Abstract

This presentation discusses interprocedural amsalyshich is important for solving
optimization problems. Pieces of language codea dad C will be used as examples.

It works with information from the caller, which Ita procedure, to its callees (called
procedures) and vice versa.

In this presentation are explained individual tesush as call graphs and call strings. Call graphs
means set of nodes and edges for a program. Ore fooctach procedure in the program. One
node for each call site, which is a place in thegpgm where a procedure is invoked. Edges join
every call site with procedures that calls. Theeetevo call ways. Direct — for C and Fortran, where
edges are created statically. And indirect — fojectoriented language, where edges are created
dynamically by using virtual method. Call stringallcstring is a string of call sites on the stack.
Calling context is defined by the contents of thére call stack. Call site is a place, from whire
called a procedure.

Then interprocedural analysis is explained on examip part context sensitivity, associated
with parts cloning-based context-sensitive analy#isch clones a procedure and summary-based
context-sensitive analysis which progressivelyaepla procedure with constants.

Context sensitivity says that behavior of each pdoce depends on context in which it is
called. Then context-insensitive analysis is inaa® analysis, which take each call and return
statement as "goto” operations. Assignment statésreme added to assign each actual parameter to
its corresponding formal parameter and to assignréturned value to the variable receiving the
result.

Principe of cloning-based context-sensitive analyss, that we clone procedure
conceptually, for each unique context of interest.ol'hen we can then apply a context-insensitive
analysis to the cloned call graph. In reality, wendt need to clone the code, we can simply use
an efficient internal representation to keep tratkhe analysis results of each clone. Summary-
based context- sensitive analysis is an extensiomegion-based analysis. Each procedure is
represented by a concise description ("summarydj #ncapsulates some observable behavior of
the procedure.

The primary purpose of the summary is to avoid abaing a procedure’s body at every
call site that may invoke the procedure. The oriffigiience from the intraprocedural version is that,
in the interprocedural case, a procedure regionbeanested inside several different outer regions.
The analysis consists of two parts. A bottom-upsphavhich computes a transfer function to
summarize the effect of a procedure, and a top-davase, which propagates caller information to
compute results of the callees. Instead of cloaifignction, we could also inline the code. Inlining
has the additional effect of eliminating the prasedcall overhead as well. Principe of summary-
based context-sensitive analysis is that in thegmee of recursion, we first find the strongly
connected components in the call graph. In theobetip phase, we do not visit a strongly
connected component unless all its successorsiearevisited. For a nontrivial strongly connected
component, we iteratively compute the transfer fimms for each procedure in the component until
convergence is reached (no more changes occurs).

At the end of the presentation a Virtual methodotation is presented, which principle
is inline sections of code, which are called mdsdro For optimization object-oriented programs
with many small methods, we can use a method inwwcavhere we do not know, how many
method named m refers in an invocation such x.4&yd). In common optimization is to
profile the execution and determine which the commazeiver types are. Then we can inline the
methods that are most frequently invoked. The gudst include a dynamic check on the type
and can execute the inlined methods. If we haveoalice code at compile time, we can perform an
interprocedural analysis to determine the objgoesy If the type for a variable x turns out to be
unique, then a use of x.m() can be resolved.

Last things shown here are interesting computetsevabilities - SQL injection and
buffer overflow and how to defend against them. SQé&ction is used in database application. It is
one of the most popular forms vulnerability, be@aosst values, entered by user, are substituted to
SQL query. If hacker knows about structure of dasalh he can write part SQL string instead of
required string. Then he can do whatever he waitits the database. Prevention is to check all
strings from user. Buffer overflow occurs when date written beyond the intended buffed and



manipulates the program execution. This causesqamgy which do not implicitly check boundary
of arrays (C and C++).



