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Motivation

Motivation

inspiration and special characteristics

Inspiration :

@ another rewriting mechanisms

@ models with properties of both automata and grammars
@ generative power of such devices?

@ different and common properties?
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Definitions String partitioning system
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Plr)grammed grammars

Definition

string partitioning system and it's configuration

SPSis a quadruple M = (Q, X, s,R)
@ Q is afinite set of states
@ Y is an alphabet, # < ¥ called bounder
@ s € Q is a start state

@ R is finite set of rules of the form:
pi# — ogx € R, wherep,qeQ,iel,xeX”

Configuration of SPS
@ isstring c € QX"
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Definitions String partitioning system
Finite index of used formal models
Plr)grammed grammars

Definition

derivation step and derived language

Derivation step from pu#v to quxv, where
@ p,geQ,u,v,xex*
@ occur(u,#)=n-1
@ by using ph# — gx € R

iS  pu#v = quxv  [pn# — gx]in M

Language derived by M, L(M):
o L(M)={w|[s# ="aw,q€Q, w e (X — {#})"}
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Definitions String partitioning system
Finite index of used formal models

P rogram med grammars

Simple example of SPS

generation of language a"b"c"

M = ({s,p,q,f},{a,b,c,#},s,R), where R contains:

1. s1# —>p#H# 4. p#—fab
2. ;m# —qa#b 5 f1#—fc
3. Qo# — p #C

Example (derivation of string aaabbbccc)

s# = p##[1] = qa#b# [2] = pa#b#c [3] =
qaa#bb#c [2] = paa#bb#cc [3] = faaabbb#cc [4] =
faaabbbccc [5].

L(M)={a"b"c"|n>1}, withInd(M)=2
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Definitions String partitioning system
Finite index of used formal models
Plr)grammed grammars

Definition

finite index of used formal models

Finite index of grammar ?
@ max. number of N’s in sentential form w
@ achievable sent. form-S =* w
@ leading to string x: w € X, X € *
@ in the most economical derivation

Finite index of SPS ?
@ max.number of #'s in sentential form

Kfivka, Schonecker SPS & Infinite



Definitions String partitioning system
Finite index of used formal models
Plr)grammed grammars

Definition

finite index of used formal models

Index of a language:
@ equal to index of grammar/SPS

Family of languages of finite index k
@ Ly (X)

Family of all languages of finite index
® Lin(X) = ULk(X)

i>1
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Definitions String partitioning system
Finite index of used formal models
Programmed grammars

Definition

programmed grammars

Programmed grammar (PG)-G = (V,T,P,S)
@ V is a total alphabet
@ T C V is an alphabet of terminals
@ S € (V —T) is the start symbol
@ P is afinite set of rules of the form p: A — v, g(p)

@ p: A — v is acontext free rule labeled by p
@ g(p) - set of rule labels associated with rule p (following set)
o after p-application a rule labeled by a label from g(p)

has to be applied
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Definitions String partitioning system
Finite index of used formal models
Programmed grammars

Generative power

of programmed grammars

Programmed grammars:
@ L(CF) C L(PG) C L(PGac) C L(CS) C L(\PGy4) = L(RE)
@ L(CF) c L(PG) C L(\PG) c L(RE)

Programmed grammars of index  k:
@ Liin(PG) = Lsin(APG) = Lfin(PGac) = Liin(APGac)
@ L(CF) — Lin(PG) # 0
= Lsin(PG) is incomparable towards £(CF)
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Our Results Generative power

Generative power and infinite hierarchy

of string partitioning systems of finite index

infinite hierarchy for SPS
Ly (SPS) C Lx;+1(SPS), forallk > 1

@ L (PG) C Ly 1(PG), for allk > 1 (Gh. P&un, 1980)
@ Ly (SPS) = £ (PG)

Lk (SPS) = Lk (PG), foreveryk > 1

Proof: 1) Lx(PG) C Lk(SPS) 2) Lx(SPS) C Ly(PG)
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Basic idea of the first proof’s part

. . Basic idea of the second proof’s part
Basic proof ideas

Proof (basic idea)
first part: PGy — SPSy

Conversion: PGg — SPSy
@ nonterminals represented by #s and information in state
@ Each state in SPSy (2 components) of form:
<A1 .. .Ak, q>
AL,y Ax € Npg, . a € g(p)
@ one symbol in A; ... A is marked for following rewriting
@ ( represents next rule to use
@ bounders mark positions for former nonterminals

XoAX1BXo

I
(AB, Q)Xo#X17X2
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Basic idea of the first proof’s part
Basic idea of the second proof’s part

Basic proof ideas

Proof (demonstration)
second part: SPSy — PG

SPSZM = ({87 p, qaf}7 {a7 b7 C, #}737 R)

la#b

O si# —p#HH#
Q pi# —qga#b
Q w# —pH#e
Q pi#—fab

Q fi# —fc

How to construct PG's rule set based on SPS’ rules?

basic idea will be presented..
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Basic idea of the first proof’s part

Basic proof ideas Basic idea of the second proof’s part

Proof (demonstration)
second part: SPSy — PG

Conversion: SPSy — PGy
© every A c Nisof form (p,i,h), s = (s,1,1)

@ every SPSy’s rule pij# — qy simulate by sequence of
steps:

P ## =sps QafEb#  [pi# — qaub]

0

a) renumbering <p? 17 2><p7 27 2> =PG <q”7 1a 2><p7 27 2> =PG
b) rewriting (9”,1,2)(q’,2,2) =pc a(d’,1,2)b(q’, 2,2)
c) aq,1,2)b(q’,2,2) a(q,1,2)b(q,2,2)
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Modifications of SPS
References

Appendix

Modifications of SPS

another challenges...

SPS with finite index:
@ deterministic variant
@ accepting variant
@ parallel variant

SPS without index limitation:
@ generative power
@ properties

Kfivka, Schonecker SPS & Infinite Hierarchy



Modifications of SPS
References

Appendix

References...

¥ J. Dassow, Gh. Paun.
Regulated Rewriting in Formal Language Theory.
Springer, New York, 1989.

¥ A. Meduna.
Automata and Languages, Theory and Applications.
Springer, London, 2000.

[ T Kasai
A Hierarchy Between Context-Free and Context-Sensitive
Languages.
Journal of Computer and System Sciences, vol. 4, 1970.

Kfivka, Schonecker SPS & Infinite Hierarchy



