
Abstract
This presentation discusses interprocedural analysis, which is important for solving

optimization problems. Pieces of language codes Java and C will be used as examples.
It works with information from the caller, which call a procedure, to its callees (called

procedures) and vice versa.
In this presentation are explained individual terms such as call graphs and call strings. Call graphs
means set of nodes and edges for a program. One node for each procedure in the program. One
node for each call site, which is a place in the program where a procedure is invoked. Edges join
every call site with procedures that calls. There are two call ways. Direct – for C and Fortran, where
edges are created statically. And indirect – for object-oriented language, where edges are created
dynamically by using virtual method. Call strings call string is a string of call sites on the stack.
Calling context is defined by the contents of the entire call stack. Call site is a place, from where is
called a procedure.

Then interprocedural analysis is explained on examples in part context sensitivity, associated
with parts cloning-based context-sensitive analysis which clones a procedure and summary-based
context-sensitive analysis which progressively replace a procedure with constants.

Context sensitivity says that behavior of each procedure depends on context in which it is
called. Then context-insensitive analysis is inaccurate analysis, which take each call and return
statement as ”goto” operations. Assignment statements are added to assign each actual parameter to
its corresponding formal parameter and to assign the returned value to the variable receiving the
result.

Principe of cloning-based context-sensitive analysis is, that we clone procedure
conceptually, for each unique context of interest one. Then we can then apply a context-insensitive
analysis to the cloned call graph. In reality, we do not need to clone the code, we can simply use
an efficient internal representation to keep track of the analysis results of each clone. Summary-
based context- sensitive analysis is an extension of region-based analysis. Each procedure is
represented by a concise description (”summary”) that encapsulates some observable behavior of
the procedure.

The primary purpose of the summary is to avoid reanalyzing a procedure’s body at every
call site that may invoke the procedure. The only difference from the intraprocedural version is that,
in the interprocedural case, a procedure region can be nested inside several different outer regions.
The analysis consists of two parts. A bottom-up phase, which computes a transfer function to
summarize the effect of a procedure, and a top-down phase, which propagates caller information to
compute results of the callees. Instead of cloning a function, we could also inline the code. Inlining
has the additional effect of eliminating the procedure-call overhead as well. Principe of summary-
based context-sensitive analysis is that in the presence of recursion, we first find the strongly
connected components in the call graph. In the bottom-up phase, we do not visit a strongly
connected component unless all its successors have been visited. For a nontrivial strongly connected
component, we iteratively compute the transfer functions for each procedure in the component until
convergence is reached (no more changes occurs).

At the end of the presentation a Virtual method invocation is presented, which principle
is inline sections of code, which are called most often. For optimization object-oriented programs
with many small methods, we can use a method invocation, where we do not know, how many
method named m refers in an invocation such x.m().(Java). In common optimization is to
profile the execution and determine which the common receiver types are. Then we can inline the
methods that are most frequently invoked. The code must include a dynamic check on the type
and can execute the inlined methods. If we have all source code at compile time, we can perform an
interprocedural analysis to determine the object types. If the type for a variable x turns out to be
unique, then a use of x.m() can be resolved.

Last things shown here are interesting computers vulnerabilities - SQL injection and
buffer overflow and how to defend against them. SQL Injection is used in database application. It is
one of the most popular forms vulnerability, because most values, entered by user, are substituted to
SQL query. If hacker knows about structure of database, he can write part SQL string instead of
required string. Then he can do whatever he wants with the database. Prevention is to check all
strings from user. Buffer overflow occurs when data are written beyond the intended buffed and

manipulates the program execution. This causes programs, which do not implicitly check boundary
of arrays (C and C++).

