
Motivation
Definitions

Our Results
Basic proof ideas

Appendix

String-Partitioning Systems and
An Infinite Hierarchy
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Motivation
inspiration and special characteristics

Inspiration :

another rewriting mechanisms

models with properties of both automata and grammars

generative power of such devices?

different and common properties?
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String partitioning system
Finite index of used formal models
Programmed grammars

Definition
string partitioning system and it’s configuration

SPS is a quadruple M = (Q, Σ, s, R)

Q is a finite set of states

Σ is an alphabet, # ∈ Σ called bounder

s ∈ Q is a start state

R is finite set of rules of the form:
pi# → qx ∈ R, where p, q ∈ Q, i ∈ I, x ∈ Σ∗.

Configuration of SPS

is string c ∈ QΣ∗
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String partitioning system
Finite index of used formal models
Programmed grammars

Definition
derivation step and derived language

Derivation step from pu#v to quxv , where

p, q ∈ Q, u, v , x ∈ Σ∗

occur(u, #) = n − 1

by using pn# → qx ∈ R

is pu#v ⇒ quxv [pn# → qx ] in M

Language derived by M, L(M):

L(M) = {w | s# ⇒∗ qw , q ∈ Q, w ∈ (Σ − {#})∗}
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String partitioning system
Finite index of used formal models
Programmed grammars

Simple example of SPS
generation of language anbncn

M = ({s, p, q, f}, {a, b, c, #}, s, R), where R contains:

1. s1# → p ## 4. p1# → f ab
2. p1# → q a#b 5. f1# → f c
3. q2# → p #c

Example (derivation of string aaabbbccc)

s# ⇒ p##[1] ⇒ qa#b# [2] ⇒ pa#b#c [3] ⇒
qaa#bb#c [2] ⇒ paa#bb#cc [3] ⇒ faaabbb#cc [4] ⇒
faaabbbccc [5].

L(M) = {anbncn |n ≥ 1}, with Ind(M) = 2
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String partitioning system
Finite index of used formal models
Programmed grammars

Definition
finite index of used formal models

Finite index of grammar ?

max. number of N ’s in sentential form w

achievable sent. form - S ⇒∗ w

leading to string x : w ∈ x , x ∈ Σ∗

in the most economical derivation

Finite index of SPS ?

max.number of #’s in sentential form
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String partitioning system
Finite index of used formal models
Programmed grammars

Definition
finite index of used formal models

Index of a language:

equal to index of grammar/SPS

Family of languages of finite index k

Lk (X )

Family of all languages of finite index

Lfin(X ) =
⋃

i≥1
Lk (X )
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String partitioning system
Finite index of used formal models
Programmed grammars

Definition
programmed grammars

Programmed grammar (PG) – G = (V , T , P, S)

V is a total alphabet

T ⊆ V is an alphabet of terminals

S ∈ (V − T ) is the start symbol

P is a finite set of rules of the form p : A → v , g(p)

p : A → v is a context free rule labeled by p
g(p) - set of rule labels associated with rule p (following set)
after p-application a rule labeled by a label from g(p)
has to be applied
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String partitioning system
Finite index of used formal models
Programmed grammars

Generative power
of programmed grammars

Programmed grammars:

L(CF ) ⊂ L(PG) ⊂ L(PGac) ⊂ L(CS) ⊂ L(λPGac) = L(RE)

L(CF ) ⊂ L(PG) ⊂ L(λPG) ⊂ L(RE)

Programmed grammars of index k :

Lfin(PG) = Lfin(λPG) = Lfin(PGac) = Lfin(λPGac)

L(CF ) − Lfin(PG) 6= ∅
⇒ Lfin(PG) is incomparable towards L(CF )

10 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

Generative power

Generative power and infinite hierarchy
of string partitioning systems of finite index

i n f i n i t e h i e r a r c h y f o r S P S

Lk (SPS) ⊂ Lk+1(SPS), for all k ≥ 1

1 Lk (PG) ⊂ Lk+1(PG), for all k ≥ 1 (Gh. Păun, 1980)
2 Lk (SPS) = Lk (PG)

T h e o r e m 2

Lk (SPS) = Lk (PG), for every k ≥ 1

Proof: 1) Lk (PG) ⊆ Lk (SPS) 2) Lk (SPS) ⊆ Lk (PG)
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Basic idea of the first proof’s part
Basic idea of the second proof’s part

Proof (basic idea)
first part: PGk → SPSk

Conversion: PGk → SPSk

nonterminals represented by #s and information in state
Each state in SPSk (2 components) of form:

〈A1 . . . Ak , q〉
A1, . . . , Ak ∈ NPGk

, q ∈ g(p)

one symbol in A1 . . . Ak is marked for following rewriting
q represents next rule to use
bounders mark positions for former nonterminals

x0Ax1Bx2

m
〈AB, q〉x0#x1#x2 12 / 16
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Basic idea of the first proof’s part
Basic idea of the second proof’s part

Proof (demonstration)
second part: SPSk → PGk

SPS2M = ({s, p, q, f}, {a, b, c, #}, s, R):

s p q

f

1##

1a#b

2#c1ab

1c

1 s1# → p ##

2 p1# → q a#b
3 q2# → p #c
4 p1# → f ab
5 f1# → f c

How to construct PG’s rule set based on SPS’ rules?
basic idea will be presented..
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Basic idea of the first proof’s part
Basic idea of the second proof’s part

Proof (demonstration)
second part: SPSk → PGk

Conversion: SPSk → PGk

1 every A ∈ N is of form 〈p, i , h〉, S := 〈s, 1, 1〉

2 every SPSk ’s rule pi# → qy simulate by sequence of
steps:

p ## ⇒SPS q a#b# [p1# → q a#b]

m

a) renumbering

b) rewriting

c) finalization

〈p, 1, 2〉〈p, 2, 2〉 ⇒PG 〈q′′, 1, 2〉〈p, 2, 2〉 ⇒PG

〈q′′, 1, 2〉〈q′, 2, 2〉 ⇒PG a〈q′, 1, 2〉b〈q′, 2, 2〉 ⇒PG

a〈q, 1, 2〉b〈q′, 2, 2〉 ⇒PG a〈q, 1, 2〉b〈q, 2, 2〉
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References

Modifications of SPS
another challenges...

SPS with finite index:

deterministic variant

accepting variant

parallel variant

SPS without index limitation:

generative power

properties
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