
{f−1(f(A) − 1)〈A,B,C, f(A) − 1〉})]

⇒G′ y1A〈A,B,C, f(A) + 1〉y3 [ps = (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, ∅)]
⇒G′ y1A〈A,B,C, f(A) + 2〉y3 [ps = (〈A,B,C, f(A) + 1〉 → 〈A,B,C, f(A) + 2〉,

{f−1(f(A) + 1)〈A,B,C, f(A) + 1〉})]
...

⇒G′ y1A〈A,B,C,m + 1〉y3 [ps = (〈A,B,C,m〉 → 〈A,B,C,m + 1〉,
{f−1(m)〈A,B,C,m〉})]

⇒G′ y1ACy3 [ps = (〈A,B,C,m + 1〉 → C,

{〈A,B,C,m + 1〉2})]

such that pi = (ai → ai, ∅) for all i ∈ {1, . . . , q}, i 6= s.

If : By induction on n, we prove that

S1 ⇒n
G′ x′ implies S1 ⇒∗

G x,

where x′ ∈ (V ′)∗, x ∈ V ∗ and x′ ∈ g(x).

Basis: Let n = 0. The only x′ is S1 because S1 ⇒0
G′ S1. Obviously, S1 ⇒0

G S1 and
S1 ∈ g(S1).

Induction Hypothesis: Suppose that the claim holds for any derivation of length n or less,
for some n ≥ 0.

Induction Step: Consider a derivation of the form

S1 ⇒n+1
G′ x′.

Since n + 1 ≥ 1, there exists y′ ∈ (V ′)∗ and a sequence of productions p1, . . . , pq from P ′,
q = |x′|, such that

S1 ⇒n
G′ y′ ⇒G′ x′ [p1, . . . , pq].
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Let y′ = a1a2 . . . aq, ai ∈ V ′, 1 ≤ i ≤ q. By the induction hypothesis, we have

S1 ⇒∗
G y,

where y ∈ V ∗, such that y′ ∈ g(y).
From Claim 28, y′ can have one of the following forms:

(i) Let y′ ∈ (V ′)∗ (see (I) in Claim 28). Inspect P ′ to see that there are three forms of
productions rewriting symbols ai in y′:

(a) pi = (ai → ai, ∅) ∈ P ′, ai ∈ V . In this case,

g−1(ai) ⇒0
G g−1(ai).

(b) pi = (ai → ui,W ) ∈ P ′ such that ai → ui ∈ PCF . Because ai = g−1(ai),
ui = g−1(ui) and ai → ui ∈ P ,

g−1(ai) ⇒G g−1(ui) [ai → ui].

(c) pi = (ai → 〈A, ai, C〉,W ) ∈ P ′, ai ∈ NCS , A ∈ (N1 ∪ NCF ), C ∈ NCF . Since
g−1(ai) = g−1(〈A, ai, C〉), we have

g−1(ai) ⇒0
G g−1(〈A, ai, C〉).

We see that for all ai, there exists a derivation

g−1(ai) ⇒hi

G g−1(zi)

for some hi ∈ {0, 1}, where zi ∈ (V ′)+, x′ = z1z2 . . . zq. Therefore, by Claim 29, we
can construct

S1 ⇒∗
G y ⇒r

G x,

where 0 ≤ r ≤ q, x = g−1(x′).

(ii) Let y′ ∈ (V ∪ W0)
∗ and #W0

y′ > 0 (see (II)). At this point, the following two forms
of productions can be used to rewrite ai in y′:

(a) pi = (ai → ai, ∅) ∈ P ′, ai ∈ V . As in case (i.a),

g−1(ai) ⇒0
G g−1(ai).

(b) pi = (〈A,B,C〉 → 〈A,B,C, 1〉,W − {〈A,B,C〉}), ai = 〈A,B,C〉 ∈ W0, A ∈
(N1 ∪ NCF ), B ∈ NCS , C ∈ NCF . Because g−1(〈A,B,C〉) = g−1(〈A,B,C, 1〉),

g−1(〈A,B,C〉) ⇒0
G g−1(〈A,B,C, 1〉).

Thus, there exists a derivation

S1 ⇒∗
G y ⇒0

G x,

where x = g−1(x′).
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(iii) Let y′ ∈ (V ∪ {〈A,B,C, j〉})∗ , #{〈A,B,C,j〉}y
′ > 0, and

sub(y′) ∩ {f−1(k)〈A,B,C, j〉 : 1 ≤ k < j, k 6= f(A)} = ∅,

where 〈A,B,C, j〉 ∈ WS , A ∈ (N1 ∪ NCF ), B ∈ NCS , C ∈ NCF , 1 ≤ j ≤ m + 1 (see
(III)). By inspection of P ′, the following four forms of productions can be used to
rewrite y′ to x′:

(a) pi = (ai → ai, ∅), ai ∈ V ;

(b) pi = (〈A,B,C, j〉 → 〈A,B,C, j + 1〉, {f−1(j)〈A,B,C, j〉}), 1 ≤ j ≤ m, j 6=
f(A);

(c) pi = (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, ∅);

(d) pi = (〈A,B,C,m + 1〉 → C, {〈A,B,C,m + 1〉2}).

Let 1 ≤ j ≤ m. G′ can rewrite such y′ using only the productions (a) through (c).
Because g−1(〈A,B,C, j〉) = g−1(〈A,B,C, j + 1〉) and g−1(ai) = g−1(ai), by analogy
with (ii), we obtain a derivation

S1 ⇒∗
G y ⇒0

G x

such that x = g−1(x′).

Let j = m + 1. In this case, only the productions (a) and (d) can be used. Since
#{〈A,B,C,j〉}y

′ > 0, there is at least one occurence of 〈A,B,C,m + 1〉 in y ′ and, by

the forbidding condition of the production (c), 〈A,B,C,m + 1〉2 6∈ sub(y′). Observe
that for j = m + 1,

{f−1(k)〈A,B,C,m + 1〉 : 1 ≤ k < j, k 6= f(A)} =

{X〈A,B,C,m + 1〉 : X ∈ V, X 6= A}

and, thus,
sub(y′) ∩ {X〈A,B,C,m + 1〉 : X ∈ V, X 6= A} = ∅.

According to Claim 27, 〈A,B,C,m+1〉 has always a left neighbor in y ′. As a result,
the left neighbor of every occurence of 〈A,B,C,m + 1〉 is A. Therefore, we can
express:

y′ = y1A〈A,B,C,m + 1〉y2A〈A,B,C,m + 1〉y3 . . . yrA〈A,B,C,m + 1〉yr+1,
y = g−1(y1)ABg−1(y2)ABg−1(y3) . . . g−1(yr)ABg−1(yr+1),
x′ = y1ACy2ACy3 . . . yrACyr+1,

where r ≥ 1, ys ∈ V ∗, 1 ≤ s ≤ r + 1. Since we have p = AB → AC ∈ P , there is a
derivation:

S1 ⇒∗
G g−1(y1)ABg−1(y2)ABg−1(y3) . . . g−1(yr)ABg−1(yr+1)

⇒G g−1(y1)ACg−1(y2)ABg−1(y3) . . . g−1(yr)ABg−1(yr+1) [p]
⇒G g−1(y1)ACg−1(y2)ACg−1(y3) . . . g−1(yr)ABg−1(yr+1) [p]

...
⇒G g−1(y1)ACg−1(y2)ACg−1(y3) . . . g−1(yr)ACg−1(yr+1) [p]

where g−1(y1)ACg−1(y2)ACg−1(y3) . . . g−1(yr)ACg−1(yr+1) = g−1(x′) = x.
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Because cases (i), (ii) and (iii) cover all possible forms of y ′, we have completed the
induction and established Claim 30.

The equivalence of G and G′ follows from Claim 30. Indeed, observe that by the
definition of g, we have g(a) = {a} for all a ∈ T . Therefore, by Claim 30, we have for any
x ∈ T ∗:

S1 ⇒∗
G x if and only if S1 ⇒∗

G′ x.

Thus, L(G) = L(G′) and the lemma holds.

Theorem 38. CS = FEP0L(2) = FEPT0L(2) = FEP0L = FEPT0L.

Proof. By Lemma 18, CS ⊆ FEP0L(2) ⊆ FEPT0L(2) ⊆ FEPT0L. From Lemma 11
and the definition of FET0L grammars, it follows that FEPT0L(s) ⊆ FEPT0L ⊆
CEPT0L ⊆ CS for any s ≥ 0. Moreover, FEP0L(s) ⊆ FEP0L ⊆ FEPT0L. Thus,
CS = FEP0L(2) = FEPT0L(2) = FEP0L = FEPT0L, and the theorem holds.

Return to the proof of Lemma 18. Observe that the productions of the FEP0L grammar
G′ are of restricted forms. This observation gives rise to the next corollary.

Corollary 15. Every context-sensitive language can be generated by an FEP0L grammar
G = (V, T, P, S) of degree 2 such that every production from P has one of the following
forms:

(i) (a → a, ∅), a ∈ V ;

(ii) (X → x, F ), X ∈ V − T , |x| ∈ {1, 2}, max(F ) = 1;

(iii) (X → Y, {z}), X,Y ∈ V − T , z ∈ V 2.

Next, we demonstrate that the family of recursively enumerable languages is generated
by the forbidding E0L grammars of degree 2.

Lemma 19. RE ⊆ FE0L(2).

Proof. Let L be a recursively enumerable language generated by a phrase structure gram-
mar

G = (V, T, P, S)

having the form defined in Lemma 5, where

V = NCF ∪ NCS ∪ T,
PCS = {AB → AC ∈ P : A,C ∈ NCF , B ∈ NCS},
PCF = P − PCS .

Let $ be a new symbol and m be the cardinality of V ∪ {$}. Furthermore, let f be an
arbitrary bijection from V ∪ {$} onto {1, . . . ,m}, and let f−1 be the inverse of f .

Then, we define an FE0L grammar

G′ = (V ′, T, P ′, S′)
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of degree 2 as follows:

W0 = {〈A,B,C〉 : AB → AC ∈ P},
WS = {〈A,B,C, j〉 : AB → AC ∈ P, 1 ≤ j ≤ m},
W = W0 ∪ WS,
V ′ = V ∪ W ∪ {S′, $},

where A,C ∈ NCF , B ∈ NCS , and V , W0, WS , and {S′, $} are pairwise disjoint alphabets.
The set of productions P ′ is defined in the following way:

1. add (S′ → $S, ∅), ($ → $, ∅) and ($ → ε, V ′ − T − {$}) to P ′;

2. for all X ∈ V , add (X → X, ∅) to P ′;

3. for all A → u ∈ PCF , A ∈ NCF , u ∈ {ε} ∪ NCS ∪ T ∪ (
⋃2

i=1 N i
CF ), add (A → u,W )

to P ′;

4. if AB → AC ∈ PCS , A,C ∈ NCF , B ∈ NCS , then add the following productions to
P ′:

(a) (B → 〈A,B,C〉,W );

(b) (〈A,B,C〉 → 〈A,B,C, 1〉,W − {〈A,B,C〉});

(c) (〈A,B,C, j〉 → 〈A,B,C, j + 1〉, {f−1(j)〈A,B,C, j〉}) for all 1 ≤ j ≤ m such
that f(A) 6= j;

(d) (〈A,B,C, f(A)〉 → 〈A,B,C, f(A) + 1〉, ∅);

(e) (〈A,B,C,m + 1〉 → C, {〈A,B,C,m + 1〉2}).

Basic Idea. Let us only sketch the proof that L(G) = L(G′). The above construction
resembles the construction in Lemma 18 very much. Indeed, to simulate the non-context-
free productions AB → AC in FE0L grammars, we use the same technique as in FEP0L
grammars from Lemma 18. We only need to guarantee that no sentential form begins
with a symbol from NCS. This is solved by an auxiliary nonterminal $ in the definition
of G′. The symbol is always generated in the first derivation step by (S ′ → $S, ∅) (see
(1) in the definition of P ′). After that, it appears as the leftmost symbol of all sentential
forms containing some nonterminals. The only production that can erase it is ($ →
ε, V ′ − T − {$}).

Therefore, by analogy with the technique used in Lemma 18, we can establish

S ⇒∗
G x if and only if S ′ ⇒+

G′ $x′

such that x ∈ V ∗, x′ ∈ (V ′ − {S′, $})∗, x′ ∈ g(x), where g is a finite substitution from V ∗

into (V ′ − {S′, $})∗ defined as

g(X) = {X} ∪ {〈A,X,C〉 : 〈A,X,C〉 ∈ W0}
∪ {〈A,X,C, j〉 : 〈A,X,C, j〉 ∈ WS, 1 ≤ j ≤ m + 1}

for all X ∈ V , A,C ∈ NCF . The details are left to the reader.
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As in Lemma 18, we have g(a) = {a} for all a ∈ T ; hence, for all x ∈ T ∗:

S ⇒∗
G x if and only if S ′ ⇒+

G′ $x.

Since
$x ⇒G′ x [($ → ε, V ′ − T − {$})],

we obtain
S ⇒∗

G x if and only if S ′ ⇒+
G′ x.

Consequently, L(G) = L(G′); thus, RE ⊆ FE0L(2).

Theorem 39. RE = FE0L(2) = FET0L(2) = FE0L = FET0L.

Proof. By Lemma 19, we have RE ⊆ FE0L(2) ⊆ FET0L(2) ⊆ FET0L. From Lemma 12,
it follows that FET0L(s) ⊆ FET0L ⊆ CET0L ⊆ RE, for any s ≥ 0. Therefore,
RE = FE0L(2) = FET0L(2) = FE0L = FET0L, so the theorem holds.

By analogy with Corollary 15, we obtain the following normal form.

Corollary 16. Every recursively enumerable language can be generated by an FE0L gram-
mar G = (V, T, P, S) of degree 2 such that every production from P has one of the following
forms:

(i) (a → a, ∅), a ∈ V ;

(ii) (X → x, F ), X ∈ V − T , |x| ≤ 2, and F 6= ∅ implies max(F ) = 1;

(iii) (X → Y, {z}), X,Y ∈ V − T , z ∈ V 2.

Theorems 36, 37, 38, and 39 imply the following relationships of FET0L language
families:

Corollary 17.

CF
⊂

FEP0L(0) = FE0L(0) = EP0L = E0L
⊂

FEP0L(1) = FEPT0L(1) = FE0L(1) = FET0L(1) =
FEPT0L(0) = FET0L(0) = EPT0L = ET0L

⊂
FEP0L(2) = FEPT0L(2) = FEP0L = FEPT0L = CS

⊂
FE0L(2) = FET0L(2) = FE0L = FET0L = RE.
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