
Automata for matching patterns

2007
Tomáš Novotný

Automata for matching patterns

Opening
Algorithms for matching patterns
Matching finite sets of words
Matching words
Suffix automata
Conclusion

2/16

Opening

Word pattern matching

Problem – locating occurrences of a pattern in text
file.

Solution to the problem is basic part of many tools,
editors; used in the analysis of biological
sequences.

Several method based on automata.

3/16

Algorithms for matching patterns
Let t by the searched word. An occurrence in t of pattern represented by
the language P is a triple (u, p, v) where u,v ∈ A*, p ∈ P, and such that t
= upv.

Pattern described by:
a word
finite set of words (P)
a regular expression (L(R))

Notation
Pattern p, we denote length(p) = m
Text t, we denote length(t) = n
P = {y1,y2, … ,yp}, where yp = yp,1…yp,length(p) ∈ A*, where p=1,…,k

4/16

Algorithms for matching patterns

Naive brute force method
in time O(m x n)
backing up in the text

Optimizing the naive method

Basic idea
preprocess the text or pattern to create DFA M that
accepts the pattern or text
do the search

• Searching prefixes of t that belong to the language A*P

5/16

Automata for matching patterns
a b a a c a a b a a a
| : 1.a → a
a b a a c a a b a a a

| : 2.b → ø
a b a a c a a b a a a

| : 1.a → a
a b a a c a a b a a a

| : 2.a → aa
a b a a c a a b a a a

| : 3.c → ø
a b a a c a a b a a a

| : 1.a → a
a b a a c a a b a a a

| : 2.a → aa
a b a a c a a b a a a

| : 3.b → aab
a b a a c a a b c a a

| : 4.c → aabc 1 2 3 4 5

b
b

c

a a b c

a
a

A = {a,b,c}

T = a b a a c a a b c a a
P = a a b c

• No backing up in the text

cc b

6/16

Matching finite set of words
Problem

Given a finite set of words P, the dictionary, preprocess it in order to locate
words of P that occur in any word t.

Solution by Aho an Corasick, 1975

Implementation of complete DFA recognizing the language A* P.

A preprocessing phase in O(|P| x log card(A)) time, where |P| = |P1|+…+
|Pm| and in O(|P|) space

A search phase in O(|t| x log card(A)) time, both with extra space O(|P| x
card(A))

7/16

Preprocessing phase
Definition

Let P be a finite language, than the automaton M=(Q,A,q0,δ,F) recognizes the
language A*P.

1. Q = {qx | x ∈ Pref(P)}, q0 = qε
2. δ(qx,a) = qhP(xa), x∈ Pref(P), a∈A
3. F = {qx | x ∈ Pref(P) ∩ A*P}
hP(v) = the longest suffix of v that belongs to Pref(P) for each v ∈ A*

Searching automata SA = (Q, A, q0, δSA, φSA, F) where δSA, φSA represents
δ from M such that:

δSA, : Q x A -> Q ∪ {fail} is goto function
φSA: Q-{q0} -> Q is failure function

Implementation of SA:
1. Construct tree-like FA accepting language P
2. Computing φSA

8/16

SA implementation
Construction of trie of a finite set of words P

Input: finite set of words P, a ∈ P, q ∈ Q
Output: DFA accepting set P, we denote by Trie(P)
Method

1. Q := {q0}
2. Create all possible states. Each new state corresponds to some prefix of one or more pattern.

Define δ(q,aj+1) = q’, where q’ corresponds to prefix a1a2…aj+1 of one or more patterns
3. Define δ(q0,a) = q0 for all a such that δ(q0,a) was not defined in step 2
4. δ(q,a) = fail for all a and q which δ(q,a) was not defined in step 2 or 3
5. Each state corresponding to the complete pattern is the final state

Example

ε

a

ab

b

bb

ba bab babb

a

b

b

a b b

b

P = {ab,babb,bb}

9/16

SA implementation
Construction SA of a finite set of words P
Input: Trie(P)
Output: DFA accepting set P with failure

function, we denote by D(P)

Method:
1. µ ← EMPTYQUEUE
2. ENQUEUE(µ, q0)
3. while not QUEUEISEMPTY (µ)
4. loop p ← DEQUEUE (µ)
5. for each letter a such that δ(p,a) ≠ fail
6. loop q ← δ(p,a)
7. φ(q) ← γ(φ(p),a)
8. ENQUEUE(µ, q0)

P = {ab,babb,bb}

ε

a

ab

b

bb

ba

bab

babb

a

b

b

a

b
b

b

We define γ(p,a):
• δ(p,a) if δ(p,a) is defined
• γ(φ(p),a) if δ(p,a) is undefined and φ(p) is defined
• q0 otherwise

Failure function

10/16

Searching
We can locate words of P that occur in any word t

Input: automaton SA recognizing A* P
Output: Occurrences of words from P in t

Method
1. p ← q0
2. for i:=1 to m do
3. while δ(p,ai) = Ø
4. p ← φ(p) // follow fail
5. p ← δ(p,ai) // follow a goto
6. if p ∈ F then print I, print p // print position and

patterns

11/16

Matching word
Problem

Given a word p preprocess it in order to locate all its occurrences in any
given word t.

Particular case of previous problem – dictionary has one element

Solution by Knuth, Morris and Pratt, 1977

Automaton M(A* p) is minimal

A preprocessing phase in O(|p|) time

A search phase in O(|t|) time

12/16

Suffix automaton

0 1 2 3 4

b

b

a a b b

a

5 6b 7

3’’

3’

4’’
bb

b

a

a b

The minimal DFA recognizing suffixes of aabbabb

13/16

Suffix automaton
An alternative solution for string-matching problem
Also used to search a word p for factors of t

Alternative data structures for storing the suffixes of a text
Suffix tries – quadratic size in length of the word
Suffix trees – compact representation of suffix tries
Suffix automaton – minimization of suffix tries

Definition
Suffix automaton of a word t is defined as the minimal deterministic (not
necessarily complete) automaton that recognize the finite set of suffixes of t.
We denote M(Suff(t))

Problem
Given a word t and preprocess it in order to locate all occurrences of any word
p in t.

14/16

Suffix automaton - properties

It can be constructed in O(n x log card(A)) time and O(n)
space

It allows to check whether a pattern occurs in a text in O(m)
time

It has linear size limited by the number of states, which is
less than 2n-2; the number of transitions is less than 3n-4,
where n>1

Represents complete index of input text t
occurrences of different patterns can be found fast

15/16

Conclusion

Matching patterns with automata
No backing up the searched text
We pay for preprocessing, but we have fast
search
Improve the performance

16/16

	Automata for matching patterns
	Automata for matching patterns
	Opening
	Algorithms for matching patterns
	Algorithms for matching patterns
	Automata for matching patterns
	Matching finite set of words
	Preprocessing phase
	SA implementation
	SA implementation
	Searching
	Matching word
	Suffix automaton
	Suffix automaton
	Suffix automaton - properties
	Conclusion

