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Opening

Word pattern matching

Problem – locating occurrences of a pattern in text 
file.

Solution to the problem is basic part of many tools, 
editors; used in the analysis of biological 
sequences.

Several method based on automata.
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Algorithms for matching patterns
Let t by the searched word. An occurrence in t of pattern represented by 
the language P is a triple (u, p, v) where u,v ∈ A*, p ∈ P, and such that t
= upv. 

Pattern described by:
a word
finite set of words (P)
a regular expression (L(R))

Notation
Pattern p, we denote length(p) = m
Text t, we denote length(t) = n
P = {y1,y2, … ,yp}, where yp = yp,1…yp,length(p) ∈ A*, where p=1,…,k
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Algorithms for matching patterns

Naive brute force method
in time O(m x n)
backing up in the text

Optimizing the naive method

Basic idea
preprocess the text or pattern to create DFA M that 
accepts the pattern or text
do the search

• Searching prefixes of t that belong to the language A*P
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Automata for matching patterns
a b a a c a a b a a a
|  : 1.a → a
a b a a c a a b a a a

| : 2.b → ø
a b a a c a a b a a a

| : 1.a → a
a b a a c a a b a a a

| : 2.a → aa
a b a a c a a b a a a

| : 3.c → ø
a b a a c a a b a a a

| : 1.a → a
a b a a c a a b a a a

| : 2.a → aa
a b a a c a a b a a a

| : 3.b → aab
a b a a c a a b c a a

| : 4.c → aabc 1 2 3 4 5

b
b

c

a a b c

a
a

A = {a,b,c}

T = a b a a c a a b c a a
P = a a b c

• No backing up in the text

cc b
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Matching finite set of words
Problem

Given a finite set of words P, the dictionary, preprocess it in order to locate 
words of P that occur in any word t.

Solution by Aho an Corasick, 1975

Implementation of complete DFA recognizing the language A* P. 

A preprocessing phase in O(|P| x log card(A)) time, where |P| = |P1|+…+ 
|Pm| and in O(|P|) space

A search phase in O(|t| x log card(A)) time, both with extra space O(|P| x 
card(A))
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Preprocessing phase
Definition

Let P be a finite language, than the automaton M=(Q,A,q0,δ,F) recognizes the 
language A*P.

1. Q = {qx | x ∈ Pref(P)}, q0 = qε
2. δ(qx,a) = qhP(xa), x∈ Pref(P), a∈A
3. F = {qx | x ∈ Pref(P) ∩ A*P}
hP(v) = the longest suffix of v that belongs to Pref(P) for each v ∈ A*

Searching automata SA = (Q, A, q0, δSA, φSA, F) where δSA, φSA represents 
δ from M such that:

δSA, : Q x A -> Q ∪ {fail} is goto function
φSA: Q-{q0} -> Q is failure function

Implementation of SA:
1. Construct tree-like FA accepting language P
2. Computing φSA
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SA implementation
Construction of trie of a finite set of words P

Input: finite set of words P, a ∈ P, q ∈ Q
Output: DFA accepting set P, we denote by Trie(P)
Method

1. Q := {q0}
2. Create all possible states. Each new state corresponds to some prefix of one or more pattern. 

Define δ(q,aj+1) = q’, where q’ corresponds to prefix a1a2…aj+1 of one or more patterns
3. Define δ(q0,a) = q0 for all a such that δ(q0,a) was not defined in step 2
4. δ(q,a) = fail for all a and q which δ(q,a) was not defined in step 2 or 3
5. Each state corresponding to the complete pattern is the final state

Example

ε

a

ab

b

bb

ba bab babb

a

b

b

a b b

b

P = {ab,babb,bb}
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SA implementation
Construction SA of a finite set of words P
Input: Trie(P) 
Output: DFA accepting set P with failure 

function, we denote by D(P)

Method:
1. µ ← EMPTYQUEUE
2. ENQUEUE(µ, q0) 
3. while not QUEUEISEMPTY (µ)
4.   loop p ← DEQUEUE (µ)
5.     for each letter a such that δ(p,a) ≠ fail
6.       loop q ← δ(p,a) 
7.          φ(q) ← γ(φ(p),a)
8. ENQUEUE(µ, q0)

P = {ab,babb,bb}

ε

a

ab

b

bb

ba

bab

babb

a

b

b

a

b
b

b

We define γ(p,a):
• δ(p,a) if δ(p,a)  is defined
• γ(φ(p),a) if δ(p,a) is undefined and φ(p) is defined
• q0 otherwise

Failure function
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Searching
We can locate words of P that occur in any word t

Input: automaton SA recognizing A* P
Output: Occurrences of words from P in t

Method
1. p ← q0
2. for i:=1 to m do
3.   while δ(p,ai) = Ø
4.      p ← φ(p) // follow fail
5.    p ← δ(p,ai) // follow a goto
6.    if p ∈ F then print I, print p // print position and 

patterns 
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Matching word
Problem 

Given a word p preprocess it in order to locate all its occurrences in any 
given word t.

Particular case of previous problem – dictionary has one element

Solution by Knuth, Morris and Pratt, 1977

Automaton M(A* p) is minimal

A preprocessing phase in O(|p|) time

A search phase in O(|t|) time
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Suffix automaton

0 1 2 3 4

b

b

a a b b

a

5 6b 7

3’’

3’

4’’
bb

b

a

a b

The minimal DFA recognizing suffixes of aabbabb
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Suffix automaton
An alternative solution for string-matching problem
Also used to search a word p for factors of t

Alternative data structures for storing the suffixes of a text
Suffix tries – quadratic size in length of the word
Suffix trees – compact representation of suffix tries
Suffix automaton – minimization of suffix tries

Definition
Suffix automaton of a word t is defined as the minimal deterministic (not 
necessarily complete) automaton that recognize the finite set of suffixes of t. 
We denote M(Suff(t))

Problem
Given a word t and preprocess it in order to locate all occurrences of any word
p in t.
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Suffix automaton - properties

It can be constructed in O(n x log card(A)) time and O(n) 
space

It allows to check whether a pattern occurs in a text in O(m) 
time

It has linear size limited by the number of states, which is 
less than 2n-2; the number of transitions is less than 3n-4, 
where n>1

Represents complete index of input text t
occurrences of different patterns can be found fast
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Conclusion

Matching patterns with automata
No backing up the searched text
We pay for preprocessing, but we have fast 
search
Improve the performance
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