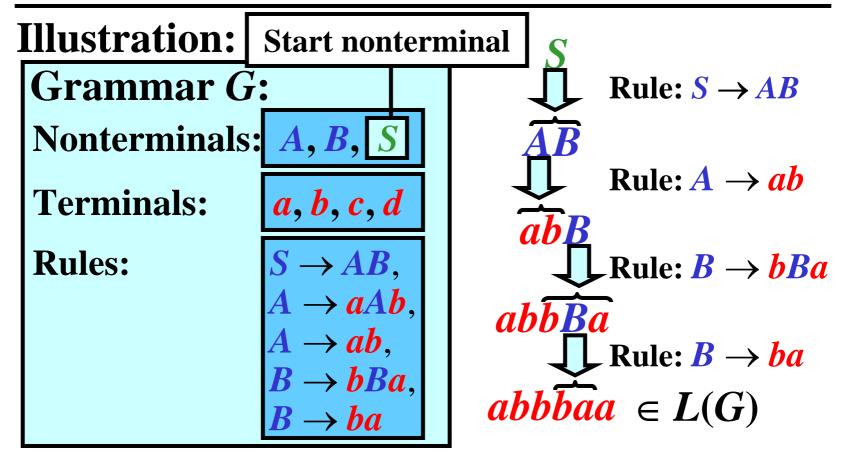
Part VII. Models for Context-Free Languages

Context-Free Grammar (CFG)

Gist: A grammar is based on a finite set of grammatical rules, by which it generates strings of its language.



Context-Free Grammar: Definition

Definition: A context-free grammar (CFG) is a quadruple G = (N, T, P, S), where

- *N* is an alphabet of *nonterminals*
- T is an alphabet of terminals, $N \cap T = \emptyset$
- *P* is a finite set of *rules* of the form $A \rightarrow x$, where $A \in N$, $x \in (N \cup T)^*$
- $S \in N$ is the start nonterminal

Mathematical Note on Rules:

- Strictly mathematically, P is a relation from N to $(N \cup T)^*$
- Instead of $(A, x) \in P$, we write $A \to x \in P$
- $A \rightarrow x$ means that A can be replaced with x
- $A \rightarrow \varepsilon$ is called ε -rule

Convention

- A, \ldots, F, S : nonterminals
- S : the start nonterminal
- *a*, ..., *d* : terminals
- U, \ldots, Z : members of $(N \cup T)$
- u, \ldots, z : members of $(N \cup T)^*$
- π : sequence of productions

A subset of rules of the form:

$$A \rightarrow x_1, A \rightarrow x_2, \dots, A \rightarrow x_n$$

can be simply written as:

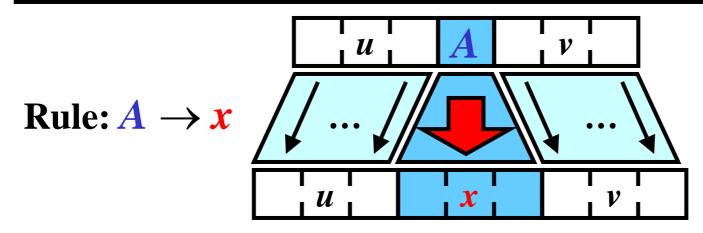
$$A \rightarrow x_1 | x_2 | \dots | x_n$$

Derivation Step

Gist: A change of a string by a rule.

Definition: Let G = (N, T, P, S) be a CFG. Let $u, v \in (N \cup T)^*$ and $p = A \rightarrow x \in P$. Then, uAv directly derives uxv according to p in G, written as $uAv \Rightarrow uxv$ [p] or, simply, $uAv \Rightarrow uxv$.

Note: If $uAv \Rightarrow uxv$ in G, we also say that G makes a derivation step from uAv to uxv.



Sequence of Derivation Steps 1/2

Gist: Several consecutive derivation steps.

Definition: Let $u \in (N \cup T)^*$. G makes a zero-step derivation from u to u; in symbols, $u \Rightarrow^0 u$ [ε] or, simply, $u \Rightarrow^0 u$

Definition: Let $u_0, ..., u_n \in (N \cup T)^*, n \ge 1$, and $u_{i-1} \Rightarrow u_i [p_i], p_i \in P$, for all i = 1, ..., n; that is $u_0 \Rightarrow u_1 [p_1] \Rightarrow u_2 [p_2] ... \Rightarrow u_n [p_n]$ Then, G makes n derivation steps from u_0 to u_n , $u_0 \Rightarrow^n u_n [p_1...p_n]$ or, simply, $u_0 \Rightarrow^n u_n$

Sequence of Derivation Steps 2/2

```
If u_0 \Rightarrow^n u_n [\pi] for some n \ge 1, then u_0 properly derives u_n in G, written as u_0 \Rightarrow^+ u_n [\pi].
```

If $u_0 \Rightarrow^n u_n [\pi]$ for some $n \ge 0$, then u_0 derives u_n in G, written as $u_0 \Rightarrow^* u_n [\pi]$.

Example: Consider

```
aAb \Rightarrow aaBbb \quad [1:A \rightarrow aBb], \text{ and} \ aaBbb \Rightarrow aacbb \quad [2:B \rightarrow c]. Then, aAb \Rightarrow^2 aacbb \quad [1\ 2], \ aAb \Rightarrow^+ aacbb \quad [1\ 2], \ aAb \Rightarrow^* aacbb \quad [1\ 2]
```

Generated Language

Gist: *G generates* a terminal string *w* by a sequence of derivation steps from *S* to *w*

Definition: Let G = (N, T, P, S) be a CFG. The language generated by G, L(G), is defined as $L(G) = \{w: w \in T^*, S \Rightarrow^* w\}$

Illustration:

$$G = (N, T, P, S)$$
, let $w = a_1 a_2 ... a_n$; $a_i \in T$ for $i = 1..n$
if $S \Rightarrow ... \Rightarrow ... \Rightarrow a_1 a_2 ... a_n$ then $w \in L(G)$;

otherwise, $w \notin L(G)$

Context-Free Language (CFL)

Gist: A language generated by a CFG.

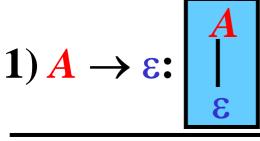
Definition: Let L be a language. L is a context-free language (CFL) if there exists a context-free grammar that generates L.

Example:

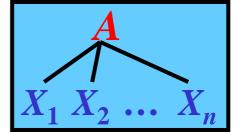
```
G = (N, T, P, S), where N = \{S\}, T = \{a, b\}, P = \{1: S \rightarrow aSb, 2: S \rightarrow \varepsilon\} S \Rightarrow \varepsilon [2] L(G) = \{a^nb^n: n \ge 0\} S \Rightarrow aSb [1] \Rightarrow ab [2] S \Rightarrow aSb [1] \Rightarrow aaSbb [1] \Rightarrow aabb [2] \vdots L = \{a^nb^n: n \ge 0\} is a CFL.
```

Rule Tree

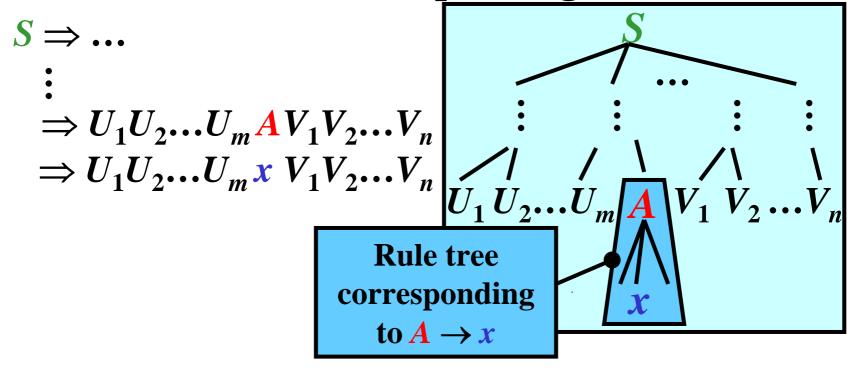
Rule tree graphically represents a rule



 $2) A \rightarrow X_1 X_2 ... X_n$:



Derivation tree corresponding to a derivation



Derivation Tree: Example

$$G = (N, T, P, E)$$
, where $N = \{E, F, T\}$, $T = \{i, +, *, (,)\}$, $P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F, 4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i \}$

Derivation:

$$\underline{E} \Rightarrow E + \underline{T} \qquad [1]$$

$$\Rightarrow E + \underline{T} * F \qquad [3]$$

$$\Rightarrow E + \underline{F} * F \qquad [4]$$

$$\Rightarrow \underline{E} + i * F \qquad [6]$$

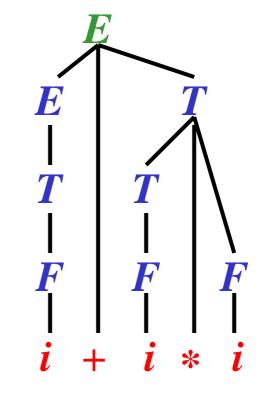
$$\Rightarrow T + i * \underline{F} \qquad [2]$$

$$\Rightarrow T + i * i \qquad [6]$$

$$\Rightarrow F + i * i \qquad [4]$$

$$\Rightarrow i + i * i \qquad [6]$$

Derivation tree:



Leftmost Derivation

Gist: During a *leftmost derivation step*, the leftmost nonterminal is rewritten.

Definition: Let G = (N, T, P, S) be a CFG, let $u \in T^*$, $v \in (N \cup T)^*$. Let $p = A \rightarrow x \in P$ be a rule. Then, uAv directly derives uxv in the leftmost way according to p in G, written as $uAv \Rightarrow_{lm} uxv [p]$

Note: We define \Rightarrow_{lm}^+ and \Rightarrow_{lm}^* by analogy with \Rightarrow^+ and \Rightarrow^* , respectively.

Leftmost Derivation: Example

$$G = (N, T, P, E)$$
, where $N = \{E, F, T\}$, $T = \{i, +, *, (,)\}$, $P = \{1: E \to E + T, 2: E \to T, 3: T \to T * F, 4: T \to F, 5: F \to (E), 6: F \to i \}$

Leftmost derivation:

$$\underbrace{E} \Rightarrow_{lm} \underbrace{E} + T \qquad [1]$$

$$\Rightarrow_{lm} \underbrace{T} + T \qquad [2]$$

$$\Rightarrow_{lm} \underbrace{F} + T \qquad [4]$$

$$\Rightarrow_{lm} i + \underline{T} \qquad [6]$$

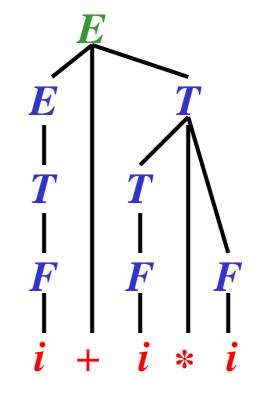
$$\Rightarrow_{lm} i + \underline{T} \qquad F \qquad [3]$$

$$\Rightarrow_{lm} i + \underline{F} \qquad F \qquad [4]$$

$$\Rightarrow_{lm} i + i \qquad F \qquad [6]$$

$$\Rightarrow_{lm} i + i \qquad [6]$$

Derivation tree:



Rightmost Derivation

Gist: During a *rightmost derivation step*, the rightmost nonterminal is rewritten.

Definition: Let G = (N, T, P, S) be a CFG, let $u \in (N \cup T)^*$, $v \in T^*$. Let $p = A \rightarrow x \in P$ be a rule. Then, uAv directly derives uxv in the rightmost way according to p in G, written as $uAv \Rightarrow_{rm} uxv [p]$

Note: We define \Rightarrow_{rm}^+ and \Rightarrow_{rm}^* by analogy with \Rightarrow^+ and \Rightarrow^* , respectively.

Rightmost Derivation: Example

$$G = (N, T, P, E)$$
, where $N = \{E, F, T\}$, $T = \{i, +, *, (,)\}$, $P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F, 4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i \}$

Rightmost derivation:

$$\underline{E} \Rightarrow_{rm} E + \underline{T} \qquad [1]$$

$$\Rightarrow_{rm} E + T * \underline{F} \qquad [3]$$

$$\Rightarrow_{rm} E + \underline{T} * i \qquad [6]$$

$$\Rightarrow_{rm} E + \underline{F} * i \qquad [4]$$

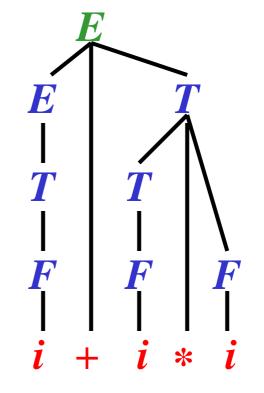
$$\Rightarrow_{rm} \underline{E} + i * i \qquad [6]$$

$$\Rightarrow_{rm} \underline{T} + i * i \qquad [2]$$

$$\Rightarrow_{rm} \underline{F} + i * i \qquad [4]$$

$$\Rightarrow_{rm} i + i * i \qquad [6]$$

Derivation tree:



Derivations: Summary

• Let $A \rightarrow x \in P$ be a rule.

1) Derivation:

Let $u, v \in (N \cup T)^*$: $uAv \Rightarrow uxv$

Note: Any nonterminal is rewritten

2) Leftmost derivation:

Let $u \in T^*$, $v \in (N \cup T)^*$: $uAv \Rightarrow_{lm} uxv$

Note: Leftmost nonterminal is rewritten

3) Rightmost derivation:

Let $u \in (N \cup T)^*$, $v \in T^*$: $uAv \Rightarrow_{rm} uxv$

Note: Rightmost nonterminal is rewritten

Reduction of the Number of Derivations

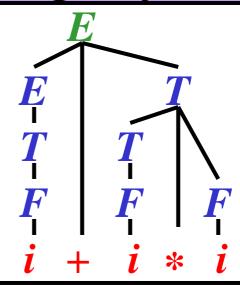
Gist: Without any loss of generality, we can consider only leftmost or rightmost derivations.

```
Theorem: Let G = (N, T, P, S) be a CFG.
The next three languages coincide
(1) \{w: w \in T^*, S \Rightarrow_{lm}^* w\}
(2) \{w: w \in T^*, S \Rightarrow_{rm}^* w\}
(3) \{w: w \in T^*, S \Rightarrow^* w\} = L(G)
```

Introduction to Ambiguity

```
G_{expr1} = (N, T, P, E), where N = \{E, F, T\}, T = \{i, +, *, (, )\}, P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F, 4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i\}
```

Theory: ⊗ × Practice: ☺



$$G_{expr2} = (N, T, P, E)$$
, where $N = \{E\}, T = \{i, +, *, (,)\},$ $P = \{1: E \rightarrow E + E, 2: E \rightarrow E * E, 3: E \rightarrow (E), 4: E \rightarrow i\}$

Theory: © × Practice: ©

 $\begin{array}{c|cccc}
E & E & E \\
E & I & I \\
\hline
i + i * i & i + i
\end{array}$

Note: $L(G_{expr1}) = L(G_{expr2})$

Improper during compilation

Grammatical Ambiguity

Definition: Let G = (N, T, P, S) be a CFG. If there exists $x \in L(G)$ with more than one derivation tree, then G is *ambiguous*; otherwise, G is *unambiguous*.

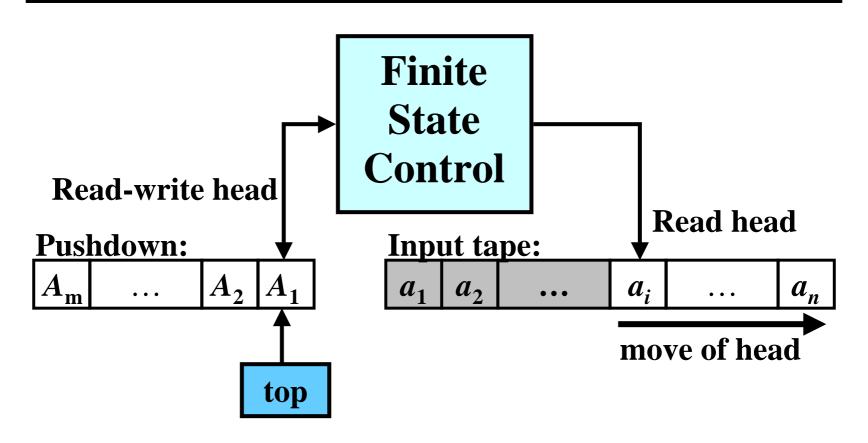
Definition: A CFL, L, is inherently ambiguous if L is generated by no unambiguous grammar.

Example:

- G_{expr1} is **unambiguous**, because for every $x \in L(G_{expr1})$ there exists **only one derivation tree**
- G_{expr2} is **ambiguous**, because for $i+i*i \in L(G_{expr2})$ there exist **two derivation trees**
- $L_{expr} = L(G_{expr1}) = L(G_{expr2})$ is not inherently ambiguous because G_{expr1} is unambiguous

Pushdown Automata (PDA)

Gist: An FA extended by a pushdown store.



Pushdown Automata: Definition

Definition: A pushdown automaton (PDA) is a 7-tuple $M = (Q, \Sigma, \Gamma, R, s, S, F)$, where

- Q is a finite set of states
- Σ is an *input alphabet*
- Γ is a pushdown alphabet
- *R* is a *finite set of rules* of the form: $Apa \rightarrow wq$ where $A \in \Gamma$, $p, q \in Q$, $a \in \Sigma \cup \{\epsilon\}$, $w \in \Gamma^*$
- $s \in Q$ is the start state
- $S \in \Gamma$ is the *start pushdown symbol*
- $F \subseteq Q$ is a set of *final states*

Notes on PDA Rules

Mathematical note on rules:

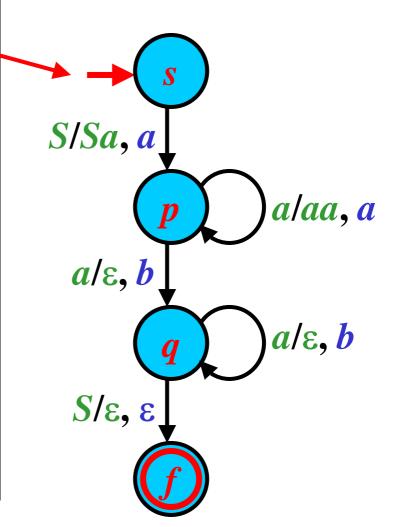
- •Strictly mathematically, R is a relation from $\Gamma \times Q \times (\Sigma \cup \{\epsilon\})$ to $\Gamma^* \times Q$
- Instead of $(Apa, wq) \in R$, however, we write $Apa \rightarrow wq \in R$
- Interpretation of $Apa \rightarrow wq$: if the current state is p, current input symbol is a, and the topmost symbol on the pushdown is A, then M can read a, replace A with w and change state p to q.
- Note: if $a = \varepsilon$, no symbol is read

Graphical Representation

- q represents $q \in Q$
- \rightarrow represents the initial state $s \in Q$
 - f represents a final state $f \in F$
 - $p \xrightarrow{A/w, a} q$ denotes $Apa \rightarrow wq \in R$

Graphical Representation: Example

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 where:
• Q = \{s, p, q, f\};
• \Sigma = \{\boldsymbol{a}, \boldsymbol{b}\};
• \Gamma = \{a, S\};
• R = \{Ssa \rightarrow Sap,
            apa \rightarrow aap,
           apb \rightarrow q,
           aqb \rightarrow q,
            Sq \rightarrow f
• F = \{f\}
```

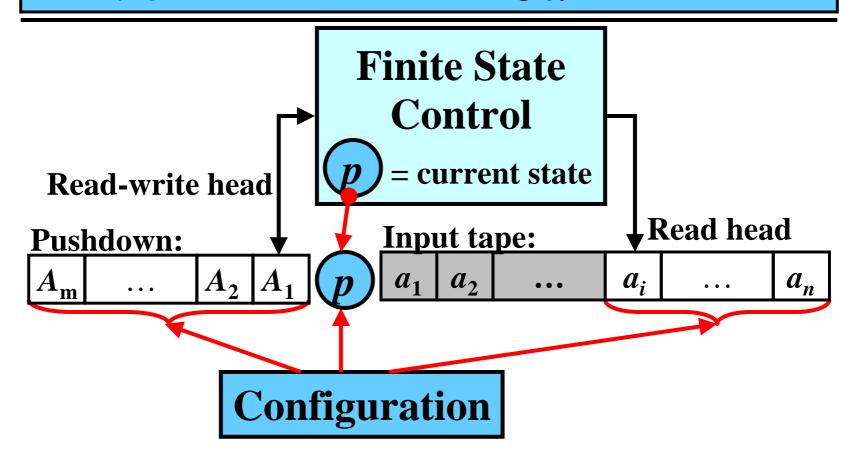


PDA Configuration

Gist: Instantaneous description of PDA

Definition: Let $M = (Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA.

A configuration of M is a string $\chi \in \Gamma^* Q \Sigma^*$

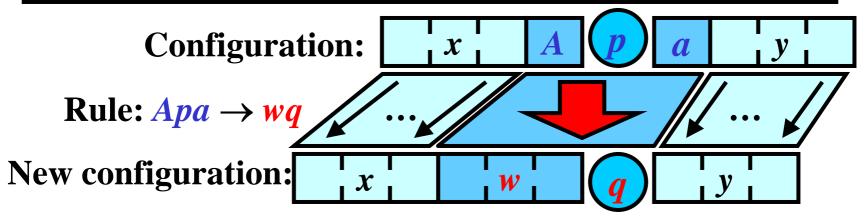


Move

Gist: A computational step made by a PDA

Definition: Let xApay and xwqy be two configurations of a PDA, M, where $x, w \in \Gamma^*, A \in \Gamma, p, q \in Q, a \in \Sigma \cup \{\epsilon\}$, and $y \in \Sigma^*$. Let $r = Apa \rightarrow wq \in R$ be a rule. Then, M makes a move from xApay to xwqy according to r, written as $xApay \mid -xwqy \mid r \mid$ or, simply, $xApay \mid -xwqy \mid$.

Note: if $\alpha = \varepsilon$, no input symbol is read



Sequence of Moves 1/2

Gist: Several consecutive computational steps

Definition: Let χ be a configuration. M makes zero moves from χ to χ ; in symbols, $\chi \mid -^0 \chi$ [ϵ] or, simply, $\chi \mid -^0 \chi$

Definition: Let χ_0 , χ_1 , ..., χ_n be a sequence of configurations, $n \ge 1$, and $\chi_{i-1} \mid -\chi_i [r_i]$, $r_i \in R$, for all i = 1, ..., n; that is,

$$\chi_0 \mid -\chi_1 [r_1] \mid -\chi_2 [r_2] \dots \mid -\chi_n [r_n]$$

Then *M* makes *n* moves from χ_0 to χ_n , $\chi_0 \mid -^n \chi_n [r_1 ... r_n]$ or, simply, $\chi_0 \mid -^n \chi_n$

Sequence of Moves 2/2

```
If \chi_0 \mid -^n \chi_n \mid \rho \mid for some n \geq 1, then \chi_0 \mid -^+ \chi_n \mid \rho \mid or, simply, \chi_0 \mid -^+ \chi_n \mid

If \chi_0 \mid -^n \chi_n \mid \rho \mid for some n \geq 0, then \chi_0 \mid -^* \chi_n \mid \rho \mid or, simply, \chi_0 \mid -^* \chi_n \mid
```

Example: Consider

```
AApabc |-ABqbc| [1: Apa \rightarrow Bq], and ABqbc |-ABCrc| [2: Bqb \rightarrow BCr]. Then, AApabc |-^2ABCrc| [1 2], AApabc |-^+ABCrc| [1 2], AApabc |-^*ABCrc| [1 2]
```

Accepted Language: Three Types

Definition: Let $M = (Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA.

- 1) The *language that M accepts* by final state, denoted by $L(M)_f$, is defined as $L(M)_f = \{w: w \in \Sigma^*, Ssw \mid -^* zf, z \in \Gamma^*, f \in F\}$
- 2) The *language that M accepts* by empty pushdown, denoted by $L(M)_{\varepsilon}$, is defined as $L(M)_{\varepsilon} = \{w: w \in \Sigma^*, Ssw \mid -^* zf, z = \varepsilon, f \in Q\}$
- 3) The language that M accepts by final state and empty pushdown, denoted by $L(M)_{f\epsilon}$, is defined as $L(M)_{f\epsilon} = \{w: w \in \Sigma^*, Ssw \mid -^* zf, z = \epsilon, f \in F\}$

PDA: Example

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
                                          Question: aabb \in L(M)_{f_{\mathcal{E}}}?
  where:
                                                Rule: Ssa \rightarrow Sap
 • Q = \{s, p, q, f\};
 • \Sigma = \{\boldsymbol{a}, \boldsymbol{b}\};
                                                Rule: apa \rightarrow aap
 • \Gamma = \{a, S\};
 • R = \{Ssa \rightarrow Sap,
                                               Rule: apb \rightarrow q
            apa \rightarrow aap,
            apb \rightarrow q,
                                               Rule: aqb \rightarrow q
           aqb \rightarrow q,
                                                                      Final state
            Sq \rightarrow f
                                               Rule: Sq \rightarrow f
                               Empty
                               pushdown
 • F = \{f\}
                                                                Answer: YES
Ssaabb \mid -Sapabb \mid -Saapbb \mid -Saqb \mid -Sq \mid -f
```

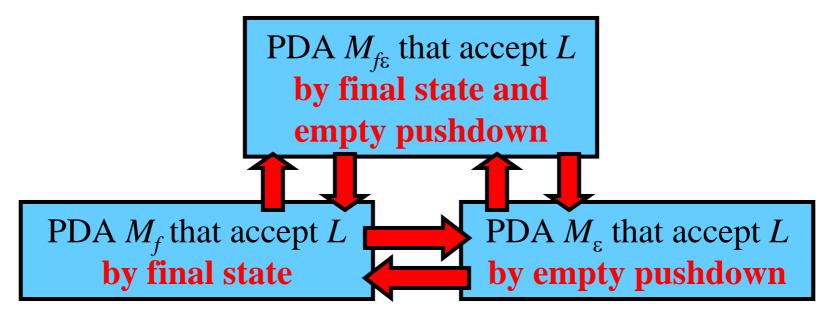
Note: $L(M)_f = L(M)_{\varepsilon} = L(M)_{f\varepsilon} = \{a^nb^n : n \ge 1\}$

Three Types of Acceptance: Equivalence

Theorem:

- $L = L(M_f)_f$ for a PDA $M_f \Leftrightarrow L = L(M_{f\epsilon})_{f\epsilon}$ for a PDA $M_{f\epsilon}$
- $L = L(M_{\varepsilon})_{\varepsilon}$ for a PDA $M_{\varepsilon} \Leftrightarrow L = L(M_{f\varepsilon})_{f\varepsilon}$ for a PDA $M_{f\varepsilon}$
- $L = L(M_f)_f$ for a PDA $M_f \Leftrightarrow L = L(M_{\epsilon})_{\epsilon}$ for a PDA M_{ϵ}

Note: There exist these conversions:



Deterministic PDA (DPDA)

Gist: Deterministic PDA makes no more than one move from any configuration.

Definition: Let $M = (Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA. M is a *deterministic PDA* if for each rule $Apa \rightarrow wq \in R$, it holds that $R - \{Apa \rightarrow wq\}$ contains no rule with the left-hand side equal to Apa or Ap.

PDAs are Stronger than DPDAs

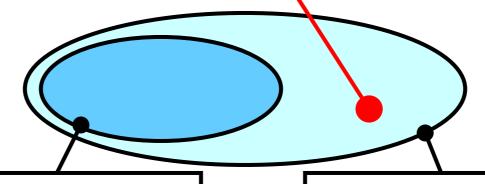
Theorem: There exists no DPDA $M_{f\varepsilon}$ that accepts

$$L = \{xy: x, y \in \Sigma^*, y = reversal(x)\}$$

Proof: See page 431 in [Meduna: Automata and Languages]

Illustration:

$$L = \{xy: x, y \in \Sigma^*, y = reversal(x)\}$$



The family of deterministic

CFLs—the languages
accepted by DPDAs

The family of languages accepted by PDAs

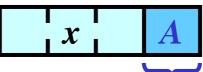
Extended PDA (EPDA)

Gist: The pushdown top of an EPDA represents a string rather than a single symbol.

Definition: An Extended Pushdown automaton (EPDA) is a 7-tuple $M = (Q, \Sigma, \Gamma, R, s, S, F)$, where $Q, \Sigma, \Gamma, s, S, F$ are defined as in an PDA and R is a *finite set of rules* of the form: $vpa \rightarrow wq$, where $v, w \in \Gamma^*, p, q \in Q, a \in \Sigma \cup \{\epsilon\}$

Illustration:

Pushdown of PDA:



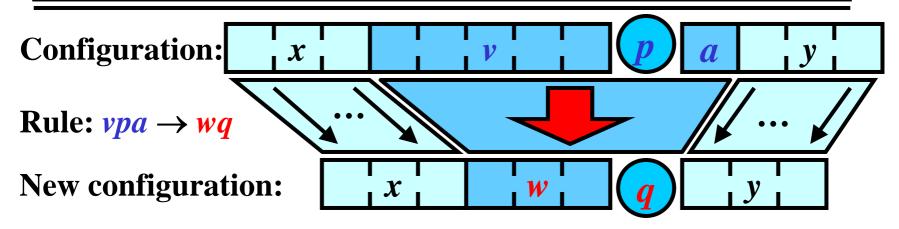
PDA has a single symbols as the pushdown top

Pushdown of EPDA:

EPDA has a string as the pushdown top

Move in EPDA

Definition: Let xvpay and xwqy be two configurations of an EPDA, M, where x, v, $w \in \Gamma^*$, p, $q \in Q$, $a \in \Sigma \cup \{\epsilon\}$, and $y \in \Sigma^*$. Let $r = vpa \rightarrow wq \in R$ be a rule. Then, M makes a move from xvpay to xwqy according to r, written as xvpay / - xwqy [r] or xvpay / - xwqy.



Note: $|-^n, |-^+, |-^*, L(M)_f, L(M)_{\varepsilon}$, and $L(M)_{f\varepsilon}$ are defined analogically to the corresponding definitions for PDA.

EPDA: Example

```
M = (Q, \Sigma, \Gamma, R, s, S, F)
 where:
• Q = \{s, f\};
• \Sigma = \{\boldsymbol{a}, \boldsymbol{b}\};
• \Gamma = \{a, b, S, C\};
• R = \{ sa \rightarrow as,
                sb \rightarrow bs,
                s \rightarrow Cs
           aCsa \rightarrow Cs,
           bCsb \rightarrow Cs,
           SCs \rightarrow f
• F = \{f\}
```

Question: $abba \in L_{f\epsilon}(M)$?

Answer: YES

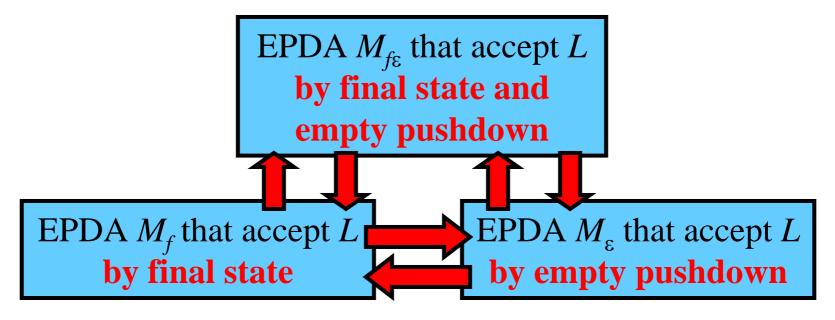
Note: $L(M)_f = L(M)_{\varepsilon} = L(M)_{f\varepsilon} = \{xy: x, y \in \Sigma^*, y = \text{reversal}(x)\}$

Three Types of Acceptance: Equivalence

Theorem:

- $L = L(M_f)_f$ for an EPDA $M_f \Leftrightarrow L = L(M_{f\epsilon})_{f\epsilon}$ for an EPDA $M_{f\epsilon}$
- $L = L(M_{\epsilon})_{\epsilon}$ for an EPDA $M_{\epsilon} \Leftrightarrow L = L(M_{f\epsilon})_{f\epsilon}$ for an EPDA $M_{f\epsilon}$
- $L = L(M_f)_f$ for an EPDA $M_f \Leftrightarrow L = L(M_\epsilon)_\epsilon$ for an EPDA M_ϵ

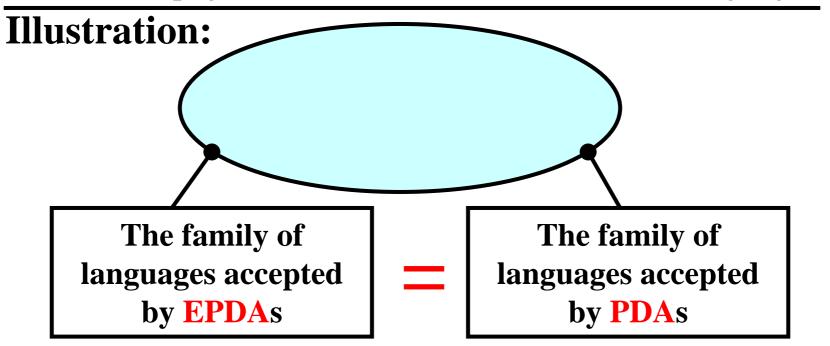
Note: There exist these conversion:



EPDAs and PDAs are Equivalent

Theorem: For every EPDA M, there is a PDA M, and $L(M)_f = L(M)_f$.

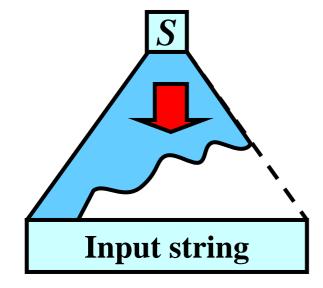
Proof: See page 419 in [Meduna: Automata and Languages]



EPDAs and PDAs as Parsing Models for CFGs

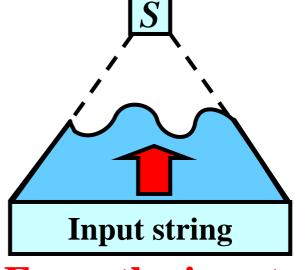
Gist: An EPDA or a PDA can simulate the construction of a derivation tree for a CFG

- Two basic approaches:
- 1) Top-Down Parsing



From S towards the input string

2) Bottom-Up Parsing

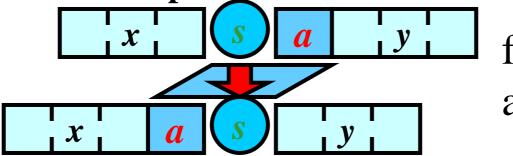


From the input string towards S

EPDAs as Models of Bottom-Up Parsers 1/2

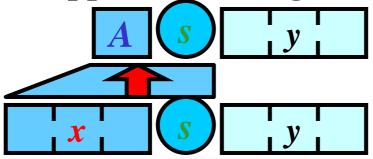
Gist: An EPDA M underlies a bottom-up parser

1) M contains shift rules that copy the input symbols onto the pushdown:



for every $a \in \Sigma$: add $sa \rightarrow as$ to R;

2) *M* contains *reduction* rules that simulate the application of a grammatical rule in reverse:

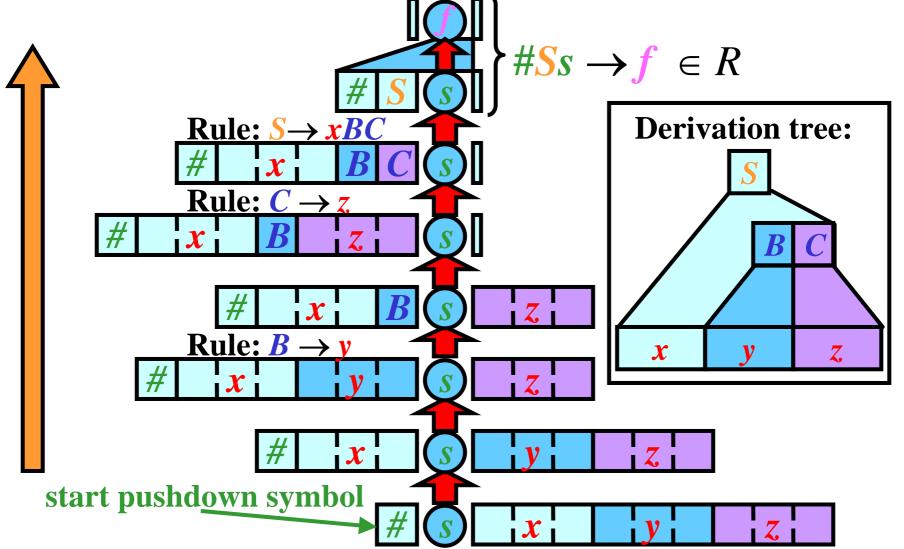


for every $A \rightarrow x \in P$ in G: add $xs \rightarrow As$ to R;

3) M also contains the rule $\#Ss \rightarrow f$ that takes M to a final state f

EPDAs as Models of Bottom-Up Parsers 2/2

Bottom-up construction of a derivation tree:



Algorithm: From CFG to EPDA

- Input: CFG G = (N, T, P, S)
- Output: EPDA $M = (Q, \Sigma, \Gamma, R, s, \#, F); L(G) = L(M)_f$
- Method:
- $Q := \{s, f\};$
- $\Sigma := T$;
- $\Gamma := N \cup T \cup \{\#\};$
- Construction of R:
 - for every $a \in \Sigma$, add $sa \to as$ to R;
 - for every $A \rightarrow x \in P$, add $xs \rightarrow As$ to R;
 - add $\#Ss \to f$ to R;
- $F := \{f\};$

From CFG to EPDA: Example 1/2

• G = (N, T, P, S), where:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

Objective: An EPDA M such that $L(G) = L(M)_f$

$$M = (Q, \Sigma, \Gamma, R, s, \#, F)$$
 where:
 $Q = \{s, f\}; \Sigma = T = \{(,)\}; \Gamma = N \cup T \cup \{\#\} = \{S, (,), \#\}$
"(" $\in T$ ")" $\in T$ $S \rightarrow (S) \in P$ $S \rightarrow () \in P$
 $R = \{s(\rightarrow (s, s) \rightarrow)s, (S)s \rightarrow Ss, ()s \rightarrow Ss, \#Ss \rightarrow f\}$
shift rules reduction rules

$$F = \{f\}$$

From CFG to EPDA: Example 2/2

$$M = (Q, \Sigma, \Gamma, R, s, \#, F), \text{ where:}$$
 $Q = \{s, f\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S, \#\}, F = \{f\}$
 $R = \{s(\to (s, s) \to)s, (S)s \to Ss, ()s \to Ss, \#Ss \to f\}$

Question: (())
$$\in L(M)_f$$
?

Rule:
$$s(\rightarrow (s))$$

Rule:
$$s(\rightarrow (s))$$

Rule: $s \rightarrow s$

Rule: ()s
$$\rightarrow$$
 S

Rule:
$$s \rightarrow s$$

Rule:
$$(S) \rightarrow S$$

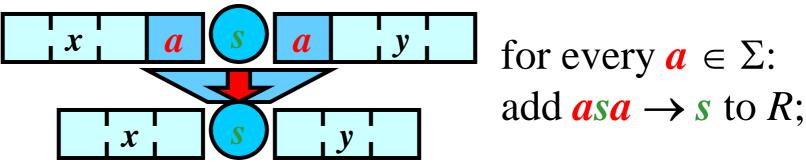
Rule:
$$\#Ss \rightarrow f$$

Answer: YES

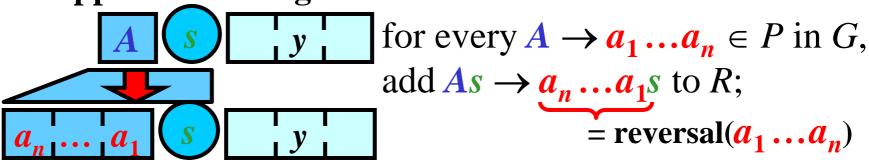
PDAs as Models of Top-Down Parsers 1/2

Gist: An PDA M underlies a top-down parser

1) *M* contains *popping* rules that pops the top symbol from the pushdown and reads the input symbol if both coincide:

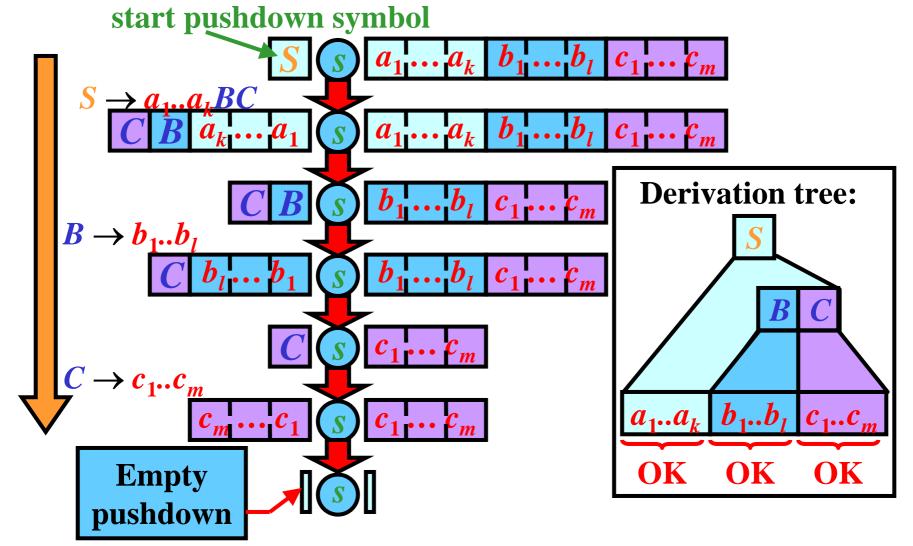


2) *M* contains *expansion* rules that simulate the application of a grammatical rule:



PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:



Algorithm: From CFG to PDA

- Input: CFG G = (N, T, P, S)
- Output: PDA $M = (Q, \Sigma, \Gamma, R, s, S, F); L(G) = L(M)_{\varepsilon}$
- Method:
- $Q := \{s\};$
- $\Sigma := T$;
- $\Gamma := N \cup T$;
- Construction of R:
 - for every $a \in \Sigma$, add $asa \rightarrow s$ to R;
 - for every $A \rightarrow x \in P$, add $As \rightarrow ys$ to R, where y = reversal(x);
- ullet $F:=\emptyset;$

From CFG to PDA: Example 1/2

• G = (N, T, P, S), where:

$$N = \{S\}, T = \{(,)\}, P = \{S \to (S), S \to ()\}$$

Objective: An PDA M such that $L(G) = L(M)_{\varepsilon}$

$$M = (Q, \Sigma, \Gamma, R, s, S, F)$$
 where:
 $Q = \{s\}; \quad \Sigma = T = \{(,)\}; \quad \Gamma = N \cup T = \{S, (,)\}$
"(" $\in T$ ")" $\in T$ $S \rightarrow (S) \in P$ $S \rightarrow () \in P$
 $R = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow ()s\}$
popping rules expansion rules
 $F = \emptyset$

From CFG to PDA: Example 2/2

$$M = (Q, \Sigma, \Gamma, R, s, S, F), \text{ where:}$$

$$Q = \{s\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S\}, F = \emptyset$$

$$P = \{(s(\rightarrow s,)s) \rightarrow s, Ss \rightarrow (s)\}$$

$$Question: (()) \in L(M)_{\varepsilon}?$$

$$Rule: (s(\rightarrow s) \rightarrow s)$$

$$Rule:$$

Models for Context-free Languages

Theorem: For every CFG G, there is an PDA M such that $L(G) = L(M)_{\varepsilon}$.

Proof: See the previous algorithm.

Theorem: For every PDA M, there is a CFG G such that $L(M)_{\varepsilon} = L(G)$.

Proof: See page 486 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for context-free languages are

1) Context-free grammars 2) Pushdown automata