
Chapter 19

Applications: Overview

Abstract This chapter makes several general remarks about applications of regu-

lated language models discussed earlier in this book. It concentrates its attention to

three application areas—biology, compilers, and linguistics. The chapter consists of

two sections. Section 19.1 describes applications of regulated grammars at present.

Section 19.2 suggests their applications in the near future.
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As already stated in Chapter 1, this book is primarily and principally meant as a

theoretical treatment of regulated grammars and automata. Nevertheless, to demon-

strate their practical importance, we make some general remarks regarding their

applications in the present two-section chapter. However, since applications of reg-

ulated grammars and automata overflow so many scientific areas, we only cover a

very restricted selection of these applications. Indeed, in Section 19.1, we concen-

trate our attention primarily to applications related to grammar-based regulation in

three application areas concerning them—linguistics, compilers, and biology. We

give an insight into the current applications of regulated grammars in these three

areas, which are further illustrated by quite specific case studies in Chapter 20. In

Section 19.2, we make several general remarks concerning application-oriented per-

spectives of regulated grammars and automata in the near future, and we illustrate

them by examples.

19.1 Current Applications

In the present section, we demonstrate applications of regulated grammars in lin-

guistics, compilers, and biology. In a greater detail, we further illustrate them by

case studies covered in Chapter 20.
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Linguistics

In terms of English syntax, grammatical regulation can specify a number of relations

between individual syntax-related elements of sentences in natural languages. For

instance, relative clauses are introduced by who or which depending on the subject

of the main clause. If the subject in the main clause is a person, the relative clause is

introduced by who; otherwise, it starts by which. We encourage the reader to design

a regulated grammar that describes this dependency (consult [8]).

In other natural languages, there exist syntax relations that can be elegantly han-

dled by regulated grammars, too. To illustrate, in Spanish, all adjectives inflect ac-

cording to gender of the noun they characterize. Both the noun and the adjective

may appear at different parts of a sentence, which makes their syntactical depen-

dency difficult to capture by classical grammars; obviously, regulated grammars

can describe this dependency in a more elegant and simple way.

Apart from description, specification, and transformation of language syntax,

regulated grammars can be applied to other linguistically oriented fields, such as

morphology (see [2, 4]).

Compilers

Rather than cover a complete process of computer compilation related to grammar-

based regulation, we restrict our attention primarily to parsing (see [1, 3, 5, 9, 11,

16]), already discussed in Sections 6.7 and 8.1 in a rather theoretical way. In ad-

dition, we briefly sketch applications in compilation phases controlled by parsing,

such as syntax-directed translation.

Ordinary parsers represent crucially important components of compilers, and

they are traditionally underlined by ordinary context-free grammars. As their name

indicates, regulated parsers are based upon regulated context-free grammars. Con-

sidering their advantages, including properties (I) through (IV) listed next, it comes

as no surprise that they become increasingly popular in modern compilers design.

(I) Regulated parsers work in a faster way than classical parsers do. Indeed, ordinary

parsers control their parsing process so they consult their parsing tables during

every single step. As opposed to this exhaustively busy approach, in regulated

parsers, regulated grammatical mechanisms take control over the parsing process

to a large extent; only during very few pre-determined steps, they consult their

parsing tables to decide how to continue the parsing process under the guidance

of regulating mechanism. Such a reduction of communication with the parsing

tables obviously results into a significant acceleration of the parsing process as a

whole.

(II) Regulated context-free grammars are much stronger than ordinary context-free

grammars. Accordingly, parsers based upon regulated grammars are more pow-
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erful than their ordinary versions. As an important practical consequence, they

can parse syntactical structures that cannot be parsed by ordinary parsers.

(III) Regulated parsers make use of their regulated mechanisms to perform their pars-

ing process in a deterministic way.

(IV) Compared to ordinary parsers, regulated parsers are often written more succinctly

and, therefore, readably as follows from reduction-related results concerning the

number of their components, such as nonterminals and rules, achieved earlier in

this book (see Sections 4.4.2, 4.6.2, 4.7.4, 6.4, 10.2.2, 10.3.2, and 10.4.2).

From a more general point of view, some fundamental parts of compilers, such

as syntax-directed translators, run within the compilation process under the parser-

based regulation. Furthermore, through their symbol tables, parsers also regulate ex-

changing various pieces of information between their components, further divided

into several subcomponents. Indeed, some parts of modern compilers may be fur-

ther divided into various subparts, which are run in a regulated way, and within

these subparts, a similar regulation can be applied again, and so on. As a matter

of fact, syntax-directed translation is frequently divided into two parts, which work

concurrently. One part is guided by a precedence parser that works with expressions

and conditions while the other part is guided by a predictive parser that processes

the general program flow. In addition, both parts are sometimes further divided into

several subprocesses or threads. Of course, this two-parser design of syntax-directed

translation requires an appropriate regulation of compilation as a whole. Indeed,

prior to this syntax-directed translation, a pre-parsing decomposition of the tok-

enized source program separates the syntax constructs for both parsers. On the other

hand, after the syntax-directed translation based upon the two parsers is successfully

completed, all the produced fragments of the intermediate code are carefully com-

posed together so the resulting intermediate code is functionally equivalent to the

source program. Of course, handling compilation like this requires a proper regula-

tion of all these compilation subphases.

To give one more example in terms of modern compiler design, various optimiza-

tion methods are frequently applied to the generation of the resulting target code to

speed the code up as much as possible. This way of code generation may result from

an explicit requirement in the source program. More often, however, modern com-

pilers themselves recognize that a generation like this is appropriate within the given

computer framework, so they generate the effective target code to speed up its sub-

sequent execution. Whatever they do, however, they always have to guarantee that

the generated target code is functionally equivalent to the source program. Clearly,

this design of compilers necessitates an extremely careful control over all the op-

timization routines involved, and this complicated control has to be based upon a

well developed theory of computational regulation. Within formal language theory,

which has always provided compilation techniques with their formal models, this

control can be accomplished by regulated grammars, which naturally and elegantly

formalize computational regulation.
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Biology

As the grammatical regulation of information processing fulfills a crucially impor-

tant role in biology as a whole, it is literally impossible to cover all these applica-

tions in this scientific filed. Therefore, we restrict our attention only to microbiology,

which also makes use of the systematically developed knowledge concerning these

grammars significantly. Even more specifically, we narrow our attention to molecu-

lar genetics (see [14, 17, 18]). A regulation of information processing is central to

this scientific field although it approaches this processing in a specific way. Indeed,

genetically oriented studies usually investigate how to regulate the modification of

several symbols within strings that represent a molecular organism. To illustrate a

modification like this, consider a typical molecular organism consisting of several

groups of molecules; for instance, take any organism consisting of several parts that

slightly differ in behavior of DNA molecules made by specific sets of enzymes. Dur-

ing their development, these groups of molecules communicate with each other, and

this communication usually influences the future behavior of the whole organism.

A simulation of such an organism might be formally based upon regulated gram-

mars, which can control these changes at various places. Consequently, genetic de-

pendencies of this kind represent another challenging application area of regulated

grammars in the future.

To sketch the applicability of regulated grammars in this scientific area in a

greater detail, consider one-sided forbidding grammars, studied earlier in Sec-

tion 6.2. These grammars can formally and elegantly simulate processing informa-

tion in molecular genetics, including information concerning macromolecules, such

as DNA, RNA, and polypeptides. For instance, consider an organism consisting of

DNA molecules made by enzymes. It is a common phenomenon that a molecule m

made by a specific enzyme can be modified unless molecules made by some other

enzymes occur either to the left or to the right of m in the organism. Consider a

string w that formalizes this organism so every molecule is represented by a sym-

bol. As obvious, to simulate a change of the symbol a that represents m requires

forbidding occurrences of some symbols that either precede or follow a in w. As

obvious, one-sided forbidding grammars can provide a string-changing formalism

that can capture this forbidding requirement in a very succinct and elegant way. To

put it more generally, one-sided forbidding grammars can simulate the behavior of

molecular organisms in a rigorous and uniform way. Application-oriented topics like

this obviously represent a future investigation area concerning one-sided forbidding

grammars.

As already stated, we give several in-depth case studies concerning linguistics,

compilers, and biology in Chapter 20.
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19.2 Perspectives

In the near future, highly regulated information processing is expected to intensify

rapidly and significantly. Indeed, to take advantage of highly effective parallel and

mutually connected computers as much as possible, a modern software product si-

multaneously run several processes, each of which gather, analyze and modify vari-

ous elements occurring within information of an enormous size, largely spread and

constantly growing across the virtually endless and limitless computer environment.

During a single computational step, a particular running process selects a finite set

of mutually related information elements, from which it produces new information

as a whole and, thereby, completes the step. In many respects, the newly created

information affects the way the process performs the next computational step, and

from a more broadly perspective, it may also significantly change the way by which

the other processes work as well. Clearly, a product conceptualized in this modern

way requires a very sophisticated regulation of its computation performed within a

single process as well as across all the processes involved.

As already explained in Chapter 1, computer science urgently needs to express

regulated computation by appropriate mathematical models in order to express its

fundamentals rigorously. Traditionally, formal language theory provides computer

science with various automata and grammars as formal models of this kind. How-

ever, classical automata and grammars, such as ordinary finite automata or context-

free grammars, represent unregulated formal models because they were introduced

several decades ago when hardly any highly regulated computation based upon par-

allelism and distribution occurred in computer science. As an inescapable conse-

quence, these automata and grammars fail to adequately formalize highly regulated

computation. Consequently, so far, most theoretically oriented computer science ar-

eas whose investigation involve this computation simplify their investigation so they

reduce their study to quite specific areas in which they work with various ad-hoc

simplified models without any attempt to formally describe highly regulated com-

putation generally and systematically. In this sense, theoretical computer science

based upon unregulated formal models is endangered by approaching computation

in an improper way, which does not reflect the expected regulated computation in

the future at all. Simply put, rather than shed some light on fundamental ideas of

this processing, this approach produces little or no relevant results concerning fu-

ture computation.

Taking into account this unsatisfactory and dangerous situation occurring in the

very heart of computational theory, the present book has paid an explicit attention

to modifying automata and grammars so they work in a regulated way. As a result

of this modification, the resulting regulated versions of grammars and automata can

properly and adequately underlie a systematized theory concerning general ideas

behind future regulated information processing. Out of all these regulated gram-

mars and automata, we next select three types and demonstrate the way they can

appropriately act as formal models of regulated computation. Namely, we choose

(1) scattered context grammars (see Section 4.7);
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(2) regulated grammar systems (see Chapter 13);

(3) regulated pushdown automata (see Section 16.2).

(1) In general, the heart of every grammar consists of a finite set of rules, ac-

cording to which the grammar derives sentences. The collection of all sentences

derived by these rules forms the language generated by the grammar. Most classical

grammars perform their derivation steps in a strictly sequential way. To illustrate,

context-free grammars work in this way because they rewrite a single symbol of the

sentential form during every single derivation step (see [7, 10, 12, 15, 19]).

As opposed to strictly sequential grammars, the notion of a scattered context

grammar is based upon finitely many sequences of context-free rules that are simul-

taneously applied during a single derivation step. Beginning from its start symbol,

the derivation process, consisting of a sequence of derivation steps, successfully

ends when the derived strings contain only terminal symbols. A terminal word de-

rived in this successful way is included into the language of this grammar, which

contains all strings derived in this way. As obvious, this way of rewriting makes

scattered context grammars relevant to regulated information processing as illus-

trated next in terms of computational linguistics.

Consider several texts such that (a) they all are written in different natural lan-

guages, but (b) they correspond to the same syntactical structure, such as the struc-

ture of basic clauses. With respect to (b), these texts are obviously closely related,

yet we do not tend to compose them into a single piece of information because

of (a). Suppose that a multilingual processor simultaneously modifies all these texts

in their own languages so all the modified texts again correspond to the same syn-

tactical structure, such as a modification of basic clauses to the corresponding in-

terrogative clauses; for instance, I said that would be changed to Did I say that? in

English. At this point, a processor like this needs to regulate its computation across

all these modified texts in mutually different languages. As obvious, taking advan-

tage of their simultaneous way of rewriting, scattered context grammars can handle

changes of this kind while ordinary unregulated context-free grammars cannot.

(2) Classical grammar systems combine several grammars (see [6]). All the in-

volved grammars cooperate according to some protocol during their derivations.

Admittedly, compared to isolated grammars, these grammar systems show several

significant advantages, including an increase of the generative power and, simul-

taneously, a decrease of their descriptional complexity. In essence, the classical

grammar systems can be classified into cooperating distributed (CD) and parallel

communicating (PC) grammar systems (see [6]). CD grammar systems work in a

sequential way. Indeed, all the grammars that form components of these systems

have a common sentential form, and every derivation step is performed by one of

these grammars. A cooperation protocol dictates the way by which the grammars

cooperate. For instance, one grammar performs precisely k derivation steps, then

another grammar works in this way, and so on, for a positive integer k. In addition,

some stop conditions are given to determine when the grammar systems become

inactive and produce their sentences. For example, a stop condition of this kind says

that no grammar of the system can make another derivation step. Many other co-

operating protocols and stop conditions are considered in the literature (see [6] and
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Chapter 4 in [13] for an overview). As opposed to a CD grammar system, a PC

grammar system works in parallel. The PC grammatical components have their own

sentential forms, and every derivation step is performed by each of the components

with its sentential form. A cooperation protocol is based on a communication be-

tween the components through query symbols. More precisely, by generating these

query symbols, a component specifies where to insert the sentential form produced

by another component. Nevertheless, even PC grammar systems cannot control their

computation across all their grammatical components simultaneously and globally.

Regulated grammar systems, discussed in Chapter 13, are based upon classi-

cal grammar systems, sketched above, because they also involve several grammat-

ical components. However, these regulated versions can regulate their computation

across all these components by finitely many sequences of nonterminals or rules

while their unregulated counterparts cannot. As illustrated next, since the unregu-

lated grammar systems fail to capture regulated information processing across all

the grammatical components, they may be inapplicable under some circumstances

while regulated grammar systems are applicable.

Consider regulated information processing concerning digital images. Suppose

that the processor composes and transforms several fragments of these images into

a single image according to its translation rules. For instance, from several digital

images that specify various parts of a face, the processor produces a complete digital

image of the face. Alternatively, from a huge collection of files containing various

image data, the translator selects a set of images satisfying some prescribed criteria

and composes them into a single image-data file. Of course, the processor makes

a multi-composition like this according to some compositional rules. As obvious, a

proper composition-producing process like this necessities a careful regulation of all

the simultaneously applied rules, which can be elegantly accomplished by regulated

grammar systems that control their computation by sequences of rules. On the other

hand, a regulation like this is hardly realizable based upon unregulated grammar

systems, which lack any rule-controlling mechanism.

(3) Classical pushdown automata work by making moves during which they

change states (see [7, 10, 12, 15, 19]). As a result, this state mechanism is the

only way by which they can control their computation. In practice, however, their

applications may require a more sophisticated regulation, which cannot be accom-

plished by state control. Frequently, however, the regulated versions of pushdown

automata (see Chapter 16) can handle computational tasks like this by their control

languages, so under these circumstance, they can act as appropriate computational

models while their unregulated counterparts cannot as illustrated next in terms of

parsing.

Consider a collection of files, each of which contains a portion of a source pro-

gram that should by parsed as a whole by a syntax analyzer, underlain by a push-

down automaton. By using a simple control language, we can prescribe the order in

which the syntax analyzer should properly compose all these fragmented pieces of

code stored in several different files, after which the entire code composed in this

way is parsed. As obvious, we cannot prescribe any global composition like this
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over the collection of files by using any classical pushdown automata, which does

not regulate its computation by any control language.

To summarize this section, regulated grammars and automata represent appro-

priate formal models of highly regulated computation, which is likely to fulfill a

central role in computer science as a whole in the near future. As such, from a

theoretical perspective, they will allow us to express the theoretical fundamentals of

this computation rigorously and systematically. From a more pragmatic perspective,

based upon them, computer science can create a well-designed methodology con-

cerning regulated information processing. Simply put, as their main perspective in

near future, regulated grammars and automata allow us to create (a) a systematized

body of knowledge representing an in-depth theory of highly regulated computation

and (b) a sophisticated methodology concerning regulated information processing,

based upon this computation.
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