
1

Active Transactions
in Collaborative

 Virtual Environments

Jan Pečiva

Brno University of Technology
Faculty of Information Technology

 Brno, 2007

Editorial board of Faculty of Information Technology:
Prof. Tomáš Hruška
Department of Information Systems
chair
Prof. Milan Češka
Department of Intelligent Systems
Adam Herout, Ph.D.
Department of Computer Graphics and Multimedia
Radek Kočí, Ph.D.
Department of Intelligent Systems
Prof. Alexander Meduna
Department of Information Systems
Lukáš Sekanina, Ph.D.
Department of Computer Systems
Barbora Selingerová
Library

© Ing. Jan Pečiva, Ph.D., Faculty of Information Technology,
Brno University of Technology, 2007.
Ph.D. thesis, revised version

Cover design 2007 by Dagmar Hejduková

Published by Faculty of Information Technology,
Brno University of Technology, Brno, Czech Republic

Printed by MJ servis, spol. s r.o.

ISBN 978-80-214-3549-0

2

Abstract

Active transactions model is a novel consistency model for Collaborative Virtual Environments
(CVE). Active transactions consistency model is focused on strength of the consistency model and
usability because strong consistency model often results in simpler design of CVE system compared
to weak consistency models.

Theoretical foundations of Active transactions are based on active replication used in distributed
systems and transaction concept developed in database systems. Both concepts were modified and
adapted to reach the performance requirements of CVE systems.

Keywords

Active transactions, active replication, transactions, collaborative virtual environments, consistency
model, distributed virtual reality

Abstrakt

Model aktivních transakcí je nový konzistenční model pro kolaborativní virtuální scény. Koncept
aktivních transakcí klade důraz na druh konzistenčního modelu a snadnost použití, neboť model
konzistence často úzce souvisí se snadností použití a promítá se do jednoduchosti návrhu aplikace,
která jej používá.

Aktivní transakce vycházejí z aktivní replikace používané v distribuovaných systémech a transakcí
z databázových systémů. Oba koncepty byly modifikovány a upraveny dle specifických požadavků
kolaborativních virtuálních scén pro dosažení optimálních vlastností.

Klíčová slova

Aktivní transakce, aktivní replikace, transakce, kolaborativní virtuální scény, konzistenční model,
distribuovaná virtuální realita

Citation

Jan Pečiva: Active Transactions in Collaborative Virtual Environments, Ph.D. Thesis (revised),
DCGM, Faculty of Information Technology, Brno University of Technology, Brno, Czech Rep.,
2007, ISBN 978-80-214-3549-0.

3

Table of Contents
1 Introduction...8
2 State of the Art...10

2.1 History...10
2.2 Examples of CVE..11
2.3 CVE as Multi-area Research..19
2.4 Distributed Systems...22
2.5 Parallel and Distributed Simulations...28
2.6 Computer Networks...29
2.7 Real-time Systems...32
2.8 Virtual Reality Systems...33
2.9 Database Systems..37

3 Analysis...41
3.1 Consistency Issues...42
3.2 Design Concepts of CVE Systems...44
3.3 Typical CVE Configurations...49
3.4 Consistency Models Evaluation...60
3.5 Results of Analysis..70

4 Active Transactions...73
4.1 Overview of New Approach..73
4.2 Replicated Scene Database..76
4.3 Transactions...77
4.4 Transaction Structure...79
4.5 Timestamps and Multiversion Databases..80
4.6 Execution Stages..83
4.7 Concurrency Control..85
4.8 Speculative Execution..87
4.9 Multiversion Execution..89
4.10 Conclusion...90

5 Experiments...91
5.1 CVE Library..91
5.2 Demonstration Applications..92
5.3 Measurements..103
5.4 Performance and Scalability Considerations...110

6 Conclusions...113
7 Appendix - Network Latency Measurement...115
Bibliography...118

4

List of Figures
Fig. 1: Model of the real city and surroundings for virtual army training..12
Fig. 2: Fighters, tank, and soldiers in virtual army training simulation...12
Fig. 3: Tank simulator..12
Fig. 4: Vehicle driver simulator..12
Fig. 5: Motion platform simulator..12
Fig. 6: DIS simulation..13
Fig. 7: Network through United States for DIS project simulation..13
Fig. 8: CollabCAD..14
Fig. 9: CyberCAD..14
Fig. 10: EVO..15
Fig. 11: Computer game DOOM..16
Fig. 12: Computer game Age of Empires...16
Fig. 13: Computer game Counter-Strike..17
Fig. 14: Computer rendered film Toy Story...17
Fig. 15: Computer rendered film Cars..17
Fig. 16: Scenes rendered by radiance...18
Fig. 17: Earth Simulator for global warming effect simulations..18
Fig. 18: The results of gravitational waves simulation and the used cluster of computers................19
Fig. 19: Three Tiers in CVE applications...20
Fig. 20: Three tiers and their relations to research areas and CVE properties...................................21
Fig. 21: CVE system with replicated scene..22
Fig. 22: Primary-backup remote write consistency model...23
Fig. 23: Primary-backup local write consistency model..24
Fig. 24: Active replication consistency model...24
Fig. 25: Delta-time consistency model...25
Fig. 26: Time sensitive consistency model...26
Fig. 27: Lamport timestamps..27
Fig. 28: OpenGL pipeline...33
Fig. 29: Head-Mounted Display (HMD)..34
Fig. 30: Haptic device...34
Fig. 31: VirtuSphere...34
Fig. 32: Augmented Virtual Reality...35
Fig. 33: Fighter using dead-reckoning..36
Fig. 34: Key-frame interpolation..36
Fig. 35: Transaction processing..37
Fig. 36: Partial object update consistency problem..42
Fig. 37: Out-of-order update consistency problem...43
Fig. 38: Causality consistency problem..43
Fig. 39: Update processing with validation..46
Fig. 40: Update concurrency..47
Fig. 41: Architecture classification of consistency models..49
Fig. 42: Centralized primaries consistency model...51
Fig. 43: Validation in centralized primaries model..51
Fig. 44: Client update latency in primary-based models..52

5

Fig. 45: Distributed primaries consistency model..53
Fig. 46: Validation in distributed primaries model..54
Fig. 47: Data ownership consistency model...55
Fig. 48: Validation in data ownership model...56
Fig. 49: Active replication consistency model...57
Fig. 50: Validation in active replication model..57
Fig. 51: Update latency in active replication model...58
Fig. 52: Global scene state type depending on the CVE consistency model......................................61
Fig. 53: Centralized global scene state...61
Fig. 54: Distributed global scene state...62
Fig. 55: Delayed global scene state..63
Fig. 56: Main concepts of Active transactions...73
Fig. 57: Transaction distribution in replicated scene database...74
Fig. 58: Transaction execution in database systems...77
Fig. 59: Active transaction execution...77
Fig. 60: Transaction structure...79
Fig. 61: Transaction processing..81
Fig. 62: Transaction processing for three computers...82
Fig. 63: Transaction execution...83
Fig. 64: Causality in transaction processing...86
Fig. 65: Causality in transaction processing...87
Fig. 66: Speculative execution in transaction processing...88
Fig. 67: Database model...88
Fig. 68: Predicted state in database model...89
Fig. 69: Overview of used concepts...90
Fig. 70: Notification in Open Inventor scene graph...91
Fig. 71: Scene synchronization in Open Inventor..92
Fig. 72: Transaction processing of Moving balls example...93
Fig. 73: Sequential transaction scheduling...93
Fig. 74: Concurrent transaction scheduling..93
Fig. 75: Concurrently scheduled transactions..94
Fig. 76: Cascade abort caused by the second transaction...94
Fig. 77: Two colliding balls..95
Fig. 78: Colliding transaction execution..96
Fig. 79: Collision after the handling the collision..96
Fig. 80: Collision solved...97
Fig. 81: Transactions in more complex object interaction...97
Fig. 82: Space Simulator..98
Fig. 83: Collaborative data sharing..99
Fig. 84: Collaborative viewer...100
Fig. 85: Collaborative Maze...100
Fig. 86: Multi-user flight simulator..101
Fig. 87: Distributed virtual meeting room..101
Fig. 88: Distributed billiard..102
Fig. 89: Distributed cyclotron...102
Fig. 90: Distributed cyclotron network loading...103
Fig. 91: Distributed cyclotron CPU loading...103
Fig. 92: Network traffic per computer..104

6

Fig. 93: Network traffic per computer when doing 20 simulation steps per second........................104
Fig. 94: Total network traffic in the system...104
Fig. 95: Network traffic of each computer...105
Fig. 96: Total network traffic dependence on number of computers...105
Fig. 97: Expected total network traffic when using broadcast...106
Fig. 98: CPU loading - processing time of transactions...107
Fig. 99: CPU loading – processing time of transactions depending on the number of objects........107
Fig. 100: Processing time of transactions with optimizations per simulation step..........................107
Fig. 101: Processing time of transactions with optimizations depending of number of objects......107
Fig. 102: Distributed Balls application showing speculative transactions.......................................108
Fig. 103: Speculative transaction queue length..108
Fig. 104: Number of commits and aborts per 1000 executed transactions.......................................109
Fig. 105: Commit/abort ratio dependency on network latency..109
Fig. 106: Number of aborts per collision..110
Fig. 107: AoI support in Active transactions..111
Fig. 108: Connecting zone AoI approach...111
Fig. 109: Round trip time of two computers on high-speed LAN..115
Fig. 110: Detailed round trip time of two computers on high-speed LAN......................................116
Fig. 111: Round trip time of Czech Rep. to United Kingdom communication................................117
Fig. 112: Detailed round trip time of Czech Rep. to United Kingdom communication..................117

List of Tables
Table 1: Lock compatibility table...38
Table 2: Consistency models classification criteria...44
Table 3: Classification of consistency models focused on design..50
Table 4: Distributed primaries applications and their properties...55
Table 5: Data ownership applications and their properties..56
Table 6: Active replication applications and their properties...59
Table 7: Consistency models classification criteria focused on usability..60
Table 8: Constraint types in different replication models..65
Table 9: Closely coupled interaction consistency solving..67
Table 10: Scene access levels...68
Table 11: Area of Interest in different consistency models..68
Table 12: Late joins in different replication models...70
Table 13: Classification of consistency models focused on model usability.....................................72
Table 14: Comparison of Active transactions with traditional consistency models...........................76
Table 15: Active transactions evaluation..112

7

1 Introduction

1 Introduction
Performance of computers has been constantly growing over past several decades. In the 90's,
enough performance was already available on standard computers for visualization of Virtual
Environments (VE) and VE applications appeared world-wide. In the same decade, the availability
of Internet and computer networks brought the need to share and exchange data among the
computers. VE followed the trend and Collaborative Virtual Environments (CVE) became a name
for VE shared among computers.

Appearance of CVE's was a big step forward in human-computer interaction. Humans were already
interacting with computers, but CVE enabled interaction of group of people through the network of
computers. Such remote interaction opened new possibilities and changed the understanding of
human-computer interaction. Several areas quickly started to benefit from CVE. For example:
Computer supported cooperative work (CSCW), engineering software, pilot training simulations,
military simulations, computer games, interactive groupware, and many others.

The beginnings of CVE go back to the 80's, when they were used by massive simulations to
overcome the performance limitations of a single computer by distributing and processing the VE
simulation on many computers. The other purpose of CVE is collaboration and interaction of people
in shared VE. Massive research in this area started in the 90's. Its applications have been
successfully used in several domains, such as Computer-Assisted Design/Computer-Assisted
Manufacturing (CAD/CAM) enabling designers to work together regardless of their distances,
scientific simulation and visualization, flight simulators for pilot training, etc. Another successful
area was entertainment, particularly 3D computer games. These can not be overlooked today for
their massive impact and economical potential.

CVE applications face the problem of concurrent scene manipulation. Any computer in the network
can read the scene state and update it. The concurrent access may put the scene into a non-
consistent state. Moreover, CVE scene is usually replicated among the computers1 for the sake of
the performance. Accessing the scene on different computers may turn the replicated scenes out of
synchronization. Such problems should be addressed by a consistency model that the application
uses.

Traditionally, consistency models were investigated by computer architects designing parallel
machines [Mosberger 1993]. They were trying to design a consistency model as close as possible to
the model used in standard single-processor machines. Main memory of single-processor machines
is usually using sequential consistency [Lamport 1979]. However, this model restricts much the set
of possible optimizations on parallel machines resulting in possible low application performance.
Weakening of consistency model may be an option to increase the performance. But the weakening
of consistency model changes the programming model. In general, the programming model
becomes more restricted and complicated as the consistency model becomes weaker [Mosberger
1993].

The main goal of the work presented in this thesis is the design of a new strong consistency model
with easy programming model. It is specialized for CVE applications and it addresses especially
data consistency issues. Although many weak consistency models already exist, they do not fit the

1 Throughout the text, it will be expected that each computer is running just one instance of the application because it
is the most common case. In reality, however, it is possible to run several instances of the application on each
computer. So, each reference in the text of the thesis referencing to “group of computers participating in CVE”
should refer to “group of application instances”. The first option is used for the readability of the text.

8

1 Introduction

requirements of this thesis. They provide high performance and scalability but their programming
model is more restricted and complicated. The new consistency model, proposed in this thesis, is
focused on strong consistency that is providing easy programming model and scene synchronization
that is more close. The easy programming model makes an application easier to design and to
maintain. The closer scene synchronization makes the data more consistent, further improving the
programming model of the application. On the other side, the stronger consistency may limit the
performance. On traditional CVE systems, the application performance is very much dependent on
the application design. When the proposed CVE model is used in applications, the performance of
those applications generally improves over the more traditional approaches (except of large and
very large systems that are out of scope of this thesis); moreover, the application performance
becomes less dependent on the application design.

Specialty of CVE is the requirement of fast application responsiveness. Users often expect the
system to respond to their actions immediately even if the network latency is high. Some techniques
are already known, however a new one is presented that has been designed and optimized for the
proposed consistency model.

The most important properties of the new consistency model are stronger consistency compared to
usually used models, responsiveness, and performance. The model with stronger consistency
provides additional consistency guarantees over the basic guarantees of the weak models. The
stronger consistency is the priority for its deep impact on the data synchronization and the
programming model.

The above stated main goal of the thesis was reached thanks to resolving of the following subgoals:

– Investigation of existing CVE consistency models and classification of their properties – the
investigation provided the theoretical foundation for the design of the new consistency model
while the classification set the criteria for the evaluation of properties of consistency models,
particularly for comparison of the new model with the existing models.

– Investigation of approaches in close research areas – consistency models used in distributed
systems, protocols of database systems, approaches of distributed simulations, and few others.
These provided additional ideas and foundations of the new consistency model.

– Verification of the new consistency model usage in practice – it proved that the consistency
model is usable.

The thesis is structured as follows: The first chapter introduces CVE systems and set the goals for
the thesis. The second chapter concerns the state of the art composed of three main parts: history of
CVE systems, CVE system examples and applications, and CVE systems relations to other research
domains. These domains include distributed systems, parallel and distributed simulations, computer
networks, read-time systems, virtual reality systems, and database systems. The third chapter
analyzes the most frequently used consistency models, investigate their properties, classifies them
according to several criteria. Finally, the suggestions for a new consistency model are given. The
fourth chapter presents Active transactions consistency model. At first, the overall design and its
benefits are presented. Then, Active transactions concept is fully described, including the relations
to distributed and database systems. The fifth chapter provides examples explaining the
functionality and behavior of Active transactions and shows several demonstration applications
utilizing the Active transactions to realize a collaborative system. The sixth chapter summarizes the
work that has been done, discusses the future research directions, and the contribution of this thesis.

9

2 State of the Art

2 State of the Art
This chapter presents state of the art of Collaborative Virtual Environments (CVE). It does not
contain a complete set of all projects, work, and research that has been done in these areas. Instead,
just the important things with relation to this thesis are presented.

The first section describes the history of CVE. The second section shows examples of CVE used in
reality. The third section introduces the close research areas that have big influence on CVE
evolution. Following five sections are mentioning important things of close research areas because
they form important part of theoretical foundation of this thesis.

2.1 History
Beginnings of the CVE go back to the 80's of 20th century. In that time, virtual reality was just
beginning and it was used only by professionals. The evolution of 3D graphics was then deeply
influenced by Silicon Graphics company (today called SGI), which was the leader in this area until
the middle of the 90's. Shortly after the beginnings of virtual reality, a need to share the virtual
environment between several computers appeared. Two main reasons for it existed:

– Connecting of more computers together often provides more computing performance

– Remote collaboration of more users in one virtual environment

Soon, both of them became important.

In 1983, SIMNET project [Calvin et al. 1993] was started. It was developed for Department of
Defense of United States for tactical military simulations. After it was finished in 1990, it was used
as a starting point for famous project DIS (Distributed Interactive Simulation) [ANSI 1993].

Both projects were used for complex simulations distributed through the large network with
hundreds or thousands of moving units. The techniques like Area of Interest (AoI) [Benford et al.
1993] and dead-reckoning [Roehl 1995a][Cai et al. 1999] were used for network traffic and latency
impact reduction.

DIS was followed by HLA (High Level Architecture) [Kuhl et al. 2000] started in 1996. It was
aimed to define a common simulation infrastructure to support interoperability and reuse of
simulation applications.

CVEs were used outside simulations as well. In 1993, one of the most famous games of the 90's
called DOOM was released. When played over a network, it demonstrated really simple realization
of CVE as is described in [Roehl 1995a]. It broadcasted all scene updates over the network, not
taking care of lost messages and message ordering.

Through the 90's, many academic research projects emerged: Spline [Anderson et al. 1995]
[Mitsubishi 1997] is one of the early CVE projects developed by MERL (Mitsubishi Electronics
Research Laboratory). DIVE [Frecon and Stenius 1998] is Swedish research project.
MASSIVE [Greenhalgh 1999] was in development in England for a couple of years. Repo-3D
[MacIntyre and Feiner 1998] appeared as a robust project supporting scripting, replication, and
other distribution abilities. CIAO [Sung et al. 1999] was focused on short response times. Some
other projects tried to empower existing 3D visualization libraries by collaborative abilities, such as

10

2.1 History

DIV [Hesina et al. 1999] and Avango [Tramberend 2001]. DIV extended Open Inventor library
[Inventor], making the collaboration and update distribution more transparent to the user. I have
done the same [Peciva 2005] using active replication [Wiesmann et al. 2000]. Avango [Tramberend
2001] and Blue-c [Naef et al. 2003] are similar projects for OpenGL Performer toolkit [Performer].

The majority of the projects were using Event locking technique [Treglia 2002] as a convenient way
to achieve scene data consistency. It usually results in client-server architecture with clients asking
the server each time they want to update the scene. The server acts as a request sequencer and it can
accept or refuse the request for a consistency restriction or for an user defined reason. While the
client waits for the server response, it may use dead-reckoning [Roehl 1995a][Cai et al. 1999] or
other technique for network latency masking.

A different approach was used in computer game Age of Empires [Bettner and Terrano 2001] that
was released in 1997. Critical network constraints – 28Kbps modem connection – and hundreds of
moving objects forced the developers to use active replication [Wiesmann et al. 2000] and peer-to-
peer architecture. A different replication model – primary-backup – was used in the game Counter-
strike (released 2000). Today, quite many games can be played as multiuser network games and the
majority of them are based on primary-backup replication.

2.2 Examples of CVE
This section shows several examples of CVE applications used in practice. The examples are trying
to cover just the most important areas to show the overview of CVE domains.

Collaboration and interaction:

– military simulations: VR Group, DIS

– engineering software: CollabCAD, CoCAD, CyberCAD

– network games: DOOM, Age of Empires, Couter-strike

– interactive groupware: EVO, videoconferences

Computer workload distribution:

– distributed rendering: Toy Story, Distributed Radiance

– distributed simulations: DIS, weather prediction, NASA simulations

Collaboration and Interaction: Military Simulations
Military simulations were the first place where CVE started to be widely used in the 80's. At the
present time, they are still used, especially for training purposes, because the virtual training is
cheaper than the real training with real tanks, buildings, and airplanes.

VR Group
VR Group [VR Group] is a company developing army training simulation software based on
DIS [ANSI 1993]. It is used mainly for Army of Czech Republic. The simulation is composed of a
model of real or virtual landscape that is rendered in real time (see figure 1).

11

2 State of the Art

Different type of units can move over the battleground, such as fighters, tanks, transporters, and
soldiers, as shown in the figures 2a, 2b, 2c.

People need to be immersed into the virtual environment. Therefore, “simulators” are used, as
shown in the figures 3, 4, and 5. They enable people to sit in like-in-tank place, in the fighter
cockpit, or in the motion platform to get as immersive impression as possible. The immersion is
important because it lowers the required time of practicing on the real battlefield, thus the training is
cheaper.

12

Fig. 2: Fighters, tank, and soldiers in virtual army training simulation
c)a) b)

Fig. 1: Model of the real city and surroundings for virtual army
training

Fig. 4: Vehicle driver simulator Fig. 5: Motion platform simulatorFig. 3: Tank simulator

2.2 Examples of CVE

All the people and “simulators” are equipped with a computer connected to high-speed computer
network. All the actions of any unit are immediately synchronized with other computers, so all
computers should have the consistent battlefield view.

DIS – Distributed Interactive Simulation
Distributed Interactive Simulation (DIS) [ANSI 1993] is the first widely used system in its area. It
was developed for Department of Defense of United States for tactical army simulations. The
success of DIS led to its standardization process for distributed simulation applications. The system
is based on units representing fighters, helicopters, tanks, refueling stations etc. that are exchanging
messages among themselves. The messages are for example: position update, amount of damage
caused, refuel request, etc.

The system was used in a similar way as the system developed by VR Group [VR Group]
Therefore, the details of “simulators” and participation of people in the simulation are not
mentioned here.

DIS was tested on really large scale simulations involving about thousand computers throughout
United States, as shown in the figure 7. Some new techniques had to be developed to enable such
large scale simulation. The simulation included about 10'000 moving units and it was not possible
to send each position update as it would exceed the performance limits of the networks of those
times. Therefore, dead-reckoning technique [Roehl 1995a][Cai et al. 1999] was developed that
efficiently eliminates the number of updates. For example, the position updates may be send less
frequently if they include the velocity vector and time information in the update. Then, all
computers are able to extrapolate the unit position until some error threshold is reached.

Another technique was “area of interest”. Since the messages were broadcasted over the network
and all computers were updating their replicas, the network could be easily overloaded by the
number of updates. Therefore, the system was spatially divided into the areas and the units were
receiving the updates just from the closest areas, thus improving the system scalability.

Distributed simulations are used also for industrial purposes. However, they are used much less than
in the area of military simulations. The reasons and the situation is described in [Boer et al. 2006].

13

Fig. 7: Network through United States for DIS project
simulationFig. 6: DIS simulation

2 State of the Art

Collaboration and Interaction: Engineering Software

CollabCAD
CollabCAD is an active project (http://www.collabcad.com) for 3D CAD/CAM design. It enables
several people to work and collaboratively interact with the shared data set. Video and audio
channels among the participants are provided by the 3rd party applications.

CyberCAD and CoCAD
CyberCAD [Tay and Roy 2003] enables more participants located around Earth to cooperate. It
uses primary-based protocol with transferable ownership [Greenhalgh 1999]. The user has a
workspace where he can view and modify the objects. He has also several windows with
workspaces of other people that he can only view. If he wants to modify certain object of other user,
he has to move it from other's user workspace to his own workspace.

CoCAD [Gisi and Sacchi 1994] uses client-server architecture. One computer is the server that
receives the update requests, orders them, and sends accepted updates back to all clients. This way,
all clients receive all the updates and in the same order, thus data consistency is ensured.

14

Fig. 8: CollabCAD

Fig. 9: CyberCAD

2.2 Examples of CVE

Collaboration and Interaction: Interactive Groupware
Interactive groupware includes video and audio conferencing software, such as EVO (see figure
10), Netmeeting, and Skype. It includes also chatting software, like ICQ, Jabber, IRC, MSN, and
many others. These applications often share common data and they require concurrency control that
is sometimes similar to the concurrency control models used in CVE systems. However, they are
often not considered CVE systems because their datasets does not represent virtual environments
and many optimizations and techniques from collaborative virtual environments are often not
applicable to these datasets.

Collaboration and Interaction: Computer Games
Computer games are often mentioned throughout this thesis because it is a quickly growing market
and its influence on the research in computer graphics can not be overlooked now for the high
economical potential of the entertainment industry.

Computer game industry started its interests in CVE systems when the first network multiplayer
games appeared. Several people were able to be virtually present in one shared virtual environment.
Just three games are mentioned here as typical representatives of different kinds of collaborative
networked games.

DOOM
Computer game DOOM [Roehl 1995a] represents simple design CVE system using primary-backup
replication [Wiesmann et al. 2000].

DOOM was released in 1993 and it became one of the most famous games of those times. It could
be used for a single player game or a network game of several people. When played over the
network, the game can be considered as CVE system because all players, sitting at different
computers, were sharing the same virtual environment and all of them were able to see the actions
of the others performed by their virtual avatars.

15

Fig. 10: EVO

2 State of the Art

Fig. 11: Computer game DOOM

The collaboration in DOOM game was simple: All computers were constantly broadcasting their
state over the network. That was possible as the state was often formed nearly just by the avatar
position. Unreliable network connection was used and all scene consistency problems were solved
by respawning the player.

Age of Empires
Age of Empires [Bettner and Terrano 2001] is using active replication [Wiesmann et al. 2000].
Detailed description of active replication is in the section 2.4.

Age of Empires was released 1997. The game designers had following goals: 8 collaboratively
playing people, each one controlling 200 units while using 28.8 kbps modem network connection.
Such task was not possible with primary-backup replication. However, active replication was quite
suitable for such kind of task. Active replication relies on determinism – the same inputs of the
same algorithm should always produce the same outputs. If this presumption is fulfilled, all random
number generators among the computers can be synchronized and simulation including artificial
intelligence of all units can be started. The application should behave the same way on all
computers. Just the user's input by his mouse and keyboard is source of non-deterministic events.
Only those have to be communicated through the network. Therefore, the network loading of Age
of Empires was not high while the scenes stayed completely synchronized.

Fig. 12: Computer game Age of Empires

16

2.2 Examples of CVE

Counter-Strike
Counter-Strike (released in 2000) is using client-server architecture. It is based on primary-based
replication.

Fig. 13: Computer game Counter-Strike

In Counter-Strike, the whole scene state resides on the server. All the other computers hold just the
local copies of the server data. If any client wants to update some data, it sends the update request to
the server. The server role is to order the update requests, validate/refuse them, perform them, and
send the validated updates to the clients.

Computer Workload Distribution: Distributed Rendering

Toy Story
Toy Story (figure 14) is the first film in the history that was completely rendered by computers. It
was released in 1995. The rendering of 114'240 frames of the film would take 43 years on a single
processor computer of those times. The work distribution to 117 Sun graphics workstations (dual,
quad, and and 8-processor) shortened the rendering time to 46 days [Sun 1995][SunWorld 1995].
Many other films followed, such as Bug's Life (1998), Final Fantasy (2001), and Cars (2006, figure
15).

17

Fig. 15: Computer rendered film CarsFig. 14: Computer rendered film Toy Story

2 State of the Art

Distributed Radiance
Radiance [Ward 1994] is photorealistic rendering system based on ray-tracing techniques. Ray-
tracing is extremely computationally expensive. University of Bristol is investigating possibilities of
rendering acceleration by parallel processing on the cluster of computers [Debattista 2007]. Some
plans even exist for a project of real-time radiance on a large cluster of computers.

Computer Workload Distribution: Distributed Simulations

DIS
Project DIS – Distributed Interactive
Simulation [ANSI 1993] is a large
simulation project. Since it enables
also interaction of people, it was
already mentioned above in this
section.

Earth Simulator
Earth Simulator [ESC 2007][Wiki
2007] was developed for global
warming effect prediction. It was the
fastest supercomputer from 2002 to
2004. It consisted from 5'120 pro-
cessors and 10 terabytes of memory.

18

Fig. 16: Scenes rendered by radiance

Fig. 17: Earth Simulator for global warming effect simulations

2.2 Examples of CVE

Simulation of Merging of Two Massive Black Holes
The purpose of the simulation of merging of black holes [NASA 2006] was to prove Einstein theory
of relativity, particularly one of its consequences – the existence of gravitational waves. These
gravitational waves are racing out from two black holes when these black holes are about to merge
and they are rotating around each other. The task has two steps:

– to simulate the gravitational waves according to Einstein theory – to get the idea how the waves
should look like

– to measure the real gravitational waves and compare the results with the simulation – this shall
prove whether the Einstein theory is correct

The simulation was more computing expensive than all other NASA simulations before. The results
are shown in the figure 18. The second step – the real measurement – already started: In November
2005, Laser Interferometer Gravitational-Wave Observatory (LIGO) was finished and started to
monitor gravitational waves. The measurements are not easy because LIGO has to be able to detect
length contraction of the size of a single atom per one meter. The outcome of the comparing the
reality and the simulation is still open.

Fig. 18: The results of gravitational waves simulation and the used cluster of computers

2.3 CVE as Multi-area Research
This section describes the relation between CVE research and the research in other areas. CVE is
closely related, for instance, to distributed systems and it has taken many concepts and research
outcomes from this area. This section lists the close research areas and their importance for this
thesis.

19

2 State of the Art

The important related research areas include:

• Parallel and Distributed Simulations: CVE is often distributed simulation application that
is running in real time and that is visualizing its results.

• Distributed systems: CVE is usually realized by several applications running at different
computers. From this point of view, it is a distributed application that operates on a shared
data.

• Network communication: Network latency, bandwidth, reliable/unreliable protocol, and
multicast support – all of these are in the scope of CVE systems.

• Real-time systems: CVE systems are often real-time simulations and/or the systems from
which the user requires very short response times. In most common applications, the
required response ranges from milliseconds to hundreds of milliseconds.

• Virtual reality: CVE applications maintain the data set that represents the virtual
environment. The virtual environments are domain of computer graphics and virtual reality.

• Database systems: Database algorithms are used in CVE rarely even although both areas
are working with the replicated data sets. One of reasons for omitting database algorithms in
CVE is the different performance requirements in CVE and databases. The performance
reason is overcome in this thesis and some new algorithms and techniques were introduced
that are similar to those used in database systems.

In this thesis, the special attention will be given to distributed systems, especially to replication
consistency models, and database systems from which some new ideas will be introduced into CVE
applications.

Three Layers in CVE Applications
Three layers can be recognized in CVE systems, as shown in the figure 19. The layers have
different roles, briefly characterized as: network communication, handling of data replication, and
smooth visualization for an user.

Fig. 19: Three Tiers in CVE applications
The middle layer (non-hatched area)

is the main interest of the thesis.

20

Network Layer

Message Distribution and
Consistency Handling

Dead-reckoning and
Interpolation Layer

2.3 CVE as Multi-area Research

The layers are related to different aspects of CVE Systems. The main aspects are:

Responsiveness – Capability of the system to respond to the user requests in the specified time
frame.

Consistency – Several consistency models have been designed. They can be studied for
consistency guarantees, limitations, and properties in the context of different
application requirements.

Scalability – The ability of the system to continue working as the system's context changes
in size or volume.

Persistence – The ability to stay active even when some/all users have left the session.

Reliability – The resistance against bad conditions that may appear in the system. Network
overloading, lost packets, or some machine failure are often the case.

The figure 20 shows the relations between CVE layers (in blue), close research areas (grey), and the
relation to the most important aspects of CVE systems (in yellow).

Fig. 20: Three tiers and their relations to research areas and CVE properties

The focus of this thesis is on the middle layer – handling of the consistency and replication models.
The layer will be called CVE kernel in the thesis as it is the cornerstone of whole system and its
design determines the main characteristics of each particular CVE system.

Other layers are mentioned because they have deep influence on the design of CVE kernel. The
network layer partially determines the properties and the guarantees of the network connections in
different physical network conditions. The properties of network connections should be reflected by
the CVE Kernel layer. For example, unreliable network connections usually does not work properly
with active replication.

The CVE smoothing layer provides the user smooth results of the simulation. If some updates are
delayed, it is able to predict object behavior. Sometimes, the simulation is done in steps. In that
case, the natural role of this layer is to interpolate between the simulation steps to give the user the
impression of the smooth simulation that is more natural for human perception.

21

Network Layer

Message Distribution and
Consistency Handling

(CVE Kernel)

Dead-reckoning and
Interpolation Layer
(CVE Smoothing)

Computer Networks

Parallel and Distributed
Simulations, Distributed and

Database Systems

Virtual Reality and
Real-time Systems

Reliability

Consistency, Scalability,
Persistence

Responsiveness

2 State of the Art

2.4 Distributed Systems

In most cases, a CVE system consists of several remote processes sharing the data set that
represents a virtual environment, as shown in the figure 21. The processes are usually distributed
among many (possibly distant) computers that are connected through a network. From this point of
view, it is a distributed system that usually meets following characteristics:

– virtual environment data are replicated

– updates propagation is time critical

– update operations are asynchronous (e.g. Non-blocking)

The replication of the data is important for performance reasons. Each computer participating in
CVE simulation typically renders the scene 30-100 times per second. This means that the part of the
scene that is rendered must be read from the memory and sent to the rendering device. The amount
of the data depends on the application but it can easily overcome even the highest speed network
devices for many applications. Therefore, the scene is nearly always replicated.

Some protocols for data sharing were developed for distributed shared memory (DSM) systems [Li
1989]. However, CVE systems are usually using data replication, although the protocols are similar
or the same. Replication protocols, used in Distributed Systems, may be split into the two
categories. Primary-based protocols (also called primary-copy protocols) are centralized approach
making one replica primary and all others are secondary replicas, often called backups. Update-
everywhere protocols are non-centralized approaches. They usually perform the updates in parallel
on all the replicas. The list of important protocols follows:

– Primary-Based Protocols (Passive Replication)

– Remote-Write

– Local-Write

– Update-Everywhere Protocols

– Active Replication

– Delta-time

– Quorum-Based

22

Fig. 21: CVE system with replicated scene

Scene
Replica

Scene
Replica

Scene
Replica

Scene
Replica

Scene
Replica

Replicated
Scene

distribution
of updates

 update
scheduled

2.4 Distributed Systems

The replication protocols are described bellow.

Replicated scene requires asynchronous updates delivered as quick as possible. Asynchronous
updates are required because blocking operations are not acceptable for CVE. They may lower the
performance rapidly. On the other side, asynchronous updates result in more complex consistency
models compared to the systems using synchronous operations.

Quick update distribution is important for good responsiveness of CVE application. They are
caused mainly by the network latency (section 2.6) that usually can not be eliminated. Therefore,
CVE systems developed several techniques to minimize its effect. They will be shown in the section
2.8. Other important concepts are atomic multicast and distributed timestamp generator. Atomic
multicast is an important communication primitive that is often used for the update distribution in
CVE and network communication in general. Distributed timestamp generator is another primitive
used in distributed systems that is required by many applications.

The following subsections are showing the replication models, atomic multicast, and distributed
unique timestamp generator in the detail.

Primary-Based Protocols – Remote-Write

Fig. 22: Primary-backup remote write consistency model

The primary-based protocols require one replica to be primary, while all others are secondary
replicas, also called backups. The primary is responsible for coordination of all the updates. The
update is usually performed on the primary first and then, the primary updates all its backups.

Primary-based remote-write protocol [Budhijara 1993] functionality is depicted in the figure 22.
One of the replicas is the primary while all the others are backup replicas. If a client wants to update
the data item (1.), it has to send an update request to the primary (2.). The primary performs the
update locally and asks all the backup replicas to update their values (3.). Backup replicas update
themselves and send acknowledge back to the primary (4.). Then, update-initiating replica
acknowledges the update completion to the client (5.).

Primary-based remote-write protocol is often used in CVE systems. Especially, large simulations
are often using it. The disadvantage may be a single point of failure – the primary replica. However,
some algorithms exists to overcome the problem even if the computer with the primary replica
crashed. Such algorithm may, for example, reconcile the backups values and perform the voting
among backups for a new primary.

23

Primary
Copy

Backup
Replica

Backup
Replica

Backup
Replica

1.

2. 3.
3.

3.
4.

4.4.

5.

2 State of the Art

Primary-Based Protocols – Local-Write

Fig. 23: Primary-backup local write consistency model

Primary-based local write protocol (shown in the figure 23) is similar to Remote write protocol
except that primary replica migrates. When the write request is issued on a backup replica (1.), the
primary migrates to the backup replica (2.). The update is performed locally and the client receives
the acknowledgment (3.). Then, all other replicas are contacted to update their values (4.). After the
collecting of the acknowledgments (5.), the write operation is completed.

One of main problems of primary migration is keeping track of where the primary is located.
Broadcasting facilities, forwarding pointers, or home-based approaches can be used. The last two
were used in distributed shared memory systems [Li 1989] that are using primary-based replication.

Primary-based local write protocol is used in CVE systems in ownership consistency models. Just
the computer with the ownership of the data item is allowed to update the value. The disadvantage
is the single point of failure as in the previous replication model.

Update-Everywhere Protocols – Active Replication

Active replication [Schneider 1990] is a non-centralized approach. Its functionality is depicted in
the figure 24. When a client issues write request (1.), it is atomically multicasted to all replicas (2.).
Atomic multicast (see bellow) provides reliability even in the presence of failures and guarantees
the same receive order of different updates on all replicas. When the update is received by the
replica from the atomic multicast, the replica is updated (3.) and the client can be informed about
the completion of the write operation (4.).

24

Fig. 24: Active replication consistency model

Replica Replica Replica

1.
4.

Replica

Atomic
Multicast

2.

3. 3. 3.3.

Primary
Copy

Backup
Replica

Backup
Replica

Backup
Replica

1.

2. 4.
4. 4.5. 5.

5.

3.

4. 5.

2.4 Distributed Systems

Active replication (also called Machine state approach) relies on the determinism: Provided by the
same inputs, all the replicas will produce the same outputs. The atomic multicast is used for the
distribution of the updates to the replicas. If the determinism is kept, the replicas will stay
synchronized.

Active replication may seem to be simple, however, its complexity is hidden in the atomic
multicast. The requirement of determinism that is required for the update processing is often
mentioned as one of the main disadvantages of active replication. Typical examples of non-
determinism sources are multi-thread processing and floating point computations that may not be
bit-by-bit equal on different architectures and compilers [Monniaux 2007]. A famous hardware bug
exists in first Pentium processors that returns sometimes wrong results when multiplying two
numbers [Intel 2004]. Other source of non-determinism are different implementations of the same
functionality. For example, many compilers are compiling programs to use MMX and SSE
instructions instead of standard x87 code if they are available. However, Intel does not guarantee
that the results will be bit-by-bit equal for all instructions for today's processors.

Update-Everywhere Protocols – Delta-Time
Memory coherence models usually work with the following criterion: “a read of a data item returns
the most recent write to that location”. However, it is not easy to determine the most recent write on
a replicated data item in a distributed system. Delta-time consistency model [Singla et al. 1997]
takes the network delay into account and uses following criterion: “a read of a data item returns the
last value that was produced at least delta time units preceding that read operation”. Assuming that
delta is big enough compared to the network latency, each write can propagate to all its replicas in
time. The order of writes that may be done by different processes is established and all replicas are
able to provide the user with consistent results of the read operation according to Delta-time model.

Example timeline of Delta-time model is shown in the figure 25. Three processes are depicted and
they are reading and writing to the data item. The read operations are represented by tr and the
writes by tw. At first, 0 is written by the process P1. After the delta time, the new value is available
at all processes. Then, P1 writes 1. The read on P3 happens before the delta time is reached after the
second write, therefore P3 reads 0 because it is already stable value. Finally, P2 reads 1 because the
delta time after the second write has already passed.

The model was extended to Time Sensitive consistency model [Krishnaswamy 2001] that provides
timed and non-timed reads and writes. The timed reads and writes provide the user by consistent
data view. The non-timed operations are available for the cases when the data freshness is preferred
over the data consistency, providing the user by possibility to choose required consistency level.

25

Fig. 25: Delta-time consistency model

tw(x)0 tw(x)1P1

tr(x)0P3

tr(x)1P2

∆∆

2 State of the Art

The figure 26 shows the example timeline. The non-timed reads are shown as r and the writes as w
to distinguish them from timed counterparts tr and tw. At first, P2 performs two timed writes
followed by non-timed and timed read of process P1. The non-timed read may return 15 because the
value may already propagate through the network and the non-timed read is not obliged to obey the
delta time. On the other side, the timed read is forced to return 10 in order not to break the
consistency requirements because the delta time after the second write did not already passed.
However, the non-timed read of the process P3 returns 15 because timed writes force both – timed
and non-timed reads to return the new value after the delta time has passed.

Fig. 26: Time sensitive consistency model

Update-Everywhere Protocols – Quorum-Based
The write operation in quorum protocol can be issued on any replica. Then, the replica starts to
contact other replicas for performing of the update. If it succeeds at least smallest majority of
replicas (half of the replicas plus one), the update is successful. The read operation requires once
again to be contacted at least the smallest majority that contains the same value. Then, the value is
considered the correct return value of the read operation. Some optimizations and details are in
[Tanenbaum and Steen 2002].

Quorum based protocols are nearly not used in CVE application because they require network
communication to be done even on read operations and that is not acceptable for the most of CVE
systems.

Atomic Multicast
Atomic multicast is a communication primitive for delivering messages to the process group with
the following properties:

– reliability

– virtually synchronous

– total message order

These properties have to be kept even in the presence of process failures.

Atomic multicast is based on reliable multicast (see section 2.6) that guarantee the message is
delivered to all non-crashed processes in the process group. However, the processes may leave and
enter the group and reliable multicast does not answer the question which messages are delivered to
the joining or leaving processes.

26

tw(x)10 tw(x)15

P1

r(x)15P3

tr(x)10

P2

∆

r(x)15

2.4 Distributed Systems

Virtually synchronous reliable multicast [Birman 1993] introduces “group views” that keeps track
of the members of multicasting group. It establishes a new group view whenever any process enters
or leaves the group. The messages sent to the group view Gi have to be delivered before the next
view Gi+1 is established. This provides additional guarantees of message delivery. The messages are
allowed to be undelivered just in the case of sender failure during the multicasting of the message.

If virtually synchronous reliable multicast provides totally-ordered message delivery, it is called
atomic multicast [Birman 1993][Whetten et al. 1994]. Totally-ordered delivery means that all the
messages are delivered to all processes in the same order. According to [Hadzilacos and Toueg
1994], three types of sender orderings exist:

– Atomic multicast (unordered)

– FIFO atomic multicast

– Causal atomic multicast

Unordered atomic multicast does not guarantee that the sending order (viewed by the sender) will
be kept. Atomic multicast will deliver them to all the processes in the same order but it may differ
from the order in which the messages were seen by the sender at the time of sending. FIFO atomic
multicast order preserves the sending order while causal order respects just the order of the causally
related messages.

For the simplicity of the text, only FIFO atomic multicast will be considered in the thesis and when
referencing to atomic multicast, the FIFO atomic multicast is meant.

Distributed Unique Timestamp Generator
Distributed unique timestamp generator is based on ideas presented by Lamport [Lamport 1978].
He pointed out that although the time synchronization is possible, it may not be absolute. What
really matters is usually the order of the events that all the processes have to agree on. He assigns a
time to each event. If some event occurs before other event, it must have lower time, and if it occurs
after the event, it must have greater time value. If some events are not related to each other, their
order does not matter. The event relations have to be kept throughout the distributed system even in
the presence of non-precise clock synchronization.

27

Fig. 27: Lamport timestamps
(a) Three processes, each with its own clock. The clocks run at different rates.

(b) Lamport's algorithm corrects the clocks.

(a)

0

6

12

18

24

30

36

42

48

54

60

0

8

16

24

32

40

48

56

64

72

80

0

10

20

30

40

50

60

70

80

90

100

A

B

C

D

(b)

0

6

12

18

24

30

36

42

48

70

76

0

8

16

24

32

40

48

61

69

77

85

0

10

20

30

40

50

60

70

80

90

100

A

B

C

D

2 State of the Art

The figure 27a shows three different processes and their communication. The process clocks are
running at a slightly different rates. The event A is sent at the time 6 and received at the time 16,
although it is 12 according to the clock of the first process and 20 according to the third process.
However, Lamport does not require to use absolutely synchronized clocks and only the event order
matters. The event B is sent at 24 and received at 40 without any problems. The event C is sent at
60 but it should be received at 56. And similar situation happens with the event D.

Lamport's solution follows the causality and if event C is sent at 60, it has to be received later. So,
the local clocks are adjusted to, for example, 61 to keep the causality in the system. The figure 27b
shows the situation after the correction: The event C is sent at 60 and received in 61 and the event D
sent at 69 and received in 70.

The uniqueness of timestamps throughout the distribute system can be realized by appending the
process number or its unique identification as a low-byte end of the time, as Lamport suggests.

2.5 Parallel and Distributed Simulations
CVE applications are often simulating real world, city traffic, weather prediction simulations, etc.
and the simulation is visualized on the computer screen. The distribution of the simulation is used
either for performance reasons to distribute the workload to more computers, or for interaction
purposes – the simulation is synchronized among the computers to give the impression of the shared
virtual environment that several users can examine and manipulate.

At the beginnings of simulations, the abstraction of sequential discrete event simulator was
introduced. It is composed of state variables, event list, and clocks. The events have their
timestamps that contain the time when they should be executed. They are taken out of the event list
and executed when the clocks reach their timestamp. Through the event execution, other events can
be generated that are appended to the event list.

There are sequential simulators connected with links in the area of distributed simulations. Those
links are used for exchanging of messages. The main problem of distributed simulator is the time
synchronization because each event can produce other events for different simulators and
simulation of any event should not start until the system is sure it will not receive the event with
lower timestamp from other simulators.

Chandy-Misra-Bryant (CMB) [Chandy and Misra 1979][Bryant 1977] approach uses link times that
indicate the last timestamp of the simulator that sends the message (one-directional links are used
and some granularity of time is used). When there are no communication, null-messages are used to
update the link time. Any simulator is able to determine the moment when it is safe to get its event
with the lowest timestamp out of the event list and to start its simulation.

High amount of null-messages is usually considered the main disadvantage of CMB approach. Time
Warp [Jefferson 1985] is the most known optimistic protocol that avoids them. It process the events
optimistically on all simulators. The causality errors are detected later and the system has to be able
to roll back erroneously executed events.

Many further optimizations have been developed for both – optimistic and pessimistic approaches.
Some of them are related to the thesis and they are mentioned bellow. Many others are omitted,
such as simulation cloning [Hybinette and Fujimoto 2001][Chen et al. 2003], concurrent replication
[Bononi 2005], and partitioning problem [Morillo et al. 2005] because they are not really relevant
for the thesis.

28

2.5 Parallel and Distributed Simulations

Temporal Uncertainty
Temporal Uncertainty was proposed by R. Fujimoto at [Fujimoto 1999]. He proposed to relax strict
causality of event execution and to use time intervals instead – each event is associated with a time
interval and any two events whose intervals overlap at least in one point in common are considered
concurrent events that can be executed in parallel. In most simulations, the impact on results is
negligible while the performance increases rapidly.

Another quite important motivation for temporal uncertainty approaches were, according to
Fujimoto, differences between research of distributed simulations and CVE. These differences were
quite important because many projects are considered to be both – distributed simulation and CVE
system, such as DIS project [ANSI 1993]. But the differences between the both systems make it
difficult to connect many of those systems together in federated simulations [Riley et al. 2004].

One of the differences was that CVE usually do not support rollbacks, but temporal uncertainty is
able to overcome this limitation.

Latency Hiding
According to [Hybinette and Fujimoto 2002], it is possible to locally simulate, for example, an
object behavior during the user interaction with the scene and to provide the user with immediate
effects on its screen, while it takes some time before the operation really takes the effect. The delay
may be caused by the system response time, network latency, or light speed. For example, the
communication with robot on the moon will always take about two seconds because of the moon
distance.

The latency hiding is also important technique for CVE.

Real-time Simulations
Many simulations coupled their simulation time with the real time. One of reasons is human-in-the-
loop simulations, such as training application – the person is trained in the virtual environment
(pilots military training, car driving simulations, etc.). Some simulations are used for hardware-in-
the-loop testing, like missile tracking sensors and many others. DIS project [ANSI 1993] is one
example of real-time simulation including human-in-the-loop, with the possibly of many people
participating in the simulation while they are virtually present in the simulated collaborative virtual
environment.

2.6 Computer Networks
Computer networks were often mentioned in CVE research papers in the 90's [Waters et al. 1997]
because every CVE highly depends on network conditions. Overloaded network switch or lost
packets of a wireless connection may cause many difficulties to CVE applications. CVE
applications may require as short packet delivery time as possible. Often, reliable and high
bandwidth connection is necessary and special abilities such as multicast or broadcast support may
be required for scalability reasons.

The properties of computer networks are influencing the design of CVE. Particularly, latency,
bandwidth, and reliability are usually the most important properties that correspond with
responsiveness, scalability, and fail-resistance of CVE systems.

29

2 State of the Art

Reliable and Unreliable Network Connection
Two basic protocols are used on today networks based on IP (Internet Protocol): TCP and UDP.

UDP is based on datagrams that are transmitted from a sender to a receiver without any guarantees.
the datagram may arrive quickly, or be delayed, it may be lost on the way, dropped by some switch,
or it may not find a route to the destination. Therefore, this type of connection is often called
unreliable. To use UDP usually means for a programmer that he has to face the problem of lost
packets and the problem of the order of datagrams that may come in a different order than they were
sent.

TCP protocol is used for reliable connections. The protocol takes care about resending lost packets
and reorders the packets at the destination to the order of sending computer. It is based on UDP, but
it is much more convenient for a programmer because of the reliability guarantees.

Some discussion can be made what is better for CVE applications. TCP is more convenient than
UDP but it has some overhead that may be noticeable for some applications. Particularly, latency-
limited applications may require more aggressive time-outs for lost packet resending or lost packet
recovery based on additional recovery data. The simple lost packet recovery algorithm was realized
in [Lincroft 1999] by duplicating the data of previous packet in the following packet. Even if one of
the packets is lost, the data stream can still be reconstructed without the cost associated with the
packet resending. To avoid doubling the bandwidth, algorithms based on Hamming code [Hamming
1950] can be used to optimize the network requirements.

In conclusion, UDP was often used in the 90's and it enabled better performance. Today, most
projects are using TCP because Internet connections and its back-bones improved much in quality
and bandwidth. Therefore, UDP does not give so many advantages over TCP as is was before.
Moreover, UDP communication is often firewalled on many gateways, making UDP
communication not possible.

Multicast and Broadcast
CVE applications often send the same message to many computers. As a CVE system grows in size,
it became quite performance consuming to send the same message to each one of, for example,
hundred computers or even more. Multicast and broadcast are addressing this issue.

Broadcast is used from ancient times of computer networks. If a computer sends a broadcast
message, it is usually delivered to all computers belonging to that network. This approach was used
in DIS [ANSI 1993] and in the first version of DOOM [Roehl 1995a]. Often mentioned broadcast
disadvantage is that all computers in the network have to process the message, including the
computers that are not interested in it and that it puts extra load on large network infrastructures
because the broadcast spreads through the whole network.

Multicast is more network friendly approach because a multicasted message is delivered just to
computers belonging to the multicast group. This eliminates the main disadvantage of broadcast –
network over-flooding that may have deep impact on its performance with increasing amount of
broadcast traffic. However, multicast is not supported properly by some switches and routers. In
that case, some fallback, such as standard TCP/UDP connection, may be used.

Multicast and broadcast are unreliable – there is no guarantees on the message delivery and that all
computers really received the message. For this reason, only CVE systems that do not require
reliable network connections or that are able to recover lost packets are using multicast and
broadcast directly. Otherwise, some reliability layer has to be introduced. Some research was done

30

2.6 Computer Networks

on reliable multicast [Chang and Maxemchuk 1984]. Reliable multicast is usually facing a problem
of resending packets that is based on negative acknowledgments – correctly received packets are
not acknowledged but retransmission is requested for the missing packets. This may lead to
feedback implosions when a large group of computers does not receive some packet. The
implosions may temporarily overload the sender and the network. Scalable reliable multicast [Floyd
et al. 1997] was developed to overcome the problem. It is using feedback suppression. The
retransmission request is multicasted and other computers can suppress their request and wait until
the message is retransmitted.

Bandwidth
CVE applications are used over wide range of network connection types, ranging from slow dial-up
connections (typical value today: 56k bps), through DSL connections (typical values: 512kbps to
4Mbps), to highest speed networks (10G bps). It is necessary to design particular CVE application
with the respect to the expected type of network and available bandwidth. If the network is
overloaded, it may easily result in the application malfunction. Therefore, careful consideration has
to be done for safe handling of this issue. The network overloads can be classified into the two
categories:

• overloading of some network point, such as router, switch, or local network connection

• overflow of network buffers managed by operating system

The first category can be avoided by designing the application with the respect to the type of the
network connection it will be used on to not exceed the limits of the particular network. However,
this can not avoid some extreme situation, such as short peak network loading because of some
extraordinary activity of some network users, or overloaded wireless hot-spot on some scientific
conference.

The second point can be caused by the first one, when the network is not able to deliver the packets
quickly enough and the network sending buffers start to fill up. The experience shows that certain
level of lost packets results in automatic slowing down of TCP/IP connection. These lost packets
are often caused by an overloaded network point. However, the connection accommodates too
slowly to higher speed even if there is again enough bandwidth.

Another reason for the buffer overflows are some burst send operations, such as sending whole
scene to the client when the client is starting and connecting to the server. The scene data often
greatly exceeds the default size of sending buffers available for the network connection. If not
handled properly, data loss and scene corruption may follow. For example, atomic joins are
problem at this point because they require large amount of data to be quickly transmitted (section
3.4). Increased size of the buffers may be an option together with the careful application design
avoiding buffer overflows.

Network Latency
It can be said that the network latency is a special type of communication latency between two
processes. Latencies may vary on different kinds of networks. Typical values for today networks
follow:

 100us – quick local networks

 1-10ms – hi-speed network connections in one country of a size similar to Czech Republic

31

2 State of the Art

 ~ 30ms – dial-up connections to a server in the same country (measured in Czech Republic)

 ~ 350ms – connection from Europe to Australia

100-2000ms – GPRS Internet connection (between different Internet providers) – may vary

Therefore, a synchronous access to the data of a remote process can be quite time-expensive
operation for the local process. Many optimizations have been developed in distributed systems to
avoid the cost of the communication. Especially relaxed data consistency and data replication
techniques address the issue.

CVE system faces the problem of network latency because it is typically updating and rendering the
scene even 100 times per second. It means that sometimes 10ms latency may be too long to
exchange all the updates between processes. Different CVE approaches are presented in the chapter
3 to face the problem together with some approaches to overcome the problem of the network
latency. The network latency measurement is in the appendix – chapter 7.

2.7 Real-time Systems
CVE applications are often real-time systems and it is unacceptable for an user to wait a second for
completing of some operation. Such property is important for the most of virtual reality applications
that are often rendering the scene fifty or even one hundred times per second. This shows that even
the latency of ten milliseconds can be undesirable.

In the section 2.6, the network latencies were deeply analyzed. The conclusion may be made that it
is not a bad choice to design an application for expected latencies in the range of 10-60ms. For long
distance connections, it can be even more.

Real-time systems are often constrained by operation deadlines. If the operation is not completed
until its deadline, the operation has to be canceled or special handling has to take place. In the worst
case, missed deadline could lead to system crashes on some systems.

CVE applications has to quickly respond to the user activity and to manage its internal
representation of the virtual environment. However, the processing of the virtual environment takes
some time because it requires network communications. The latencies of the communication are
sometimes unpredictable as shown in the section 2.6. As a result, CVE applications can not use hard
deadlines that may crash the application if they are missed. So they should be designed to be safe
even under unexpected network conditions, handling temporary connection unavailability, and to
give the computer a chance to reconnect after sudden loose of the connection, etc.

This tolerance of varying network conditions can be separated into the two areas:

– low-level networking robustness

– adaptability of CVE Kernel to the current network conditions

The low-level networking was discussed in the chapter 2.6 that was dedicated to computer
networks.

The adaptability of CVE kernel includes the ability to safely handle delayed updates and temporary
unaccessible computers. Another valuable property is adaptability to short/long latencies to provide
the best possible performance based on actual network conditions. A special issue is network
loading adaptability for the applications that are bandwidth greedy or that are transmitting many

32

2.7 Real-time Systems

data in bursts. A performance issue may be the number of simulation steps per second and
simulation loading because these may overload some slower computers that may not be able to
perform so many simulation steps, resulting in possible instability of the whole system as operation
deadlines are no longer met.

2.8 Virtual Reality Systems
CVE systems deal with the data representing a virtual environment. The virtual environment is
usually represented by a 3D model composed of triangles. The triangles are efficiently handled by
today hardware and other 3D representations, such as NURBS [Piegl and Tiller 1997], implicit
surfaces [Bloomenthal 1997], and CSG [Tilove 1984], are usually converted to the triangle
representation before they are visualized.

OpenGL [OpenGL] is widely accepted standard API for 3D rendering. Another standard is
Direct3D [Direct3D] from Microsoft that is also often used, however it is not available on non-
Microsoft platforms. Many applications are using OpenGL directly, sending their 3D data directly
to OpenGL for rendering.

The figure 28 shows simplified OpenGL rendering pipeline. The data for rendering are sent by the
application through OpenGL API. The first stage processing is vertex-based. Roughly said, it
transforms all vertices and associated data by the transformation matrixes and passes them to the
rasterizer. The rasterizer takes the geometry formed by the vertices (triangles, quads, lines, points)
and produces fragments. The processing of fragments includes among other functionalities texturing
and depth test. The resulting pixels are written into the framebuffer. The framebuffer is periodically
read (depending on the screen refresh frequency) by the graphics hardware and the data are sent to
the display.

3D data are usually sent to the OpenGL for rendering. To get the impression of a smooth non-jerky
animation, about 20-30 rendered frames per second are often mentioned as minimum. In practice,
the refresh rate of the monitor is often used. The monitor refresh rates ranges from 60 (on LCDs) to
90 (CRT) and sometimes even more.

Some applications are using high-level libraries for representing virtual scenes, such as Open
Inventor [Inventor], OpenSceneGraph [OSG], OpenGL Performer [Performer], and many others.
They provide encapsulation of many graphics algorithms and routines thus shortening the

33

Fig. 28: OpenGL pipeline

Rasterizer

Per-Fragment
Operations

Per-Vertex
OperationsApplication

FrameBuffer

OpenGL API

2 State of the Art

development time of the application. Many CVE systems put their collaborative algorithms inside
these libraries, changing their virtual scenes to collaborative scenes. Some examples are DIV
[Hesina et al. 1999], [Peciva 2005], Avango [Tramberend 2001], and Blue-c [Naef et al. 2003]. The
user of such libraries is usually able to profit from the collaboration using simple API that
encapsulates possibly really complex CVE algorithms.

Immersive virtual reality
Immersive virtual reality became a term for virtual reality that is so
similar to the reality for the user perception that he is nearly able to
forget he is in the virtual world. The level of the immersion can be
different depending on used hardware. Some special hardware for
increased immersion follows:

– Head-Mounted Display [Forte]– typically two display screens, one
for each eye, and motion tracker; The displays provide the user by
3D scene view while motion tracker continuously measures head
position and orientation to update the scene view. The first wide-
market attacking HMD was VFX1 from Forte. It is shown in the
figure 29.

– Stereoscopic viewing – perception of depth and the sense of
space

– Gloves – sense of touch; The user is able to feel the objects
through gloves, manipulate them, and interact with them.

– Haptic – sense of touch; The user is able to touch and
manipulate objects through a haptic device [Haptic]. A haptic
device is shown in the figure 30.

– Sound – provides the user by audio perception

– VirtuSphere [Technovelgy] – free walking; sphere rotates freely
as the user is moving (figure 31)

Augmented virtual reality
Augmented virtual reality usually uses a 3D glasses with a small camera
inside. The camera signal is going into the computer, it may be
processed, and it is mixed with virtual scene objects. The picture 32 is
showing two users interacting with virtual objects in augmented reality
on Vienna university [Kaufmann 1999].

34

Fig. 29: Head-Mounted
Display (HMD)

Fig. 31: VirtuSphere

Fig. 30: Haptic device

2.8 Virtual Reality Systems

Fig. 32: Augmented Virtual Reality

Collaborative techniques
Several techniques are used in virtual reality applications when collaboration of virtual
environments is used. The techniques are aimed especially to lower the network bandwidth and to
provide smooth and non-jerky animation to the user.

Dead Reckoning
Dead reckoning was used long time ago for the ship navigation. With stellar observation, the
navigation is “live”, working with the stars and the movement of the planet. With logs, compasses,
clocks, but no sky, the ship navigator is working “dead”.

“Dead reckoning is the process of estimating one's current position based upon a previously
determined position, or fix, and advancing that position based upon measured velocity, time,
heading, as well as the effect of currents or wind.” (Wikipedia, 2007)

In CVE systems, it is usually not possible to distribute scene updates on per-rendered-frame basis
because 60-100 frames is often rendered per second. That would lead to high network traffic, or
even to reach network limits. It is also possible to eliminate the effect of the network latency by
estimating the object position from the last known data.

The term “dead reckoning” [Roehl 1995a][Cai et al. 1999] was introduced to CVE in the project
SIMNET [Calvin et al. 1993] in the 80's. SIMNET was predecessor of DIS project [ANSI 1993].
DIS used dead reckoning for objects behavior, such as tank, airplane, and missile movements.
Because the simulation was including thousands of them, it was necessary to lower the number of
updates. Since these objects often follow straight paths or easily predictable paths. So, dead
reckoning can be used to predict the object position for the close future based on, for example,
current position and velocity vector. DIS is computing the difference between the predicted position
of the unit and its real position. When the difference reaches some threshold, the next update is sent
to all replicas. The replicas will receive the update that consists of object's position, the time of the
position, and object's velocity vector. Then, dead reckoning on the replicas updates the unit state
and smoothly interpolate the unit position to the new trajectory. This way, huge network traffic
reduction can be reached.

35

2 State of the Art

Fig. 33: Fighter using dead-reckoning

The similar technique is prediction [Hor and Yonekura 1999] that may be used, for example, for
reduction of the network latency impact on the user.

Key-frame Interpolation
Key-frame interpolation is sometimes used, for example, in computer game simulated environment.
The simulation is running in steps, for example, 10 steps per second. Each step produces a number
of updates that are synchronized among the computers. The slowest computers may render just 10
frames each second and the highest performance computers may render 100 frames per second
while they interpolate the object positions between the last two simulation steps. The approach was
used in the computer game Age of Empires and the algorithm is described in [Bettner and Terrano
2001].

The figure 34 demonstrates the collaborative simulation. The first line shows processing of the high
performance computer. The computer is performing five rendering steps between any two
simulation steps. The position and behavior of object is interpolated through the time between the
key positions given by the simulation steps.

The high performance computer is three time more powerful than the second computer shown on
the second line. The computer is capable to perform just the simulation step and render it only one
time. However, both simulations are running synchronously because the same number of the
simulation steps is done. Active replication (see section 2.4) is often used in such environments.

Area of Interest
Area of Interest [Benford et al. 1993] eliminates number of updates and associated network and
processing resources. The unnecessary updates are detected by awareness algorithms [Benford et al.
1994]. The simplest awareness models are often based on spatial distance – the distant objects do
not need to be synchronized because they are far away from the users view and they do not have
any direct consequences on the part of the virtual environment that is close to the user. The example
of car and city traffic simulator can be given: The cars positions from an other quarter of the city do
not need to be synchronized as the cars are not rendered until they get close to the users car. Thus,
they do not have to consume network and computing resources.

36

Fig. 34: Key-frame interpolation

(S – simulation step, R – rendering step)

S R R R R S R R R R S R

S R S R S

R R

2.8 Virtual Reality Systems

The same algorithm was also used in DIS [ANSI 1993] project. Earth was spatially divided to the
areas and each unit send updates just to the areas that were spatially close enough to the unit.

2.9 Database Systems
Distributed databases are related to CVE systems because both of them are working with the data
that are distributed and replicated. Virtual scene data are often called scene database. The question
can be asked, how much do they have in common. The scene data can be converted into database
data and stored in database tables, so the scene data can be theoretically treated as database data.
The performance requirements can be fulfilled by real-time databases that are focused more on
performance than traditional requirements of safety and durability of the data. A typical difference
is in the kind of access – CVE systems are accessing the data directly, winning the performance,
while databases are usually using SQL [SQL-92] as intermediate language to communicate with the
database.

If it is possible to store 3D scene into the database, it is also possible to think about replication
models in databases and distributed database models and to consider their application in
collaborative virtual environments.

Databases and transactions
Database may be considered as (possibly remote) data stores. The access to them is usually realized
by transactions. The transaction is ordered list of operations that can be executed by the database
while fulfilling ACID properties [Gray and Reuter 1992]:

– atomicity – all effects made by the execution of the transaction are either applied all to the
database or the transaction has no effect (the case of abort or failure)

– consistency – if the database is consistent before the transaction execution, it is also consistent
after the execution

– isolation – even if transactions are executed concurrently, the system guarantees that for every
pair of transactions Ti and Tj, it appears that Ti either finished execution before Tj started, or Ti
started execution after Tj finished

– durability – after the transaction is finished, the changes it has made persistent even if there are
system failures

The process of the transaction execution is depicted in the figure 35.

Fig. 35: Transaction processing

37

Scheduler

Execution Datastore

Transaction
issued

Client Database

2 State of the Art

The transaction is issued by a client and it is usually specified in SQL language [SQL-92]. Then, the
transaction is received by the database. The scheduler contains the list of all pending transactions. It
may reorder them to get the best database performance because the transactions can be executed
concurrently and good scheduling order may avoid many concurrency violations followed by many
execution restarts, thus increasing the performance.

The transaction execution results in reads and writes that are performed on the datastore. If the
transactions are executed concurrently, some concurrency control protocol has to be used when
reading and writing to the datastore. Otherwise, concurrency violations may result in data
inconsistencies if not handled properly. The transaction execution is finished by the commit or
abort. The commit results in permanent record of the changes in the database and the abort removes
all the effects of the transaction that may be already made.

Consistency Models – Locking Protocols
Locking protocols avoid consistency violations by locking the data that the transaction is accessing.
If the transaction wants to read or write some database record, it has to get the read or write lock for
the record. All the locks are released at the transaction commit or abort. If the transaction wants to
access the database record that is already locked by another transaction, it tries to get the lock. If the
lock is compatible with the first lock, it can safely proceed. Usually, shared locks and exclusive
locks are used as shown in the lock compatibility table (see table 1). The shared locks (S) allows
only reading of the data item, but several transactions can get shared lock. The exclusive lock (X)
allows both – the read and write access to the data item, while only one transaction can own
exclusive lock at any time. If the current lock is not compatible with the requested one, the lock is
not granted. A straightforward solution is to abort and restart the transaction that failed to get all
required locks. The waiting for lock to be released may be other option, however it may lead to
dead-locks.

S X
S true false
X false false

Table 1: Lock compatibility table

Consistency Models – Timestamp Ordering Protocols
Timestamp ordering protocol [Reed 1983] assigns each transaction its own unique timestamp. Each
data record has associated two timestamps. One of them is holding the timestamp of the transaction
of the last read operation, and the other the timestamp of the last write. Six rules are described in
[Silberschatz et al. 2002] that are used for concurrency violations detection. Roughly speaking, it
works like this: If the transaction is trying to read the record and the record has higher write
timestamp than the transaction, the value has been already overwritten and the transaction has to be
aborted. The write timestamp has to be lower than transaction's timestamp for the read operation to
proceed. The write operation obeys similar rules: If the transaction is trying to write the record and
the read timestamp is higher than transaction's timestamp, the transaction has to be aborted because
another transaction already used the record's value. If the read timestamp is lower, write timestamp
is tested also to be lower, otherwise the transaction is trying to write obsolete value and it has to be
aborted.

Several optimizations were developed, lowering the number of consistency violations and number
of transaction aborts. The most important for this thesis are multiversion databases [Reed 1978] that

38

2.9 Database Systems

are used, for example, by Oracle [Silberschatz et al. 2002]. Multiversion databases keep several
versions of data records. Therefore, if the transaction is trying to read and the record has higher
timestamp, it is not necessary to abort the transaction, but the appropriate value from the
multiversion database is returned.

Distributed and Replicated Databases
Distributed and replicated databases involve cooperation of several computers on whose the
database is distributed or replicated. Distributed databases splits the data of the database so that
different parts of the database reside on different computers. A frequent reason for distributed
databases is storing of large databases that overcome the limits of a single computer because either
performance limits or hardware limits. Another possible reason is localization and data migration
depending on the access requirements. So, the data can be available at the server that is the most
closest one to the client that most often uses the data.

Replicated databases are used in order to increase data availability. The data can be replicated
among the number of database servers, increasing the overall database performance because any of
the servers is able to respond to the data access requests. However at most cases, any write requires
advanced coordination to update the data on all the servers. The updating all the replicas is usually
handled by the replication protocol. Replication protocols were described in the section 2.4

Both the replicated and distributed databases are requiring the coordination on their transaction
execution to prevent data inconsistencies in the cases of failures. Two phase commit protocol
[Lampson and Sturgis 1979] is often used. Three phase commit protocol [Skeen 1981] is used to
avoid possibly long database restorations after the failures.

Real-time Databases
Real-time databases are usually keeping the database in main memory for performance reasons. The
main memory is more expensive than disk space, but disk performance and its data access latency –
about 10 ms, limits the performance of the database and execution of hundreds or thousands of
transactions per second is usually not possible. Main memory databases [Garcia-Molina and Salem
1992] are able to provide such performance, but data durability is a problem in the case of system
crash. One option is to store system log in stable storage. In such case, the log re-execution makes
the database restoration possible after the system crash. However, even if disk I/O bottleneck was
removed for main memory databases, other bottlenecks may be reached. Creation of system log can
be one candidate, depending on stable storage throughput. Another possible bottleneck is in locking
operations and transaction execution planning. It can be optimized for main memory databases.

Real-time databases are real-time systems. Real-time systems are such systems that works with
deadlines [Silberschatz et al. 2002]. The deadlines are characterized as follows:

– Hard deadline. Missing the deadline can cause serious problems, such as system crash.

– Firm deadline. The task completed after the deadline has zero value.

– Soft deadline. The task has diminishing value if finished after the deadline.

The transaction management and transaction execution planning should take deadlines into account
and they may even abort other transactions holding the lock required for the execution of the
transaction with close deadline. The transaction processing in real-time databases are discussed in
[Abbott and Garcia-Molina 1992] and [Dayal et al. 1990].

A problem with real-time databases is that it is difficult to predict time cost of transaction

39

2 State of the Art

execution. It is often important to ensure that excess of processing power is available. Otherwise,
the system may not be capable to handle all the transactions with deadlines in time.

40

3 Analysis

3 Analysis
This chapter describes the consistency models used in Collaborative Virtual Environments (CVE)
and investigates their properties. The properties are summarized and weaknesses and strength of
different approaches are shown. Finally, the suggestions are given for a new and robust CVE
approach. The new approach, that takes the suggestions in the account, is presented in the chapter 4.

CVE is long-term trend in visualizations and interaction. One reason is success of Virtual
Environments (VE) because the human perception can easily perceive them and to treat them in a
similar way as the reality. Moreover, some situation can be visualized or simulated in virtual
environment, while they may be much more expensive in reality. For example, a virtual car
simulator that is able to show all difficult traffic situations in few minutes while several hours drive
is necessary in reality and it includes the risk of an accident.

Completely synthetic virtual environments are useful in many cases but people often want to use
them for interaction with others (pilot training) or to collaboratively share the data (collaborative
CAD software). Social context of collaboration can be seen in some computer games that require
cooperation of group of people for reaching some goal. These are often more popular than single-
user games for the inclusion of social feeling. Since the collaboration abilities importance is grow-
ing and human social context can be clearly seen, CVE is an important trend in computer graphics
for the future.

The collaboration is not trivial to realize. It often requires replication of the data among all
participating computers (see section 2.4) and keeping the data consistent. Several data consistency
models already exist for this purpose. They provide different consistency strength and different
system performance characteristics. However, the trade off exists between the consistency strength
and the performance unless some sophisticated methods are used. It is often difficult to design the
system with strong synchronization because of performance reasons. Weaker models are, in
general, making application design more complex and they are more difficult to design and to be
understand by the programmer. Although this thesis primarily focuses on strong consistency, it
addresses both issues – the performance and usability, and tries to meet the requirements of both.

The model with stronger consistency provides additional consistency guarantees over the basic
guarantees of the weak models. The additional guarantees are often superior to the basic ones, so
they will be called high consistency guaranties throughout the thesis. The term consistency
guaranties is used just with the relation to the strength of the consistency; therefore, it is not defined
in the presented work.

The chapter has three main parts: At first, the short introduction is made on consistency problems in
the section 3.1. Then, the classification of different consistency models' designs is introduced
(section 3.2) and the typical CVE consistency models are presented and classified according the
given classification (section 3.3). The classification of consistency models is important for the
design of a new approach and it is aimed to the requirement of performance. Another classification
is introduced in the section 3.4, based on consistency model properties and convenient usability.
The models are classified and the final section 3.5 summarizes the state and gives the requirements
and possible ways for the new approaches.

Since no suitable classifications exist in bibliography available to me, I proposed both
classifications by myself and used them. The typical CVE configurations were chosen also by me
while the main distinguishing factor is data replication model. I described the models and their

41

3 Analysis

behavior. The main contribution of the chapter is the classification of consistency models and their
properties that can be used as a foundation for a new consistency model.

The whole chapter does not provide exhaustive description of consistency models in CVE. It just
characterizes those ones that are considered the most important for this thesis. The text does not
consider all nuances of already existing consistency models and some aspects that are not important
for this thesis may not be covered.

3.1 Consistency Issues
Consistency models are designed to keep application data consistent. Replication protocols
[Wiesmann et al. 2000] are already handling basic consistency problems, such as concurrent writes
of different computers on the same data item. However, the level of the consistency given by the
replication protocols is not high enough for many applications. They may require additional
guarantees because some relations may exist among data items that have to be kept by the
consistency protocol.

This section demonstrates several typical consistency problems that the replication protocols are not
intend to handle and they may be required by the application.

Fig. 36: Partial object update consistency problem

The figure 36 shows a consistency problem caused by partial object update. Two updates that
should be applied atomically are applied in different moments and an access to the object is done
between the updates. The access will read the object in non-consistent state that may lead to
application failure. The problem is studied in this thesis as scene access level property of
consistency model and as an ability to group the read and write operations accessing the scene.

42

 1. Update texture dimensions

Computer A

dimensions

data

Texture node

 2. Texture data update

 3. Data update
 is delayed

Computer B

dimensions

data

Texture node 4. Replicated dimension update

5. Access to non-consistent texture node

3.1 Consistency Issues

Fig. 37: Out-of-order update consistency problem

Many CVE systems are not forcing the updates to be executed in the order of their sending. This
helps to gain some performance but it is source of consistency problems. One example is shown in
the figure 37. The example contains texture node with two attributes: dimension and data. The
dependency exists between the dimension attribute and amount of memory allocated for the data
attribute. If the user sets the dimension first and then he updates the data, there is no problem on
Computer A. But if the dimension update is delayed and Computer B receives the data update first,
serious problem occurs. The processing of texture data update without processing the dimension
update first may cause writing behind the allocated memory block because the dimension update is
meant to reallocate the memory according to the texture size. Thus, the message delivery order may
have serious consequences for the application stability. The problem is studied as message ordering
property in consistency models.

Fig. 38: Causality consistency problem

43

 1. Update texture dimensions

Computer A

dimensions

data

Texture node

 2. Texture data update

 3. Dimensions
update is delayed

Computer B

dimensions

data

Texture node

 4. Replicated data update
(without updating dimension first!!!)

 1. Node created

Computer A

3. Node updated

Computer B Computer C

2. Node replica
 created

5. Delayed update:
 node replica created

 4. Update message
for non-existing replica

3 Analysis

The figure 38 shows causality consistency problem. The node is created by the Computer A. Then,
the computer B receives the scene update of node creation and creates its own node replica.
Immediately, it decides to updates its value. The update message is sent to Computer A and
Computer C. However, it may happen, because of strange network conditions, that Computer C has
not already received the message about the creation of the node from Computer A, thus it has not
created its replica yet. But it may already receive the update from Computer B for a node that does
not exists at Computer C. If the situation is not properly handled, serious application stability
problems may occur, such as writing to unallocated memory.

3.2 Design Concepts of CVE Systems
I have investigated many projects to find different design concepts used in CVE. Based on the
investigation, I chose several criteria that will be used for the classification in this thesis. The
classification is focused on design concepts and performance:

Criterion Used Options
Architecture client-server (1-server, N-clients)

distributed-server (M-servers, N-clients)
peer-to-peer

Replication protocol primary-based (local-write, remote-write, ownership protocols)
write-everywhere (active replication)

Message ordering no-order
FIFO
causal-order
total-order

Message delivery guarantees reliable
unreliable

Scene replication type full
partial

Validation strong
strong with the limited access
weak

Access level single operation
hard-coded atomic action
programmable atomic action
user-defined message model

Table 2: Consistency models classification criteria

The architecture describes the system configuration and the role of computers. A popular archi-
tecture is client-server for its simplicity. One computer is the server and all the others are clients.
When using primary-based replication protocols, the server holds the primary scene and the clients
are backup replicas. Such configuration is simple to design and good solution for small scenes.

44

3.2 Design Concepts of CVE Systems

Distributed server architectures increases the performance limits by distributing the primary scene
among more computers, ranging from a small server cluster to large computing servers counting
thousands of computers.

Peer-to-peer architecture is often used with active replication (see section 2.4). It is non-centralized
approach and its advantages include strong consistency and better fail resistance.

The replication protocol describes the type of the replication in the system. The most often used
protocols in CVE are primary-based (see section 2.4). The primary-based replication requires one
replica to be the primary and all the others are backups. All the updates have to be performed by
accessing the primary, that, as a consequence of its update, updates all the backups.

The opposite approach is active replication (see section 2.4). All the replicas are peers and any
update is sent to the all replicas by atomic multicast (see section 2.4). The atomic multicast
guarantees that all replicas receives the updates in the same order. If the determinism requirements
are met, the processing of the updates in the same order results in the same replicas state on all
computers, thus, computers are kept completely synchronized.

Message ordering (or updates ordering) influences deeply the consistency guarantees. Three basic
types of message ordering can be distinguished:

– per-computer orderings (no-order, FIFO order, causal order)

– per-item orderings

– system-wide orderings (causal order, total order)

The per-computer orderings provides per-computer-pair ordering – between source and destination
computer – guaranteeing that all messages sent from the source computer will be delivered to the
destination computer in the correct order. Often used orderings are no-order, FIFO order, and causal
order.

No-ordering means that the messages sent in certain order are received in unspecified order. The
message re-ordering is caused, for example, by the non-constant network delay and packets routing.
Some applications do not accept to work with unordered messages. Others may benefit from it
([Roehl 1995a]). For example, the application may not be interested in previous update if newer
update already arrived that replaces the effect of the previous one. Waiting for the previous update
would just lower the application performance. Unordered messages are used more often in weaker
consistency models and with unreliable communication.

FIFO ordering guarantees the receiving order of messages to be the same as their sending order.
FIFO order is widely used ordering and it can be easily realized by TCP protocol that is the most
used Internet communication protocol today.

Causal ordering is weakening of FIFO requirement. The correct order is required just for the
causally related messages. This may result in higher performance compared to FIFO ordering.

The per-item orderings (compared to per-computer orderings) provides the ordering on different
granularity level – on per data item level. Usually, this ordering is not often used because the per-
computer ordering is created anyway as a consequence of single-threaded execution of the
application or by serialization on a single network card. However, special architectures,
multiprocessor servers, and multi-network-card configurations may benefit from this. But such
special cases with per-item orderings are rare and they are even more weakening the consistency
guarantees. This thesis is focused especially on models with strong guarantees. Therefore, they are
not studied here.

45

3 Analysis

System-wide orderings shift the consistency guarantees to the higher level. Total order requires all
messages in the system to be seen in the same order by all computers. Causal order, when applied in
system-wide context, forces just causally related messages to be seen in certain order on all
computers. System-wide orderings provides more consistency guarantees, possibly simplifying the
application design while trading of scalability.

The most often used message orderings are total order and FIFO order. One of the reasons to not
using weaker orderings can be high qualities of today networks, compared to early and middle 90's.
Now, it seems that the benefits gained by weaker orders are not so important for the most of
mainstream applications.

Message delivery guarantees provided by computer networks are usually of two types: reliable
and unreliable (see section 2.6). Unreliable communication does not take care about lost packets
and message receive order. Some messages may be lost and others may be received in a different
order than they were sent. Reliable communication handles these things automatically. I have found
three types of the most often used connection types:

– UDP communication and unreliable multicast

– TCP communication

– reliable multicast protocol [Chang and Maxemchuk 1984], [Floyd et al. 1997]

UDP is sometimes used when no high consistency requirements exist and high performance is
required. TCP is probably the most often used communication for its usage convenience. Reliable
multicast is the subject of research of some papers because the original multicast concept does not
provide reliability.

Scene replication type is full or partial. The full replication is nearly always required by active
replication. The requirement of full scene replication is in the contrast of the optimizations based on
Area-of-Interest techniques (section 2.8) that do not replicate the parts of the scene that are not in
the interest of the client because they are, for example, too far away from the user view.

Validation is used for concurrency control because many computers may access the scene at the
same time and some operations may be not compatible with operations of other computers. The
validation may not stay only at lowest level of accessing variables, but it may include some high
level behavior, such as scene constraints, user-defined code, and collision detection that avoids
penetrating solid objects to each other by refusing the updates that broke penetration condition.

Fig. 39: Update processing with validation

A typical update processing with validation is depicted in the figure 39. Some client creates the
update request and sends it to the server. The server performs the validation and if everything is
right, it applies the update to its scene and all clients are asked to update their replicas. If the
validation is not successful, the update request is refused and the scene is left unchanged. Some
advanced applications may try to reconcile the request with the current scene content and avoid the
update refuse.

46

update request
created validation update

execution

update

serverclient clients

3.2 Design Concepts of CVE Systems

The need to validate the update request is the result of concurrent scene access that is performed
through the network, thus it suffers from the network latency. The problem of concurrent access is
shown in the figures 40a-d. The figure 40a shows Client A that accesses the server to perform a
scene update. The server accepts the update and acknowledges it to Client A. It can be seen that the
scene state on the server is transformed directly from the state 1 to the state 2. The same happens on
Client B, but it is delayed by the network latency that may vary in time and among the computers.
The state transfer on Client A that issued the update request is, however, different. The scene is
transferred from the state 1 to state 2a. The state 2a is considered temporary and it means that some
update happened locally but it is not acknowledged by the server yet. After the acknowledgment,
the state is transferred to the state 2. In the case of the update refuse by the server, the scene state
turns back to state 1.

The same situation is shown in the figure 40b when the update happened on Client B. The same
schedule of events applies.

The different situation occurs if the update requests on Client A and Client B occur simultaneously.
The situation is depicted in the figure 40c. The update is requested on both clients at about the same
time. Both of them are sent to the server. The server receives them in certain order. One of them,
usually the first one, is executed first. It is validated and applied. Then, the second one is validated
and if the updates are not compatible, the update is refused. In the figure 40c, the update of Client A

47

Fig. 40: Update concurrency

d) Concurrent updates of client A and B,
the updates are compatible

c) Concurrent updates of client A and B,
the updates are non-compatible

b) Client b updates the scenea) Client A updates the scene

State
2a

State 1

State 2
State 2

State 1

State 1

State 2

update

Client A Client BServer

update accepted

update

State
3a

State 1

State 3
State 3

State 1

State 1

State 3

Client A Client BServer

update accepted

State
2a

State 1

State 2
State 2

State 1

State 2

State 1

State
3a

update update

Client A Client BServer

update accepted

update rejected

3a rollback State 3

State
2a

State 1

State 2

State 2

State 1

State 2

State 1

State
3a

update update

Client A Client BServer

State 3 State 3

update accepted

update accepted

3 Analysis

is accepted and update of Client B is refused. The negative acknowledgment is sent to Client B and
it rolls back all the changes related to the update. The state changes on Client A are the same as in
the figure 40a. The server state is the same too because the update request from Client B was
refused. However, the client B state changes differs from the figure 40b. The state 3a is present after
the update request is sent. Then, the update from Client A is received that may not be compatible
with the state 3a, therefore it may replace the effect of the unacknowledged update request and the
scene enters the state 2. Then, Client B receives the negative acknowledgment of its update and it
rolls back all the remaining effects of the state 3a.

Another situation occurs if both update requests happened concurrently, but they do not interfere
with each other and both of them are accepted. The situation is shown in the figure 40d. The server
accepts the first update and sends update to the clients. Then it accepts the second update and sends
next update to the clients. All clients are progressing in the state from 1 to 3. The differences are
just in the temporary states (state 2a and 3a) and in the time of applying of the update.

The validation will be called strong in this thesis, if it uses up-to-date data only – that is the primary
data in the case of primary-based replication. If the client-server architecture is used, the server
holds the primary scene and it is able to perform strong validation while clients can do only weak
validation unless they are sure they have up-to-date data. On distributed primaries architectures, the
primary scene does not reside on one computer, but it is distributed. This fact makes the strong
validation more difficult to realize because much of the data available locally are just backups. The
validation has to either not access backup data or to make remote access to their primaries. If none
of the two is an option, the validation may be relaxed to use weak validation.

Weak validation allows the usage of the backup data that may not be up-to-date. It may result in
scene inconsistencies and the application has to be designed robustly enough to be able to live with
them and reconcile or converge them quickly enough. On the other side, weak validation usually
increases the scalability and performance of the application.

Some applications with distributed primaries may use a special kind of strong validation that does
not require any access to the backups. Such validation uses only the primaries that are available
locally and it will be called validation with limited scene access because the validation process is
limited just to the part of the scene that is composed of primaries. On the other side, the validation
process, that is allowed to access whole scene state, either because a weak validation is used or the
whole scene is up-to-date, will be called non-limited.

Access level can be one of the following:

– single operation

– hard-coded atomic action (often called event)

– programmable atomic action (generalized event)

Single operation is, for example, one read or one write operation performed on the scene. These
operations are issued by computers and they are accepted or refused by the validation process. The
reasons for refusing are usually some consistency restrictions, collision detection, scene defined
constraints, etc. However, single operation does not provide abilities for atomic access to a group of
data items. For example, it is difficult to handle situations when partial update of several data items
of an object would lead to the object inconsistency. In such cases, some higher access level may be
a better option.

Hard-coded atomic action is a sequence of operations that are executed atomically. It is similar to
stored procedures [Silberschatz et al. 2002] used in database systems. If the action is well designed,

48

3.2 Design Concepts of CVE Systems

it provides atomicity and gives the programmer advanced access to the data items. Many systems,
such as DIVE [Frecon and Stenius 1998], are using term “event” for what is called hard-coded
atomic action in this thesis.

The idea of programmable atomic actions is quite similar to the transaction concept [Gray and
Reuter 1992] used in database systems. Programmable atomic actions extend hard-coded atomic
action concept by possibility to specify the action in run-time while hard-coded actions have to be
known in compile-time. Programmable actions give the programmer extensible access to the scene
that is not limited to the set of hard-coded actions. A typical example that can not live with limited
set of actions is a CVE library encapsulating CVE algorithms. The library can not know all the
varieties of actions that different kinds of applications may need. Or, there may be a requirement of
scene extensibility by new object types and actions that are not known at the application compile
time. Programmed actions can be specified at run-time. Users can define what the action shall read
and what it shall write. The next step forward would be not using static read and write set. Instead,
the transaction would be specified by a script that may create read and write set dynamically. The
advantage of using scripts should be that they may take current scene state into the account while
the current scene state is not known in the time of the transaction creation. This may avoid many
transaction aborts and increase the application performance. However, the scripting is going far
beyond the scope of this thesis.

3.3 Typical CVE Configurations
I identified several the most used configurations used in CVE systems:

– Centralized Primaries model

– Distributed Primaries model

– Data Ownership

– Active Replication

The configurations can be classified according to the criteria given in the section 3.2. The
classification based on architecture and replication model is shown in the figure 41 and the
complete classification of all criteria is in the table 3. The details related to each of the four
configurations will be explained in the following subsections. The subsections do not define the
configurations formally because it would be difficult to make the definitions abstract enough to
cover all possible nuances and specialties of different CVE systems.

49

Fig. 41: Architecture classification of consistency models

Active ReplicationData OwnershipDistributed
Primaries

Centralized
Primaries

Active ReplicationPrimary-based Replication

Distributed ServerCentralized Server Peer-to-Peer

3 Analysis

50

Ta
bl

e
3:

 C
la

ss
ifi

ca
tio

n
of

 c
on

si
st

en
cy

 m
od

el
s f

oc
us

ed
 o

n
de

si
gn

3.3 Typical CVE Configurations

Centralized Primaries
Centralized primaries consistency model is based on primary-backup replication model. Depending
on the implementation, either primary-backup local write protocol or remote write protocol (section
2.4) from distributed systems can be used. At this model, all primaries reside on one computer
called server and they are forming primary scene. All other computers are called clients and they
hold just scene backup replicas. All backup replicas in the system are readable and write access is
allowed only into the primary replicas. Whenever a client wants to update some data, it has to send
an update request to the server. The server may perform some scene consistency checking and
accept or refuse the update. If the update is accepted, the primary replica is updated and the
message is sent to all backup replicas to update their values.

The figure 42 shows five computers. The computer at the bottom is the server containing the
primary scene. All other computers are clients. The computer at bottom-right wants to update the
scene. It sends the update request to the server. The server processes the request and if it accepts the
request, it sends the update to all clients.

51

Fig. 42: Centralized primaries consistency model

Scene
Replica

Scene
Replica

Scene
Replica

Primary
Scene

Scene
Replica

Replicated
Scene

 distribution
 of updates

update
request

Fig. 43: Validation in centralized primaries model

update request
created

strong
validation update

execution

update

serverclient clients

3 Analysis

The update processing is shown in the figure 43 in more detail. The processing has four stages:

1. creation of update request at a client

2. update validation on the server

3. performing of the update at the server

4. update on all clients

The figure 44 depicts the time line of the scene update processing. Two types of latencies can be
seen. They are called request latency and update latency here. The request latency is the latency on
Client A between sending the request and actual updating of its scene after the server confirmed the
update. Update latency reflects the time between the server process the update and the time when
the particular client receives the update. The system using centralized primaries model has to be
designed to live with these latencies.

The request latency is important for the responsiveness of the application. It can be masked by
providing the user by some visual or audio feedback (see section 2.8), or the updates can be applied
temporarily and validated/reconciled after the server response.

The update latency is related to the scene consistency and to the concurrent access of clients to the
server scene because the access suffers from inherent network latency. Since the updates are not
immediately seen on clients the backup scenes can be temporarily out of synchronization until the
updates arrive. This may lead to sending update requests by clients that are not based on up-to-date
scene data and therefore they may not be valid sometimes. The server has to be able to refuse
invalid updates or to reconcile them with the current scene state. More details concerning validation
were described in the section 3.2.

From the point of this thesis, centralized primaries consistency model is interesting for centralizing
whole primary scene at one place. Such property enables the kinds of scene processing that requires
the access to the whole up-to-date scene or to large part of it. A typical algorithm that requires such
access is collision detection that has to process all the scene objects for collisions. Since it is the
primary scene, no delayed updates exist, and collision is performed on up-to-date data resulting in
always correct results. Another interesting thing of the primary scene centralization is validation
(see section 3.2) that can be used, resulting in strong consistency and better usability of the
consistency model.

The disadvantage of the client server architecture is its scalability because the server may quickly
become a bottleneck if the system loading is too high. From the point of safety, the server is single

52

Fig. 44: Client update latency in primary-based models

Server Client BClient A

Request
UpdateUpdate Update

latency

Request
latency

3.3 Typical CVE Configurations

point of failure of the system. It is safe against client crashes, but the server crash usually results in
the failure of the whole system.

Advantages:

– strong validation

– simple design

Disadvantages:

– limited scalability

– single point of failure

Although centralized primaries model has its advantages, it does not often appear in the research
papers. Many projects are using other primary-based models. One reason is data access latency as
different data may be required to be placed on different computers for minimizing cost of accessing
them.

Distributed Primaries
Distributed primaries consistency model is similar to centralized primaries model except that the
primary scene is distributed among the computers. The parts of the scene are “owned” by different
computers and each computer is allowed to write only to its part of the scene. If a computer wants
to write to the part that belongs to another computer, it has to send a request to that computer to
update the scene. Clearly, this approach is based on primary-based local write or remote write
protocol (section 2.4) from distributed systems.

The processing of the updates and update requests is depicted in the figure 45. It is quite similar to
centralized primaries model. The difference is that the update request has to be sent to the correct

53

Fig. 45: Distributed primaries consistency model

Pri./Repl.
Scene

Pri./Repl.
Scene

Pri./Repl.
Scene

Pri./Repl.
Scene

Pri./Repl.
Scene

Replicated
Scene

 distribution
 of updates

update
request

3 Analysis

computer that holds the primary of that particular data item or data items. The primary parts of the
scene are marked red in the figure, and backup parts are in blue. After the processing of the update
request, the computer that holds the primary is responsible for updating the backups on other
computers.

The timing and latencies of the update/update request is the same as with centralized primaries.
However, the problems of concurrent access and scene consistency are even more difficult because
there is no central point of validation like the server in centralized primaries that was validating all
the update requests. Each computer has to perform the validation for all it's primaries by its own
because of the distribution of the primary scene. However, the validation is usually using some
scene data to verify that the update will not break some consistency rule in the scene. Proper
validation should use only primary data that are up-to-date by their nature. But the validation may
require to access even the data that does not have its primary on the local computer. Moreover, the
validation process on many computers may require the access to the same primary, thus moving the
primary to any computer does not help. This problem usually leads in weakening the consistency
requirements and using also the backup data for the validation, resulting in some degree of
inconsistencies among the scenes on different computers. The validation process is depicted in the
figure 46.

Fig. 46: Validation in distributed primaries model

Accepting to live with the inconsistencies among the scenes in distributed primaries model often
leads to different design style of the application. Small inconsistencies may tend to grow rapidly
when not reconciled quickly. Therefore, the application should be designed to handle theoretically
all possible differences among the scenes.

On the other side, distribution of primary scene overcomes the scalability problem of centralized
primaries model by distributing the loading among the servers. Weakening of consistency
requirements may improve performance and scalability. Especially the scalability, with introducing
area of interest technique (see section 2.8), may be increased enormously, ranging from a small
server cluster to the large spatially distributed systems with hundreds of computers where each
computer can be a server for a part of the scene, enabling extreme scalability, such as DIS [ANSI
1993] that used thousands of computers running large simulation, and several others (SIMNET
[Calvin et al. 1993], HLA [Kuhl et al. 2000], VR Group [VR Group]).

Advantages:

– scalability

Disadvantages:

– weak validation/consistency

54

update request
created

weak
validation update

execution

update

distributed serverclient clients

3.3 Typical CVE Configurations

update
ordering

ordering
type

communication
reliability

network protocols / other

DIS no order per-item unreliable UDP, broadcast
Repo-3D FIFO per-item reliable TCP /

active and passive replication
DIV total order global reliable reliable multicast
DOOM total order global unreliable UDP, broadcast

Table 4: Distributed primaries applications and their properties

Data Ownership
Data ownership consistency model is similar to distributed primaries model except that it allows the
primary to be transferred among computers. When the computer has an ownership of a data item, it
can read and write its value. If it writes to the data item, the update is sent to all other computers. If
another computer wants to access the data item, it may ask for its ownership. Without the
ownership, it can only read backup value that is not guaranteed to be up-to-date.

The figure 47 shows the update process when data ownership is used. When the update is requested
on the computer at the bottom, the ownership is transferred from the current owner that is top-right
computer. When the ownership transfer is complete, the data item is updated and update message is
sent to all other computers.

Such approach may be useful, for example, for CAD style applications – if the user moves the
mouse pointer over the object, the ownership can be gained before the user actually starts the
manipulation. Utilizing such prediction, the user may not notice any delay.

55

Fig. 47: Data ownership consistency model

Pri./Repl.
Scene

Pri./Repl.
Scene

Pri./Repl.
Scene

Pri./Repl.
Scene

Replicated
Scene

 distribution
 of updates

ownership
 transfer

update

Pri./Repl.
Scene

3 Analysis

On the other side, some systems that are doing intensive scene processing may not perform well on
data ownership model because the computers may start to fight for the data ownership and
ownership transfer may become a bottleneck. Possible solutions at that point can be application
redesign to reduce the amount of concurrent access or scene consistency requirements may be
revised.

Some systems support advanced ownership transfer control, such as MASSIVE [Greenhalgh 1999].
Another extension are updates without ownership transfer that enables to send update request
directly to current ownership holder and the holder will perform the update. Such approach may be
useful in some situations when the ownership transfer is not required. In that case, primary-based
remote write protocol (see section 2.4) is used instead of local write protocol.

The system can be designed to use either strong validation or weak validation, depending on the
consistency, performance, and scalability requirements. The update process with validation for data
ownership model is shown in the figure 48.

Advantages:

– flexibility of ownership (moving primaries)

– strong consistency if strong validation is used

Disadvantages:

– weak consistency if weak validation is used

– ownership request competitions

– ownership request deadlocks

Data ownership consistency model was used in MASSIVE-3/HIVEK [Greenhalgh 1999], CIAO
[Sung et al. 1999], Blue-c [Naef et al. 2003], Spline [Anderson et al. 1995][Waters et al. 1997] and
others.

update
ordering

ordering
type

communication
reliability

network protocols

MASSIVE-3/HIVEK causal,
FIFO

per-item reliable /
unreliable

TCP
(updates can be UDP)

Blue-c FIFO per-item reliable reliable multicast
CIAO FIFO per-item reliable TCP, reliable multicast
SPLINE FIFO per-item reliable /

unreliable
TCP, UDP, multicast,

HTTP
Table 5: Data ownership applications and their properties

56

Fig. 48: Validation in data ownership model

update request
created

strong/weak
validation update

execution

update

distributed serverclient clients

3.3 Typical CVE Configurations

Active Replication
Active replication model is peer-to-peer approach taken from distributed systems (see section 2.4).
All computers are replicating all collaborative scene data while keeping the scenes completely
synchronized. Active replication relies on deterministic presumption – provided with the same
input, all the processes will produce the same outputs. Therefore, if the scenes are synchronized at
the beginning, all updates are applied at the same order on all computers, and the update processing
is deterministic, the scenes will be kept synchronized.

The figure 49 depicts active replication model. All the scenes are synchronized. When any
computer wants to issue an update request, it sends the request by the atomic multicast to all the
computers. Atomic multicast [Birman 1993] (described in the section 2.4) is distributed system
communication primitive that guarantees total order of the updates and the reliability. Utilizing
atomic multicast, all the computers are processing the update requests in the same order and if the
deterministic execution is guaranteed, the scenes are kept synchronized. The determinism is often
named among the disadvantages of active replication because multithreaded applications and
heterogeneous systems may often not fulfill this requirement.

Fig. 50: Validation in active replication model

57

Fig. 49: Active replication consistency model

Scene
Replica

Scene
Replica

Scene
Replica

Scene
Replica

Scene
Replica

 update
scheduled

Replicated
Scene

atomic
multicast

update request
created

strong
validation update

execution

all computersissuing computer

3 Analysis

The update processing is changed (see figure 50) because the updates are executed on all
computers, thus no synchronization is necessary after the update is performed. The validation is
strong because the scenes are completely synchronized and it should not be weakened because it
may break the determinism requirement of active replication.

Fig. 51: Update latency in active replication model

The figure 51 shows the request latency of active replication. Compared to the primary-based
architectures, the request-update latency shorter – it is reduced to just one network communication
compared to two communications of primary-based approaches. From that point of view, it can be
said that active replication has better responsiveness. Another advantage is the property of
completely synchronized scenes. They are result of the same order of deterministic update
execution on all computers.

Active replication is suitable for small and middle-sized scenes as all the computers have to process
all the updates sent to the system. Otherwise, the scenes may go out of synchronization. On the
other side, active replication systems shows sometimes low network requirements because the
computers are exchanging just requests that are applied on the data. So, the data are often not
communicated, while primary-based approaches are usually exchanging the data values that may be
expensive in the case of geometry data, texture data, or similar large data sets. Active replication
may utilize the determinism and it may need to transmit just the type of operation to perform on the
dataset, while the same functionality may be limited on the primary based models depending on the
strength of the consistency model.

Peer-to-peer architecture is nearly always used with active replication. The applications using active
replication are relatively not too difficult to design and it is usually fail-safe architecture because if
well designed, there is no single point of failure and crash of one of computers will not lead to the
failure of whole system. The disadvantages are the determinism and scalability limits of active
replication (see section 2.4).

Advantages:

– completely synchronized scenes

– strong validation

– short latency

– fail resistance

Disadvantages:

– determinism of execution

58

Peer B Peer CPeer A

RequestRequestRequest
latency

3.3 Typical CVE Configurations

– limited scalability

Active replication consistency model was used in computer game Age of Empires [Bettner and
Terrano 2001], Avango [Tramberend 2001], DIVE [Frecon and Stenius 1998], and others.

update
ordering

ordering
type

communication
reliability

network protocols

Age of Empires
Avango
DIVE

total order global reliable
UDP-based reliable protocol

Ensemble system
reliable multicast

Table 6: Active replication applications and their properties

59

3 Analysis

3.4 Consistency Models Evaluation
The section 3.3 classified the consistency models from the design point of view. This section
classifies the consistency models based on their usability and their properties for an user. The table
7 shows the classification criteria that was chosen. The criteria and their values are explained in the
following subsections.

Criterion Values
global scene state centralized

distributed
delayed

immediate read of global scene state yes (usually local availability and push protocols)
no

immediate writes yes (often asynchronous writes and pull protocols)
no

scene constraints strong
strong on server only
strong on owned items only
weak

concurrent object/attribute manipulation reconciliation everywhere
reconciled on server only
reconciled on computer holding data ownership
user-defined

grouping of operations not supported
hard-coded actions
programmable actions

Area of Interest (AoI) supported
not supported
clients only

late join atomic state transfer
AoI style joins
pre-caching joins

Table 7: Consistency models classification criteria focused on usability

60

3.4 Consistency Models Evaluation

Global scene state
I realized that global scene state is either centralized, distributed, or delayed. The type of global
scene state is closely related to the replication model used in CVE system as shown in the figure 52.

Centralized Global Scene State
Centralized global scene state (figure 53) is used in client/server configurations when server holds
all up-to-date scene state. All updates have to be done through the server because all primary replica
copies are placed on it. The clients holds just back-up replicas that may not be up-to-date always.
Centralized global scene state has its benefit in the up-to-date scene centralization that makes the
strong scene validation easy to realize.

Fig. 53: Centralized global scene state

61

Primary
Scene

Scene
Replica

Scene
Replica

Scene
Replica

Scene
Replica

Fig. 52: Global scene state type depending on the CVE consistency model

Delayed Global
Scene State

Centralized Global
Scene State

Distributed Global
Scene State

Active Replication

Centralized Server

Distributed Server

Data Ownership

Passive Replication

3 Analysis

Distributed Global Scene State

Distributed global scene state (figure 54) means that global state is distributed among several
(possibly all) computers. Such configuration usually provides much more scalability. However, it is
more difficult to access global state efficiently because of its distribution. The problem is usually
seen from two sides:

– consistent reading of whole scene state

– atomic update of several data items

Both problems are related to strong/weak validation described in the section 3.2.

The first problem is related to tasks like saving whole simulation to a file for the sake of restoring it
later or to recover it in the case of a system crash. Another task requiring access to whole scene is
collision detection algorithms that avoids all solid objects to penetrate to each other. The most
straightforward solution for the saving scene to file is to stop the simulation, wait until all the
remaining updates are communicated, read the scene state, write it to a file, and start the simulation
again. The reading the scene state can be done locally only if area of interest techniques (see section
2.8) are not in use. Otherwise, some additional communication may be necessary.

Applications are usually trying as much as possible to avoid atomic access to the whole scene state
as it is performance expensive. The saving of simulation to the file is usually a rare operation and
short simulation pause may be acceptable. But collision detection usually has to be performed in
real-time many times per second and it is not possible to pause simulation each time the collision
test should be done. This leads to optimizations like partitioning of the scene and to weakening of
the scene consistency that may enable objects to temporary penetrate other objects until the
collision is safely handled.

Another problem in distributed scene state configuration is atomic update of several data items. An
application may want to update two objects as a result of their interaction, however the objects
primary replicas may reside on different computers. One of the computers may refuse the update
and it is not trivial to guarantee atomicity because and it is necessary to rollback the write on the
other computer. The topic was investigated in database systems as two and three phase commit
protocol [Lampson and Sturgis 1979], [Skeen 1981]. Another solution is weakening of the
atomicity requirement.

Distributed global scene state systems are often used for large simulations [ANSI 1993][Calvin et
al. 1993] while they are using weak consistency models to reach high performance even on large
data sets.

62

Fig. 54: Distributed global scene state

Pri./Repl.
Scene

Pri./Repl.
Scene

Pri./Repl.
Scene

Pri./Repl.
Scene

Pri./Repl.
Scene

3.4 Consistency Models Evaluation

Delayed Global Scene State
Delayed global scene state is based on principles of Delta Time protocol (section 2.4). The scene
state is not known at present time t. The application can observe consistent scene state just at the
time t-delta. The time interval delta should be longer than the longest possible network latency in
the system. The system uses roughly synchronized clocks on each computer and it assigns a
timestamp to each update on its creation time tc. The update is delivered to all computers and it is
put into the waiting queue. It waits until the time tc + delta. Then, the update is applied to all
computers. That way, delta time consistency is kept.

Fig. 55: Delayed global scene state

Delta time protocol provides also possibility to perform “non-timed” reads (and theoretically “non-
timed” writes) that does not keep the delta restrictions and gives the user the latest available value.
Even although non-timed data values may not be consistent, they can be used speculatively to
provides the user with better responsiveness. But such data have to be used carefully, otherwise the
scene consistency may be broken. The details on non-timed reads and writes are in the section 2.4.

Delayed Global Scene State is often used together with active replication, such as in [Bettner and
Terrano 2001]. It is often used on small scenes providing high consistency guarantees. Moreover,
applications may utilize determinism, like in [Peciva 2006] to minimize network bandwidth and run
complex simulations even on low bandwidth network connections like dial-up modems.

This thesis is focused especially on delayed global scene state because it is able to provide strong
consistency guarantees, good responsiveness, and provides another possibilities for optimizations
based on “non-timed” reads that will be described later.

Immediate reads
Immediate read on replicated data item means that the valid data value can be obtained
immediately, without need of network communication because the communication may introduce
unacceptable delay. The requirement of immediate reads usually forces CVE to have up-to-date
values of replicated data locally available.

Immediate reads and writes are closely related to push and pull update propagation strategies
[Wiesmann et al. 2000]. Immediate reads are usually realized by the data replication that uses push-

63

Replicated
Scene

Replicated
Scene

Replicated
Scene

Replicated
Scene

Reliable
Multicast

update issued

delta
delay

3 Analysis

update propagation strategies. As a result, the user's read operation can be performed locally
without any need of network communication and associated latency.

Push propagation strategies ensure that each update at any replica immediately starts new value
propagation to all other replicas. In the contrast, pull propagation strategies delay the update
propagation until the value is requested by, for example, some other replica because the user issued
a read operation on it. So, the update propagation is postponed until the value is required.

Push propagation strategies are nearly always preferred in CVE over pull strategies as they enable
the user to read data immediately but write operations usually take more time to proceed because all
replicas have to be contacted to update their values.

Immediate writes
Immediate writes means that the user can issue write operation while it is finished immediately,
without need of network communication that may introduce unacceptable delay. Immediate writes
are somehow fighting against immediate reads. For example, they can be realized using pull update
propagation strategies, compared with push strategies used in immediate reads.

Immediate writes can be obtained by these approaches:

– pull update propagation strategies

– client-server architecture while writes are done on server only

– writes on primary replicas only

Pull update propagation strategies are used only in special cases because they fight against
immediate reads that are usually more important.

Immediate writes can be realized on client-server architectures, particularly on centralized primaries
consistency model (section 3.3). In such case, the write operations have to be performed on server
only. Then, no network communication is required. Actually, the communication is required for
updating other replicas, but this can be done asynchronously [Wiesmann et al. 2000] as it is usually
done in CVE systems.

Asynchronous writes mean that the write operation can be finished without waiting for all the other
replicas to update their values. Synchronous writes block all the execution until all replicas in whole
system are updated and the acknowledgment is received from all of them. Weakening of this rule by
using asynchronous writes makes the consistency and safety more complex but blocking of
synchronous writes are usually not acceptable in CVE systems. Therefore, CVE systems nearly
always look for the consistency models and concepts that accept to live with asynchronous updates.

The third way to realize immediate writes is to perform writes on primaries only. If the data
ownership is used, just “owned” data are writable immediately.

Scene Constraints
The scene constraints are restrictions and rules that may be specified for the scene. They force the
scene to obey this constraints and, for example, updates may be refused if they violate some
constraint.

The constraints may be considered as advanced topic and they were not much addressed by research
papers in the 90's. But it is improving in this decade. The name “scene constraints” is used in this
thesis because no term is currently settled for it.

64

3.4 Consistency Models Evaluation

An example of scene constraint is collision detection that avoids penetration of solid objects in the
scene into the each other (DOOM [Roehl 1995a], projects of VR Group [VR Group], and many
others). Other examples are scene semantic constraints, such as elevator can carry just 11 people at
the time. No more people in virtual scene are allowed to enter it. The shared manipulation is another
example: some task in virtual environment can be completed only by cooperation of two people
using the correct tools, as shown in Constructing virtual Gazebo [Roberts et al. 2003].

The scene constraints are easy to design for standalone applications. Primary-based CVE
applications may require advanced design to use scene constraints, however CVE applications using
active replication are easy to realize but they require well defined abstraction of scene constraints
because of the nature of active replication that executes the updates on all replicas.

The scene constraints are often implemented as a piece of code that is executed when certain update
occurs. The constraints may influence the behavior of the update. They usually just allow or refuse
the update. For example, a position update may be canceled because a constraint exists that allows
people to move just in limited scene area and not outside of scene. Advanced architectures may
enable constraints to do something more than just allow or refuse the update. They may perform
some additional computing or, for example, reconcile the update with the current scene state, thus
enabling execution of the update that should be refused otherwise.

The constraints are usually evaluated through the validation process (see section 3.2). The
validation is strong or weak. If the validation for certain constraint is strong, the constraint will be
called strong in this work. If the validation is weak, the constraints will be called weak too. The
table 8 summaries usual constraint types for different CVE architectures:

Replication model Constraints type Determinism
required

Centralized Primaries strong on server no

Distributed Primaries weak
(strong constraints possible with limited validation model)

no

Data Ownership strong constraints on owned items
(weak otherwise)

no

Active Replication strong yes

Table 8: Constraint types in different replication models

Strong constraints are never violated and all update requests that are violating them are rejected.
Thus strong scene consistency is kept all the time. Weak constraints are not so strict in validation.
They may use backup data that may be out-of-date for the constraint evaluation. It results in higher
performance but the validation is not strict and the constraints and scene consistency may be
temporarily violated.

The limited and non-limited validation model used in the table 8 was explained in the section 3.2.
Roughly said it indicates whether validation can use only “primary” data for validation that are up-
to-date but no all scene data are primaries (limited validation model) or it can use any data (non-
limited val. model) but they may not be consistent. The determinism requirement is important for
active replication architectures. There are various sources of non-determinism of the same
execution performed on different computers. Some of them are:

65

3 Analysis

– differences in the scenes caused by delayed updates that already arrived to some computers but
not to the others

– execution non-determinism: Some sources of non-determinism exist when executing the same
code repeatable, or on different computers. They include followings:

– different machine code – Different compilers or even different compiler options may
result in different machine code of the application. Some code differences may produce
different results. For example, using SSE instructions instead of regular x86 code is not
guaranteed to produce bit-by-bit equal results.

– different software libraries – Many libraries exist throughout different platforms that
provides some standard functions for the applications. The behavior of the libraries may
not be the same in all the cases because they may handle some conditions in a different
way. For example, some libraries may use high precision float routines even for low
precision float numbers, resulting in different rounding error, thus breaking the
determinism.

– hardware differences – Hardware differences ranges from bugs to accepted differences.
A famous floating point bug was found in first Pentium processors, introducing some
small error for some multiplications [Intel 2004]. An example of accepted difference is
precision of sin(p) that for p=14885392687 may return 11.5% different value between
Intel and AMD processors. The reason is because Intel is using 66-bit approximation for
π, but AMD is using 256 bits [Monniaux 2007].

– using of multi-threading – task switching happens differently on different computers
thus requests are served in unspecified order, breaking the determinism requirement

– dependency on some local computer property. For example, using system time, access to
random number generator, dependency on rendering speed (FPS), on CPU speed, and so
on breaks the determinism.

One more type of constraint validation exists in some applications – some of them are using dead-
reckoning, frame interpolation, and similar techniques applied on user-view scene (see section 2.8).
Weak constraints are often applied to user-view scene to avoid visual artifacts. These constraints
usually has no real effect on shared collaborative scene because the constraints are applied to the
user-view scene only and the changes do not propagate back to the collaborative scene.

Concurrent Object/Attribute Manipulation
Concurrent object and concurrent attribute manipulation were deeply studied at University of
Salford in this decade [Otto et al. 2005][Roberts and Wolff 2004] and the problem was named
closely coupled interaction. They made a distinction between concurrent manipulation of an object
attribute and concurrent manipulation of an object when different attributes are manipulated. They
demonstrated the problem on constructing virtual gazebo [Roberts et al. 2003]. During the
construction, several people are interacting together for constructing the gazebo. For certain tasks,
two people are necessary, such as moving heavy load. If two people are carrying heavy load, both
of them are moving the object and both of them are manipulating the heavy object position attribute
at the same time. If both users are changing the attribute at the same time, it is not clear, which
user's values are valid. Moreover, there is some latency until other side realizes the update of each
other.

However, the expected behavior is different. In the reality, both users are contributing to the

66

3.4 Consistency Models Evaluation

movement of the heavy load and they are cooperating on its real position. [Wolff et al. 2004]
suggest solution to use object behavior scripts and the problem was shifted to application level.
Each application should handle the closely coupled interaction by itself while the scene consistency
has to be kept.

The table 9 shows possible guarantors that may be responsible for scene consistency and update
reconciliation:

Replication model Reconciliation of closely coupled interaction
Centralized Primaries reconciled on server

Distributed Primaries user-defined (not trivial to solve)

Data Ownership reconciled on computer holding data ownership
(on rare event occurrence, ownership transfer may be used also)

Active Replication reconciliation everywhere (i.e. on all computers in parallel)

Table 9: Closely coupled interaction consistency solving

In conclusion, closely coupled interaction is not trivial to solve and it is not easy to generalize it.
Therefore, it is not trivial to make it part of a CVE library.

Grouping of Operations
Going through the recent research in CVE area, it can be said that two approaches are used:

– event based

– data centric

Event based approaches model any scene processing as an event. The event is created at a computer
and sent to other participating computers. When the event is received, it can be processed (or
executed) immediately, or its processing may be delayed, for example until some consistency
requirements are met. The event is the way to propagate changes among the computers.

Data centric approaches focus on the fact that the scene is composed of replicated data items.
Usually, all the reads can be finished immediately because the data are replicated and available
locally. However, writes require network communication to be done and it takes some time to finish
the write. The replication algorithms are responsible for synchronization of the scenes among
computers.

The different kinds of scene data access levels were introduced in the section 3.2 as single
operation, hard-coded actions and programmed actions. The event based approaches are usually
able to perform several operations in one event and to execute group of operations atomically. It
corresponds with hard-coded action level. On the other side, the data centric approaches often does
not allow grouping of operations at all (single operation access level). Finally, the flexibility of
generating actions dynamically is rarely investigated or supported. The table 10 summarizes typical
scene access levels used.

67

3 Analysis

Scene
processing

Scene access type Comments on usage

event based single operation supported
hard-coded actions usually used
programmed operations advanced architectures only

data centric single operation often used
hard-coded operations often used as an extension to the single operation to

provide robust solution for real applications
programmed operations investigated in this thesis

Table 10: Scene access levels

Area of Interest
Large scenes and large simulations often grow beyond performance limits of the system. As the
simulation grows, more messages are transmitted through network and more computer resources are
needed to process all the messages. Finally, some performance limit, such as network bandwidth or
CPU performance, is reached and it is not possible to extend the simulation any more.

A general optimization to extend CVE system scalability is to introduce Area of Interest (AoI)
technique already described in the section 2.8. When using AoI, the messages are not transmitted to
the computers that do not need them. For example, the user in his virtual room in fourth floor is not
interested in updates produced by his colleague in third floor until he leaves his room and enters
third floor. Until that, updates in third floor may not be sent to him. If we consider that there are for
example teen floors, number of updates can be reduced to 10%. Another benefit is that it is not
necessary to replicate data of other floors until they are needed. That is quite important in large
simulations when the amount of replicated data is much higher than available memory at any
computer.

AoI was used in SIMNET [Calvin et al. 1993] and DIS [ANSI 1993] projects.

Usage in the different replicated models are in the table 11:

Replication Model AoI supported
Centralized Primaries clients only

Distributed Primaries supported

Data Ownership supported

Active Replication not supported
(however this thesis suggests a solution in the section 5.3 for
extending active replication to support AoI)

Table 11: Area of Interest in different consistency models

68

3.4 Consistency Models Evaluation

Late Joins
In CVE applications, it is often required that even after the application is started, additional
computers can join the simulation. The join operation is usually composed of the two steps:

1. replicating the scene state to the joining computer

2. registering the computer as a regular member of the simulation (e.g. creating an avatar for
the user and other user defined actions)

The second step is mainly application dependent. However, the first one is challenging problem,
especially for large dynamic scenes, because the join operation may overload the network and other
resources. If not considering such cases, the straightforward solution is to replicate the scene by
copying the up-to-date scene state to the joining computer. Such option is perfect for small scenes.
Surely, some optimizations can be used. Static scene parts can be placed into the non-replicated
scene, so replicated part may be quite small. Anyway, there are still many applications that may
need to transfer so much data to the joining computer that it may overload the network or
processing resources of involved computers resulting in temporal simulation stall that is not
acceptable in many cases, such as in human-in-loop systems where user is perceiving or
participating in the simulation and any system stall is noticeable to him.

I have identified three general approaches for late joins:

– atomic state transfer

– AoI style joins

– cache and validate algorithms

The atomic state transfer (used in Avocado [Tramberend 1999] and DIV [Hesina et al. 1999]) is the
most straightforward approach when strong consistency is required. It can be implemented like:

1. the simulation is paused

2. the scene state is transferred to the joining computer

3. the simulation is resumed with joined computer

The state transfer can be done from any computer or several computers can be used to minimize
transfer time. It is also desirable to eliminate need to pause simulation. That is sometimes possible
even when strong consistency is required. But it requires special application and consistency model
design.

However, if the scene is large, atomic state transfer may take too long time and may possibly
overload network or processing resources of computers involved. For such cases, additional
optimizations are necessary.

Different approach is using a kind of Area of Interest (AoI, see section 2.8). At the time when join
operation starts, the joining computer is interested just in a small piece of the scene. When the scene
is successfully replicated, the area of interest is increased causing additional parts to be replicated.
This way at the end, the whole scene may be replicated without causing system pauses, network
bandwidth spikes or temporal system overloads.

Some applications, especially those using active replication, can not use AoI style joins because
they do not support AoI, as already stated in the section 3.4. The atomic scene state transfer may be
not acceptable for some applications because of the amount of data that has to be transferred is too
big, or some other reason. The solution may be to pre-cache the data that should be replicated and to

69

3 Analysis

validate them during the join operation. When some pre-cached data are found to be not valid, they
are transmitted once again in atomic state transfer operation. But the validation of pre-cached data
and state transfer has to be done atomically. Pre-caching may provide more smooth joins, but it is
application dependent.

Summary table for late joins:

Replication Model Atomic state transfer AoI style join Pre-caching joins

Centralized Primaries yes yes yes

Distributed Primaries not used yes not used

Data Ownership not used yes not used

Active Replication yes no yes

Table 12: Late joins in different replication models

3.5 Results of Analysis
The comparison of the consistency models based on their usability and properties for an user is in
the table 13. The table contains four models studied deeply above in the section 3.4. The fifth
column are expected properties of a novel approach of this thesis. The new model and discussion of
its properties is bellow.

The most important property of consistency models in this thesis are the consistency properties
because they are directly related to the strength of the consistency and the usability of the
consistency model.

The strongest consistency guarantees are provided by active replication models. Active replication
has the advantage of keeping the scenes completely synchronized. Since the primary-based
approaches presented here do not provide complete scene synchronization, active replication is a
good foundation for consistency models with high consistency guarantees.

The next important property is the way that the scene access is done. That is represented by several
properties in the table 13: immediate reads and writes, concurrent object/attribute manipulation, and
grouping of the operations. If not considering special cases, only active replication can read up-to-
date scene state of the whole scene at any computer. So, immediate reads are supported by active
replication only. Immediate writes are usually not supported by any consistency model except the
direct write to primary copy. Only server on centralized primaries model can write to whole scene
directly. Immediate writes are the topic that should be addressed by the new consistency model.

Concurrent manipulation can be easily solved on centralized primaries model by server, or
distributively on active replication. Grouping of the operations is usually solved on application
level, not in consistency model.

The new consistency model should address all the issues of the data access. The chapter 4 will take
a look at transactions as a way of data access used in database systems and it will propose a new
model that is similar to transactions in databases, but the model will be designed with the respect to
the particular requirements of CVE systems.

70

3.5 Results of Analysis

The table 13 shows the expected properties of the new consistency model that should be based on
transaction concept and active replication. The combination of transactions with active replication
should provide additional benefits. Especially, grouping of operations and abstracting of the scene
access may lead to additional optimizations such as speculative execution that is attacking problem
of immediate writes that no consistency model presented here solves sufficiently.

The new model should bring many benefits for the scene consistency and usability. It would be
probably perfect solution for small and middle-sized virtual environments providing them with high
level of data consistency.

71

3 Analysis

72

Ta
bl

e
13

: C
la

ss
ifi

ca
tio

n
of

 c
on

si
st

en
cy

 m
od

el
s f

oc
us

ed
 o

n
m

od
el

 u
sa

bi
lit

y

(*
) s

pe
cu

la
tiv

e
ex

ec
ut

io
n

is
 u

se
d

in
 A

ct
iv

e
tra

ns
ac

tio
ns

 a
pp

ro
ac

h
an

d
it

is
 e

xp
la

in
ed

 in
 th

e
se

ct
io

n
4.

8
(*

*)
 e

xc
ep

t s
pe

ci
al

 a
rr

an
ge

m
en

ts
 (s

ee
 se

ct
io

n
5.

3)

4 Active Transactions

4 Active Transactions
This chapter presents the novel contribution of this thesis. It describes a new consistency model for
Collaborative Virtual Environments (CVE). It is a novel approach whose theoretical foundations are
using proved and widely used algorithms of database and distributed systems. Using database
algorithms in CVE were neglected in the past for different performance requirements of CVE and
database systems. CVE are requiring short responsiveness and high throughput while database
systems honor consistency, durability, and fail resistance. Therefore, the algorithms of distributed
systems were considered more appropriate for CVE systems. However, the situation is changing
and real-time databases [Abbott and Garcia-Molina 1992] may better fit the requirements of CVE.

This thesis is using different approach and instead of using highest performance databases, it
proposes novel algorithms that provides the flexibility of database systems and performance of
distributed systems. The approach is focused on usability, consistency guaranties, and system
performance. One of the most important characteristics is using of strong consistency that brings
advantages from the usage point of view. An argument can be given that strong consistency lowers
the system performance. It is not true in many applications. I have found also applications that
benefit from the strong consistency and provides higher performance with strong consistency than
with the weak one, as discussed in the chapter 5.

The name “Active transactions” was chosen as active replication (section 2.4) is used together with
transaction concept similar to the one used in database systems (section 2.9). The transaction
concept is adapted to the requirements of CVE and active replication. Active replication is used for
the strong consistency guarantees (see section 3.2). The details of connecting transactions and
active replication will be presented in the following sections.

The first section 4.1 introduces the basis of the consistency model. Then, the model is compared
with widely used consistency models that were described in the chapter 3. Finally, the consistency
model is described in the detail. The evaluation is left for the chapter 5.

4.1 Overview of New Approach
The consistency models were described in the chapter 3. They provide different consistency
guarantees and different performance. Unfortunately, there is a trade-off between consistency and

73

Fig. 56: Main concepts of Active transactions

Shared scene

Active Transactions

Speculative transaction
execution

timestamp
consistency control

distributed timestamp
generator

Active replication Multiversion database

Scene access

4 Active Transactions

performance. Even although this thesis is focused on as high consistency guarantees as possible, it
still provides the similar performance as the most consistency models today. Moreover, some
applications may benefit from the strong consistency, providing higher performance than weaker
consistency models, as shown in the chapter 5.

Following concepts (shown in the figure 56) were chosen for the consistency model:

– active data replication

– scene access by transactions

– consistency control based on data timestamping

– total transaction order based on distributed timestamps generator

– speculative execution

These concepts are put together to provide similar or even better performance characteristics than
other total message order approaches while providing much higher consistency guarantees.

Active data replication is used for strong consistency and complete scene synchronization. Using
timestamp based consistency, it has also shorter update time than primary-based approaches. Active
replication requires 0.5 round trip time (RTT) while primary-based replication requires 1 RTT, as
shown in the section 3.3.

The transaction approach is inspired by database systems. Especially, replicated databases
[Wiesmann et al. 2000] and multiversion databases [Reed 1978] brought key ideas for abstracting
virtual scene as database, thus enabling transaction approach to be used. However, the transaction
concept had to be adapted to better fit the requirements of CVE applications.

The figure 57 depicts the simple CVE system composed of four computers. Each of them holds a
copy of the scene data. Actually, “scene database” is used instead of “scene data” or “scene graph”
because it better reflects the nature of the data as replicated dataset as will be explained in the
section 4.2. Each computer can read its local copy of the scene database. When any computer wants
to update the database, it has to create and schedule a transaction. During the scheduling process,
the transaction is multicasted to all participating computers. The computers are receiving the
transactions and executing them to apply their updates to their local copies of the scene database. If

74

Fig. 57: Transaction distribution in replicated scene database

Scene
database

Scene
database

Scene
database

Scene
database

Scene
database

 transaction
 scheduled

Replicated
scene

database

atomic
multicast

4.1 Overview of New Approach

the atomicity of the multicast is kept and the receive order of the transactions are ensured to be the
same on all computers, all the scenes remain synchronized according to the requirements of active
replication.

Active transactions provide programmable atomic action scene access level. It is a core property of
the transaction model. Hard-coded atomic action limits the available set of actions that can be
performed in the scene. The single operation is even more limited, lacking the support for grouping
of the operations that may be required to be executed atomically. The details were already
mentioned in the section 3.2.

To summarize the reasons of using the transactions together with active replication: They provide
natural access to the scene database guaranteeing atomicity, grouping of the operations, and total
order of updates. These properties are essential for Active transactions, and they are often not
present in other consistency models named in the chapter 3.

The timestamping is used for advanced concurrency control. The timestamp concurrency control
[Reed 1983] is often used with multiversion databases [Reed 1978] for advanced throughput of the
system. Since multiple transactions may be scheduled before the first is committed, it is natural for
CVE systems to cope with multiple versions of the data. Therefore, multiversion concept is used in
Active transactions approach. The timestamping and multiversion concepts are rarely used in CVE
systems. The reason can be their complexity and need of well designed protocol. Details of
timestamping and data multiversioning will be described in the section 4.5

Total transaction order is guaranteed by atomic multicast (described in the section 2.4). Atomic
multicast is time expensive communication primitive for its high guarantees. In [Birman 1993], fail
safe atomic multicast takes 3 RTT before the transaction can be delivered to the application. This
thesis uses different approach based on timestamps and distributed timestamp generator. The
generator generates system-wide unique timestamps based on time and roughly synchronized
clocks. The generator assigns timestamp to each transaction when it is scheduled. The transactions
timestamps totally order the transactions in the system. Using this approach, the transactions can be
delivered to the application usually after 0.5 RTT, more precisely, after half of longest RTT in the
system. The details are shown in the section 3.3. Primary-based approaches delay is usually 1 RTT
(round trip to the server). Active replication often provides also delay of only half of the longest
RTT in the system, such as in [Bettner and Terrano 2001].

The transaction approach may often outperform other approaches in the responsiveness. The
responsiveness is usually quite important. Higher responsiveness compared to traditional
approaches is enabled by speculative execution. The transactions can be speculatively executed to
predict the most up-to-date scene state. The speculative scene state may be used to provide the user
with much better responsiveness. The speculative execution can be coupled with dead-reckoning,
prediction, and extrapolation algorithms, further improving the visual perception of the user. The
speculative execution will be described in the section 4.8.

Another noticeable advantage of Active transactions is advanced consistency control. It is based on
transaction concurrency control used in multiversion databases [Reed 1978] called timestamp
concurrency control [Reed 1983]. Such consistency control was used in high performance databases
like Oracle [Silberschatz et al. 2002], however the concept was adapted for the particular
requirements of CVE. The details are left to the section 4.7.

The table 14 compares Active transactions approach with active replication and primary-based
approaches. To limit the size of the table, the properties of hard-coded scene access level is
compared only. The hard-coded level was chosen for its wide usage.

75

4 Active Transactions

Active Transactions Active Replication Primary-based
data abstraction replicated multiversion

database
replicated data set replicated data set

access type transactions hard-coded actions hard-coded actions
access properties not limited set of actions

total order,
atomicity,

concurrency control

limited set of actions,
total order

limited set of actions,
total order

total order timestamps usually logical clocks sequencer
total order cost 0.5 0.5 1.0
speculative execution yes (by design) usually not supported or limited support

Table 14: Comparison of Active transactions with traditional consistency models

The most important advantages of the transaction can be summarized as:

– database approach – usually simplified application design compared to complexity of
distributed system approaches

– high responsiveness – provided by speculative execution

– higher consistency guarantees – better usability

– peer-to-peer architecture – better scalability and crash tolerance

In conclusion, Active transactions are bringing new abilities and concepts for advanced control of
CVE scene and distributed simulations processing as will be explained bellow in more detail. The
advanced consistency mechanisms provide additional consistency guarantees that may result in
simplified application design, moving it from the complexity of distributed systems to much
simpler setting of transaction parameters. Their usability will be verified on several applications
demonstrated in the chapter 5. Active transactions model is using formally proved algorithms of
database systems. Although the algorithms were adapted and used in a novel way, they are still
equal to them. Therefore, it is not necessary to formally prove Active transactions model here
because of the equality.

4.2 Replicated Scene Database
The 3D graphic scene is usually represented by scene graph, sometimes just by scene data. The
scene data can be 3D coordinates, normals, textures, matrices, etc. Theoretically, it is possible to
easily store all these data in the database. Each 3D coordinate can be stored in one record in
coordinate table while each shape will reference set of 3D coordinates that compose 3D shape. The
similar approach can be applied on normals, textures, transformations, and all other entities.
However, traditional databases are considered too slow for usage in real-time virtual environment
applications as the user is expecting to render the scene one hundred times per second. It means that
the database has to retrieve the scene one hundred times per second. Such requirement can not be
carried out on standard databases, but special architectures, such as real-time databases [Abbott and
Garcia-Molina 1992][Dayal et al. 1990], can achieve such task.

76

4.2 Replicated Scene Database

Anyway, this thesis is not using any existing database system nor the experiments in the chapter 5.
There were two reasons: database overhead performance cost and the need to adapt database
architecture according to particular needs of CVE. For example, SQL [SQL-92] data access is
something that CVE system user does not expect. Therefore, the adaption was necessary, removing
some database overhead and better fitting the performance requirements of CVE systems. The most
important concepts of database systems are as follows:

– real-time multiversion database

– timestamp based concurrency control

– active replication of database among the computers

Multiversioning is necessary for speculative execution and event processing in general and it will be
described in the section 4.5. Timestamp concurrency control guarantees advanced scene consistency
and it is explained in the section 4.7. The scene data are replicated among the computers using
active replication (sections 4.5 and section 4.6).

Moreover, the explicit control of transaction processing and access to multiple data versions is
required. Since no such specially configured system exists as far as I investigated, I implemented
my own system that behaves like a database that is highly optimized for the particular usage as
CVE system. The system will be described in the chapter 5, including the testing applications and
experiments.

4.3 Transactions
Transactions are used in database systems as a way to access (possibly remote) data store. Usually,
they are specified in high-level language, such as SQL [SQL-92]. They are designed to be able to
perform multiple reads and writes on the data store while keeping ACID properties (Atomicity,
Consistency, Isolation, and Durability) [Gray and Reuter 1992]. More details were already
presented in the section 2.9.

One traditional transaction execution used in database systems is depicted in the figure 58. The
transaction is created by a client and scheduled for execution. The scheduler is collecting all the
incoming transactions and reorders them to the new order that is more efficient for the performance
of the database. Then, the transaction is executed. During the execution, read and write sets of the
transaction are computed. The read set is composed of the data items that the transaction is reading
and the write set of the items and the new values that should be written. Then, the concurrency
control is validated and if everything went right, the transaction is committed. In the other case, the
transaction is aborted. The abort means to restore the database state to the point before the
transaction execution started. The commit means to write all the data from the write set to the
database. If the database is replicated, it includes the update of all the replicas on the remote sites.

77

Fig. 59: Active transaction execution

Transaction
creation

Atomic
Multicast

Execution

Execution

Execution

Fig. 58: Transaction execution in database systems

Transaction
creation

Scheduler

Update

Update

Update

E
x
e
c
u
t
i
o
n

4 Active Transactions

The explicit mentioning of the read and write set during the transaction execution is not important if
the transactions are not executed concurrently. If the concurrent execution is used, the read and
write sets are important for concurrency control. For example, if two transaction's read and write
sets does not overlap, the transactions can be executed concurrently without worrying about
concurrency control. In the other case, special algorithms has to be used to ensure correct execution.
Two kinds of the approaches are used: optimistic and pessimistic. The optimistic approaches
[Bernstein and Goodman 1981] executes the transaction and then checks for concurrency violations
while pessimistic approaches are trying to avoid concurrency violations by good execution planning
before the transactions are executed. To go forward, Active transactions approach is the optimistic
approach that uses speculative execution (section 4.8) and precomputed read and write sets for
concurrency control (section 4.7).

This traditional transaction concept has to be adapted according to the needs of CVE systems. The
list of the most important changes follows:

– CVE programmers usually expect API, not intermediate language like SQL

– read and write sets are precomputed during transaction creation

– optimized timestamp ordering protocol

– active replication is used instead of passive style transaction execution

Using intermediate language is really not a good option for CVE because the programmer usually
wants just to specify which data is he operating on and new values that shall be written to the
database. This problem is no longer the case for Active transactions because the user is required to
specify the read and write sets at the transaction creation.

The read and write set is computed, in classical databases, when transaction is executed. The
explicit knowledge of read and write set may help to optimize transaction execution planning. For
instance, the scheduler may delay execution of some transaction because its read or write set is
overlapping with the other transaction. Such optimization may avoid many concurrency violations
followed by many restarts of aborted transactions. Active transactions concept is going even further
and puts the responsibility of computation of read and write sets to the client issuing the transaction.
More precisely, the transaction is ready to be issued when its read and write set is specified by the
client. Such crucial change has several important consequences and makes transactions much better
fit the requirements of CVE systems. More details about transaction specification is in the section
4.4 and the concurrency control, that is based on precomputed read and write sets, is described in
the section 4.7.

One of consequences of precomputed read and write sets is necessity of timestamps or some other
data versioning control system. Such system is necessary for concurrency control reasons. Active
transactions are using timestamps that are assigned to each transaction and to all the data items in
the database. To avoid designing something that already exists, the gaze shall be again directed to
the databases. Multiversion database concepts [Reed 1978] already exist. They are used in the
systems like Oracle [Silberschatz et al. 2002]. Multiversion databases are using two timestamps for
each data item – one for the read and one for the write operation. They are usually using timestamp
ordering protocols [Reed 1983] for concurrency control. The protocol is composed of several rules
that guarantee correct concurrent transaction execution.

However, timestamp ordering protocol can be simplified much. The reason is that transactions order
is explicitly known by atomic multicast while traditional databases can reorder transactions and
execute them in whatever order they want. Forbidding such freedom in Active transactions concept
simplifies the algorithms and brings higher performance for the system. Anyway, the reordering of

78

4.3 Transactions

transactions is unwanted property because it breaks the determinism requirement of active replica-
tion. As a result of the simplification, the database contains just one timestamp per data item and six
rules of timestamp ordering protocol (as stated in [Silberschatz et al. 2002]) is reduced to just one
rule winning both – the simplicity and the performance. The details are described in the section 4.7.

The transaction execution is modified as well. One traditional database execution scheme was
descri-bed above and depicted in the figure 58. The figure is using passive-style replication that is
much more used in database systems. Active transactions concept is using active replication. The
transactions have to conform to several requirements given by active replication. The requirements
are listed bellow. If the transactions conform to the following requirements, they are called Active
transactions in this thesis:

– transactions have to be executed on all computers

– transactions execution have to be deterministic

– transactions have to be executed in the same order on all computers

– the database has to be fully replicated

The adapted concept of transaction execution to use active replication is shown in the figure 59.
Atomic multicast [Birman 1993] is used for distributing the transactions to all computers.
Multicast's atomicity has two important properties here referred as atomic delivery and atomic
order. Atomic delivery means that the transaction is delivered to either all computers or no one. No
one is just special case, for example, when sending computer crashes through the sending. Atomic
order means that all computers are receiving the transactions in the same order. More about atomic
multicast is in the section 2.4 and details of atomic delivery and atomic order are in the section 4.6.

Going through the list of active replication requirements, the first point is solved by executing the
transaction after it is received from atomic multicast, the second point – it is easy to guarantee
determinism for transactions composed of read and write set because everything is precomputed.
The third point is guaranteed by the atomic multicast and fourth point is completely in the hands of
the programmer. Following sections are describing the Active transactions in more detail.

4.4 Transaction Structure
Database transactions are usually specified by a query written in
database language, such as SQL [SQL-92]. However, this
paradigm is altered here for the reasons shown in the section 4.3.
Let's recall just the most important change from traditional
database concepts that read and write set is not computed during
the transaction execution, but it is precomputed by the computer
that is creating the transaction.

The transaction is composed of its timestamp and its read and
write sets, as shown in the figure 60. The read and write sets are
specified at the time of the transaction creation. The read set
specifies the data that the transaction is reading. It contains
references to the data items and their timestamps. The timestamps
are used to specify the version of data because multiversion
database is used. The read set is used for concurrency control that

79

Fig. 60: Transaction structure

4 Active Transactions

is explained in the section 4.7. The write set is containing the references to the data items and new
values that the transaction is writing.

The timestamp is assigned to the transaction by the computer that created it immediately before it is
multicasted to other computers. The timestamp is system-wide unique (see section 2.4) and it is
used for total ordering of the transactions in the system – all transactions with lower timestamp will
be executed before the transaction and those with higher timestamp will be executed after it. Each
computer orders the incoming transactions by their timestamp and then executes them in that order.
The details are explained in the section 4.6.

The write set contains the references to the data items that should be updated and the new values. If
the transaction is committed, the new values are written to the database. Because the multiversion
database is used, the current value is not overwritten. Instead, a new data version is created
containing the new value and timestamp of the transaction. The timestamp is necessary for
concurrency control reasons.

The read set references the data that the transaction is reading. The reference is composed of two
parts: the reference to the variable (item ID) and timestamp of the data version. The read set can be
created automatically just by logging all the reads made to the database through the transaction
creation process if such functionality is available, or it can be specified explicitly by the
programmer. The read set is necessary for concurrency control reasons. When the transaction is
about to be committed or aborted, the read set is used to make sure no other computer concurrently
modified the database in a way that violates concurrency between transactions and that the
transaction can be safely committed. More details about concurrency control is in the section 4.7.

From the point of view of access level, Active transactions are able to perform atomically any
update to the database. The update can be of any complexity, not limited by an intermediate
language, such as SQL [SQL-92], because the computation is done locally on the computer that is
creating the transaction. To go even further, some computation may be enabled also when the
transaction is about to commit or abort. It may reconcile changes to the database that were done
concurrently by other computers with the content of the current transaction. In other words, it would
reconcile the transaction with the current database data, eliminating concurrency violations and
lowering the number of aborted transactions. However, these ideas are putting many questions
about the determinism and they are going too far behind the original Active transactions idea.
Therefore, they are left unexplored as one interesting idea for the future research.

4.5 Timestamps and Multiversion Databases
Timestamps have important role in Active transactions concept. Particularly, they are essential for
timestamp ordering concurrency control in multiversion databases. Both of them are used in Active
transactions concept. They were just adapted for the particular requirements of Active transactions
and CVE systems in general, as was shown in the section 4.3.

Timestamps are used for the following two tasks:

– transactions total ordering

– data versioning and concurrency control

Both tasks are requiring the timestamps to be unique, to support test on equality, and test on
younger/older relation. Any generated timestamp has to be unique throughout the whole system.

80

4.5 Timestamps and Multiversion Databases

Moreover, it is required that each computer is able to generate such timestamps because it is not
acceptable to use any network communication to get unique timestamps for example from dedicated
timestamp server. So, distributed unique timestamp generator has to be designed.

One solution is proposed by Lamport [Lamport 1978]. He suggests that timestamps can be
generated by roughly synchronized clocks. Usually, the rough synchronization can be realized by
exchanging the time information and adjusting it by the half of the network latency. Anyway, the
system has to avoid some anomalies like receiving the message “from the future” that may happen
because, for example, a small drift between clocks speed or strange network conditions avoiding
precise enough clocks synchronization. In such situation, it is sufficient to shift local clocks forward
to contain a slightly higher time than just received one.

Lamport also suggests the way to realize the system-wide unique timestamps. If the timestamp
generator produces timestamps that are locally unique, system-wide uniqueness can be achieved by
appending some unique suffix to the timestamp, for example computer's IP address. Even if two
computers generate the same timestamp with the same time value, the timestamps are different as
each of these computers appended to the timestamp its own IP address that can be considered
unique in most cases. More details were presented in the section 2.4.

If the timestamp is defined according to Lamport suggestions, it is easy to define equality and
younger/older relation. The transaction equality means that all components (time and suffix in this
case) of the timestamp are equal. The younger/older relation is based on comparison of times and
suffixes of the transactions. If the time value, that can be represented by a float number, is higher,
the timestamp will be called higher (they are sometimes called younger timestamps). If the time is
lower, the timestamp will be called lower (sometimes called older). If the times are equal, the
transaction's suffix is used to decide younger/older relation.

Total transaction order
Utilizing system-wide unique timestamps, it may look straightforward to realize total transaction
order. The transactions are received on each computer. At first, just the transactions from the
computers with the lowest network latency are received. The transactions are put into the queue in
the order of their increasing timestamps. But the order is not finalized as many transactions did not
arrive yet. Later, even the transactions from the most distant computers are received. At that very
moment, the part of the transaction queue, that is complete now, is totally ordered and all computers
see these transactions in the same order.

The remaining question is how to determine the part of the transactions queue that is complete.
More precisely: How to determine the oldest missing transaction that is splitting the queue to the
complete and incomplete part.

Fig. 61: Transaction processing

81

TimeStamp
Generator

Transaction
Creation

Reliable
Multicast

List of Highest
TimeStamps

Speculative
Queue

Execution
(Commit, Abort)

Execution
Queue

Atomic Multicast

Lowest Highest
TimeStamp

4 Active Transactions

The process of a transaction execution is depicted in the figure 61. The figure 62 shows the same
scenario in the context of three computers. The transaction is created on some computer and unique
timestamp is assigned to it. Then, the transaction is multicasted to all computers including the send-
ing one. For the simplicity, let's expect using of FIFO reliable multicast only. Then, all the compu-
ters receive the transaction. However, different computers may receive transactions in the different
order and with different latency, especially if the computers are located around the world and
different latencies are noticeable between different computers. So, the transactions are stored in the
speculative queue and their timestamp is used for updating “list of highest timestamps”. Speculative
queue got its name because it can be used for the speculative execution that will be explained in the
section 4.8. Speculative queue is “non-complete” part of the transactions queue. The list of highest
timestamps is used for determination which transactions can pass to the execution queue that is
“complete” part of the transactions queue. Execution queue holds the transactions in total order of
their increasing timestamps. The transactions are taken from execution queue, the oldest first, and
they are executed. The execution results in the transaction's commit or abort. The details of
transaction's execution are left for the sections Execution Stages 4.6 and Concurrency Control 4.7.

Fig. 62: Transaction processing for three computers

The list of highest timestamps determines which part of the transactions queue is complete. It holds
one timestamp for each computer that contains the timestamp of last received transaction from that
computer. Since only FIFO reliable multicast is considered, the transactions received from the same
computer are received in the sending order and timestamp of each next transaction is higher than of
the previous one. It means that list of highest timestamps contains for each computer the lowest
“border” and only the transaction with higher timestamp can be received. The lowest value in the
list of highest timestamps has the special meaning – no transaction with lower (and equal) value can
be ever received. So, all the transactions with the lower (and the one with equal) value can be
moved from the “incomplete” speculative part of transactions queue to the execution part of the
queue without worrying that any transaction will come and change the order of transactions in the
execution part.

82

Current TS

transaction
scheduled

atomic
multicastList of

Smallest TS

Current TS

Current TS

Smallest TS

Transactions
QueueExecution

List of
Smallest TS Smallest TS

Transactions
Queue Execution

List of
Smallest TS Smallest TS

Transactions
Queue

Execution

4.5 Timestamps and Multiversion Databases

Data versioning and concurrency control
More transactions can access one data item at a time. For example, ten transactions are issued, one
after the another, in the interval of 100 ms. Each one of them is shifting the ball one meter forward,
resulting in the distance of 10 meters after one second. Since the computers are quite distant with
the latency of 600 ms, the time to the transactions commit is about the 600ms. So, ten transactions
may exist in the system concurrently, waiting for commit, and an user may want to access them, use
their values for prediction algorithms, object position extrapolation, interpolation between
simulation frames, or for other reasons. Since the transactions are marked by unique timestamps, it
is easy to distinguish between different data versions. Even if the transaction is committed, its
timestamp is used for the written data – so the data version is the same before and after the commit,
making it easy to access the data.

When the programmer is creating a new transaction and he is creating the read set and more data
versions exists for that data item, he can choose which data version he wants to use for fine-tunning
the application. The default is to use the last version (the youngest one), that is the best option in the
most cases. However, some optimizations may be possible.

4.6 Execution Stages
The Active transactions are going through the several stages, starting at their creation and finishing
at their commit or abort. The stages are:

1. Creation

2. Scheduling

3. Receiving

4. Speculative execution

5. Validation

The transaction is created on some computer. The process of the creation usually includes the
algorithm that computes the read and write sets. The algorithm is reading the data from the
database. The reads may be logged and used for automatic read set construction. The writes can not
be written directly to the database because all the scene changes must be done through the
transactions only. So, they are not really writing, but they can be logged and used for automatic
write set construction. Open Inventor and similar libraries are good candidates for the automatic
creation as they provide functionalities to catch read and write operations on the scene graph, as

83

Fig. 63: Transaction execution

Scheduling

Multicasting

Receiving

Receiving

Receiving

Transaction
creation

Execution

Execution

Execution

Speculative
Execution

Speculative
Execution

Speculative
Execution

4 Active Transactions

shown in my paper [Peciva 2005]. Another option is to let the user specify the read and write set
explicitly. When the read and write sets specification is complete, the transaction is ready to be
scheduled for execution.

The process of the issuing of the transaction will be called transaction's scheduling. Through the
process of the scheduling, the timestamp is assigned to the transaction and it is passed to the
network layer for multicasting to all participating computers.

All participating computers are waiting for the incoming transactions. When the transaction is
received, no guarantees are given concerning the atomicity of the multicast. Atomic multicast has
two properties here named as:

– atomic delivery – the transaction is delivered to all computers or no one

– atomic order – the transactions are delivered in the same order to all computers

The details of atomic multicast are described in detail in [Birman 1993]. Atomic delivery and
atomic order validation are started whenever any transaction is received. Since it may possibly take
a quite long time, depending on the network latencies and current network conditions, it may be a
good idea to let these algorithms work in the background and to pass the transaction to the next
stage for speculative execution.

Speculative execution provides the user by immediate results and even on long latency connections,
the user shall still perceive a good system responsiveness. However, the results may not be accurate,
and some transactions may be rolled back when concurrency is violated. But the concurrency is
violated just for small number of transactions in the most of CVE applications (see figures 104 and
105). The small number of aborted transactions is usually more than justified by a good system
responsiveness. The details of speculative execution is described in the section 4.8.

When atomic order is validated, the transaction can pass from the speculative execution stage to be
really executed. According the transaction ordering presented in the section 4.5, when the atomic
order validation is finished for a given transaction, all previous transactions are already validated.
So, the transactions are executed in the order of their increasing timestamps until the first
transaction with not finished validation process is found.

The execution is composed of the checks for concurrency violations (section 4.7) and user-defined
constraints. User-defined constraints can be specified for the scene and they can be used, for
example, to avoid penetrating of two solid objects to each other by utilizing collision detection
algorithms. The list of user-defined constraints can be specified for each transaction, so the
transaction may perform just tests that are necessary, like, only close objects, skipping all the
others, and saving the valuable computing resources.

The user-defined constraints are required to be deterministic and the result of their evaluation has to
be the same on all computers. Let's recall that all scenes are completely synchronized, thus
deterministic execution of the user-defined constraints will produce the same results on all
computers.

If the transaction passed all checks, it is committed and the state of speculative data changed from
speculative to committed. Finally, the transaction may signal commit to the user if required.
Otherwise, the transaction is aborted, removing all its speculative data from the database.

The atomic delivery validation can be done independently to the process above. Until atomic
delivery is validated, the transaction stream should be kept in the memory for the case of resending
if some computer would be missing the transaction. If the computer is missing the transaction, it
should ask the sending computer to re-send it. However, the computer may be temporarily not

84

4.6 Execution Stages

responding or it may crash. To avoid disconnect of all the computers that did not received the
transaction, other computers that received it before the crash have to be able to resend it. If no such
computer exists that received the missing transaction, the sending computer may be considered as
crashed before it send the transaction and it can be safely kicked off the multicasting group without
loosing the synchrony among the scenes. If the late joins are supported (see the section 3.4), the
crashed computer may join the group again after it comes to life.

4.7 Concurrency Control
The source of concurrency control problems in CVE systems is network latency. Typical values
range nowadays from 100us on high speed local networks to half of second for intercontinental
connections. Such latencies make problems for two reasons:

– long delay before the scene updates take effect

– concurrent updates may interfere and break the scene consistency

The special hardware can be used to lower the network latency. However, the application may be
used inter-continentally and the light speed is the limit anyway, making impossible to move the
latency below light speed threshold that is about 1 ms per each 300 km. However, each 1 ms
network delay may results in 3'000'000 waiting cycles of 3 GHz processor per each network
communication. Therefore, CVE systems are usually designed to be able to perform well on whole
range of network latencies they will be used on.

The effect of the first problem can be minimized by using dead-reckoning (section 2.8) and
prediction, as shown in [Hor and Yonekura 1999]. However, different approach is presented in this
thesis based on speculative execution. That way, the user or scene processing are producing
transactions. Although the atomic multicast validation, particularly atomic order validation, is just
starting, the transaction is speculatively executed and the user is perceiving perfect responsiveness
even if the atomic order validation takes, for instance, about a second as some of participants
computers are from the opposite side of Earth. More details on speculative execution are in the
section 4.8.

The second problem of concurrency control brings questions like: What will happen if two users
from the opposite side of Earth are trying to modify the scene in a non-compatible way? For
example, two users are sharing the scene of three balls and the task is given to them to select one of
them. By clicking on one of them, the remaining two are removed from the scene. If two users, each
one on the opposite side of Earth, click at the same moment at different ball, the application may try
to remove one ball two times. If there is no concurrency control, application malfunction may
follow or even application crash if removing of non-existing ball incorrectly handled and it will
perform, for instance, non-allocated memory access. As can be seen, concurrency control is often
quite important and high consistency guarantees may eliminate may problems that have to be taken
care otherwise by an application designer. For the remaining text, let's expect that the balls are not
removed but just their visibility flag is changed. That simplifies the problem because no hierarchical
data relations have to be considered.

Typical solutions are based on data ownership or primary-based replication (section 3.3). However,
object ownership requires transmission of ownership each time the data item is modified on
different computer. If different computers are often trying to do so, it is quickly leading to
ownership competition and performance drops rapidly. Moreover, deadlocks may occur, if two

85

4 Active Transactions

computers are holding one lock and waiting for the lock of each other. Primary-based replication
should use hard-coded atomic action access level to be able to hide two balls atomically. If
atomicity is not guaranteed, it may happen that all three balls disappear or ownership dead-lock may
happen. Hard-coded atomic actions can solve the problem but they have to be designed for each
particular task while Active transactions can handle the situation automatically.

Active transactions may perform the task in the following way. Since Active transactions are totally
ordered, one of them has to be the first. So, the first transaction is executed. When the second one is
about to be executed, the concurrency violation is detected, the transaction is aborted, and the
concurrency problem is safely solved.

The concurrency control is based on causality. It checks transaction's read set against the current
state in the database. If all the referenced data contain the same timestamps as those in the read set,
the transaction does not violates the concurrency. The three balls example can be easily solved that
way. The solution is shown in the figure 64.

At the beginning, all three balls visibility flags are set to the initial state. It means, they are set to
true and their timestamps are set to, let's say, [0,3], while 0 is the time value and 3 is unique
computer identification that generated the timestamp and the transaction that originally wrote this
value. When the first transaction T1 is created, its read set is composed of visibility flags of ball 1
and 2 with timestamp [0,3]. The write set contains just visibility flags of ball 1 and 2 with new
values set to false. The transaction timestamp is set to [1,4]. Then, the second transaction T2 is
created concurrently with the timestamp [1,5]. As can be seen, it has the same time value, but the
unique computer identification is different. Because its timestamp is higher, it will be executed as
the second transaction. Its read set contains visibility flags of balls 2 and 3 with timestamp [0,3].
The write set contains false visibility values for these balls. When the transaction T1 is committed,
the database contains balls 1 and 2 with visibility set to false and visibility timestamps are set to
[1,4]. The third ball visibility is still true and timestamp is [0,3]. When the transaction T2 is
executed, read set timestamps are checked. The ball 3 has still correct timestamp, but ball 2 with
value [1,4] does not agree with the requested value [0,3]. Therefore, the transaction is aborted and
the state after T2 is the same as before T2.

If there is a need to restart the scenario, any computer can issue a transaction that sets the scene to
its initial state. The situation is depicted in the figure 65. The computer that issued T2 is issuing T3

for reseting the scene. T3 is generated with correct timestamps and, if the concurrency will not be
violated because other computers may try to restart the scenario also, the transaction will be
committed and the scene set to its initial state.

86

Fig. 64: Causality in transaction processing

true
[0,3]

true
[0,3]

true
[0,3]

ball 1:

ball 3:

ball 2:

Initial
state

Transaction T1

ball 2
[0,3]

ball 2
false

timestamp: [1,4]

ball 1
[0,3]

read set:
ball 1
false

write set: false
[1,4]

true
[0,3]

false
[1,4]

State
after T1

Transaction T2

ball 3
[0,3]

ball 3
false

timestamp: [1,5]

ball 2
[0,3]

read set:
ball 2
false

write set: false
[1,4]

true
[0,3]

false
[1,4]

State
after T2

4.7 Concurrency Control

One can argue that it looks too expensive to abort a transaction just for a differences in timestamps.
However for the data consistency, it is necessary to do so. Let's consider two architects designing
new building on their computers. One of them may delete a wall to make different room
organization while the other may place the picture on the wall that is about to be deleted. Both
operations are handled by issuing of a transaction. If the transactions are issued in about the same
time, it may happen that the picture is placed on non-existing wall. Although the wall existed in the
time of issuing of “place picture” transaction, it may not exists in the time of transaction commit.
Thus, the transaction should be aborted.

Another argument can be given that some reconciliation can be done before the transaction
execution and if the wall no longer exists, the picture should be placed into the space on the same
place but without the wall. That way, the architect would not be disturbed so much by disappeared
picture and he may manipulate it easily to another position. Such “advanced” computation and
reconciliation at the time of transaction execution is interesting from the research point of view. But
it is going far beyond the original Active transactions concept and it will require additional research
efforts that are out of the scope of this thesis.

4.8 Speculative Execution
The speculative execution of transactions can rapidly increase responsiveness of the CVE system. It
attacks the problem of network latency. The latency problem was already addressed by many
people suggesting some prediction algorithms like dead-reckoning [Roehl 1995a][Cai et al. 1999]
or object behavior extrapolation [Roehl 1995b]. Such approaches are usually extrapolating validated
data. Using the same approach in this work would result in extrapolating of committed data.
However, this thesis is going even further and shows the straightforward way for using non-
committed data that are more recent than committed data, thus prediction efficiency is improved
much, resulting in better application responsiveness.

The speculative execution is the optimistic approach [Bernstein and Goodman 1981] taking
advantage of the fact that the most of the transactions are committed and just small amount of them
are aborted in majority of CVE applications. The purpose of the speculative execution is to provide
the user by the speculative results while some small risk may exists that the results may not be
accurate. The probability is usually small enough and rarely shown inaccurate results are, in most
cases, more acceptable than delaying the execution until all the update validation is finished. The
execution delay may be unacceptable for many applications while inaccurate results may appear
just for hundreds of milliseconds. They are often too small, and it is possible to hide their effect in
Dead-reckoning and interpolation layer (see section 2.3). Finally, if the latency is not too high, the
user may not notice anything even when inaccurate results has been speculatively predicted.

87

Fig. 65: Causality in transaction processing

true
[0,3]

true
[0,3]

true
[0,3]

ball 1:

ball 3:

ball 2:

Initial
state

Transaction T1

ball 2
[0,3]

ball 2
false

timestamp: [1,4]

ball 1
[0,3]

read set:
ball 1
false

write set: false
[1,4]

true
[0,3]

false
[1,4]

State
after T1

Transaction T2

ball 3
[0,3]

ball 3
false

timestamp: [1,5]

ball 2
[0,3]

read set:

ball 2
false

write set: false
[1,4]

true
[0,3]

false
[1,4]

State
after T2

Transaction T3

ball 2
[1,4]

ball 2
true

timestamp: [2,4]

ball 1
[1,4]

read set:
ball 1
true

write set:

ball 3
[0,3]

ball 3
true

true
[2,4]

true
[2,4]

true
[2,4]

State
after T3

4 Active Transactions

Fig. 66: Speculative execution in transaction processing

The speculative execution in the context of Active transactions processing is shown in the figure 66.
The transaction is multicasted, but the computers are not waiting for atomic multicast validation as
it may take an unacceptable long time. Instead, as soon as each computer receives the transaction, it
executes it speculatively and atomicity validation is started. The validation is composed of atomic
order establishment and atomic delivery validation. Actually, just the atomic order establishment
has to be finished before the transaction execution because atomic delivery can be validated
independently on background as described in the section 4.6. When atomic order establishment is
complete, the transaction can be executed resulting in its commit or abort. During the transaction's
commit, the results of speculative execution are replaced by permanent records.

The speculative execution has the following requirements:

– the scene has to be fully replicated and active replication is used

– speculative database is used

The first point is fulfilled because these are the requirements of Active transactions concept. The
realization of the second point is depicted in the figure 67.

The data item may have associated several data versions. The committed data are consistent and
they may differ among the computers only by the progress of transaction commitment – some
computer may already commit some transactions in advance and some may be behind in the
progress of others. But for the same transaction commitment progress, the scenes have to be the
same.

88

Transaction
creation

Multicasting

Validation

Validation

Validation

Atomic Delivery
Validation

Total Order
Establishment

Speculative
Execution

Speculative
Execution

Speculative
Execution

Fig. 67: Database model

Committed
Database

Scene
Replica

Scene
Replica

Distributed
Server Clients

Speculative
Database

User-view
Scene

Speculative
Database

User-view
Scene

Computer 1

Computer n

4.8 Speculative Execution

The speculative database can be realized in either separate database or in multiversion database. If
multiversion database is used, the speculative database may be stored together with committed
database as a speculative versions that were not yet committed. Their commit is delayed because the
atomic order of their transactions is not established yet. So, they form the speculative scene state
that can be used immediately for a quick response to the user, improving the responsiveness of the
application. Another reason of speculative scene state is multiversion execution that is shown in the
section 4.9.

4.9 Multiversion Execution
Many versions of the data may exist in the database. Some of them may be just sequence of updates
in the time and some of them may interfere with the other updates. And it may take several
hundreds of milliseconds or even seconds, depending on network conditions, before the transactions
are committed. Therefore, it is desirable to evaluate the transactions and realize which ones seem to
be going to be committed and which seems to going to be aborted. For this purpose, each
transaction has assigned commit predictor that indicates the commit probability. The algorithm is
going through not committed transactions according to their order of increasing timestamps. The
concurrency violations are evaluated and commit predictors are set accordingly. Because the
algorithm can perform the evaluation just on the transactions that were already received and whose
total order is still not complete, the predictors are just estimating the commit probabilities and they
are not final commit indicators.

The figure 68 shows speculative database with predicted state. The predicted state is formed by the
most recent data items that belongs to the transaction with commit flag set to true. This is
considered the most recent speculative scene state. If a good responsiveness is required, this state
can be immediately presented to the user.

Sometimes, the predicted data are not suitable for the user. For example, the application may be
able to render the scene one hundred times per second and to perform just ten scene updates to save
the network bandwidth [Bettner and Terrano 2001]. The user will be seeing jerky movements
because of ten scene updates per second. To provide the user by output that is more natural for
human perception, another database called “user-view” is introduced. The database contains the

89

Fig. 68: Predicted state in database model

Committed
Database

Scene
Replica

Scene
Replica

Distributed
Server Clients

Speculative
Database

User-view
Scene

Speculative
Database

User-view
Scene

Computer 1

Computer n

Predicted State

4 Active Transactions

data that is shown to the user. These data are different from the predicted one because of smoothing,
keyframe interpolation, dead-reckoning [Roehl 1995a][Cai et al. 1999], and prediction algorithms
may be applied on predicted scene and produce a new “user-view” scene that is optimized for the
user perception. Moreover, the negative effect of transaction aborts and network latency spikes may
be hidden by those algorithms. However, these algorithms belongs to the Dead-reckoning and
interpolation layer (see section 2.3) and they are not in the scope of this thesis. They are mentioned
just for completeness of the whole CVE design concept.

4.10 Conclusion
This chapter presented the Active transactions consistency model. It is a novel approach for CVE. It
is based on unique combination of active replication from distributed systems and transaction
concept from database systems.

Fig. 69: Overview of used concepts
(novel ideas in red, known concepts in blue)

The main used concepts are shown in the figure 69. Novel ideas of this thesis are shown in red and
already known concepts are in blue.

The active replication is supported by the idea of precomputed read and write set and Lamport's
distributed unique timestamp generator that can be used for system-wide update ordering. The idea
of accessing data by transactions comes from database systems. Using transactions and active
replicated database is rarely studied combination, so I am not referencing any work of this kind. The
data consistency model adapted Timestamp-ordering protocol from databases. At first, the protocol
was simplified according to particular requirements of CVE and requirements of Active
transactions, then I extended it to reach its optimal performance if data multiversioning is used.
Because of fundamental changes, Timestamp consistency contol is also considered one of
contributions of the thesis. Data multiversioning was taken from multiversion databases and
enabled me to design the concept of speculative execution. The concept was tested with Active
transactions resulting in rapidly improved application responsiveness particularly when network
latency is noticeable.

The whole system was implemented, including several testing applications, for verification of
Active transactions concept (see chapter 5). Many used ideas mentioned above are already verified
and proved, such as active replication, Lamport's unique timestamp generator, timestamp and
multiversion timestamp ordering protocols. Proposed consistency model is adapted to requirements
of Active transactions, but it is still equal multiversion timestamp ordering protocol. Therefore, it is
not proved here.

90

Precomputed
read and write set

Distributed timestamp
generator

Active Transactions Active replication

Timestamp
consistency control

Multiversion database

Speculative execution

5 Experiments

5 Experiments
To verify the ideas of Active transactions, the software system were developed, including several
demonstration applications. The kernel of the system is CVE library. The library uses Open
Inventor [Inventor], whose API is extended to provide collaborative abilities. Several demonstration
applications are presented that are using the library.

This chapter shows the integration details briefly, followed by the demonstration applications and
measurements of the performance of the library.

5.1 CVE Library
Open Inventor [Inventor] is a high level rendering library using the concept of scene graph. Thus,
CVE Library was developed to handle hierarchical data organization. The scene graph is composed
of nodes. Different node types are carrying different kind of information, such as coordinates,
materials, textures, geometry, and many others. The nodes usually contain fields that are holding the
data of nodes. The fields are providing the abilities to load and store the values to file, notification
abilities, and other functionalities. Detailed Open Inventor overview is in the [Mentor] and [Peciva
2003].

The important property of Open Inventor, compared to OpenGL Performer [Performer] and some
other libraries, is abilities to catch read and write events on fields. The used principle is called
notification. A notification event propagates from the modified item up to the root of the scene
graph as shown in the figure 70.

Fig. 70: Notification in Open Inventor scene graph

The notification is important for re-rendering the scene whenever it changes, for keeping Inventor
caches (render caching, bounding box caching,...) up to date, and for other functionalities. CVE
library took the idea to utilize notification for catching all write events and to distribute them to
other computers, resulting in collaborative scenes that update themselves distributively (see figure
71). The details of the work are described in my paper [Peciva 2005].

However, the distribution of updates does not guarantee that the scenes will stay consistent.
Timestamp consistency [Nijholt et al. 2005][Nijholt et al. 2007] may be used to provide the data

91

5 Experiments

with consistency while preserving the high performance of the system. High level of consistency
based on Active transactions were presented by me in [Peciva 2006] and it is described above in
this thesis in more detail.

CVE library is easy-to-use Open Inventor based CVE library with high consistency guarantees
provided by the Active transactions concept. Its main benefits are responsiveness based on
speculative execution, strong consistency, and high performance.

Fig. 71: Scene synchronization in Open Inventor

5.2 Demonstration Applications
Several applications were developed for testing of CVE library. They are presented in this section.
To introduce the consistency problem, the simple example of two moving balls is explained at first.
Then, several demonstration applications are shown. The outline of the applications follows:

– Moving Balls Example – simple Active transactions application

– Advanced Balls Example – collision detection with Active transactions concept

– Simple Space Simulator – non-transaction CVE demonstration

– Collaborative Data Sharing – advanced interaction

– Collaborative Viewer – CVE encapsulation into the Open Inventor

– Collaborative Maze – CVE encapsulation into the Open Inventor

– Multi-user Flight Simulator – Collaborative landscape exploration

– Distributed Virtual Meeting Room – advanced interaction among distributed meeting
participants

– Distributed Billiard – interaction intensive environment demonstration

– Distributed Cyclotron – computing intensive simulation

Some of the applications are available for download at http://www.fit.vutbr.cz/~peciva/CVE/.

Moving Balls Example
Moving balls example demonstrates the Active transactions processing in the 3D environment with
the collision detection. The system was built using Open Inventor [Inventor] graphics library with

92

5.2 Demonstration Applications

CVE extension developed for this thesis. The figure 72
shows a single ball that is moving. At the time 0 ms, the
ball is at its initial position. The mark means it is
committed position. The updates to the ball position are
issued, for example, each 100 ms. So, at the time 100 ms, a
transaction is scheduled with an updated ball position. At
the time 200 ms, another transaction is scheduled. Both of
the new transactions are speculatively executed, however
they are not committed as not all consistency requirements
are fulfilled yet for the safe commit (see the atomic
multicast requirements in the section 4.6). At the time 300
ms, another update is scheduled and the system may
indicate that the first speculative transaction can be
committed, so it is committed. At the time 400 ms, one
more transaction is scheduled and the second transaction
may be committed.

The programmer can use the latest speculative value (the
right-most) to show the user the most recent ball position if
he prefers the responsiveness. Or, he can use the most
recent committed value if he prefers to give the user
always-consistent view of the scene. The responsiveness is usually better option because the
artifacts caused by the transaction aborts are often not so important or noticeable and they can be
hidden by another techniques mentioned in the section 2.8.

The yellow arrows are showing the dependencies among the transactions. Actually, they are
graphics representation of relations between read and write sets of the transactions. As shown in the
figure 73, the second ball is dependent on the first one, the third on the second and the fourth on the
third one.

Transactions are scheduled in the order of object position updates.

Sometimes, different dependencies exist, such as in the figure 74.

Transactions are scheduled "concurrently". Only one of
them can be committed.

Such dependency graph can be result of, for example, concurrent write of three computers. Because
of the dependencies, only one of the transactions can be committed. The result is shown in the
figure 75.

93

Fig. 73: Sequential transaction scheduling

Fig. 74: Concurrent transaction scheduling

Fig. 72: Transaction processing of Moving
balls example

5 Experiments

after the execution

When the first update is committed, other two have no longer valid read sets. They are aborted
(represented by) and the scene consistency is kept.

Fig. 76: Cascade abort caused by the second transaction

The abort of one transaction may lead to cascade aborts of other transactions. The cascade aborts
are one of the consequences of Active transactions concurrency control. The figure 76 shows an
example when the second transaction is aborted. Because its write set does never appear in the
database, the third transaction can not commit because its read set depends on write set of the
second transaction. Thus, the third transaction can be safely aborted.

The figure 76 may show an scenario when the second transaction is aborted because of a collision
with another object. The collision usually results in the change of the object's trajectory at the point
of the collision. Therefore, the third and fourth transactions are not valid any more. The dependency
on the second transaction is expressed by their read sets, and it is marked by yellow arrow. Abort of
the second transaction makes recursive abort of all dependent transactions, thus resulting in the
cascade abort. It may seem performance expensive to abort possibly many transactions, but aborts
are necessary for consistency reasons. On the other side, cascade aborts are usually rare on short
latency networks and their number can be even decreased by well designed dependencies among the
transactions.

Advanced Balls Example
The advanced ball example shows a collision of two balls in the scene. Such situation is not trivial
to be handled properly in CVE systems. These are the typical problematic points:

– invariance problem: the collision is detected on some computers but not on the others

– multiple handling: the collision of two objects of two different computers is detected. Which
one of the computers should handle the collision? Or, can it be solved by both in parallel? The
problem that is appearing is that some operations like removing object from the scene must be
ensured to be done only once because multiple removals may cause problems to the application.

– stability: handling of the collision may shift the colliding objects on a new positions, so that
they are not penetrating to each other. But the new positions may produce collisions with other
objects. This has to be safely handled.

The invariance problem is already solved by Active transactions as the scenes are completely
synchronized among the computers and the collisions are detected on all computers in the same way

94

Fig. 75: Concurrently scheduled transactions

5.2 Demonstration Applications

with the same results. Otherwise, one of crucial requirements of active replication would be broken.

Multiple handling problem can be solved by the idea: “Let's each computer handle just its own
objects.” All computers see all collisions, they evaluate all crashes, but they adjusts the new
positions just to its own objects. Such approach requires introduction of a kind of ownership. As a
ball owner, I used the computer responsible for sending update transactions of the ball position.

Another, less optimized, option may be to use inherent property of Active transactions to handle
concurrent writes, and let all the computers handle all the collisions, updating position of all
involved balls, while concurrent writes are solved by the transactions, therefore the problem is
solved automatically. This would result in the commit of transactions from a computer that
scheduled the transactions with the lower timestamp and abort of transactions of the other
computer. The last option would be to let all computers solve the collision and update the position
of the objects without sending any transactions. If the determinism would be guaranteed, the same
results would be produced on all computers. However, this idea is requiring some advanced
computation while the transaction is executed and it is not covered by the original Active
transactions concept. But it stays as a hot topic for a future research.

Stability is usually not a problem of Active transactions because there is always committed value
until it is overwritten by a new committed value. Therefore, even if the simulation is unstable and
the system is not able to create committable transaction, the last consistent state is always available
that can be, for example, saved to disk as the result of the simulation.

Fig. 77: Two colliding balls

The figure 77 shows typical collision scenario: two balls are going to collide, while the 4th

transaction is the first one that fails to commit because a collision is detected. The collision is
detected on all computers connected to the system.

The figure 78 is showing the first abort: The 4th transaction is aborted and it calls abort on all
dependent transactions. The transaction 6 is aborted because of cascade dependency while 5th

transaction has to be aborted explicitly in the collision handling code.

95

1

2

3
4

5
6

5 Experiments

Fig. 78: Colliding transaction execution

The collision handling code aborts the transactions of the collision counterpart object and then new
trajectory is computed for red and blue objects, as can be seen in the figure 79.

Fig. 79: Collision after the handling the collision

However, the multiple handling problem has to be solved properly. Therefore, following scenario is
used when the collision is detected:

– counterpart object transactions are aborted (done in parallel on all computers)

– computation of new object trajectories (done just by the computers responsible of red and blue
ball movement)

– new transactions are scheduled – the transaction 7 is scheduled by the computer responsible of
blue ball and transaction 8 by red ball computer

Finally, the results of the collision handling are shown in the figure 80.

96

7

8

5.2 Demonstration Applications

Fig. 80: Collision solved

The figure 81 shows an advanced interaction of three balls. All balls are starting at the same
moment and the blue ball is the first one that causes the collision. The collision is detected at the
transaction's commit; therefore, there may be few non-committed transactions of both balls pending
for the execution. At that moment, all the non-committed transactions of red and blue balls are
aborted and new balls positions are computed. The blue ball continues without other collisions, but
the new position of the red ball after the collision is causing the collision with yellow ball. The
situation is repeated once again, resulting in new positions and directions of red and yellow ball.

Fig. 81: Transactions in more complex object interaction

The simulation is usually done in discrete steps that are usually small enough, so the user has
impression of smooth simulation. In the figure 81, the simulation step is higher to better
demonstrate the problem. Anyway, the applications with longer simulation steps may exist for
various reasons, such as small computer performance or low network requirements, and the object
animation should be smoothed by key-position interpolation [Bettner and Terrano 2001] and other

97

5 Experiments

techniques that belong to Dead-reckoning and interpolation layer (see section 2.3). The layer should
produce the balls trajectories as shown by the blue, red, and yellow lines in the figure. The user
should not see discrete balls positions but the smoothed balls movements.

Smoothing techniques are often used in CVE systems. One of their purposes is to minimize the
effect of wrongly predicted object behavior – wrong behavior is smoothly interpolated back to the
correct object behavior. This advantage is applicable to transaction concept also and the effect of
transaction aborts may be minimized – the wrongly predicted balls positions are interpolated back
to their correct trajectories that were produced by the proper collision handling.

Simple Space Simulator
Space Simulator is a simple application supporting free flight in space with the collision detection.
Two users can control two space ships interacting with each other. The application was developed
by me in pre-research times. It is just a demonstration application that is not using Active trans-
actions and that suffers from the several consistency problems described above in the section 3.1.

The application is synchronizing the positions of the two space ships. Therefore, it is possible to
violate invariance problem and the collision may be detected on one computer and not another
because network latency caused delaying of some updates, thus space ship positions may be
different on both computers. Or, the collision is detected on both computers, but one of them may
detect “touch” collision while other detects “crash” that damages the space ship.

Fig. 82: Space Simulator

The multiple handling problem and invariance problem were not even attempted to be solved. The
collisions among movable objects would require much of additional coding and therefore, just
movable-static object collisions are handled properly. However, movable-movable object collisions
would be possible to handle properly using Active transactions and similar scenarios like presented
above in the moving balls examples.

As a conclusion, object attribute synchronization, like in Simple Space Simulator, may be not
considered sufficient for robust CVE system. It tends to be difficult to design from the point of data
consistency and heavy to maintain when adding new behavior and new types of objects. Active
transactions concept is designed to address those issues and handle the most of them for an user.

98

5.2 Demonstration Applications

Collaborative Data Sharing
Collaborative data sharing (CDS) was developed for AMI (Augmented Multi-modal Interaction)
European research project using Active transactions. The application enables group of people to
collaboratively manipulate and examine the shared data set. A typical usage is group of engineers
designing some mechanical parts and discussing the best solution of the design, or group of
architects responsible of a design of a large building. They may need to consult their ideas and
receive impressions from their clients or other architects. Medical doctors may need to consult some
aspects of a surgery while they may not have enough time to invite foreign experts. CDS
application enables them to discuss various aspects of the surgery while they can collaboratively
interact, manipulate, and examine shared virtual model of the organ or the part of the body that was
made, for example, by 3D CT/MR scanner.

CDS application provides two main abilities:

– collaborative examining of the model

– collaborative model manipulation

Collaborative model examination is realized by consistent camera position and orientation
synchronization using Active transactions concept. The camera can be concurrently manipulated,
but Active transactions guarantee that any consistency violations caused by concurrent
manipulations are handled correctly.

Collaborative model manipulation is realized by a tool that can alter the model shape. The cut
operation was used and the tool can extract pieces of the geometry from the model. Open
CASCADE library [OpenCASCADE] was used for geometry cutting and Open Inventor with CVE
extension for visualization of the model.

When the application was designed, two replication approaches were possible: active or passive.
Passive approach would result in object geometry transmissions on each object alteration, thus large
bandwidth would be necessary. Active approach transmits just the tool and model positions and
orientation while the model alterations are computed on each computer in parallel, thus saving
bandwidth because only object positions and orientations have to be synchronized. However, the

99

Fig. 83: Collaborative data sharing

5 Experiments

determinism of the cutting algorithm has to be ensured that all computers will compute the new
geometry with the same results. Fulfilling this condition of active approach, the application has
quite low network requirements that is linearly dependent on the amount of updates. Active
transactions were used for tool and object position and orientation synchronization. Cut operation
was made by a special Active transaction that has empty read and write set, but that triggers
function execution on its commit. Through its commit, the new object geometry is computed. If the
cut transaction is aborted, nothing happens. Active transactions concept guarantees that even
concurrent cut operations scheduled at different computers are handled consistently.

Collaborative Viewer
Collaborative viewer is an application for the collabo-
rative object viewing. The viewer is based on Open
Inventor and it was developed to verify the idea that
some stand-alone applications can be turned to the
collaborative one by just extending the scene graph
by the collaborative algorithms. Not even a single line
of code was changed inside ivview, just the Open
Inventor library was changed. The scene graph
classes were extended by collaborative algorithms.
The network setup was done by setting environment
variables and the collaborative viewer experiment proved, that collaborative algorithms can be well
encapsulated in some high-level scene graph libraries. More details are in [Peciva 2005].

Collaborative Maze
Maze is one of standard demonstration games coming with Open Inventor library. Maze is designed
in a way that not all scene-related state is stored in the scene graph. As a result, if Open Inventor
library is changed to the one that contains collaborative extension, the user is experiencing jerky
movements. The scene consistency is never broken, but Collaborative Maze is one example of
applications that should be adapted to be smoothly used as collaborative applications.

Fig. 85: Collaborative Maze

100

Fig. 84: Collaborative viewer

5.2 Demonstration Applications

Multi-user Flight Simulator
Simple Flight Simulator application was easily changed, without much of programmer efforts, into
the collaborative one. Two fighters are flying over the infinite landscape. They can see each other
and fly together. The movements of fighters are synchronized using Active transactions. The
landscape does not requires any synchronization as active replication approach was used and
landscape is generated by a fractal algorithm producing the same landscape on each computer.

Fig. 86: Multi-user flight simulator

The application was demonstrated at INTETAIN 2005 conference [Peciva 2005] and proved
usability of Active transactions in practice with real human users. The standalone application was
developed by Martin Havlicek [Havlicek 2005] and extended to collaborative one by me.

Distributed Virtual Meeting Room
Distributed Virtual Meeting Room is an application for collaborative interaction of more people in a
shared virtual room. The application was developed with cooperation between University of Twente
(NL) and Brno University of Technology (CZ) for AMI (Augmented Multi-modal Interaction)
European research project using Active transactions.

Fig. 87: Distributed virtual meeting room

101

5 Experiments

The meeting room provides the participants to see others, their gestures, the direction that they are
gazing, and it is enabled for them to collaboratively interact with remote control object. They can
pick it, manipulate it, change color, and discuss its design. The other participants can connect over
the Internet to the meeting room and participate on the meeting. Flock of birds is used for
participant movements tracking. The movements are immediately applied to the virtual avatar that
represents the person in the virtual meeting room. Active transactions are used for automatic data
synchronization among all participating computers. The system proved the usability of Active trans-
actions in non-trivial distributed interaction applications.

Distributed Billiard
Distributed Billiard is a CVE application for
testing and demonstration of advanced features
of Active transactions. It simulates movements
of several moving objects with big amount of
interaction. The balls are moving and they are
crashing to each other. During the collision,
new object velocity vector is computed. Since
each ball movement is computed on the
different computer, it is not a trivial task to
consistently detect the collision. According to
Active transactions concept, the collision test
has to be performed at the transaction's
commit. If the collision is detected, the
transaction is aborted.

The speculative execution makes the collisions even more complex. Speculatively executed
transactions are shown as a gray circles in the figure 88. The colored ball is the committed ball
position. If the collision is detected during the commit, the transaction is aborted and all
speculatively executed transactions of the ball are aborted also because the trajectory is no longer
valid. Then, the new ball position and velocity vector are computed and the ball movement is
restored on the different trajectory.

Distributed Billiard is the example of the application of high amount of interaction, concurrency
violations, and transaction aborts. It shows that Active transactions are suitable for such kind of
applications.

Distributed Cyclotron
Distributed Cyclotron is computing intensive
distributed simulation to measure performance
characteristics of Active transactions. The elect-
rons are emitted from emitter and accelerated by
magnetic field until they left the cyclotron. The
electrons are distributed among the computers to
distribute the computing load. The electron
trajectory is computed on one computer and
results are transmitted to all other computers.
The simulation was tested with about 1000
electrons distributed among three computers.

102

Fig. 88: Distributed billiard

Fig. 89: Distributed cyclotron

5.3 Measurements

5.3 Measurements
Active transactions processing should be analyzed to get performance characteristics of their usage
in real conditions. Two applications were chosen from the section 5.2 for the analysis. Distributed
cyclotron is a performance intensive application, therefore it is a good candidate for measurements
of performance characteristics of CVE library and Active transactions. The interest of measure-
ments will be network and CPU load. The measurements should prove linear dependency of CPU
and network load on number of simulated electrons.

Another application was needed for measuring of the scenes with high level of interaction among
the objects. It's analysis will address dynamic properties of the transaction execution, such as
transaction processing latency, length of speculative queue, and number of aborts depending on
network latency. Distributed balls application was chosen for these measurements.

Distributed Cyclotron
The performance measurements focused on two important areas: network load and CPU load. The
network load was analyzed on varying number of moving electrons in the cyclotron that resulted in
varying number of transactions exchanged among the computers. CPU load analyzed the required
processing time of these transactions.

The first measurements were using adaptive simulation step to keep the constant frame rate. The
number of electrons were changing from 0 to 50 and the network load grew from 0 to 180KB/s as
shown in the figure 90. The measurements were done using 2, 3, and 4 computers with Intel®
Celeron® 2.66 GHz processor.

It can be seen that the network load is increasing with the number of simulated electrons, but it does
not grow linearly. The non-linearity is caused by adaptive simulation step.

The CPU load is shown in the figure 91. Depending on number of electrons and number of
computers, it grows up to 80ms per each simulation step when using 4 computers while each of
them is holding 50 electrons. Such performance requirements were not bad for the first prototype,
but they were not acceptable for the next development.

103

Fig. 90: Distributed cyclotron network loading
(adaptive simulation step)

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

180

2 computers
3 computers
4 computers

Number of objects per computer

N
et

w
or

k
lo

ad
in

g
[K

B
/s

]

Fig. 91: Distributed cyclotron CPU loading
(processing time of transactions per simulation step)

1 2 3 4
0

10

20

30

40

50

60

70

80

90

10 electrons
30 electrons
50 electrons

Number of computers

P
ro

ce
ss

in
g

tim
e

of
 tr

an
sa

ct
io

ns
 [m

s]

5 Experiments

Network Loading Characteristics
New detailed measurements were done after many improvements of the first prototype. They
focused once again on network and CPU load. All the measurements were done on Intel© CoreTM

Duo 1.8 GHz processors.

The figure 92 shows the network load of each computer. It counts number of sent and received
bytes of the computer per simulation step. The amount of traffic grows linearly with number of
simulated electrons. The figure 93 shows the traffic when 20 simulation steps are performed each
second.

Fig. 94: Total network traffic in the system
per simulation step

The total network traffic is shown in the figure 94. It shows the sum of all the data transmitted over
the network. The traffic grows with the number of simulated electrons and with the number of
computers. The traffic is composed mainly of update transactions, each counting about 100 bytes.

104

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

300

350

2 computers
3 computers
4 computers

Number of objects in the system

To
ta

l n
et

w
or

k
tra

ffi
c

[K
B

 /
si

m
ul

at
io

n
st

ep
]

Fig. 92: Network traffic per computer
per simulation step

Fig. 93: Network traffic per computer when doing 20
simulation steps per second

0 25 50 75 100 125 150 175 200
0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

2 computers
3 computers
4 computers

Number of objects per computer

N
et

w
or

k
tra

ffi
c

pe
r c

om
pu

te
r [

M
B

/s
]

0 50 100 150 200
0

20

40

60

80

100

120

140

160

2 computers
3 computers
4 computers

Number of objects per computer

N
et

w
or

k
tra

ffi
c

pe
r c

om
pu

te
r

[K
B

 /
si

m
ul

at
io

n
st

ep
]

5.3 Measurements

Although the transactions are carrying whole 4x4 position matrix in text format, the decision was
made to not optimize it to better prove network characteristics.

The conclusion from the figures 92, 93, and 94 can be given that network load of my
implementation of Active transactions grows linearly with number of simulated objects. The open
question is scalability on the increasing number of computers. It is addressed in following graphs.

Fig. 95: Network traffic of each computer

The network traffic dependency on number of computers is shown in the figure 95. The network
traffic grows asymptotically to some value as the number of computers grows. Because the traffic is
not growing over some threshold until number of computers is equal to number of electrons, there is
no scalability limit until this point (assuming there are no other network bottlenecks in the system).
The only limit is the throughput of the network card of each computer.

Fig. 96: Total network traffic dependence on number of computers

105

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200
Number of
electrons:

0
40
60
80
120
160
180
200
240
300
320
400
450
600
800

Number of computers

Ne
tw

or
k

tra
ffi

c
pe

r c
om

pu
te

r
[K

B
/ s

im
ul

at
io

n
st

ep
]

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000 Number of
electrons:

0
40
60
80
120
160
180
200
240
300
320
400
450
600
800

Number of computers

To
ta

l n
et

wo
rk

 tr
af

fic
[K

B
/ s

im
ul

at
io

n
st

ep
]

5 Experiments

Total network traffic, according to the figure 96, grows linearly with the number of computers and
with the number of simulated electrons. The linearity is given by point-to-point communication
used for distribution of each message to all the computers. Using of multicast or broadcast (see
section 2.6 may improve scalability much and avoid possible overloading of internal network
switches throughput. The figure 97 depicts expected total network traffic when using broadcast.

Fig. 97: Expected total network traffic when using broadcast

As it can be seen, the network traffic is constant for the same number of simulated electrons. So, the
number of participating computers does not influence the total network traffic. However, broadcast
is usually not reliable and it is often limited to local network only. Therefore, reliable multicast,
such as SRM [Floyd et al. 1997], is often used instead.

The final conclusion of network loading is that it grows linearly with the number of electrons. If
using point-to-point communication, total network traffic grows linearly on growing number of
computers while per-computer network traffic grows asymptotically until number of electrons
becomes closer to the number of computers. Broadcast can make network loading constant and
independent on number of computers.

106

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

0
40
60
80
120
160
180
200
240
300
320
400
450
600
800

Number of computers

To
ta

l n
et

w
or

k
tra

ffi
c

[K
B

 /
si

m
ul

at
io

n
st

ep
]

Number of
electrons:

5.3 Measurements

CPU Loading Characteristics
To get correct CPU load, only time for processing of transactions was measured, skipping all the
visualization time and simulation computations.

The figure 98 shows the processing time of non-optimized version. It can be seen that the
processing time is increasing with the number of computers and with the number of simulated
electrons that produce more transactions. The figure 99 shows that there is a small additional
performance cost when increasing the number of computers even though the number of simulated
electrons stays the same. The additional cost is caused by the lower amount of owned electrons and
increased number of incoming update transactions for “non-owned” electrons.

The optimized version brings big performance boost by factor 5 just by switching the compiler code
optimizations on. The figures 100 and 101 shows the results of optimizations.

107

Fig. 98: CPU loading - processing time of transactions
per simulation step

Fig. 99: CPU loading – processing time of transactions
depending on the number of objects

Fig. 100: Processing time of transactions with
optimizations per simulation step

Fig. 101: Processing time of transactions with
optimizations depending of number of objects

in the system

0 100 200 300 400 500 600 700 800

0

50

100

150

200

250

300

2 computers
3 computers
4 computers

Number of objects in the system

P
ro

ce
ss

in
g

tim
e

of
 tr

an
sa

ct
io

ns
pe

r c
om

pu
te

r a
nd

 s
im

ul
at

io
n

st
ep

 [m
s]

0 100 200 300 400 500 600 700 800

0

5

10

15

20

25

30

35

40

45

50

2 computers
3 computers
4 computers

Number of objects in the system

P
ro

ce
ss

in
g

tim
e

of
 tr

an
sa

ct
io

ns
pe

r c
om

pu
te

r a
nd

 s
im

ul
at

io
n

st
ep

 [m
s]

0 25 50 75 100 125 150 175 200

0

50

100

150

200

250

300

2 computers
3 computers
4 computers

Number of objects per computer

P
ro

ce
ss

in
g

tim
e

of
 tr

an
sa

ct
io

ns
pe

r c
om

pu
te

r a
nd

 s
im

ul
at

io
n

st
ep

 [m
s]

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

2 computers
3 computers
4 computers

Number of objects per computer

P
ro

ce
ss

in
g

tim
e

of
 tr

an
sa

ct
io

ns
pe

r c
om

pu
te

r a
nd

 s
im

ul
at

io
n

st
ep

 [m
s]

5 Experiments

Such performance is acceptable for the usability in many applications. The closer look on
performance characteristics reveals some anomalies. The most noticeable is the strange
characteristic if using 3 computers and up to 40 electrons on each computer. The transaction
processing requires more time than if 4 computers are used. Moreover, if more than 40 electrons are
used on 3 computers, the performance grows and it requires less time than 2 and 4 computer
configurations. This is persistent anomaly and it is probably caused by some internal Winsock
(Windows Sockets) behavior when distributing the transactions to other computers.

The figure 101 shows that the processing time is about to be linearly dependent on number of
objects in the system and it does not depend much on the number of computers. From this point of
view, the system should be well scalable on high number of computers or large clusters.

Distributed Balls
Distributed Balls example was used for
evaluation of dynamic properties of Active
transactions when high level of interaction
exists among the scene objects.

The figure 102 shows speculative transaction
processing. Three balls are moving, doing 10
simulation steps per second while extreme
network latency of one second is simulated.
Each ball is controlled by different
computer. One second latency makes the
processing of collisions not trivial task.
However, they are handled automatically by
Active transactions. Each time the collision
is detected, the associated transaction is
aborted. Grey circles are representing
speculative transactions whose validation
process is still not finished. Dark grey circles
are transactions that caused the collision and they will be aborted. The light grey circles should be
committed if conditions will not change until validation is finished.

The figure 103 shows the length of speculative
transaction queue associated with one data item. The
queue is getting longer as the network latency grows.
The measurement was done on 12 update steps per
second. All the following measurements were done on
12 updates per second also.

The latency deeply influences the performance
characteristics of the transaction execution. Longer
latency means more speculative transactions and more
performance expensive cascade aborts. However, the
network latency is usually bellow 100 ms todays. But
exceptions exists, such as intercontinental connections.
Such long latencies are addressed by this work
especially by speculative execution ability of Active
transactions.

108

Fig. 103: Speculative transaction queue length

0 200 400 600 800 1000

0

2

4

6

8

10

12

14

Network latency [ms]

Sp
ec

ul
at

iv
e

tra
ns

ac
tio

n
qu

eu
e

le
ng

th

Fig. 102: Distributed Balls application showing speculative
transactions

5.3 Measurements

Fig. 104: Number of commits and aborts per 1000 executed
transactions

The figure 104 shows the number of commits and aborts per 1000 executed transactions as the
network latency is growing. Only 5% of transactions is aborted if the latency is bellow 100 ms.
About 18% is aborted on 400 ms latencies. And even if the latencies are about one second, the
scene processing works correctly and the scene is kept consistent among the computers. The cost of
high latency is only the increased number of aborted transactions – about one third of them. This
can be considered as a big success as the scene processing and distributed collision decisions can be
consistently realized even on so high network latencies.

Fig. 105: Commit/abort ratio dependency on network latency

The figure 105 shows commit/abort ratio dependency on network latency for two, three, and four
moving balls. Four moving balls has bigger amount of interaction, i.e. they are colliding more often.
Therefore, more aborts occur.

109

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Commits
Aborts

Network latency [ms]

Nu
m

be
r o

f c
om

m
its

 a
nd

 a
bo

rts
[p

er
 1

00
0

tra
ns

ac
tio

ns
]

0 200 400 600 800 1000
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2 computers
3 computers
4 computers

Network latency [ms]

C
om

m
it/

ab
or

t r
at

io

5 Experiments

Fig. 106: Number of aborts per collision

Theoretically, only two transactions may be required to be aborted when collision happens between
two balls on zero latency networks – one transaction abort for each colliding ball. However,
because the latency is always a little bit above zero, the measurement in the figure 106 starts with 3
aborts per collision. All the remaining aborts caused by the collision are usually caused by the
cascade aborts. Increasing number of transactions are aborted if the latency is growing.

In conclusion, the transaction execution makes distributed decisions and distributed scene
processing possible even on high latency networks. Depending on the application, amount of
aborted transactions may grow as the network latency increases. However, the scene is kept
consistent and application should perform well even on varying network conditions.

5.4 Performance and Scalability Considerations
Active transactions are keeping strong scene consistency in all conditions and the scene consistency
is never broken, independently on the network latency or system loading. The transaction
processing handles the long latencies as well, providing the user with excellent responsiveness
based on speculative execution.

Performance considerations are based on measurements above. Active transactions seem to scale
well on large clusters of computers (figure 101), but they may reach CPU performance limits when
number of transactions to process is too high (the same figure). Overcoming of this limit will be
discussed bellow.

Network scalability is bounded by linear growth of network traffic with increasing number of
transactions (figure 94). However, it scales well on large number of computers (figure 95), like in
the case when considering CPU-related scalability. The possible bottlenecks are throughput of
network interface of each computer (relates to figure 95) and overall network throughput (figure
96). The network scalability can be increased by utilizing broadcast or multicast abilities that may
lower the network requirements rapidly (figure 97).

Some of scalability limitations are given “by design”. The requirement of active replication forces

110

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

2 computers
3 computers
4 computers

Network latency [ms]

N
um

be
r o

f a
bo

rts
 p

er
 c

ol
lis

io
n

5.4 Performance and Scalability Considerations

all the computers to process all the transactions that were issued in the system. So, the peak
performance of the whole system is determined by the slowest computer. Another limitation is the
requirement of whole scene replication – all computers have to replicate whole shared scene. This is
also the requirement of active replication. It limits the size of the scene by the computer that has the
least available memory.

Many of the limits mentioned above can be overcome. One of general solutions are using of Area-
of-interest techniques. Although active replication does not support it, some solutions can still be
found. For instance, a scene of a big building can be split spatially into the several smaller
subscenes of the house floors. This subscenes would behave like independent active replicated
scenes with its own transaction processing. The objects would be leaving and entering the scenes as
they are going upstairs and downstairs (see figure 107). That would enable to utilize Area of
Interest techniques and the computers may replicate just those subscenes that they are interested in.
So, the memory consumption would be lowered and the transaction processing would include just
those transactions that belong to the subscenes that the computer is replicating.

Fig. 107: AoI support in Active transactions

The problem is just in cooperation of the subscenes. For instance, one object may need to leave one
subscene and enter another one, or two objects of the different subscenes may want to interact. Such
operations are typical for the scenes that are split spatially to the subscenes and the object may need
to cross the border and enter other subscene, or it may want to start some interaction with the close
object that is behind the border. The transfer of the object to the other subscene can be done by two
transactions – one will be sent to the first subscene to remove the object from it and the second will
be sent to the second subscene to append the object to it. However, there is no guarantee of
atomicity and one of transactions may be aborted while the other is committed. In such case, the
object will stay in no subscene or at both at the same time and that should be avoided. However,
that is out of scope of Active transactions because they guarantee atomicity for the replicated scene
or subscene. Inter-scene operations are not supported because they are breaking requirements of
active replication and they stay as a topic for the future research for the further increasing of the
scalability. Another option may be to establish some “connecting zone” and to enable objects to
stay for a while in both scenes. The principle is
shown in the figure 108. However, even this
scenario does not solve all consistency problems.
For instance, collision detection may not be
solved properly if an object in “connecting zone”
is signed to both scenes and it collides with
another object that is signed to one of the scenes
only. The collision test ends with different results
in the scenes. Even this approach is a hot topic for
the future research.

111

Active
Replicated
Subscene

Active
Replicated
Subscene

Active
Replicated
Subscene

Fig. 108: Connecting zone AoI approach

Subscene A

Subscene B

Sign on Subscene B
Both scenes

Sign off Subscene A

5 Experiments

Final Evaluation
For the final evaluation of Active transactions, four criteria were chosen according to the priorities
set for this thesis:

strength of consistency excellent
Active transactions are focused on consistency and they
provides high consistency guarantees. Therefore, the
programming style of Active transactions is similar to the
programming style of standalone applications.

performance requirements good / acceptable
The measurements in the section 5.3 proves good usability
even on 800 of simulated objects. That is sufficient for many
applications, including majority of today's computer games.

scalability small and middle-sized scenes only
Active transactions are focused on mainstream applications
that are usually handing limited size scenes. Large scenes and
large simulations seems possible and they stays as a topic for
the future research.

usability very good
Proved by embedding into Inventor library and
by number of testing applications shown in the section 5.2.

Table 15: Active transactions evaluation

The evaluation shown in the table 15 shows that strength of consistency and usability are the main
merits of Active transactions and that they are well suitable to be used in practice.

112

6 Conclusions

6 Conclusions
The goal of the presented work was to design such consistency model that would provide high
consistency guarantees and responsiveness while respecting the performance requirement. The goal
was reached. The new consistency model is based on Active transactions described in the chapter 4
of this thesis. It provides high consistency guarantees by complete scene synchronization based on
active replication. High responsiveness was enabled by speculative execution ability of Active
transactions (section 4.8) and the performance verification was shown in the chapter 5. The model
was proved by designing and implementation of CVE library and several testing applications shown
in the section 5.2.

Additional results include:

– Existing CVE consistency models have been investigated and their properties have been
classified – described in the chapter 3.

– Close research areas have been investigated for the algorithms similar to the ones used in CVE
systems – chapter 2.

– The new consistency model usage in practice was verified on several testing applications and
measurements – chapter 5.

The design of Active transactions consistency model is based on active replication used in
distributed systems and transaction concept developed in database systems. The novelty of the
approach is the unique combination of active replication with the transaction concept and both of
the concepts are combined into a new consistency model.

The design of the new consistency model required deep understanding of consistency models in
distributed systems and deep understanding of database concepts. Their fitting together with the
requirements of CVE systems was difficult also because the system had to be implemented in order
to prove the concepts. The implementation verified the ideas of the design process and provided
valuable feedback for improvements. Finally, the CVE code was encapsulated in the software
library and it was shown that the the model is easily usable for real application development.

Usability of a consistency model is related to the strength of consistency model and consistency
guarantees. Active transactions were designed to keep strong consistency, thus providing easy
programming model well usable in many todays CVE applications. The usability was proved by
implementation of the consistency model, its embedding into the Open Inventor library, and
development of several testing applications. High responsiveness is reached by speculative
execution that is kept even on bad network conditions. High performance is based on using of
multiversion databases in the proposed system.

The scalability was verified by several measurements. They show linear dependency of CPU and
network load on number of executed transactions per time interval and good scalability on large
clusters of computers. Even more improved scalability can be reached using broadcast. In that case,
the CPU and network load is constant and it does not change on number of participating computers.
The load would change just with the number of executed transactions per time interval.

The contribution of the dissertation is the Active transactions consistency model. Its novelty is in
combining of known algorithms, especially from distributed and database systems, into a new
consistency model for CVE applications. Another important contribution is investigation and
classification of consistency models used in CVE presented in the chapter 3 that summarizes the

113

6 Conclusions

state of the art in the CVE consistency models.

In the future research, I would like to address some advanced behavior of transaction execution,
such as executing of user defined code at transaction commit that may enable additional
optimizations. Another topic is investigation of “passive” transactions that would introduce
transaction concept to passive replication. A tempting idea is also investigation of scalability that
would shift performance limits of Active transactions from middle-sized virtual environments to
possibly very large environments.

The research may be directed also to the commercial sector – the usability of the consistency
models and their implementation and evaluation. Particularly, the encapsulation of CVE algorithms
into the library, like it was done for Open Inventor [Inventor], may be brought to a commercial
solution to be used in professional applications.

114

7 Appendix - Network Latency Measurement

7 Appendix - Network Latency Measurement

The familiarity with real network conditions is important to appropriately design CVE system.
Especially, latency variations, latency spikes, and lost packet penalties may influence deeply the
final design of the CVE application. To get the idea about the real network conditions, the figures
109 and 110 show histograms of local network latencies and figures 111 and 112 histograms of a
long Internet connection from Brno (Czech Republic) to Bristol (United Kingdom) of a simple
ping-pong application.

Local network
number of packets sent: 199'000'000
computer loading: OpenGL screensaver
operating system: Linux

115

Latency Number of
Packets

0-1ms 198'000'000
1-10ms 996'000

10-100ms 176'000
100-1000ms 8

Fig. 109: Round trip time of two computers on high-speed LAN

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160

ping time

co
un

t

7 Appendix - Network Latency Measurement

Fig. 110: Detailed round trip time of two computers on high-speed LAN

The figure 110 shows that nearly all packets were delivered in one millisecond. Actually, 99% of
them arrived in about 200us. However, another important points can be seen – the peaks at 10ms,
20ms, 30 and 40 milliseconds latency. These had probably the relation to operating system 10
millisecond task switching. Loaded computer or operating system activity may have deep impact on
measured values. Whole CVE system should be robust enough to safely handle possibly long
unavailability of some computers because of some unpredicted loading of the computer, disk
swapping, or some other activity.

Distant connection
Location: Bristol (UK) – Brno (CZ), about 2000 km

number of packets sent: 720'000
computer loading: OpenGL screensaver
operating system: Linux

116

0
5

10
15
20
25
30
35
40
45
50

0 20 40 60 80 100 120 140 160

ping time

co
un

t

Latency Number of
Packets

36-40ms 650'000
40-50ms 65'000

50-100ms 3'000
100-1000ms 800

7 Appendix - Network Latency Measurement

The figures 111 and 112 show that no packet arrived until 36 ms elapsed and 99.9% packets arrived
before 60ms. A strange peak can be noticed around 300ms that counts about 0.07% of total packet
number. They are probably the lost packets that required resending by TCP/IP layer. Maybe, the
communication distance of about 2'000 km may be one of the factors of the lost packets.

Even worse results can be expected on wireless networks and mobile phone Internet connections.
The number of lost packets may be even higher, and connection quality and accessibility may
change over time. Some mobile phone Internet connections shows average latencies over 100ms
and sometimes even over half of second. Such latencies may not be acceptable for many CVE
applications.

117

Fig. 111: Round trip time of Czech Rep. to United Kingdom communication

0
100
200
300
400
500
600
700
800
900

1000

0 50 100 150 200 250 300 350 400 450

ping time

co
un

t

Fig. 112: Detailed round trip time of Czech Rep. to United Kingdom communication

0
2
4
6
8

10
12
14
16
18
20

0 50 100 150 200 250 300 350 400 450

ping time

co
un

t

Bibliography

Bibliography

[Abbott and Garcia-Molina 1992]
Abbott, R. K. and Garcia-Molina, H. 1992. Scheduling real-time transactions: a
performance evaluation. ACM Trans. Database Syst. 17, 3 (Sep. 1992), 513-560. DOI=
http://doi.acm.org/10.1145/132271.132276

[Anderson et al. 1995]
Anderson, D. B., Barrus, J. W., Howard, J. H., Rich, C., Shen, C., and Waters, R. C.
1995. Building Multiuser Interactive Multimedia Environments at MERL. IEEE
MultiMedia 2, 4 (Aug. 1995), 77-82. DOI= http://dx.doi.org/10.1109/93.482298

[ANSI 1993]
DIS-ANSI/IEEE Standard 1278-1993, Standard for Distributed Interactive Simulation -
Application protocols

[Benford et al. 1993]
Benford, S., Lee, O., Bullock, A. 1993. Supporting Cooperative Work in Virtual
Reality, Proc. of Infoscience'93, Soul, Korea.

[Benford et al. 1994]
Benford, S., Bowers, J., Fahlén, L. E., and Greenhalgh, C. 1994. Managing mutual
awareness in collaborative virtual environments. In Proceedings of the Conference on
Virtual Reality Software and Technology (Singapore, Singapore). G. Singh, S. K.
Feiner, and D. Thalmann, Eds. World Scientific Publishing Co., River Edge, NJ,
223-236

[Bernstein and Goodman 1981]
Bernstein, P. A. and Goodman, N. 1981. Concurrency Control in Distributed Database
Systems. ACM Comput. Surv. 13, 2 (Jun. 1981), 185-221.
DOI=http://doi.acm.org/10.1145/356842.356846

[Bettner and Terrano 2001]
Bettner, P. and Terrano, M. 2001. 1500 archers on a 28.8: Network programming in the
Age of Empires and beyond. Game Developers Conference, March2001,
www.gamasutra.com

[Birman 1993]
Birman, K. P. 1993. The process group approach to reliable distributed computing.
Commun. ACM 36, 12 (Dec. 1993), 37-53.
DOI=http://doi.acm.org/10.1145/163298.163303

[Bloomenthal 1997]
Bloomenthal, Jules: An Introduction to Implicit Surfaces, Morgan Kaufmann, 1997

[Boer et al. 2006]
Boer, C. A., de Bruin, A., and Verbraeck, A. 2006. Distributed simulation in industry --
a survey: part 1 -- the COTS vendors. In Proceedings of the 38th Conference on Winter
Simulation (Monterey, California, December 03 - 06, 2006). L. F. Perrone, B. G.

118

Bibliography

Lawson, J. Liu, and F. P. Wieland, Eds. Winter Simulation Conference. Winter
Simulation Conference, 1053-1060.

[Bononi 2005]
Bononi, L., Bracuto, M., D'Angelo, G., and Donatiello, L. 2005. Concurrent Replication
of Parallel and Distributed Simulations. In Proceedings of the 19th Workshop on
Principles of Advanced and Distributed Simulation (June 01 - 03, 2005). Workshop on
Parallel and Distributed Simulation. IEEE Computer Society, Washington, DC,
234-243. DOI= http://dx.doi.org/10.1109/PADS.2005.6

[Bryant 1977]
Bryant, R. E. 1977. Simulation of Packet Communication Architecture Computer
Systems. Technical Report. UMI Order Number: TR-188., Massachusetts Institute of
Technology.

[Budhijara 1993]
Budhijara, N., Marzullo, K., Schneider, F.B., Toueg, S.: “The Primary-Backup
Approach.” In S. Mullender,(ed.), Distributed Systems, pp. 199–216. Addison-
Wesley,Wokingham, 2nd edition, 1993.

[Cai et al. 1999]
Cai, W., Lee, F. B., and Chen, L. 1999. An auto-adaptive dead reckoning algorithm for
distributed interactive simulation. In Proc. of PADS '99. IEEE Computer Society,
Washington, DC, 82-89

[Calvin et al. 1993]
Calvin, J., Dickens, A., Gaines, R., Metzger, P., Miller, D., Owen, D. 1993. The
SIMNET Virtual World Architecture, Proc. of IEEE VRAIS'93

[Dayal et al. 1990]
Dayal, U., Hsu, M., and Ladin, R. 1990. Organizing long-running activities with
triggers and transactions. In Proceedings of the 1990 ACM SIGMOD international
Conference on Management of Data (Atlantic City, New Jersey, United States, May 23
- 26, 1990). SIGMOD '90. ACM Press, New York, NY, 204-214. DOI=
http://doi.acm.org/10.1145/93597.98730

[Debattista 2007]
Debattista, K., Chalmers, A., Gillibrand, R., Longhurst, P., Mastoropoulou, G., and
Sundstedt, V. 2007. Parallel selective rendering of high-fidelity virtual environments.
Parallel Comput. 33, 6 (Jun. 2007), 361-376. DOI= http://dx.doi.org/10.1016/j.parco.
2007.04.002

[Direct3D]
Direct3D, http://en.wikipedia.org/wiki/Direct3D

[ESC 2007]
The Earth Simulator Center, http://www.es.jamstec.go.jp/

[Floyd et al. 1997]
Floyd, S., Jacobson, V., Liu, C., McCanne, S., and Zhang, L. 1997. A reliable multicast
framework for light-weight sessions and application level framing. IEEE/ACM Trans.
Netw. 5, 6 (Dec. 1997), 784-803. DOI= http://dx.doi.org/10.1109/90.650139

119

Bibliography

[Forte]
FORTE VFX-1 HEADGEAR Virtual-Reality system, http://museum.bounce-
gaming.net/vfx1.html

[Frecon and Stenius 1998]
Frécon, E. and Stenius, M. "DIVE: A Scaleable network architecture for distributed
virtual environments", Distributed Systems Engineering Journal (special issue on
Distributed Virtual Environments), Vol. 5, No. 3, Sept. 1998, pp. 91-100.

[Fujimoto 1999]
Fujimoto, R. M. 1999. Exploiting temporal uncertainty in parallel and distributed
simulations. In Proceedings of the Thirteenth Workshop on Parallel and Distributed
Simulation (Atlanta, Georgia, United States, May 01 - 04, 1999). Workshop on Parallel
and Distributed Simulation. IEEE Computer Society, Washington, DC, 46-53.

[Garcia-Molina and Salem 1992]
Garcia-Molina, H. and Salem, K. 1992. Main Memory Database Systems: An
Overview. IEEE Transactions on Knowledge and Data Engineering 4, 6 (Dec. 1992),
509-516. DOI=http://dx.doi.org/10.1109/69.180602

[Gisi and Sacchi 1994]
Gisi, M. A., and Sacchi, C. “Co-CAD: A Collaborative Mechanical CAD System”,
PRESENCE, MIT Press, Vol. 3, No. 4, Fall 1994, pp. 341-350

[Gray and Reuter 1992]
Gray, J. and Reuter, A. 1992 Transaction Processing: Concepts and Techniques. 1st.
Morgan Kaufmann Publishers Inc.

[Greenhalgh 1999]
Greenhalgh, C. 1999. Realizing Flexible Consistency in HIVEK. 3rd Workshop on
System Aspects of Sharing a Virtual Environment

[Hadzilacos and Toueg 1994]
Hadzilacos, V. and Toueg, S. 1994 A Modular Approach to Fault-Tolerant Broadcasts
and Related Problems. Technical Report. UMI Order Number: TR94-1425., Cornell
University.

[Hamming 1950]
Richard W. Hamming. Error Detecting and Error Correcting Codes, Bell System
Technical Journal 26(2):147-160, 1950.

[Haptic]
Haptics, http://en.wikipedia.org/wiki/Haptic

[Havlicek 2005]
Havlíček Martin. Knihovna pro práci s výškovými mapami. Master thesis, Faculty of
Information Technology, Brno University of Technology, Brno, Czech Rep., 2005,
http://www.fit.vutbr.cz/study/DP/DP.php?id=3313&y=*

[Hesina et al. 1999]
Hesina, G., Schmalstieg, D., Furhmann, A., and Purgathofer, W. 1999. Distributed
Open Inventor: a practical approach to distributed 3D graphics. In Proceedings of VRST
'99. ACM Press, New York, NY, 74-81.

120

Bibliography

DOI=http://doi.acm.org/10.1145/323663.323675

[Hor and Yonekura 1999]
Hor, S., Yonekura, T. 1999. Pseudo-Real-Time Phenomenon in an Augmented
Distributed Virtual Environment (ADVE) with Lag. IV 1999: 328-333

[Hybinette and Fujimoto 2001]
Hybinette, M. and Fujimoto, R. M. 2001. Cloning parallel simulations. ACM Trans.
Model. Comput. Simul. 11, 4 (Oct. 2001), 378-407.
DOI=http://doi.acm.org/10.1145/508366.508370

[Hybinette and Fujimoto 2002]
Hybinette, M. and Fujimoto, R. M. 2002. Latency hiding with optimistic computations.
J. Parallel Distrib. Comput. 62, 3 (Mar. 2002), 427-445. DOI=http://dx.doi.org/10.1006/
jpdc.2001.1801

[Chandy and Misra 1979]
Chandy, K. and Misra, J. 1979. "Distributed Simulation: A Case Study in Design and
Verification of Distributed- Programs", IEEE Transactions on Software Engineering,
pp. 440-452.

[Chang and Maxemchuk 1984]
Jo-Mei Chang , N. F. Maxemchuk, Reliable broadcast protocols, ACM Transactions on
Computer Systems (TOCS), v.2 n.3, p.251-273, Aug. 1984

[Chen et al. 2003]
Chen, D., Turner, S. J., Gan, B. P., Cai, W., Wei, J., and Julka, N. 2003. Alternative
Solutions for Distributed Simulation Cloning, Simulation: Transactions of the Society
for Modeling and Simulation International, Vol. 79, No. 5-6, pp 299-315.

[Intel 2004]
Statistical Analysis of Floating Point Flaw,
http://support.intel.com/support/processors/pentium/sb/CS-013007.htm

[Inventor]
SGI, Open Inventor, http://oss.sgi.com/projects/inventor/

[Jefferson 1985]
Jefferson, D. R. 1985. Virtual time. ACM Trans. Program. Lang. Syst. 7, 3 (Jul. 1985),
404-425. DOI= http://doi.acm.org/10.1145/3916.3988

[Kaufmann 1999]
Construct3D, http://www.ims.tuwien.ac.at/research/construct3d/

[Krishnaswamy 2001]
Vijaykumar Krishnaswamy, Mustaque Ahamad, Michel Raynal, David E. Bakken:
Shared State Consistency for Time-Sensitive Distributed Applications. In Proceedings
of the the 21st international Conference on Distributed Computing Systems (April 16 -
19, 2001). ICDCS. IEEE Computer Society, Washington, DC, 606-614.

[Kuhl et al. 2000]
Kuhl, F., Weatherly, R., and Dahmann, J. 2000. Creating Computer Simulation
Systems, An Introduction to the High Level Architecture. Prentice Hall PTR

121

Bibliography

[Lamport 1978]
Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 7 (Jul. 1978), 558-565.
DOI=http://doi.acm.org/10.1145/359545.359563

[Lamport 1979]
Lamport, L. 1979. "How to make a multiprocessor computer that correctly executes
multiprocess programs". IEEE Trans. Comput. C-28 (9), pp. 690-691.

[Lampson and Sturgis 1979]
Lampson, B. and Sturgis, H. 1979. "Crash Recovery in a Distributed Data Storage
System", Tech. Report , Xerox Palo Alto Research Center.
http://citeseer.ist.psu.edu/lampson79crash.html

[Li 1989]
Li, K. and Hudak, P. 1989. Memory coherence in shared virtual memory systems. ACM
Trans. Comput. Syst. 7, 4 (Nov. 1989), 321-359. DOI=
http://doi.acm.org/10.1145/75104.75105

[Lincroft 1999]
Peter Lincroft. The Internet Sucks: Or, What I Learned Coding X-Wing vs. Tie Fighter.
Gamasutra, September 1999. {Online} http://www.gamasutra.com/features/19990903/-
lincroft_01.htm

[MacIntyre and Feiner 1998]
MacIntyre, B., Feiner, S., A Distributed 3D Graphics Library, Proc. of ACM
SIGGRAPH 98, Jul 1998, 361-370,
http://www.cc.gatech.edu/~blair/papers/siggraph98.pdf

[Mentor]
Wernecke, J. 1993. The Inventor Mentor: Programming Object-Oriented 3d Graphics
with Open Inventor, Release 2. 1st. Addison-Wesley Longman Publishing Co., Inc.

[Mitsubishi 1997]
Mitsubishi Electric, Open Community: High Level Overview, 1997,
http://www.merl.com/projects/opencom/WWW/ov.html

[Monniaux 2007]
Monniaux, D.: The pitfalls of verifying floating-point computations. ACM TOPLAS,
Transactions on programming languages and systems, 2007.

[Morillo et al. 2005]
Morillo, P., Orduna, J. M., and Fernandez, M. 2005. Improving the Performance of
Distributed Virtual Environment Systems. IEEE Trans. Parallel Distrib. Syst. 16, 7 (Jul.
2005), 637-649. DOI=http://dx.doi.org/10.1109/TPDS.2005.83

[Mosberger 1993]
Mosberger, D. 1993. Memory consistency models. SIGOPS Oper. Syst. Rev. 27, 1 (Jan.
1993), 18-26. DOI= http://doi.acm.org/10.1145/160551.160553

[Naef et al. 2003]
Naef, M., Lamboray, E., Staadt, O., and Gross, M. 2003. The blue-c distributed scene
graph. In Proceedings of EGVE '03, vol. 39. ACM Press, New York, NY, 125-133.

122

Bibliography

DOI=http://doi.acm.org/10.1145/769953.769968

[NASA 2006]
NASA Press. 2006. NASA Achieves Breakthrough In Black Hole Simulation,
http://www.nasa.gov/vision/universe/starsgalaxies/gwave.html

[Nijholt et al. 2005]
Nijholt, A. and Zwiers, J. and Peciva, J. 2005. The Distributed Virtual Meeting Room
Exercise. In: Proceedings ICMI 2005 Workshop on Multimodal multiparty meeting
processing, Trento, Italy. pp. 93-99.

[Nijholt et al. 2007]
Nijholt, A., Zwiers, J. and Peciva, J. 2007. Mixed reality participants in smart meeting
rooms and smart home enviroments. Journal of Personal and Ubiquitous Computing,
ISSN 1617-4909 (Print) 1617-4917 (Online), Springer London.

[OpenCASCADE]
Open CASCADE, http://www.opencascade.org/

[OpenGL]
OpenGL, http://www.opengl.org

[OSG]
OpenSceneGraph, http://www.openscenegraph.org

[Otto et al. 2005]
Otto, O., Roberts, D. and Wolff, R. 2005, A Study of Influential Factors on Effective
Closely-Coupled Collaboration based on Single User Perceptions, In Proceedings of the
8th Annual International Workshop on Presence, London,September 21-23, pp.181-188

[Peciva 2003]
Pečiva, J. 2003. Open Inventor Tutorial, ROOT.CZ, Praha, ISSN 1212-8309,
http://www.root.cz/clanky/open-inventor/.

[Peciva 2005]
Pečiva, J. 2005. Omnipresent Collaborative Virtual Environments for Open Inventor
Applications. Springer LNCS, Volume 3814, Nov 2005, Pages 272 - 276

[Peciva 2006]
Pečiva, J. 2006. Active transaction approach for collaborative virtual environments. In
Proceedings of the 2006 ACM international Conference on Virtual Reality Continuum
and Its Applications (Hong Kong, China). VRCIA '06. ACM Press, New York, NY,
171-178. DOI= http://doi.acm.org/10.1145/1128923.1128950

[Performer]
SGI, OpenGL Performer, http://www.sgi.com/products/software/performer/

[Piegl and Tiller 1997]
Les Piegl and Wayne Tiller: The NURBS Book, Springer-Verlag 1995–1997 (2nd ed.).

[Reed 1978]
Reed, D. P. 1978 Naming and Synchronization in a Decentralized Computer System.
Technical Report. UMI Order Number: TR-205., Massachusetts Institute of Technology

123

Bibliography

[Reed 1983]
Reed, D. P. 1983. Implementing atomic actions on decentralized data. ACM Trans.
Comput. Syst. 1, 1 (Feb. 1983), 3-23. DOI=http://doi.acm.org/10.1145/357353.357355

[Riley et al. 2004]
Riley, G. F., Ammar, M. H., Fujimoto, R. M., Park, A., Perumalla, K., and Xu, D. 2004.
A federated approach to distributed network simulation. ACM Trans. Model. Comput.
Simul. 14, 2 (Apr. 2004), 116-148. DOI=http://doi.acm.org/10.1145/985793.985795

[Roberts and Wolff 2004]
Roberts, D. and Wolff, R. 2004. Controlling Consistency within Collaborative Virtual
Environments. In Proceedings of the Eighth IEEE international Symposium on
Distributed Simulation and Real-Time Applications (Ds-Rt'04) - Volume 00 (October
21 - 23, 2004). DS-RT. IEEE Computer Society, Washington, DC, 46-52.
DOI=http://dx.doi.org/10.1109/DS-RT.2004.13

[Roberts et al. 2003]
Roberts, D., Wolff, R., Otto, O., and Steed, A. 2003. Constructing a Gazebo: supporting
teamwork in a tightly coupled, distributed task in virtual reality. Presence: Teleoper.
Virtual Environ. 12, 6 (Dec. 2003), 644-657.
DOI=http://dx.doi.org/10.1162/105474603322955932

[Roehl 1995a]
Roehl, B. 1995. Distributed Virtual Reality -- An Overview.
http://ece.uwaterloo.ca/~broehl/distrib.html

[Roehl 1995b]
Roehl, B. 1995. Some Thoughts on Behavior in VR Systems.
http://ece.uwaterloo.ca/~broehl/behav.html

[Schneider 1990]
Schneider, F. B.: Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys,22(4):299–319, December 1990.

[Silberschatz et al. 2002]
Silberschatz, A., Korth, H., and Sudarshan, S. 2002. Database system concepts (4 th
Edition). McGraw-Hill.

[Singla et al. 1997]
Singla, A., Ramachandran, U., and Hodgins, J. 1997. Temporal notions of
synchronization and consistency in Beehive. In Proceedings of the Ninth Annual ACM
Symposium on Parallel Algorithms and Architectures (Newport, Rhode Island, United
States, June 23 - 25, 1997). SPAA '97. ACM Press, New York, NY, 211-220.
DOI=http://doi.acm.org/10.1145/258492.258513

[Skeen 1981]
Dale Skeen, Nonblocking commit protocols, Proceedings of the 1981 ACM SIGMOD
international conference on Management of data, April 29-May 01, 1981, Ann Arbor,
Michigan

[SQL-92]
ANSI, 1992. Database Languages-SQL, ISO/IEC 9075, DIS 9075

124

Bibliography

[Sun 1995]
Disney's "Toy Story" uses more than 100 Sun Workstations to Render Images for First
All-Computer-Based Movie, http://www.sun.com/smi/Press/sunflash/1995-11/sunflash.
951130.3411.xml

[Sung et al. 1999]
Sung, U.-J., Yang, J.-H., Wohn, K., Concurrency Control in CIAO, Proceedings of
IEEE Virtual Reality, 1999, 22-28

[SunWorld 1995]
SunWorld, Sun goes Hollywood, http://sunsite.uakom.sk/sunworldonline/swol-11-1995/
swol-11-pixar.html

[Tanenbaum and Steen 2002]
Tanenbaum, A.S., and Steen, Maarten van: Distributed Systems, Prentice Hall, Upper
Saddle River, NJ, 2002

[Tay and Roy 2003]
Tay, F. E. and Roy, A. 2003. CyberCAD: a collaborative approach in 3D-CAD
technology in a multimedia-supported environment. Comput. Ind. 52, 2 (Oct. 2003),
127-145. DOI= http://dx.doi.org/10.1016/S0166-3615(03)00100-3

[Technovelgy]
VirtuSphere Immersive Virtual Reality, http://www.technovelgy.com/ct/Science-
Fiction-News.asp?NewsNum=462

[Tilove 1984]
Tilove, R. B. 1984. A null-object detection algorithm for constructive solid geometry.
Commun. ACM 27, 7 (Jul. 1984), 684-694. DOI=
http://doi.acm.org/10.1145/358105.358195

[Tramberend 1999]
Tramberend, H. 1999. Avocado: A Distributed Virtual Reality Framework. In
Proceedings of the IEEE Virtual Reality (March 13 - 17, 1999). VR. IEEE Computer
Society, Washington, DC, 14.

[Tramberend 2001]
Tramberend, H. 2001. Avango: A Distributed Virtual Reality Framework, Proceedings
of Afri-graph '01, http://www.avango.org/paper/paper-final.pdf

[Treglia 2002]
Treglia, D., Game Programming Gems 3, Charles River Media, 2002

[VR Group]
VR Group, http://www.vrgroup.cz/

[Ward 1994]
Ward, Gregory J., "The RADIANCE Lighting Simulation and Rendering System,"
Computer Graphics (Proceedings of '94 SIGGRAPH conference), July 1994, pp.
459-72.

[Waters et al. 1997]
Waters, R. C., Anderson, D. B., and Schwenke, D. L. 1997. Design of the Interactive

125

Bibliography

Sharing Transfer Protocol. In Proceedings of the 6th Workshop on Enabling
Technologies on infrastructure For Collaborative Enterprises (June 18 - 20, 1997).
WET-ICE. IEEE Computer Society, Washington, DC, 140-147.

[Whetten et al. 1994]
B. Whetten, T. Montgomery, and S. M. Kaplan. "A High Performance Totally Ordered
Multicast Protocol." In Dagstuhl Seminar on Distributed Systems, pages 33-57, 1994.

[Wiesmann et al. 2000]
Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., and Alonso, G. 2000.
Understanding replication in databases and distributed systems. In Proceedings of
ICDCS'2000, IEEE Computer Society Los Alamitos California, pages 264--274

[Wiki 2007]
NEC Earth Simulator, http://en.wikipedia.org/wiki/Earth_Simulator

[Wolff et al. 2004]
Wolff, R., Roberts, D. J., and Otto, O. 2004. Collaboration around Shared Objects in
Immersive Virtual Environments. In Proceedings of the Eighth IEEE international
Symposium on Distributed Simulation and Real-Time Applications (Ds-Rt'04) -
Volume 00 (October 21 - 23, 2004). DS-RT. IEEE Computer Society, Washington, DC,
206-209. DOI= http://dx.doi.org/10.1109/DS-RT.2004.11

126

Bibliography

Název Active Transactions in Collaborative Virtual Environments

Autor Ing. Jan Pečiva, Ph.D.

Vydavatel Vysoké učení technické v Brně

Fakulta informačních technologií

Obálka Mgr. Dagmar Hejduková

Tisk MJ servis, spol. s r.o.

Vyšlo Brno, 2007

Vydání první

Tato publikace neprošla redakční ani jazykovou úpravou.

127

	1 Introduction
	2 State of the Art
	2.1 History
	2.2 Examples of CVE
	Collaboration and Interaction: Military Simulations
	VR Group
	DIS – Distributed Interactive Simulation

	Collaboration and Interaction: Engineering Software
	CollabCAD
	CyberCAD and CoCAD

	Collaboration and Interaction: Interactive Groupware
	Collaboration and Interaction: Computer Games
	DOOM
	Age of Empires
	Counter-Strike

	Computer Workload Distribution: Distributed Rendering
	Toy Story
	Distributed Radiance

	Computer Workload Distribution: Distributed Simulations
	DIS
	Earth Simulator
	Simulation of Merging of Two Massive Black Holes

	2.3 CVE as Multi-area Research
	Three Layers in CVE Applications

	2.4 Distributed Systems
	Primary-Based Protocols – Remote-Write
	Primary-Based Protocols – Local-Write
	Update-Everywhere Protocols – Active Replication
	Update-Everywhere Protocols – Delta-Time
	Update-Everywhere Protocols – Quorum-Based
	Atomic Multicast
	Distributed Unique Timestamp Generator

	2.5 Parallel and Distributed Simulations
	Temporal Uncertainty
	Latency Hiding
	Real-time Simulations

	2.6 Computer Networks
	Reliable and Unreliable Network Connection
	Multicast and Broadcast
	Bandwidth
	Network Latency

	2.7 Real-time Systems
	2.8 Virtual Reality Systems
	Immersive virtual reality
	Augmented virtual reality
	Collaborative techniques
	Dead Reckoning
	Key-frame Interpolation
	Area of Interest

	2.9 Database Systems
	Databases and transactions
	Consistency Models – Locking Protocols
	Consistency Models – Timestamp Ordering Protocols
	Distributed and Replicated Databases
	Real-time Databases

	3 Analysis
	3.1 Consistency Issues
	3.2 Design Concepts of CVE Systems
	3.3 Typical CVE Configurations
	Centralized Primaries
	Distributed Primaries
	Data Ownership
	Active Replication

	3.4 Consistency Models Evaluation
	Global scene state
	Centralized Global Scene State
	Distributed Global Scene State
	Delayed Global Scene State

	Immediate reads
	Immediate writes
	Scene Constraints
	Concurrent Object/Attribute Manipulation
	Grouping of Operations
	Area of Interest
	Late Joins

	3.5 Results of Analysis

	4 Active Transactions
	4.1 Overview of New Approach
	4.2 Replicated Scene Database
	4.3 Transactions
	4.4 Transaction Structure
	4.5 Timestamps and Multiversion Databases
	Total transaction order
	Data versioning and concurrency control

	4.6 Execution Stages
	4.7 Concurrency Control
	4.8 Speculative Execution
	4.9 Multiversion Execution
	4.10 Conclusion

	5 Experiments
	5.1 CVE Library
	5.2 Demonstration Applications
	Moving Balls Example
	Advanced Balls Example
	Simple Space Simulator
	Collaborative Data Sharing
	Collaborative Viewer
	Collaborative Maze
	Multi-user Flight Simulator
	Distributed Virtual Meeting Room
	Distributed Billiard
	Distributed Cyclotron

	5.3 Measurements
	Distributed Cyclotron
	Network Loading Characteristics
	CPU Loading Characteristics
	Distributed Balls

	5.4 Performance and Scalability Considerations
	Final Evaluation

	6 Conclusions
	7 Appendix - Network Latency Measurement
	Local network
	Distant connection

	Bibliography

