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Abstract

Active transactions  model  is  a novel consistency model  for Collaborative Virtual Environments 
(CVE). Active transactions consistency model is focused on strength of the consistency model and 
usability because strong consistency model often results in simpler design of CVE system compared 
to weak consistency models.

Theoretical foundations of Active transactions are based on active replication used in distributed 
systems and transaction concept developed in database systems. Both concepts were modified and 
adapted to reach the performance requirements of CVE systems.
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Abstrakt

Model aktivních transakcí je nový konzistenční model pro kolaborativní virtuální scény. Koncept 
aktivních transakcí klade důraz na druh konzistenčního modelu a snadnost použití,  neboť model 
konzistence často úzce souvisí se snadností použití a promítá se do jednoduchosti návrhu aplikace, 
která jej používá.

Aktivní transakce vycházejí z aktivní replikace používané v distribuovaných systémech a transakcí 
z databázových systémů. Oba koncepty byly modifikovány a upraveny dle specifických požadavků 
kolaborativních virtuálních scén pro dosažení optimálních vlastností.
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1   Introduction

1   Introduction
Performance  of  computers  has  been  constantly  growing over  past  several  decades.  In  the 90's, 
enough  performance  was  already  available  on  standard  computers  for  visualization  of  Virtual 
Environments (VE) and VE applications appeared world-wide. In the same decade, the availability 
of  Internet  and  computer  networks  brought  the  need  to  share  and  exchange  data  among  the 
computers. VE followed the trend and Collaborative Virtual Environments (CVE) became a name 
for VE shared among computers.

Appearance of CVE's was a big step forward in human-computer interaction. Humans were already 
interacting with computers, but CVE enabled interaction of group of people through the network of 
computers.  Such remote  interaction  opened new possibilities  and changed the understanding of 
human-computer  interaction.  Several  areas  quickly  started  to  benefit  from CVE.  For  example: 
Computer supported cooperative work (CSCW), engineering software, pilot training simulations, 
military simulations, computer games, interactive groupware, and many others.

The  beginnings  of  CVE go back to  the  80's,  when they were  used  by massive  simulations  to 
overcome the performance limitations of a single computer by distributing and processing the VE 
simulation on many computers. The other purpose of CVE is collaboration and interaction of people 
in  shared  VE.  Massive  research  in  this  area  started  in  the  90's.  Its  applications  have  been 
successfully  used  in  several  domains,  such  as  Computer-Assisted  Design/Computer-Assisted 
Manufacturing  (CAD/CAM)  enabling  designers  to  work  together  regardless  of  their  distances, 
scientific simulation and visualization, flight simulators for pilot training, etc. Another successful 
area was entertainment, particularly 3D computer games. These can not be overlooked today for 
their massive impact and economical potential.

CVE applications face the problem of concurrent scene manipulation. Any computer in the network 
can  read  the  scene  state  and update  it.  The  concurrent  access  may  put  the  scene  into  a  non-
consistent state. Moreover, CVE scene is usually replicated among the computers1 for the sake of 
the performance. Accessing the scene on different computers may turn the replicated scenes out of 
synchronization. Such problems should be addressed by a consistency model that the application 
uses.

Traditionally,  consistency  models  were  investigated  by  computer  architects  designing  parallel 
machines [Mosberger 1993]. They were trying to design a consistency model as close as possible to 
the model used in standard single-processor machines. Main memory of single-processor machines 
is usually using sequential consistency [Lamport 1979]. However, this model restricts much the set 
of possible optimizations on parallel machines resulting in possible low application performance. 
Weakening of consistency model may be an option to increase the performance. But the weakening 
of  consistency  model  changes  the  programming  model.  In  general,  the  programming  model 
becomes more restricted and complicated as the consistency model becomes weaker  [Mosberger
1993].

The main goal of the work presented in this thesis is the design of a new strong consistency model 
with easy programming model. It is specialized for CVE applications and it addresses especially 
data consistency issues. Although many weak consistency models already exist, they do not fit the 

1 Throughout the text, it will be expected that each computer is running just one instance of the application because it 
is the most common case. In reality, however, it is possible to run several instances of the application on each 
computer. So, each reference in the text of the thesis referencing to “group of computers participating in CVE” 
should refer to “group of application instances”.  The first option is used for the readability of the text.
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1   Introduction

requirements of this thesis. They provide high performance and scalability but their programming 
model is more restricted and complicated. The new consistency model, proposed in this thesis, is 
focused on strong consistency that is providing easy programming model and scene synchronization 
that  is more close.  The easy programming model  makes an application easier  to design and to 
maintain. The closer scene synchronization makes the data more consistent, further improving the 
programming model of the application. On the other side, the stronger consistency may limit the 
performance. On traditional CVE systems, the application performance is very much dependent on 
the application design. When the proposed CVE model is used in applications, the performance of 
those applications generally improves over the more traditional approaches (except of large and 
very large systems that  are  out  of scope of this  thesis);  moreover,  the application performance 
becomes less dependent on the application design.

Specialty  of CVE is  the requirement  of  fast  application  responsiveness.  Users often expect  the 
system to respond to their actions immediately even if the network latency is high. Some techniques 
are already known, however a new one is presented that has been designed and optimized for the 
proposed consistency model.

The most important properties of the new consistency model are stronger consistency compared to 
usually  used  models,  responsiveness,  and  performance.  The  model  with  stronger  consistency 
provides  additional  consistency guarantees  over  the  basic  guarantees  of  the  weak models.  The 
stronger  consistency  is  the  priority  for  its  deep  impact  on  the  data  synchronization  and  the 
programming model.

The above stated main goal of the thesis was reached thanks to resolving of the following subgoals:

– Investigation of existing CVE consistency models and classification of their properties – the 
investigation provided the theoretical foundation for the design of the new consistency model 
while the  classification set  the criteria for the evaluation of properties of consistency models, 
particularly for comparison of the new model with the existing models.

– Investigation of approaches in close research areas – consistency models used in distributed 
systems, protocols of database systems, approaches of distributed simulations, and few others. 
These provided additional ideas and foundations of the new consistency model.

– Verification of the new consistency model usage in practice – it proved that the consistency 
model is usable.

The thesis is structured as follows: The first chapter introduces CVE systems and set the goals for 
the thesis. The second chapter concerns the state of the art composed of three main parts: history of 
CVE systems, CVE system examples and applications, and CVE systems relations to other research 
domains. These domains include distributed systems, parallel and distributed simulations, computer 
networks,  read-time  systems,  virtual  reality  systems,  and  database  systems.  The  third  chapter 
analyzes the most frequently used consistency models, investigate their properties, classifies them 
according to several criteria. Finally, the suggestions for a new consistency model are given. The 
fourth chapter presents Active transactions consistency model. At first, the overall design and its 
benefits are presented. Then, Active transactions concept is fully described, including the relations 
to  distributed  and  database  systems.  The  fifth  chapter  provides  examples  explaining  the 
functionality  and behavior  of  Active  transactions  and shows several  demonstration  applications 
utilizing the Active transactions to realize a collaborative system. The sixth chapter summarizes the 
work that has been done, discusses the future research directions, and the contribution of this thesis.
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2   State of the Art

2   State of the Art
This chapter presents state of the art  of Collaborative Virtual Environments (CVE). It does not 
contain a complete set of all projects, work, and research that has been done in these areas. Instead, 
just the important things with relation to this thesis are presented.

The first section describes the history of CVE. The second section shows examples of CVE used in 
reality.  The  third  section  introduces  the  close  research  areas  that  have  big  influence  on  CVE 
evolution. Following five sections are mentioning important things of close research areas because 
they form important part of theoretical foundation of this thesis.

2.1   History
Beginnings of the CVE go back to the 80's of 20th century.  In that time, virtual reality was just 
beginning and it was used only by professionals. The evolution of 3D graphics was then deeply 
influenced by Silicon Graphics company (today called SGI), which was the leader in this area until 
the middle of the 90's. Shortly after the beginnings of virtual reality,  a need to share the virtual 
environment between several computers appeared. Two main reasons for it existed:

– Connecting of more computers together often provides more computing performance

– Remote collaboration of more users in one virtual environment

Soon, both of them became important.

In 1983, SIMNET project [Calvin et  al.  1993] was started.  It was developed for Department of 
Defense of United States for tactical military simulations. After it was finished in 1990, it was used 
as a starting point for famous project DIS (Distributed Interactive Simulation) [ANSI 1993].

Both  projects  were  used  for  complex  simulations  distributed  through  the  large  network  with 
hundreds or thousands of moving units. The techniques like Area of Interest (AoI) [Benford et al.
1993] and dead-reckoning [Roehl 1995a][Cai et al. 1999] were used for network traffic and latency 
impact reduction.

DIS was followed by HLA (High Level Architecture)  [Kuhl et al. 2000] started in 1996. It was 
aimed  to  define  a  common  simulation  infrastructure  to  support  interoperability  and  reuse  of 
simulation applications.

CVEs were used outside simulations as well. In 1993, one of the most famous games of the 90's 
called DOOM was released. When played over a network, it demonstrated really simple realization 
of CVE as is described in [Roehl 1995a]. It broadcasted all scene updates over the network, not 
taking care of lost messages and message ordering.

Through  the  90's,  many  academic  research  projects  emerged:  Spline [Anderson  et  al.  1995] 
[Mitsubishi 1997] is one of the early CVE projects developed by MERL (Mitsubishi Electronics 
Research  Laboratory).  DIVE [Frecon  and  Stenius  1998] is  Swedish  research  project. 
MASSIVE [Greenhalgh  1999] was in  development  in  England for  a  couple  of  years.  Repo-3D 
[MacIntyre  and Feiner 1998] appeared as a robust project  supporting scripting,  replication,  and 
other distribution abilities. CIAO [Sung et al. 1999] was focused on short response times. Some 
other projects tried to empower existing 3D visualization libraries by collaborative abilities, such as 
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2.1   History

DIV [Hesina et  al.  1999] and Avango [Tramberend 2001]. DIV extended Open Inventor library 
[Inventor],  making the collaboration and update distribution more transparent to the user. I have 
done the same [Peciva 2005] using active replication [Wiesmann et al. 2000]. Avango [Tramberend
2001] and Blue-c [Naef et al. 2003] are similar projects for OpenGL Performer toolkit [Performer].

The majority of the projects were using Event locking technique [Treglia 2002] as a convenient way 
to achieve scene data consistency. It usually results in client-server architecture with clients asking 
the server each time they want to update the scene. The server acts as a request sequencer and it can 
accept or refuse the request for a consistency restriction or for an user defined reason. While the 
client waits for the server response, it may use dead-reckoning [Roehl 1995a][Cai et al. 1999] or 
other technique for network latency masking.

A different approach was used in computer game Age of Empires [Bettner and Terrano 2001] that 
was released in 1997. Critical network constraints – 28Kbps modem connection – and hundreds of 
moving objects forced the developers to use active replication [Wiesmann et al. 2000] and peer-to-
peer architecture. A different replication model – primary-backup – was used in the game Counter-
strike (released 2000). Today, quite many games can be played as multiuser network games and the 
majority of them are based on primary-backup replication.

2.2   Examples of CVE
This section shows several examples of CVE applications used in practice. The examples are trying 
to cover just the most important areas to show the overview of CVE domains.

Collaboration and interaction:

– military simulations: VR Group, DIS

– engineering software: CollabCAD, CoCAD, CyberCAD

– network games: DOOM, Age of Empires, Couter-strike

– interactive groupware: EVO, videoconferences

Computer workload distribution:

– distributed rendering: Toy Story, Distributed Radiance

– distributed simulations: DIS, weather prediction, NASA simulations

Collaboration and Interaction: Military Simulations
Military simulations were the first place where CVE started to be widely used in the 80's. At the 
present time, they are still  used, especially for training purposes, because the virtual training is 
cheaper than the real training with real tanks, buildings, and airplanes.

VR Group
VR Group  [VR Group] is  a  company  developing  army training  simulation  software  based  on 
DIS [ANSI 1993]. It is used mainly for Army of Czech Republic. The simulation is composed of a 
model of real or virtual landscape that is rendered in real time (see figure 1).

11



2   State of the Art

Different type of units can move over the battleground, such as fighters, tanks, transporters, and 
soldiers, as shown in the figures 2a, 2b, 2c.

People need to  be immersed  into the virtual  environment.  Therefore,  “simulators”  are  used,  as 
shown in the figures  3,  4, and  5. They enable people to sit in like-in-tank place,  in the fighter 
cockpit, or in the motion platform to get as immersive impression as possible. The immersion is 
important because it lowers the required time of practicing on the real battlefield, thus the training is 
cheaper.

12
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2.2   Examples of CVE

All the people and “simulators” are equipped with a computer connected to high-speed computer 
network. All the actions of any unit are immediately synchronized with other computers, so all 
computers should have the consistent battlefield view.

DIS – Distributed Interactive Simulation
Distributed Interactive Simulation (DIS) [ANSI 1993] is the first widely used system in its area. It 
was  developed  for  Department  of  Defense of  United  States  for  tactical  army simulations.  The 
success of DIS led to its standardization process for distributed simulation applications. The system 
is based on units representing fighters, helicopters, tanks, refueling stations etc. that are exchanging 
messages among themselves. The messages are for example: position update, amount of damage 
caused, refuel request, etc.

The  system  was  used  in  a  similar  way  as  the  system  developed  by  VR  Group  [VR  Group] 
Therefore,  the  details  of  “simulators”  and  participation  of  people  in  the  simulation  are  not 
mentioned here.

DIS was tested on really large scale simulations involving about thousand computers throughout 
United States, as shown in the figure 7. Some new techniques had to be developed to enable such 
large scale simulation. The simulation included about 10'000 moving units and it was not possible 
to send each position update as it would exceed the performance limits of the networks of those 
times.  Therefore,  dead-reckoning technique  [Roehl  1995a][Cai  et  al.  1999] was developed that 
efficiently eliminates the number of updates. For example, the position updates may be send less 
frequently  if  they  include  the  velocity  vector  and  time  information  in  the  update.  Then,  all 
computers are able to extrapolate the unit position until some error threshold is reached.

Another technique was “area of interest”. Since the messages were broadcasted over the network 
and all  computers  were updating  their  replicas,  the network could be easily  overloaded by the 
number of updates. Therefore, the system was spatially divided into the areas and the units were 
receiving the updates just from the closest areas, thus improving the system scalability.

Distributed simulations are used also for industrial purposes. However, they are used much less than 
in the area of military simulations. The reasons and the situation is described in [Boer et al. 2006].

13
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2   State of the Art

Collaboration and Interaction: Engineering Software

CollabCAD
CollabCAD is an active project (http://www.collabcad.com) for 3D CAD/CAM design. It enables 
several  people  to  work  and  collaboratively  interact  with  the  shared  data  set.  Video and  audio 
channels among the participants are provided by the 3rd party applications.

CyberCAD and CoCAD
CyberCAD  [Tay and Roy 2003] enables more participants located around Earth to cooperate. It 
uses  primary-based  protocol  with  transferable  ownership  [Greenhalgh  1999].  The  user  has  a 
workspace where  he can  view  and  modify  the  objects.  He  has  also  several  windows  with 
workspaces of other people that he can only view. If he wants to modify certain object of other user, 
he has to move it from other's user workspace to his own workspace.

CoCAD  [Gisi and Sacchi 1994] uses client-server architecture.  One computer  is the server that 
receives the update requests, orders them, and sends accepted updates back to all clients. This way, 
all clients receive all the updates and in the same order, thus data consistency is ensured.

14
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2.2   Examples of CVE

Collaboration and Interaction: Interactive Groupware
Interactive groupware includes video and audio conferencing software, such as EVO (see figure 
10), Netmeeting, and Skype. It includes also chatting software, like ICQ, Jabber, IRC, MSN, and 
many others. These applications often share common data and they require concurrency control that 
is sometimes similar to the concurrency control models used in CVE systems. However, they are 
often not considered CVE systems because their datasets does not represent virtual environments 
and  many  optimizations  and  techniques  from collaborative  virtual  environments  are  often  not 
applicable to these datasets.

Collaboration and Interaction: Computer Games
Computer games are often mentioned throughout this thesis because it is a quickly growing market 
and its influence on the research in computer graphics can not be overlooked now for the high 
economical potential of the entertainment industry.

Computer game industry started its interests in CVE systems when the first network multiplayer 
games appeared. Several people were able to be virtually present in one shared virtual environment. 
Just three games are mentioned here as typical representatives of different kinds of collaborative 
networked games. 

DOOM
Computer game DOOM [Roehl 1995a] represents simple design CVE system using primary-backup 
replication [Wiesmann et al. 2000].

DOOM was released in 1993 and it became one of the most famous games of those times. It could 
be used for a  single player  game or a network game of several  people.  When played over the 
network,  the  game  can  be  considered  as  CVE system  because  all  players,  sitting  at  different 
computers, were sharing the same virtual environment and all of them were able to see the actions 
of the others performed by their virtual avatars.
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Fig. 11: Computer game DOOM

The collaboration in DOOM game was simple: All computers were constantly broadcasting their 
state  over  the network. That was possible as the state was often formed nearly just by the avatar 
position. Unreliable network connection was used and all scene consistency problems were solved 
by respawning the player.

Age of Empires
Age of Empires  [Bettner and Terrano 2001] is using active replication  [Wiesmann et al.  2000]. 
Detailed description of active replication is in the section 2.4.

Age of Empires  was released 1997. The game designers had following goals:  8 collaboratively 
playing people, each one controlling 200 units while using 28.8 kbps modem network connection. 
Such task was not possible with primary-backup replication. However, active replication was quite 
suitable for such kind of task. Active replication relies on determinism – the same inputs of the 
same algorithm should always produce the same outputs. If this presumption is fulfilled, all random 
number generators among the computers can be synchronized and simulation including artificial 
intelligence  of  all  units  can  be  started.  The  application  should  behave  the  same  way  on  all 
computers. Just the user's input by his mouse and keyboard is source of non-deterministic events. 
Only those have to be communicated through the network. Therefore, the network loading of Age 
of Empires was not high while the scenes stayed completely synchronized.

Fig. 12: Computer game Age of Empires
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Counter-Strike
Counter-Strike (released in 2000) is using client-server architecture. It is based on primary-based 
replication.

Fig. 13: Computer game Counter-Strike

In Counter-Strike, the whole scene state resides on the server. All the other computers hold just the 
local copies of the server data. If any client wants to update some data, it sends the update request to 
the server. The server role is to order the update requests, validate/refuse them, perform them, and 
send the validated updates to the clients.

Computer Workload Distribution: Distributed Rendering

Toy Story
Toy Story (figure 14) is the first film in the history that was completely rendered by computers. It 
was released in 1995. The rendering of 114'240 frames of the film would take 43 years on a single 
processor computer of those times. The work distribution to 117 Sun graphics workstations (dual, 
quad, and and 8-processor) shortened the rendering time to 46 days  [Sun 1995][SunWorld 1995]. 
Many other films followed, such as Bug's Life (1998), Final Fantasy (2001), and Cars (2006, figure 
15).
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Distributed Radiance
Radiance  [Ward 1994] is  photorealistic  rendering system based on ray-tracing techniques.  Ray-
tracing is extremely computationally expensive. University of Bristol is investigating possibilities of 
rendering acceleration by parallel processing on the cluster of computers  [Debattista 2007]. Some 
plans even exist for a project of real-time radiance on a large cluster of computers.

Computer Workload Distribution: Distributed Simulations

DIS
Project DIS – Distributed Interactive 
Simulation [ANSI  1993] is  a  large 
simulation  project.  Since  it  enables 
also  interaction  of  people,  it  was 
already  mentioned  above  in  this 
section.

Earth Simulator
Earth  Simulator  [ESC  2007][Wiki
2007] was  developed  for  global 
warming effect prediction. It was the 
fastest  supercomputer  from 2002 to 
2004.  It  consisted  from  5'120  pro-
cessors and 10 terabytes of memory.
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Fig. 17: Earth Simulator for global warming effect simulations
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Simulation of Merging of Two Massive Black Holes
The purpose of the simulation of merging of black holes [NASA 2006] was to prove Einstein theory 
of relativity,  particularly  one of its  consequences  – the existence  of gravitational  waves.  These 
gravitational waves are racing out from two black holes when these black holes are about to merge 
and they are rotating around each other. The task has two steps:

– to simulate the gravitational waves according to Einstein theory – to get the idea how the waves 
should look like

– to measure the real gravitational waves and compare the results with the simulation – this shall 
prove whether the Einstein theory is correct

The simulation was more computing expensive than all other NASA simulations before. The results 
are shown in the figure 18. The second step – the real measurement – already started: In November 
2005, Laser Interferometer  Gravitational-Wave Observatory (LIGO) was finished and started to 
monitor gravitational waves. The measurements are not easy because LIGO has to be able to detect 
length contraction of the size of a single atom per one meter. The outcome of the comparing the 
reality and the simulation is still open.

Fig. 18: The results of gravitational waves simulation and the used cluster of computers

2.3   CVE as Multi-area Research
This section describes the relation between CVE research and the research in other areas. CVE is 
closely related, for instance, to distributed systems and it has taken many concepts and research 
outcomes from this area. This section lists the close research areas and their importance for this 
thesis.
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The important related research areas include:

• Parallel and Distributed Simulations: CVE is often distributed simulation application that 
is running in real time and that is visualizing its results.

• Distributed systems: CVE is usually realized by several applications running at different 
computers. From this point of view, it is a distributed application that operates on a shared 
data.

• Network communication: Network latency,  bandwidth,  reliable/unreliable  protocol,  and 
multicast support – all of these are in the scope of CVE systems.

• Real-time systems: CVE systems are often real-time simulations and/or the systems from 
which  the  user  requires  very  short  response  times.  In  most  common  applications,  the 
required response ranges from milliseconds to hundreds of milliseconds.

• Virtual  reality: CVE  applications  maintain  the  data  set  that  represents  the  virtual 
environment. The virtual environments are domain of computer graphics and virtual reality.

• Database systems: Database algorithms are used in CVE rarely even although both areas 
are working with the replicated data sets. One of reasons for omitting database algorithms in 
CVE is the different  performance requirements in CVE and databases.  The performance 
reason is overcome in this thesis and some new algorithms and techniques were introduced 
that are similar to those used in database systems.

In this thesis, the special  attention will be given to distributed systems, especially to replication 
consistency models, and database systems from which some new ideas will be introduced into CVE 
applications.

Three Layers in CVE Applications
Three  layers  can  be  recognized  in  CVE systems,  as  shown in  the  figure  19.  The  layers  have 
different roles, briefly characterized as: network communication, handling of data replication, and 
smooth visualization for an user.

Fig. 19: Three Tiers in CVE applications
The middle layer (non-hatched area)

is the main interest of the thesis.
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The layers are related to different aspects of CVE Systems. The main aspects are:

Responsiveness – Capability of the system to respond to the user requests in the specified time 
frame.

Consistency – Several consistency models have been designed. They can be studied for 
consistency guarantees, limitations, and properties in the context of different 
application requirements.

Scalability – The ability of the system to continue working as the system's context changes 
in size or volume.

Persistence – The ability to stay active even when some/all users have left the session.

Reliability – The resistance against bad conditions that may appear in the system. Network 
overloading, lost packets, or some machine failure are often the case.

The figure 20 shows the relations between CVE layers (in blue), close research areas (grey), and the 
relation to the most important aspects of CVE systems (in yellow).

Fig. 20: Three tiers and their relations to research areas and CVE properties

The focus of this thesis is on the middle layer – handling of the consistency and replication models. 
The layer will be called CVE kernel in the thesis as it is the cornerstone of whole system and its 
design determines the main characteristics of each particular CVE system.

Other layers are mentioned because they have deep influence on the design of CVE kernel. The 
network layer partially determines the properties and the guarantees of the network connections in 
different physical network conditions. The properties of network connections should be reflected by 
the CVE Kernel layer. For example, unreliable network connections usually does not work properly 
with active replication.

The CVE smoothing layer provides the user smooth results of the simulation. If some updates are 
delayed, it is able to predict object behavior. Sometimes, the simulation is done in steps. In that 
case, the natural role of this layer is to interpolate between the simulation steps to give the user the 
impression of the smooth simulation that is more natural for human perception.
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2.4   Distributed Systems

In  most  cases,  a  CVE  system  consists  of  several  remote  processes  sharing  the  data  set  that 
represents a virtual environment, as shown in the figure 21. The processes are usually distributed 
among many (possibly distant) computers that are connected through a network. From this point of 
view, it is a distributed system that usually meets following characteristics:

– virtual environment data are replicated

– updates propagation is time critical

– update operations are asynchronous (e.g. Non-blocking)

The replication of the data is important for performance reasons. Each computer participating in 
CVE simulation typically renders the scene 30-100 times per second. This means that the part of the 
scene that is rendered must be read from the memory and sent to the rendering device. The amount 
of the data depends on the application but it can easily overcome even the highest speed network 
devices for many applications. Therefore, the scene is nearly always replicated.

Some protocols for data sharing were developed for distributed shared memory (DSM) systems [Li
1989]. However, CVE systems are usually using data replication, although the protocols are similar 
or  the  same.  Replication  protocols,  used  in  Distributed  Systems,  may  be  split  into  the  two 
categories. Primary-based protocols (also called primary-copy protocols) are centralized approach 
making one replica primary and all others are secondary replicas, often called backups. Update-
everywhere protocols are non-centralized approaches. They usually perform the updates in parallel 
on all the replicas. The list of important protocols follows:

– Primary-Based Protocols (Passive Replication)

– Remote-Write

– Local-Write

– Update-Everywhere Protocols

– Active Replication

– Delta-time

– Quorum-Based
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Fig. 21: CVE system with replicated scene
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The replication protocols are described bellow.

Replicated  scene  requires  asynchronous  updates  delivered  as  quick  as  possible.  Asynchronous 
updates are required because blocking operations are not acceptable for CVE. They may lower the 
performance rapidly. On the other side, asynchronous updates result in more complex consistency 
models compared to the systems using synchronous operations.

Quick  update  distribution  is  important  for  good  responsiveness  of  CVE application.  They  are 
caused mainly by the network latency (section  2.6) that usually can not be eliminated. Therefore, 
CVE systems developed several techniques to minimize its effect. They will be shown in the section 
2.8. Other important concepts are atomic multicast  and distributed timestamp generator. Atomic 
multicast is an important communication primitive that is often used for the update distribution in 
CVE and network communication in general. Distributed timestamp generator is another primitive 
used in distributed systems that is required by many applications.

The following subsections are showing the replication models,  atomic multicast,  and distributed 
unique timestamp generator in the detail.

Primary-Based Protocols – Remote-Write

Fig. 22: Primary-backup remote write consistency model

The primary-based  protocols  require  one  replica  to  be  primary,  while  all  others  are  secondary 
replicas, also called backups. The primary is responsible for coordination of all the updates. The 
update is usually performed on the primary first and then, the primary updates all its backups.

Primary-based remote-write protocol  [Budhijara 1993] functionality is depicted in the figure  22. 
One of the replicas is the primary while all the others are backup replicas. If a client wants to update 
the data item (1.), it has to send an update request to the primary (2.). The primary performs the 
update locally and asks all the backup replicas to update their values (3.). Backup replicas update 
themselves  and  send  acknowledge  back  to  the  primary  (4.).  Then,  update-initiating  replica 
acknowledges the update completion to the client (5.).

Primary-based remote-write protocol is often used in CVE systems. Especially, large simulations 
are often using it. The disadvantage may be a single point of failure – the primary replica. However, 
some algorithms exists to overcome the problem even if  the computer  with the primary replica 
crashed. Such algorithm may, for example, reconcile the backups values and perform the voting 
among backups for a new primary.
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Primary-Based Protocols – Local-Write

Fig. 23: Primary-backup local write consistency model

Primary-based local write protocol (shown in the figure  23) is similar  to Remote write protocol 
except that primary replica migrates. When the write request is issued on a backup replica (1.), the 
primary migrates to the backup replica (2.). The update is performed locally and the client receives 
the acknowledgment (3.). Then, all other replicas are contacted to update their values (4.). After the 
collecting of the acknowledgments (5.), the write operation is completed.

One of  main  problems of  primary  migration  is  keeping  track  of  where the  primary  is  located. 
Broadcasting facilities, forwarding pointers, or home-based approaches can be used. The last two 
were used in distributed shared memory systems [Li 1989] that are using primary-based replication.

Primary-based local write protocol is used in CVE systems in ownership consistency models. Just 
the computer with the ownership of the data item is allowed to update the value. The disadvantage 
is the single point of failure as in the previous replication model.

Update-Everywhere Protocols – Active Replication

Active replication  [Schneider 1990] is a non-centralized approach. Its functionality is depicted in 
the figure 24. When a client issues write request (1.), it is atomically multicasted to all replicas (2.). 
Atomic multicast (see bellow) provides reliability even in the presence of failures and guarantees 
the same receive order of different updates on all replicas.  When the update is received by the 
replica from the atomic multicast, the replica is updated (3.) and the client can be informed about 
the completion of the write operation (4.).
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Fig. 24: Active replication consistency model
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Active replication (also called Machine state approach) relies on the determinism: Provided by the 
same inputs, all the replicas will produce the same outputs. The atomic multicast is used for the 
distribution  of  the  updates  to  the  replicas.  If  the  determinism  is  kept,  the  replicas  will  stay 
synchronized.

Active  replication  may  seem  to  be  simple,  however,  its  complexity  is  hidden  in  the  atomic 
multicast.  The  requirement  of  determinism  that  is  required  for  the  update  processing  is  often 
mentioned  as  one  of  the  main  disadvantages  of  active  replication.  Typical  examples  of  non-
determinism sources are multi-thread processing and floating point computations that may not be 
bit-by-bit equal on different architectures and compilers [Monniaux 2007]. A famous hardware bug 
exists  in  first  Pentium processors  that  returns  sometimes  wrong  results  when  multiplying  two 
numbers [Intel 2004]. Other source of non-determinism are different implementations of the same 
functionality.  For  example,  many  compilers  are  compiling  programs  to  use  MMX  and  SSE 
instructions instead of standard x87 code if they are available. However, Intel does not guarantee 
that the results will be bit-by-bit equal for all instructions for today's processors.

Update-Everywhere Protocols – Delta-Time
Memory coherence models usually work with the following criterion: “a read of a data item returns 
the most recent write to that location”. However, it is not easy to determine the most recent write on 
a replicated data item in a distributed system. Delta-time consistency model  [Singla et al. 1997] 
takes the network delay into account and uses following criterion: “a read of a data item returns the 
last value that was produced at least delta time units preceding that read operation”. Assuming that 
delta is big enough compared to the network latency, each write can propagate to all its replicas in 
time. The order of writes that may be done by different processes is established and all replicas are 
able to provide the user with consistent results of the read operation according to Delta-time model.

Example timeline of Delta-time model is shown in the figure 25. Three processes are depicted and 
they are reading and writing to the data item. The read operations are represented by  tr and the 
writes by tw. At first, 0 is written by the process P1. After the delta time, the new value is available 
at all processes. Then, P1 writes 1. The read on P3 happens before the delta time is reached after the 
second write, therefore P3 reads 0 because it is already stable value. Finally, P2 reads 1 because the 
delta time after the second write has already passed.

The model was extended to Time Sensitive consistency model [Krishnaswamy 2001] that provides 
timed and non-timed reads and writes. The timed reads and writes provide the user by consistent 
data view. The non-timed operations are available for the cases when the data freshness is preferred 
over the data consistency, providing the user by possibility to choose required consistency level. 
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Fig. 25: Delta-time consistency model
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The figure 26 shows the example timeline. The non-timed reads are shown as r and the writes as w 
to  distinguish  them from timed  counterparts  tr and  tw.  At  first,  P2 performs  two timed  writes 
followed by non-timed and timed read of process P1. The non-timed read may return 15 because the 
value may already propagate through the network and the non-timed read is not obliged to obey the 
delta  time.  On the  other  side,  the  timed  read is  forced  to  return  10 in  order  not  to  break  the 
consistency requirements  because  the  delta  time after  the  second write  did  not  already passed. 
However, the non-timed read of the process P3 returns 15 because timed writes force both – timed 
and non-timed reads to return the new value after the delta time has passed.

Fig. 26: Time sensitive consistency model

Update-Everywhere Protocols – Quorum-Based
The write operation in quorum protocol can be issued on any replica. Then, the replica starts to 
contact  other  replicas  for  performing of  the update.  If  it  succeeds  at  least  smallest  majority  of 
replicas (half of the replicas plus one), the update is successful. The read operation requires once 
again to be contacted at least the smallest majority that contains the same value. Then, the value is 
considered the correct return value of the read operation. Some optimizations and details are in 
[Tanenbaum and Steen 2002].

Quorum based protocols  are  nearly  not  used in CVE application  because they require  network 
communication to be done even on read operations and that is not acceptable for the most of CVE 
systems.

Atomic Multicast
Atomic multicast is a communication primitive for delivering messages to the process group with 
the following properties:

– reliability

– virtually synchronous

– total message order

These properties have to be kept even in the presence of process failures.

Atomic  multicast  is  based on reliable  multicast  (see section  2.6)  that  guarantee  the message  is 
delivered to all non-crashed processes in the process group. However, the processes may leave and 
enter the group and reliable multicast does not answer the question which messages are delivered to 
the joining or leaving processes.
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Virtually synchronous reliable multicast  [Birman 1993] introduces “group views” that keeps track 
of the members of multicasting group. It establishes a new group view whenever any process enters 
or leaves the group. The messages sent to the group view Gi have to be delivered before the next 
view Gi+1 is established. This provides additional guarantees of message delivery. The messages are 
allowed to be undelivered just in the case of sender failure during the multicasting of the message.

If virtually synchronous reliable multicast provides totally-ordered message delivery,  it  is called 
atomic multicast  [Birman 1993][Whetten et al. 1994]. Totally-ordered delivery means that all the 
messages are delivered to all processes in the same order. According to  [Hadzilacos and Toueg
1994], three types of sender orderings exist:

– Atomic multicast (unordered)

– FIFO atomic multicast

– Causal atomic multicast

Unordered atomic multicast does not guarantee that the sending order (viewed by the sender) will 
be kept. Atomic multicast will deliver them to all the processes in the same order but it may differ 
from the order in which the messages were seen by the sender at the time of sending. FIFO atomic 
multicast order preserves the sending order while causal order respects just the order of the causally 
related messages.

For the simplicity of the text, only FIFO atomic multicast will be considered in the thesis and when 
referencing to atomic multicast, the FIFO atomic multicast is meant.

Distributed Unique Timestamp Generator
Distributed unique timestamp generator is based on ideas presented by Lamport  [Lamport 1978]. 
He pointed out that although the time synchronization is possible, it may not be absolute. What 
really matters is usually the order of the events that all the processes have to agree on. He assigns a 
time to each event. If some event occurs before other event, it must have lower time, and if it occurs 
after the event, it must have greater time value. If some events are not related to each other, their 
order does not matter. The event relations have to be kept throughout the distributed system even in 
the presence of non-precise clock synchronization.
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Fig. 27: Lamport timestamps
(a) Three processes, each with its own clock. The clocks run at different rates.

(b) Lamport's algorithm corrects the clocks.
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The figure  27a shows three different processes and their communication.  The process clocks are 
running at a slightly different rates. The event A is sent at the time 6 and received at the time 16, 
although it is 12 according to the clock of the first process and 20 according to the third process. 
However, Lamport does not require to use absolutely synchronized clocks and only the event order 
matters. The event B is sent at 24 and received at 40 without any problems. The event C is sent at 
60 but it should be received at 56. And similar situation happens with the event D.

Lamport's solution follows the causality and if event C is sent at 60, it has to be received later. So, 
the local clocks are adjusted to, for example, 61 to keep the causality in the system. The figure 27b 
shows the situation after the correction: The event C is sent at 60 and received in 61 and the event D 
sent at 69 and received in 70.

The uniqueness of timestamps throughout the distribute system can be realized by appending the 
process number or its unique identification as a low-byte end of the time, as Lamport suggests.

2.5   Parallel and Distributed Simulations
CVE applications are often simulating real world, city traffic, weather prediction simulations, etc. 
and the simulation is visualized on the computer screen. The distribution of the simulation is used 
either  for performance reasons to distribute  the workload to more computers,  or  for interaction 
purposes – the simulation is synchronized among the computers to give the impression of the shared 
virtual environment that several users can examine and manipulate.

At  the  beginnings  of  simulations,  the  abstraction  of  sequential  discrete  event  simulator  was 
introduced.  It  is  composed  of  state  variables,  event  list,  and  clocks.  The  events  have  their 
timestamps that contain the time when they should be executed. They are taken out of the event list 
and executed when the clocks reach their timestamp. Through the event execution, other events can 
be generated that are appended to the event list.

There are sequential simulators connected with links in the area of distributed simulations.  Those 
links are used for exchanging of messages. The main problem of distributed simulator is the time 
synchronization  because  each  event  can  produce  other  events  for  different  simulators  and 
simulation of any event should not start until the system is sure it will not receive the event with 
lower timestamp from other simulators.

Chandy-Misra-Bryant (CMB) [Chandy and Misra 1979][Bryant 1977] approach uses link times that 
indicate the last timestamp of the simulator that sends the message (one-directional links are used 
and some granularity of time is used). When there are no communication, null-messages are used to 
update the link time. Any simulator is able to determine the moment when it is safe to get its event 
with the lowest timestamp out of the event list and to start its simulation.

High amount of null-messages is usually considered the main disadvantage of CMB approach. Time 
Warp [Jefferson 1985] is the most known optimistic protocol that avoids them. It process the events 
optimistically on all simulators. The causality errors are detected later and the system has to be able 
to roll back erroneously executed events.

Many further optimizations have been developed for both – optimistic and pessimistic approaches. 
Some of them are related to the thesis and they are mentioned bellow. Many others are omitted, 
such as simulation cloning [Hybinette and Fujimoto 2001][Chen et al. 2003], concurrent replication 
[Bononi 2005], and partitioning problem [Morillo et al. 2005] because they are not really relevant 
for the thesis.
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Temporal Uncertainty
Temporal Uncertainty was proposed by R. Fujimoto at [Fujimoto 1999]. He proposed to relax strict 
causality of event execution and to use time intervals instead – each event is associated with a time 
interval and any two events whose intervals overlap at least in one point in common are considered 
concurrent events that can be executed in parallel.  In most simulations,  the impact on results is 
negligible while the performance increases rapidly.

Another  quite  important  motivation  for  temporal  uncertainty  approaches  were,  according  to 
Fujimoto, differences between research of distributed simulations and CVE. These differences were 
quite important because many projects are considered to be both – distributed simulation and CVE 
system, such as DIS project [ANSI 1993]. But the differences between the both systems make it 
difficult to connect many of those systems together in federated simulations [Riley et al. 2004].

One of the differences was that CVE usually do not support rollbacks, but temporal uncertainty is 
able to overcome this limitation.

Latency Hiding
According to  [Hybinette and Fujimoto 2002], it  is possible to locally simulate,  for example,  an 
object behavior during the user interaction with the scene and to provide the user with immediate 
effects on its screen, while it takes some time before the operation really takes the effect. The delay 
may be caused by the system response time,  network latency,  or light  speed.  For example,  the 
communication with robot on the moon will always take about two seconds because of the moon 
distance.

The latency hiding is also important technique for CVE.

Real-time Simulations
Many simulations coupled their simulation time with the real time. One of reasons is human-in-the-
loop simulations,  such as training application – the person is trained in the virtual environment 
(pilots military training, car driving simulations, etc.). Some simulations are used for hardware-in-
the-loop testing, like missile tracking sensors and many others. DIS project [ANSI 1993] is one 
example of real-time simulation including human-in-the-loop, with the possibly of many people 
participating in the simulation while they are virtually present in the simulated collaborative virtual 
environment.

2.6   Computer Networks
Computer networks were often mentioned in CVE research papers in the 90's [Waters et al. 1997] 
because  every CVE highly  depends on network conditions.  Overloaded network switch or  lost 
packets  of  a  wireless  connection  may  cause  many  difficulties  to  CVE  applications.  CVE 
applications  may  require  as  short  packet  delivery  time  as  possible.  Often,  reliable  and  high 
bandwidth connection is necessary and special abilities such as multicast or broadcast support may 
be required for scalability reasons.

The properties  of  computer  networks  are  influencing  the  design  of  CVE.  Particularly,  latency, 
bandwidth,  and  reliability  are  usually  the  most  important  properties  that  correspond  with 
responsiveness, scalability, and fail-resistance of CVE systems.
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Reliable and Unreliable Network Connection
Two basic protocols are used on today networks based on IP (Internet Protocol): TCP and UDP. 

UDP is based on datagrams that are transmitted from a sender to a receiver without any guarantees. 
the datagram may arrive quickly, or be delayed, it may be lost on the way, dropped by some switch, 
or it  may not find a route  to the destination.  Therefore,  this  type  of connection is  often called 
unreliable. To use UDP usually means for a programmer that he has to face the problem of lost 
packets and the problem of the order of datagrams that may come in a different order than they were 
sent.

TCP protocol is used for reliable connections. The protocol takes care about resending lost packets 
and reorders the packets at the destination to the order of sending computer. It is based on UDP, but 
it is much more convenient for a programmer because of the reliability guarantees.

Some discussion can be made what is better for CVE applications. TCP is more convenient than 
UDP but it has some overhead that may be noticeable for some applications. Particularly, latency-
limited applications may require more aggressive time-outs for lost packet resending or lost packet 
recovery based on additional recovery data. The simple lost packet recovery algorithm was realized 
in [Lincroft 1999] by duplicating the data of previous packet in the following packet. Even if one of 
the packets is lost, the data stream can still be reconstructed without the cost associated with the 
packet resending. To avoid doubling the bandwidth, algorithms based on Hamming code [Hamming
1950] can be used to optimize the network requirements.

In conclusion,  UDP was often used in the 90's and it enabled better  performance.  Today,  most 
projects are using TCP because Internet connections and its back-bones improved much in quality 
and bandwidth. Therefore,  UDP does not give so many advantages over  TCP as is was before. 
Moreover,  UDP  communication  is  often  firewalled  on  many  gateways,  making  UDP 
communication not possible.

Multicast and Broadcast
CVE applications often send the same message to many computers. As a CVE system grows in size, 
it became quite performance consuming to send the same message to each one of, for example, 
hundred computers or even more. Multicast and broadcast are addressing this issue.

Broadcast  is  used  from ancient  times  of  computer  networks.  If  a  computer  sends  a  broadcast 
message, it is usually delivered to all computers belonging to that network. This approach was used 
in DIS [ANSI 1993] and in the first version of DOOM [Roehl 1995a]. Often mentioned broadcast 
disadvantage  is  that  all  computers  in  the  network  have  to  process  the  message,  including  the 
computers that are not interested in it and that it puts extra load on large network infrastructures 
because the broadcast spreads through the whole network.

Multicast  is more network friendly approach because a multicasted message is delivered just to 
computers belonging to the multicast group. This eliminates the main disadvantage of broadcast – 
network over-flooding that may have deep impact on its performance with increasing amount of 
broadcast traffic. However, multicast is not supported properly by some switches and routers. In 
that case, some fallback, such as standard TCP/UDP connection, may be used.

Multicast and broadcast are unreliable – there is no guarantees on the message delivery and that all 
computers  really  received  the message.  For  this  reason,  only CVE systems  that  do not  require 
reliable  network  connections  or  that  are  able  to  recover  lost  packets  are  using  multicast  and 
broadcast directly. Otherwise, some reliability layer has to be introduced. Some research was done 
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on reliable multicast [Chang and Maxemchuk 1984]. Reliable multicast is usually facing a problem 
of resending packets that is based on negative acknowledgments – correctly received packets are 
not  acknowledged  but  retransmission  is  requested  for  the  missing  packets.  This  may  lead  to 
feedback  implosions  when  a  large  group  of  computers  does  not  receive  some  packet.  The 
implosions may temporarily overload the sender and the network. Scalable reliable multicast [Floyd
et  al.  1997] was  developed  to  overcome  the  problem.  It  is  using  feedback  suppression.  The 
retransmission request is multicasted and other computers can suppress their request and wait until 
the message is retransmitted.

Bandwidth
CVE applications are used over wide range of network connection types, ranging from slow dial-up 
connections (typical value today: 56k bps), through DSL connections (typical values: 512kbps to 
4Mbps), to highest speed networks (10G bps). It is necessary to design particular CVE application 
with  the  respect  to  the  expected  type  of  network  and  available  bandwidth.  If  the  network  is 
overloaded, it may easily result in the application malfunction. Therefore, careful consideration has 
to be done for safe handling of this issue. The network overloads can be classified into the two 
categories:

• overloading of some network point, such as router, switch, or local network connection

• overflow of network buffers managed by operating system

The first category can be avoided by designing the application with the respect to the type of the 
network connection it will be used on to not exceed the limits of the particular network. However, 
this can not avoid some extreme situation, such as short peak network loading because of some 
extraordinary activity of some network users, or overloaded wireless hot-spot on some scientific 
conference.

The second point can be caused by the first one, when the network is not able to deliver the packets 
quickly enough and the network sending buffers start to fill up. The experience shows that certain 
level of lost packets results in automatic slowing down of TCP/IP connection. These lost packets 
are  often  caused  by an overloaded network point.  However,  the  connection  accommodates  too 
slowly to higher speed even if there is again enough bandwidth.

Another reason for the buffer overflows are some burst send operations, such as sending whole 
scene to the client when the client is starting and connecting to the server. The scene data often 
greatly exceeds the default  size of sending buffers available  for the network connection.  If  not 
handled  properly,  data  loss  and  scene  corruption  may  follow.  For  example,  atomic  joins  are 
problem at this point because they require large amount of data to be quickly transmitted (section 
3.4). Increased size of the buffers may be an option together with the careful application design 
avoiding buffer overflows.

Network Latency
It can be said that the network latency is a special type of communication latency between two 
processes. Latencies may vary on different kinds of networks. Typical values for today networks 
follow:

          100us – quick local networks

        1-10ms – hi-speed network connections in one country of a size similar to Czech Republic
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        ~ 30ms – dial-up connections to a server in the same country (measured in Czech Republic)

      ~ 350ms – connection from Europe to Australia

100-2000ms – GPRS Internet connection (between different Internet providers) – may vary 

Therefore,  a  synchronous  access  to  the  data  of  a  remote  process  can  be  quite  time-expensive 
operation for the local process. Many optimizations have been developed in distributed systems to 
avoid  the  cost  of  the  communication.  Especially  relaxed  data  consistency and  data  replication 
techniques address the issue.

CVE system faces the problem of network latency because it is typically updating and rendering the 
scene  even  100 times  per  second.  It  means  that  sometimes  10ms  latency may be  too  long to 
exchange all the updates between processes. Different CVE approaches are presented in the chapter 
3 to face the problem together  with some approaches to overcome the problem of the network 
latency. The network latency measurement is in the appendix – chapter 7.

2.7   Real-time Systems
CVE applications are often real-time systems and it is unacceptable for an user to wait a second for 
completing of some operation. Such property is important for the most of virtual reality applications 
that are often rendering the scene fifty or even one hundred times per second. This shows that even 
the latency of ten milliseconds can be undesirable.

In the section 2.6, the network latencies were deeply analyzed. The conclusion may be made that it 
is not a bad choice to design an application for expected latencies in the range of 10-60ms. For long 
distance connections, it can be even more.

Real-time systems are often constrained by operation deadlines. If the operation is not completed 
until its deadline, the operation has to be canceled or special handling has to take place. In the worst 
case, missed deadline could lead to system crashes on some systems.

CVE  applications  has  to  quickly  respond  to  the  user  activity  and  to  manage  its  internal 
representation of the virtual environment. However, the processing of the virtual environment takes 
some time because it requires network communications. The latencies of the communication are 
sometimes unpredictable as shown in the section 2.6. As a result, CVE applications can not use hard 
deadlines that may crash the application if they are missed. So they should be designed to be safe 
even under unexpected network conditions, handling temporary connection unavailability, and to 
give the computer a chance to reconnect after sudden loose of the connection, etc.

This tolerance of varying network conditions can be separated into the two areas:

– low-level networking robustness

– adaptability of CVE Kernel to the current network conditions

The  low-level  networking  was  discussed  in  the  chapter  2.6 that  was  dedicated  to  computer 
networks.

The adaptability of CVE kernel includes the ability to safely handle delayed updates and temporary 
unaccessible computers. Another valuable property is adaptability to short/long latencies to provide 
the  best  possible  performance  based  on  actual  network  conditions.  A  special  issue  is  network 
loading adaptability for the applications that are bandwidth greedy or that are transmitting many 
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data  in  bursts.  A  performance  issue  may  be  the  number  of  simulation  steps  per  second  and 
simulation loading because these may overload some slower computers that may not be able to 
perform so many simulation steps, resulting in possible instability of the whole system as operation 
deadlines are no longer met.

2.8   Virtual Reality Systems
CVE systems deal with the data representing a virtual environment.  The virtual environment is 
usually represented by a 3D model composed of triangles. The triangles are efficiently handled by 
today hardware and other 3D representations,  such as NURBS  [Piegl and Tiller  1997], implicit 
surfaces  [Bloomenthal  1997],  and  CSG  [Tilove  1984],  are  usually  converted  to  the  triangle 
representation before they are visualized.

OpenGL  [OpenGL] is  widely  accepted  standard  API  for  3D  rendering.  Another  standard  is 
Direct3D  [Direct3D] from Microsoft that is also often used, however it is not available on non-
Microsoft platforms. Many applications are using OpenGL directly, sending their 3D data directly 
to OpenGL for rendering.

The figure 28 shows simplified OpenGL rendering pipeline. The data for rendering are sent by the 
application  through  OpenGL API.  The  first  stage  processing  is  vertex-based.  Roughly  said,  it 
transforms all vertices and associated data by the transformation matrixes and passes them to the 
rasterizer. The rasterizer takes the geometry formed by the vertices (triangles, quads, lines, points) 
and produces fragments. The processing of fragments includes among other functionalities texturing 
and depth test. The resulting pixels are written into the framebuffer. The framebuffer is periodically 
read (depending on the screen refresh frequency) by the graphics hardware and the data are sent to 
the display.

3D data are usually sent to the OpenGL for rendering. To get the impression of a smooth non-jerky 
animation, about 20-30 rendered frames per second are often mentioned as minimum. In practice, 
the refresh rate of the monitor is often used. The monitor refresh rates ranges from 60 (on LCDs) to 
90 (CRT) and sometimes even more.

Some  applications  are  using  high-level  libraries  for  representing  virtual  scenes,  such  as  Open 
Inventor  [Inventor], OpenSceneGraph  [OSG], OpenGL Performer  [Performer], and many others. 
They  provide  encapsulation  of  many  graphics  algorithms  and  routines  thus  shortening  the 
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development time of the application. Many CVE systems put their collaborative algorithms inside 
these  libraries,  changing  their  virtual  scenes  to  collaborative  scenes.  Some  examples  are  DIV 
[Hesina et al. 1999], [Peciva 2005], Avango [Tramberend 2001], and Blue-c [Naef et al. 2003]. The 
user  of  such  libraries  is  usually  able  to  profit  from  the  collaboration  using  simple  API  that 
encapsulates possibly really complex CVE algorithms.

Immersive virtual reality
Immersive virtual reality became a term for virtual reality that is so 
similar to the reality for the user perception that he is nearly able to 
forget he is in the virtual world. The level of the immersion can be 
different  depending  on  used  hardware.  Some  special  hardware  for 
increased immersion follows:

– Head-Mounted Display [Forte]– typically two display screens, one 
for each eye, and motion tracker; The displays provide the user by 
3D scene view while motion tracker continuously measures head 
position and orientation to update the scene view. The first wide-
market attacking HMD was VFX1 from Forte. It is shown in the 
figure 29.

– Stereoscopic viewing – perception  of depth and the sense of 
space

– Gloves – sense of touch; The user is able to feel the objects 
through gloves, manipulate them, and interact with them.

– Haptic  –  sense  of  touch;  The  user  is  able  to  touch  and 
manipulate objects through a haptic device  [Haptic]. A haptic 
device is shown in the figure 30.

– Sound – provides the user by audio perception

– VirtuSphere [Technovelgy] – free walking; sphere rotates freely 
as the user is moving (figure 31)

Augmented virtual reality
Augmented virtual reality usually uses a 3D glasses with a small camera 
inside.  The  camera  signal  is  going  into  the  computer,  it  may  be 
processed, and it is mixed with virtual scene objects. The picture 32 is 
showing two users interacting with virtual objects in augmented reality 
on Vienna university [Kaufmann 1999].

34

Fig. 29: Head-Mounted 
Display (HMD)

Fig. 31: VirtuSphere

Fig. 30: Haptic device



2.8   Virtual Reality Systems

Fig. 32: Augmented Virtual Reality

Collaborative techniques
Several  techniques  are  used  in  virtual  reality  applications  when  collaboration  of  virtual 
environments is used. The techniques are aimed especially to lower the network bandwidth and to 
provide smooth and non-jerky animation to the user.

Dead Reckoning
Dead reckoning  was  used  long time  ago  for  the  ship  navigation.  With  stellar  observation,  the 
navigation is “live”, working with the stars and the movement of the planet. With logs, compasses, 
clocks, but no sky, the ship navigator is working “dead”.

“Dead  reckoning  is  the  process  of  estimating  one's  current  position  based  upon  a  previously 
determined  position,  or  fix,  and  advancing  that  position  based  upon  measured  velocity,  time, 
heading, as well as the effect of currents or wind.” (Wikipedia, 2007)

In CVE systems, it is usually not possible to distribute scene updates on per-rendered-frame basis 
because 60-100 frames is often rendered per second. That would lead to high network traffic, or 
even to reach network limits. It is also possible to eliminate the effect of the network latency by 
estimating the object position from the last known data.

The term “dead reckoning”  [Roehl 1995a][Cai et al. 1999] was introduced to CVE in the project 
SIMNET [Calvin et al. 1993] in the 80's. SIMNET was predecessor of DIS project [ANSI 1993]. 
DIS used dead reckoning for objects  behavior,  such as  tank,  airplane,  and missile  movements. 
Because the simulation was including thousands of them, it was necessary to lower the number of 
updates.  Since  these  objects  often  follow  straight  paths  or  easily  predictable  paths.  So,  dead 
reckoning can be used to predict the object position for the close future based on, for example, 
current position and velocity vector. DIS is computing the difference between the predicted position 
of the unit and its real position. When the difference reaches some threshold, the next update is sent 
to all replicas. The replicas will receive the update that consists of object's position, the time of the 
position, and object's velocity vector. Then, dead reckoning on the replicas updates the unit state 
and smoothly interpolate the unit position to the new trajectory.  This way, huge network traffic 
reduction can be reached.
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Fig. 33: Fighter using dead-reckoning

The similar technique is prediction  [Hor and Yonekura 1999] that may be used, for example, for 
reduction of the network latency impact on the user.

Key-frame Interpolation
Key-frame interpolation is sometimes used, for example, in computer game simulated environment. 
The simulation is running in steps, for example, 10 steps per second. Each step produces a number 
of updates that are synchronized among the computers. The slowest computers may render just 10 
frames each second and the highest  performance computers may render 100 frames per second 
while they interpolate the object positions between the last two simulation steps. The approach was 
used in the computer game Age of Empires and the algorithm is described in [Bettner and Terrano
2001].

The figure 34 demonstrates the collaborative simulation. The first line shows processing of the high 
performance  computer.  The  computer  is  performing  five  rendering  steps  between  any  two 
simulation steps. The position and behavior of object is interpolated through the time between the 
key positions given by the simulation steps.

The high performance computer is three time more powerful than the second computer shown on 
the second line. The computer is capable to perform just the simulation step and render it only one 
time.  However,  both  simulations  are  running  synchronously  because  the  same  number  of  the 
simulation steps is done. Active replication (see section 2.4) is often used in such environments.

Area of Interest
Area of Interest [Benford et al. 1993] eliminates number of updates and associated network and 
processing resources. The unnecessary updates are detected by awareness algorithms [Benford et al.
1994]. The simplest awareness models are often based on spatial distance – the distant objects do 
not need to be synchronized because they are far away from the users view and they do not have 
any direct consequences on the part of the virtual environment that is close to the user. The example 
of car and city traffic simulator can be given: The cars positions from an other quarter of the city do 
not need to be synchronized as the cars are not rendered until they get close to the users car. Thus, 
they do not have to consume network and computing resources.
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The same algorithm was also used in DIS [ANSI 1993] project. Earth was spatially divided to the 
areas and each unit send updates just to the areas that were spatially close enough to the unit.

2.9   Database Systems
Distributed databases are related to CVE systems because both of them are working with the data 
that are distributed and replicated. Virtual scene data are often called scene database. The question 
can be asked, how much do they have in common. The scene data can be converted into database 
data and stored in database tables, so the scene data can be theoretically treated as database data. 
The performance requirements  can be fulfilled by real-time databases that  are focused more on 
performance than traditional requirements of safety and durability of the data. A typical difference 
is in the kind of access – CVE systems are accessing the data directly, winning the performance, 
while databases are usually using SQL [SQL-92] as intermediate language to communicate with the 
database.

If it is possible to store 3D scene into the database, it is also possible to think about replication 
models  in  databases  and  distributed  database  models  and  to  consider  their  application  in 
collaborative virtual environments.

Databases and transactions
Database may be considered as (possibly remote) data stores. The access to them is usually realized 
by transactions. The transaction is ordered list of operations that can be executed by the database 
while fulfilling ACID properties [Gray and Reuter 1992]:

– atomicity – all  effects  made by the execution of the transaction are either applied all to the 
database or the transaction has no effect (the case of abort or failure)

– consistency – if the database is consistent before the transaction execution, it is also consistent 
after the execution

– isolation – even if transactions are executed concurrently, the system guarantees that for every 
pair of transactions Ti and Tj, it appears that Ti either finished execution before Tj started, or Ti 
started execution after Tj finished 

– durability – after the transaction is finished, the changes it has made persistent even if there are 
system failures

The process of the transaction execution is depicted in the figure 35.

Fig. 35: Transaction processing
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The transaction is issued by a client and it is usually specified in SQL language [SQL-92]. Then, the 
transaction is received by the database. The scheduler contains the list of all pending transactions. It 
may reorder them to get the best database performance because the transactions can be executed 
concurrently and good scheduling order may avoid many concurrency violations followed by many 
execution restarts, thus increasing the performance.

The transaction execution results in reads and writes that are performed on the datastore. If the 
transactions are executed concurrently,  some concurrency control protocol has to be used when 
reading  and  writing  to  the  datastore.  Otherwise,  concurrency  violations  may  result  in  data 
inconsistencies  if  not handled properly.  The transaction execution is  finished by the commit  or 
abort. The commit results in permanent record of the changes in the database and the abort removes 
all the effects of the transaction that may be already made.

Consistency Models – Locking Protocols
Locking protocols avoid consistency violations by locking the data that the transaction is accessing. 
If the transaction wants to read or write some database record, it has to get the read or write lock for 
the record. All the locks are released at the transaction commit or abort. If the transaction wants to 
access the database record that is already locked by another transaction, it tries to get the lock. If the 
lock is compatible with the first lock, it can safely proceed. Usually, shared locks and exclusive 
locks are used as shown in the lock compatibility table (see table  1). The shared locks (S) allows 
only reading of the data item, but several transactions can get shared lock. The exclusive lock (X) 
allows  both – the read  and write  access  to  the  data  item,  while  only one transaction  can own 
exclusive lock at any time. If the current lock is not compatible with the requested one, the lock is 
not granted. A straightforward solution is to abort and restart the transaction that failed to get all 
required locks. The waiting for lock to be released may be other option, however it may lead to 
dead-locks.

S X
S true false
X false false

Table 1: Lock compatibility table

Consistency Models – Timestamp Ordering Protocols
Timestamp ordering protocol [Reed 1983] assigns each transaction its own unique timestamp. Each 
data record has associated two timestamps. One of them is holding the timestamp of the transaction 
of the last read operation, and the other the timestamp of the last write. Six rules are described in 
[Silberschatz et al. 2002] that are used for concurrency violations detection. Roughly speaking, it 
works  like  this:  If  the  transaction  is  trying  to  read the record and the record has  higher  write 
timestamp than the transaction, the value has been already overwritten and the transaction has to be 
aborted. The write timestamp has to be lower than transaction's timestamp for the read operation to 
proceed. The write operation obeys similar rules: If the transaction is trying to write the record and 
the read timestamp is higher than transaction's timestamp, the transaction has to be aborted because 
another transaction already used the record's value. If the read timestamp is lower, write timestamp 
is tested also to be lower, otherwise the transaction is trying to write obsolete value and it has to be 
aborted.

Several optimizations were developed, lowering the number of consistency violations and number 
of transaction aborts. The most important for this thesis are multiversion databases [Reed 1978] that 
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are used, for example, by Oracle  [Silberschatz et al. 2002]. Multiversion databases keep several 
versions of data records. Therefore, if the transaction is trying to read and the record has higher 
timestamp,  it  is  not  necessary  to  abort  the  transaction,  but  the  appropriate  value  from  the 
multiversion database is returned.

Distributed and Replicated Databases
Distributed  and  replicated  databases  involve  cooperation  of  several  computers  on  whose  the 
database is distributed or replicated. Distributed databases splits the data of the database so that 
different  parts  of  the  database  reside on different  computers.  A frequent  reason for  distributed 
databases is storing of large databases that overcome the limits of a single computer because either 
performance limits or hardware limits. Another possible reason is localization and data migration 
depending on the access requirements. So, the data can be available at the server that is the most 
closest one to the client that most often uses the data.

Replicated databases are used in  order to increase data  availability.  The data  can be replicated 
among the number of database servers, increasing the overall database performance because any of 
the servers is able to respond to the data access requests. However at most cases, any write requires 
advanced coordination to update the data on all the servers. The updating all the replicas is usually 
handled by the replication protocol. Replication protocols were described in the section 2.4

Both the replicated and distributed databases are requiring the coordination on their  transaction 
execution  to  prevent  data  inconsistencies  in  the  cases  of  failures.  Two phase  commit  protocol 
[Lampson and Sturgis 1979] is often used. Three phase commit protocol  [Skeen 1981] is used to 
avoid possibly long database restorations after the failures.

Real-time Databases
Real-time databases are usually keeping the database in main memory for performance reasons. The 
main memory is more expensive than disk space, but disk performance and its data access latency – 
about 10 ms, limits the performance of the database and execution of hundreds or thousands of 
transactions per second is usually not possible. Main memory databases [Garcia-Molina and Salem
1992] are able to provide such performance, but data durability is a problem in the case of system 
crash. One option is to store system log in stable storage. In such case, the log re-execution makes 
the database restoration possible after the system crash. However, even if disk I/O bottleneck was 
removed for main memory databases, other bottlenecks may be reached. Creation of system log can 
be one candidate, depending on stable storage throughput. Another possible bottleneck is in locking 
operations and transaction execution planning. It can be optimized for main memory databases.

Real-time databases are real-time systems.  Real-time systems are such systems that works with 
deadlines [Silberschatz et al. 2002]. The deadlines are characterized as follows:

– Hard deadline. Missing the deadline can cause serious problems, such as system crash.

– Firm deadline. The task completed after the deadline has zero value.

– Soft deadline. The task has diminishing value if finished after the deadline.

The transaction management and transaction execution planning should take deadlines into account 
and they may even abort  other  transactions  holding  the  lock  required  for  the  execution  of  the 
transaction with close deadline. The transaction processing in real-time databases are discussed in 
[Abbott and Garcia-Molina 1992] and [Dayal et al. 1990].

A  problem  with  real-time  databases  is  that  it  is  difficult  to  predict  time  cost  of  transaction 
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execution. It is often important to ensure that excess of processing power is available. Otherwise, 
the system may not be capable to handle all the transactions with deadlines in time.
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3   Analysis
This chapter describes the consistency models used in Collaborative Virtual Environments (CVE) 
and investigates their properties. The properties are summarized and weaknesses and strength of 
different  approaches  are  shown.  Finally,  the  suggestions  are  given  for  a  new and robust  CVE 
approach. The new approach, that takes the suggestions in the account, is presented in the chapter 4.

CVE  is  long-term  trend  in  visualizations  and  interaction.  One  reason  is  success  of  Virtual 
Environments (VE) because the human perception can easily perceive them and to treat them in a 
similar  way as  the  reality.  Moreover,  some  situation  can  be  visualized  or  simulated  in  virtual 
environment,  while  they  may  be  much  more  expensive  in  reality.  For  example,  a  virtual  car 
simulator that is able to show all difficult traffic situations in few minutes while several hours drive 
is necessary in reality and it includes the risk of an accident.

Completely synthetic virtual environments are useful in many cases but people often want to use 
them for interaction with others (pilot training) or to collaboratively share the data (collaborative 
CAD software). Social context of collaboration can be seen in some computer games that require 
cooperation of group of people for reaching some goal. These are often more popular than single-
user games for the inclusion of social feeling. Since the collaboration abilities importance is grow-
ing and human social context can be clearly seen, CVE is an important trend in computer graphics 
for the future.

The  collaboration  is  not  trivial  to  realize.  It  often  requires  replication  of  the  data  among  all 
participating computers (see section 2.4) and keeping the data consistent. Several data consistency 
models already exist  for this purpose. They provide different consistency strength and different 
system performance characteristics. However, the trade off exists between the consistency strength 
and the performance unless some sophisticated methods are used. It is often difficult to design the 
system  with  strong  synchronization  because  of  performance  reasons.  Weaker  models  are,  in 
general, making application design more complex and they are more difficult to design and to be 
understand by the programmer.  Although this  thesis  primarily focuses on strong consistency,  it 
addresses both issues – the performance and usability, and tries to meet the requirements of both.

The model  with stronger  consistency provides  additional  consistency guarantees  over  the  basic 
guarantees of the weak models. The additional guarantees are often superior to the basic ones, so 
they  will  be  called  high  consistency  guaranties  throughout  the  thesis.  The  term  consistency 
guaranties is used just with the relation to the strength of the consistency; therefore, it is not defined 
in the presented work.

The chapter has three main parts: At first, the short introduction is made on consistency problems in 
the  section  3.1.  Then,  the  classification  of  different  consistency  models'  designs  is  introduced 
(section  3.2) and the typical CVE consistency models are presented and classified according the 
given  classification  (section  3.3).  The  classification  of  consistency models  is  important  for  the 
design of a new approach and it is aimed to the requirement of performance. Another classification 
is introduced in the section  3.4, based on consistency model properties and convenient usability. 
The models are classified and the final section 3.5 summarizes the state and gives the requirements 
and possible ways for the new approaches.

Since  no  suitable  classifications  exist  in  bibliography  available  to  me,  I  proposed  both 
classifications by myself and used them. The typical CVE configurations were chosen also by me 
while the main distinguishing factor is data replication model.  I described the models and their 
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behavior. The main contribution of the chapter is the classification of consistency models and their 
properties that can be used as a foundation for a new consistency model.

The whole chapter does not provide exhaustive description of consistency models in CVE. It just 
characterizes those ones that are considered the most important for this thesis. The text does not 
consider all nuances of already existing consistency models and some aspects that are not important 
for this thesis may not be covered.

3.1   Consistency Issues
Consistency  models  are  designed  to  keep  application  data  consistent.  Replication  protocols 
[Wiesmann et al. 2000] are already handling basic consistency problems, such as concurrent writes 
of different computers on the same data item. However, the level of the consistency given by the 
replication  protocols  is  not  high  enough  for  many  applications.  They  may  require  additional 
guarantees  because  some  relations  may  exist  among  data  items  that  have  to  be  kept  by  the 
consistency protocol.

This section demonstrates several typical consistency problems that the replication protocols are not 
intend to handle and they may be required by the application.

Fig. 36: Partial object update consistency problem

The figure  36 shows a  consistency problem caused by partial  object  update.  Two updates  that 
should be applied atomically are applied in different moments and an access to the object is done 
between  the  updates.  The  access  will  read  the  object  in  non-consistent  state  that  may  lead  to 
application  failure.  The  problem  is  studied  in  this  thesis  as  scene  access  level  property  of 
consistency model and as an ability to group the read and write operations accessing the scene.
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Fig. 37: Out-of-order update consistency problem

Many CVE systems are not forcing the updates to be executed in the order of their sending. This 
helps to gain some performance but it is source of consistency problems. One example is shown in 
the figure  37.  The example contains  texture node with two attributes:  dimension and data.  The 
dependency exists between the dimension attribute and amount of memory allocated for the data 
attribute. If the user sets the dimension first and then he updates the data, there is no problem on 
Computer A. But if the dimension update is delayed and Computer B receives the data update first, 
serious problem occurs. The processing of texture data update without processing the dimension 
update first may cause writing behind the allocated memory block because the dimension update is 
meant to reallocate the memory according to the texture size. Thus, the message delivery order may 
have serious consequences for the application stability. The problem is studied as message ordering 
property in consistency models.

Fig. 38: Causality consistency problem
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The figure 38 shows causality consistency problem. The node is created by the Computer A. Then, 
the  computer  B  receives  the  scene  update  of  node  creation  and  creates  its  own  node  replica. 
Immediately,  it  decides  to  updates  its  value.  The  update  message  is  sent  to  Computer  A  and 
Computer C. However, it may happen, because of strange network conditions, that Computer C has 
not already received the message about the creation of the node from Computer A, thus it has not 
created its replica yet. But it may already receive the update from Computer B for a node that does 
not  exists  at  Computer  C.  If  the  situation  is  not  properly handled,  serious  application  stability 
problems may occur, such as writing to unallocated memory.

3.2   Design Concepts of CVE Systems
I have investigated many projects to find different design concepts used in CVE. Based on the 
investigation,  I  chose several  criteria  that  will  be used for the classification  in  this  thesis.  The 
classification is focused on design concepts and performance:

Criterion Used Options
Architecture client-server (1-server, N-clients)

distributed-server (M-servers, N-clients)
peer-to-peer

Replication protocol primary-based (local-write, remote-write, ownership protocols)
write-everywhere (active replication)

Message ordering no-order
FIFO
causal-order
total-order

Message delivery guarantees reliable
unreliable

Scene replication type full
partial

Validation strong
strong with the limited access
weak

Access level single operation
hard-coded atomic action
programmable atomic action
user-defined message model

Table 2: Consistency models classification criteria

The  architecture describes the system configuration and the role of computers. A popular archi-
tecture is client-server for its simplicity. One computer is the server and all the others are clients. 
When using primary-based replication protocols, the server holds the primary scene and the clients 
are backup replicas. Such configuration is simple to design and good solution for small scenes.
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Distributed server architectures increases the performance limits by distributing the primary scene 
among more computers, ranging from a small server cluster to large computing servers counting 
thousands of computers.

Peer-to-peer architecture is often used with active replication (see section 2.4). It is non-centralized 
approach and its advantages include strong consistency and better fail resistance.

The replication protocol describes the type of the replication in the system. The most often used 
protocols in CVE are primary-based (see section 2.4). The primary-based replication requires one 
replica to be the primary and all the others are backups. All the updates have to be performed by 
accessing the primary, that, as a consequence of its update, updates all the backups.

The opposite approach is active replication (see section  2.4). All the replicas are peers and any 
update  is  sent  to  the  all  replicas  by  atomic  multicast  (see  section  2.4).  The  atomic  multicast 
guarantees that all replicas receives the updates in the same order. If the determinism requirements 
are met, the processing of the updates in the same order results in the same replicas state on all 
computers, thus, computers are kept completely synchronized.

Message ordering (or updates ordering) influences deeply the consistency guarantees. Three basic 
types of message ordering can be distinguished:

– per-computer orderings (no-order, FIFO order, causal order)

– per-item orderings

– system-wide orderings (causal order, total order)

The per-computer orderings provides per-computer-pair ordering – between source and destination 
computer – guaranteeing that all messages sent from the source computer will be delivered to the 
destination computer in the correct order. Often used orderings are no-order, FIFO order, and causal 
order.

No-ordering means that the messages sent in certain order are received in unspecified order. The 
message re-ordering is caused, for example, by the non-constant network delay and packets routing. 
Some applications do not accept to work with unordered messages.  Others may benefit  from it 
([Roehl 1995a]). For example, the application may not be interested in previous update if newer 
update already arrived that replaces the effect of the previous one. Waiting for the previous update 
would just lower the application performance. Unordered messages are used more often in weaker 
consistency models and with unreliable communication.

FIFO ordering guarantees the receiving order of messages to be the same as their sending order. 
FIFO order is widely used ordering and it can be easily realized by TCP protocol that is the most 
used Internet communication protocol today.

Causal  ordering  is  weakening  of  FIFO requirement.  The  correct  order  is  required  just  for  the 
causally related messages. This may result in higher performance compared to FIFO ordering.

The per-item orderings (compared to per-computer orderings) provides the ordering on different 
granularity level – on per data item level. Usually, this ordering is not often used because the per-
computer  ordering  is  created  anyway  as  a  consequence  of  single-threaded  execution  of  the 
application  or  by  serialization  on  a  single  network  card.  However,  special  architectures, 
multiprocessor  servers,  and  multi-network-card  configurations  may  benefit  from this.  But  such 
special cases with per-item orderings are rare and they are even more weakening the consistency 
guarantees. This thesis is focused especially on models with strong guarantees. Therefore, they are 
not studied here.
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System-wide orderings shift the consistency guarantees to the higher level. Total order requires all 
messages in the system to be seen in the same order by all computers. Causal order, when applied in 
system-wide  context,  forces  just  causally  related  messages  to  be  seen  in  certain  order  on  all 
computers. System-wide orderings provides more consistency guarantees, possibly simplifying the 
application design while trading of scalability.

The most often used message orderings are total order and FIFO order. One of the reasons to not 
using weaker orderings can be high qualities of today networks, compared to early and middle 90's. 
Now, it  seems that  the benefits  gained by weaker  orders  are  not  so important  for  the most  of 
mainstream applications.

Message delivery guarantees provided by computer networks are usually of two types: reliable 
and unreliable (see section  2.6). Unreliable communication does not take care about lost packets 
and message receive order. Some messages may be lost and others may be received in a different 
order than they were sent. Reliable communication handles these things automatically. I have found 
three types of the most often used connection types:

– UDP communication and unreliable multicast

– TCP communication

– reliable multicast protocol [Chang and Maxemchuk 1984], [Floyd et al. 1997]

UDP is  sometimes  used when no high consistency requirements  exist  and high performance is 
required. TCP is probably the most often used communication for its usage convenience. Reliable 
multicast is the subject of research of some papers because the original multicast concept does not 
provide reliability.

Scene replication type  is full or partial. The full replication is nearly always required by active 
replication. The requirement of full scene replication is in the contrast of the optimizations based on 
Area-of-Interest techniques (section 2.8) that do not replicate the parts of the scene that are not in 
the interest of the client because they are, for example, too far away from the user view.

Validation is used for concurrency control because many computers may access the scene at the 
same time and some operations may be not compatible with operations of other computers. The 
validation may not stay only at lowest level of accessing variables, but it may include some high 
level  behavior,  such as scene constraints,  user-defined code,  and collision detection  that  avoids 
penetrating solid objects to each other by refusing the updates that broke penetration condition.

Fig. 39: Update processing with validation

A typical update processing with validation is depicted in the figure  39. Some client creates the 
update request and sends it to the server. The server performs the validation and if everything is 
right,  it  applies the update to its  scene and all  clients  are asked to update  their  replicas.  If the 
validation is not successful, the update request is refused and the scene is left unchanged. Some 
advanced applications may try to reconcile the request with the current scene content and avoid the 
update refuse.
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The need to validate the update request is the result of concurrent scene access that is performed 
through the network, thus it suffers from the network latency. The problem of concurrent access is 
shown in the figures  40a-d. The figure  40a shows Client A that accesses the server to perform a 
scene update. The server accepts the update and acknowledges it to Client A. It can be seen that the 
scene state on the server is transformed directly from the state 1 to the state 2. The same happens on 
Client B, but it is delayed by the network latency that may vary in time and among the computers. 
The state transfer on Client A that issued the update request  is, however, different. The scene is 
transferred from the state 1 to state 2a. The state 2a is considered temporary and it means that some 
update happened locally but it is not acknowledged by the server yet. After the acknowledgment, 
the state is transferred to the state 2. In the case of the update refuse by the server, the scene state 
turns back to state 1.

The same situation is shown in the figure  40b when the update happened on Client B. The same 
schedule of events applies.

The different situation occurs if the update requests on Client A and Client B occur simultaneously. 
The situation is depicted in the figure 40c. The update is requested on both clients at about the same 
time. Both of them are sent to the server. The server receives them in certain order. One of them, 
usually the first one, is executed first. It is validated and applied. Then, the second one is validated 
and if the updates are not compatible, the update is refused. In the figure 40c, the update of Client A 
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is accepted and update of Client B is refused. The negative acknowledgment is sent to Client B and 
it rolls back all the changes related to the update. The state changes on Client A are the same as in 
the figure  40a.  The server state is the same too because the update  request from Client  B was 
refused. However, the client B state changes differs from the figure 40b. The state 3a is present after 
the update request is sent. Then, the update from Client A is received that may not be compatible 
with the state 3a, therefore it may replace the effect of the unacknowledged update request and the 
scene enters the state 2. Then, Client B receives the negative acknowledgment of its update and it 
rolls back all the remaining effects of the state 3a.

Another situation occurs if both update requests happened concurrently, but they do not interfere 
with each other and both of them are accepted. The situation is shown in the figure 40d. The server 
accepts the first update and sends update to the clients. Then it accepts the second update and sends 
next update to the clients. All clients are progressing in the state from 1 to 3. The differences are 
just in the temporary states (state 2a and 3a) and in the time of applying of the update.

The validation will be called strong in this thesis, if it uses up-to-date data only – that is the primary 
data in the case of primary-based replication.  If the client-server architecture is used, the server 
holds the primary scene and it is able to perform strong validation while clients can do only weak 
validation unless they are sure they have up-to-date data. On distributed primaries architectures, the 
primary scene does not reside on one computer, but it is distributed. This fact makes the strong 
validation more difficult to realize because much of the data available locally are just backups. The 
validation has to either not access backup data or to make remote access to their primaries. If none 
of the two is an option, the validation may be relaxed to use weak validation.

Weak validation allows the usage of the backup data that may not be up-to-date. It may result in 
scene inconsistencies and the application has to be designed robustly enough to be able to live with 
them and reconcile or converge them quickly enough. On the other side, weak validation usually 
increases the scalability and performance of the application.

Some applications with distributed primaries may use a special kind of strong validation that does 
not require any access to the backups. Such validation uses only the primaries that are available 
locally and it will be called validation with limited scene access because the validation process is 
limited just to the part of the scene that is composed of primaries. On the other side, the validation 
process, that is allowed to access whole scene state, either because a weak validation is used or the 
whole scene is up-to-date, will be called non-limited.

Access level can be one of the following:

– single operation

– hard-coded atomic action (often called event)

– programmable atomic action (generalized event)

Single operation is, for example, one read or one write operation performed on the scene. These 
operations are issued by computers and they are accepted or refused by the validation process. The 
reasons for refusing are usually some consistency restrictions,  collision detection,  scene defined 
constraints, etc. However, single operation does not provide abilities for atomic access to a group of 
data items. For example, it is difficult to handle situations when partial update of several data items 
of an object would lead to the object inconsistency. In such cases, some higher access level may be 
a better option.

Hard-coded atomic action is a sequence of operations that are executed atomically. It is similar to 
stored procedures [Silberschatz et al. 2002] used in database systems. If the action is well designed, 
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it provides atomicity and gives the programmer advanced access to the data items. Many systems, 
such as DIVE  [Frecon and Stenius 1998], are using term “event” for what is called hard-coded 
atomic action in this thesis.

The idea of programmable atomic actions  is quite  similar  to the transaction concept  [Gray and
Reuter 1992] used in database systems. Programmable atomic actions extend hard-coded atomic 
action concept by possibility to specify the action in run-time while hard-coded actions have to be 
known in compile-time. Programmable actions give the programmer extensible access to the scene 
that is not limited to the set of hard-coded actions. A typical example that can not live with limited 
set of actions is a CVE library encapsulating CVE algorithms. The library can not know all the 
varieties of actions that different kinds of applications may need. Or, there may be a requirement of 
scene extensibility by new object types and actions that are not known at the application compile 
time. Programmed actions can be specified at run-time. Users can define what the action shall read 
and what it shall write. The next step forward would be not using static read and write set. Instead, 
the transaction would be specified by a script that may create read and write set dynamically. The 
advantage of using scripts should be that they may take current scene state into the account while 
the current scene state is not known in the time of the transaction creation. This may avoid many 
transaction aborts and increase the application performance.  However, the scripting is going far 
beyond the scope of this thesis.

3.3   Typical CVE Configurations
I identified several the most used configurations used in CVE systems:

– Centralized Primaries model

– Distributed Primaries model

– Data Ownership

– Active Replication

The  configurations  can  be  classified  according  to  the  criteria  given  in  the  section  3.2.  The 
classification  based  on  architecture  and  replication  model  is  shown  in  the  figure  41 and  the 
complete  classification  of  all  criteria  is  in  the  table  3.  The  details  related  to  each  of  the  four 
configurations will be explained in the following subsections. The subsections do not define the 
configurations formally because it would be difficult  to make the definitions abstract enough to 
cover all possible nuances and specialties of different CVE systems.
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Centralized Primaries
Centralized primaries consistency model is based on primary-backup replication model. Depending 
on the implementation, either primary-backup local write protocol or remote write protocol (section 
2.4) from distributed systems can be used. At this model,  all primaries reside  on one computer 
called server and they are forming primary scene. All other computers are called clients and they 
hold just scene backup replicas. All backup replicas in the system are readable and write access is 
allowed only into the primary replicas. Whenever a client wants to update some data, it has to send 
an update request to the server. The server may perform some scene consistency checking and 
accept  or  refuse  the  update.  If  the  update  is  accepted,  the  primary  replica  is  updated  and  the 
message is sent to all backup replicas to update their values.

The figure  42 shows five computers.  The  computer  at  the  bottom is  the  server  containing  the 
primary scene. All other computers are clients. The computer at bottom-right wants to update the 
scene. It sends the update request to the server. The server processes the request and if it accepts the 
request, it sends the update to all clients.
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The update processing is shown in the figure 43 in more detail. The processing has four stages:

1. creation of update request at a client

2. update validation on the server

3. performing of the update at the server

4. update on all clients

The figure 44 depicts the time line of the scene update processing. Two types of latencies can be 
seen. They are called request latency and update latency here. The request latency is the latency on 
Client A between sending the request and actual updating of its scene after the server confirmed the 
update. Update latency reflects the time between the server process the update and the time when 
the particular client receives the update. The system using centralized primaries model has to be 
designed to live with these latencies.

The request latency is important for the responsiveness of the application.  It can be masked by 
providing the user by some visual or audio feedback (see section 2.8), or the updates can be applied 
temporarily and validated/reconciled after the server response.

The update latency is related to the scene consistency and to the concurrent access of clients to the 
server scene because the access suffers from inherent network latency. Since the updates are not 
immediately seen on clients the backup scenes can be temporarily out of synchronization until the 
updates arrive. This may lead to sending update requests by clients that are not based on up-to-date 
scene data and therefore they may not be valid sometimes.  The server has to be able to refuse 
invalid updates or to reconcile them with the current scene state. More details concerning validation 
were described in the section 3.2.

From the point of this thesis, centralized primaries consistency model is interesting for centralizing 
whole primary scene at one place. Such property enables the kinds of scene processing that requires 
the access to the whole up-to-date scene or to large part of it. A typical algorithm that requires such 
access is collision detection that has to process all the scene objects for collisions. Since it is the 
primary scene, no delayed updates exist, and collision is performed on up-to-date data resulting in 
always correct results. Another interesting thing of the primary scene centralization is validation 
(see  section  3.2)  that  can  be  used,  resulting  in  strong  consistency  and  better  usability  of  the 
consistency model.

The disadvantage of the client server architecture is its scalability because the server may quickly 
become a bottleneck if the system loading is too high. From the point of safety, the server is single 
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point of failure of the system. It is safe against client crashes, but the server crash usually results in 
the failure of the whole system.

Advantages:

– strong validation

– simple design

Disadvantages:

– limited scalability

– single point of failure

Although centralized primaries model has its advantages, it does not often appear in the research 
papers. Many projects are using other primary-based models. One reason is data access latency as 
different data may be required to be placed on different computers for minimizing cost of accessing 
them.

Distributed Primaries
Distributed primaries consistency model is similar to centralized primaries model except that the 
primary scene is distributed among the computers. The parts of the scene are “owned” by different 
computers and each computer is allowed to write only to its part of the scene. If a computer wants 
to write to the part that belongs to another computer, it has to send a request to that computer to 
update  the scene.  Clearly,  this  approach is  based on primary-based local  write  or remote  write 
protocol (section 2.4) from distributed systems.

The processing of the updates and update requests is depicted in the figure 45. It is quite similar to 
centralized primaries model. The difference is that the update request has to be sent to the correct 
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Fig. 45: Distributed primaries consistency model
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computer that holds the primary of that particular data item or data items. The primary parts of the 
scene are marked red in the figure, and backup parts are in blue. After the processing of the update 
request,  the  computer  that  holds  the  primary  is  responsible  for  updating  the  backups  on  other 
computers.

The timing and latencies of the update/update request is the same as with centralized primaries. 
However, the problems of concurrent access and scene consistency are even more difficult because 
there is no central point of validation like the server in centralized primaries that was validating all 
the update requests. Each computer has to perform the validation for all it's primaries by its own 
because of the distribution of the primary scene. However, the validation is usually using some 
scene  data  to  verify  that  the  update  will  not  break some consistency rule  in  the  scene.  Proper 
validation should use only primary data that are up-to-date by their nature. But the validation may 
require to access even the data that does not have its primary on the local computer. Moreover, the 
validation process on many computers may require the access to the same primary, thus moving the 
primary to any computer does not help. This problem usually leads in weakening the consistency 
requirements  and  using  also  the  backup  data  for  the  validation,  resulting  in  some  degree  of 
inconsistencies among the scenes on different computers. The validation process is depicted in the 
figure 46.

Fig. 46: Validation in distributed primaries model

Accepting to live with the inconsistencies among the scenes in distributed primaries model often 
leads to different design style of the application. Small inconsistencies may tend to grow rapidly 
when not reconciled quickly. Therefore, the application should be designed to handle theoretically 
all possible differences among the scenes.

On the other side, distribution of primary scene overcomes the scalability problem of centralized 
primaries  model  by  distributing  the  loading  among  the  servers.  Weakening  of  consistency 
requirements may improve performance and scalability. Especially the scalability, with introducing 
area of interest technique (see section  2.8), may be increased enormously,  ranging from a small 
server cluster  to the large spatially distributed systems with hundreds of computers where each 
computer can be a server for a part of the scene, enabling extreme scalability, such as DIS [ANSI
1993] that  used thousands of computers running large simulation,  and several  others (SIMNET 
[Calvin et al. 1993], HLA [Kuhl et al. 2000], VR Group [VR Group]).

Advantages:

– scalability

Disadvantages:

– weak validation/consistency
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update 
ordering

ordering
type

communication 
reliability

network protocols / other

DIS no order per-item unreliable UDP, broadcast
Repo-3D FIFO per-item reliable TCP /

active and passive replication
DIV total order global reliable reliable multicast
DOOM total order global unreliable UDP, broadcast

Table 4: Distributed primaries applications and their properties

Data Ownership
Data ownership consistency model is similar to distributed primaries model except that it allows the 
primary to be transferred among computers. When the computer has an ownership of a data item, it 
can read and write its value. If it writes to the data item, the update is sent to all other computers. If 
another  computer  wants  to  access  the  data  item,  it  may  ask  for  its  ownership.  Without  the 
ownership, it can only read backup value that is not guaranteed to be up-to-date.

The figure 47 shows the update process when data ownership is used. When the update is requested 
on the computer at the bottom, the ownership is transferred from the current owner that is top-right 
computer. When the ownership transfer is complete, the data item is updated and update message is 
sent to all other computers.

Such approach may be useful, for example,  for CAD style applications – if the user moves the 
mouse  pointer  over  the object,  the ownership can be gained  before the user  actually  starts  the 
manipulation. Utilizing such prediction, the user may not notice any delay.
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Fig. 47: Data ownership consistency model
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3   Analysis

On the other side, some systems that are doing intensive scene processing may not perform well on 
data  ownership  model  because  the  computers  may  start  to  fight  for  the  data  ownership  and 
ownership transfer may become a bottleneck.  Possible solutions at that point can be application 
redesign to  reduce the amount  of concurrent  access  or scene consistency requirements  may be 
revised.

Some systems support advanced ownership transfer control, such as MASSIVE [Greenhalgh 1999]. 
Another  extension  are  updates  without  ownership  transfer  that  enables  to  send  update  request 
directly to current ownership holder and the holder will perform the update. Such approach may be 
useful in some situations when the ownership transfer is not required. In that case, primary-based 
remote write protocol (see section 2.4) is used instead of local write protocol.

The system can be designed to use either strong validation or weak validation, depending on the 
consistency, performance, and scalability requirements. The update process with validation for data 
ownership model is shown in the figure 48.

Advantages:

– flexibility of ownership (moving primaries)

– strong consistency if strong validation is used

Disadvantages:

– weak consistency if weak validation is used

– ownership request competitions

– ownership request deadlocks

Data ownership consistency model was used in MASSIVE-3/HIVEK  [Greenhalgh 1999], CIAO 
[Sung et al. 1999], Blue-c [Naef et al. 2003], Spline [Anderson et al. 1995][Waters et al. 1997] and 
others.

update 
ordering

ordering
type

communication 
reliability

network protocols

MASSIVE-3/HIVEK causal,
FIFO

per-item reliable / 
unreliable

TCP
(updates can be UDP)

Blue-c FIFO per-item reliable reliable multicast
CIAO FIFO per-item reliable TCP, reliable multicast
SPLINE FIFO per-item reliable / 

unreliable
TCP, UDP, multicast, 

HTTP
Table 5: Data ownership applications and their properties
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Fig. 48: Validation in data ownership model

update request
created

strong/weak
validation update

execution

update

distributed serverclient clients



3.3   Typical CVE Configurations

Active Replication
Active replication model is peer-to-peer approach taken from distributed systems (see section 2.4). 
All  computers  are  replicating  all  collaborative  scene  data  while  keeping the  scenes  completely 
synchronized.  Active  replication  relies  on  deterministic  presumption  –  provided  with  the  same 
input, all the processes will produce the same outputs. Therefore, if the scenes are synchronized at 
the beginning, all updates are applied at the same order on all computers, and the update processing 
is deterministic, the scenes will be kept synchronized.

The  figure  49 depicts  active  replication  model.  All  the  scenes  are  synchronized.  When  any 
computer wants to issue an update request, it sends the request by the atomic multicast to all the 
computers.  Atomic multicast  [Birman 1993] (described in the section  2.4) is distributed system 
communication primitive that guarantees total  order of the updates and the reliability.  Utilizing 
atomic multicast, all the computers are processing the update requests in the same order and if the 
deterministic execution is guaranteed, the scenes are kept synchronized. The determinism is often 
named  among  the  disadvantages  of  active  replication  because  multithreaded  applications  and 
heterogeneous systems may often not fulfill this requirement.

Fig. 50: Validation in active replication model
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Fig. 49: Active replication consistency model
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The  update  processing  is  changed  (see  figure  50)  because  the  updates  are  executed  on  all 
computers, thus no synchronization is necessary after the update is performed. The validation is 
strong because the scenes are completely synchronized and it should not be weakened because it 
may break the determinism requirement of active replication.

Fig. 51: Update latency in active replication model

The figure  51 shows the  request  latency of  active  replication.  Compared  to  the  primary-based 
architectures, the request-update latency shorter – it is reduced to just one network communication 
compared to two communications of primary-based approaches. From that point of view, it can be 
said  that  active  replication  has  better  responsiveness.  Another  advantage  is  the  property  of 
completely  synchronized  scenes.  They  are  result  of  the  same  order  of  deterministic  update 
execution on all computers.

Active replication is suitable for small and middle-sized scenes as all the computers have to process 
all the updates sent to the system. Otherwise, the scenes may go out of synchronization. On the 
other  side,  active  replication  systems  shows sometimes  low network  requirements  because  the 
computers  are exchanging just  requests  that  are applied on the data.  So,  the data are often not 
communicated, while primary-based approaches are usually exchanging the data values that may be 
expensive in the case of geometry data, texture data, or similar large data sets. Active replication 
may utilize the determinism and it may need to transmit just the type of operation to perform on the 
dataset, while the same functionality may be limited on the primary based models depending on the 
strength of the consistency model.

Peer-to-peer architecture is nearly always used with active replication. The applications using active 
replication are relatively not too difficult to design and it is usually fail-safe architecture because if 
well designed, there is no single point of failure and crash of one of computers will not lead to the 
failure  of whole system. The disadvantages  are the determinism and scalability limits  of active 
replication (see section 2.4).

Advantages:

– completely synchronized scenes

– strong validation

– short latency

– fail resistance

Disadvantages:

– determinism of execution
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– limited scalability

Active replication consistency model was used in computer game Age of Empires  [Bettner and
Terrano 2001], Avango [Tramberend 2001], DIVE [Frecon and Stenius 1998], and others.

update 
ordering

ordering
type

communication 
reliability

network protocols

Age of Empires
Avango
DIVE

total order global reliable
UDP-based reliable protocol

Ensemble system
reliable multicast

Table 6: Active replication applications and their properties
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3.4   Consistency Models Evaluation
The section  3.3 classified  the  consistency models  from the  design point  of  view.  This  section 
classifies the consistency models based on their usability and their properties for an user. The table 
7 shows the classification criteria that was chosen. The criteria and their values are explained in the 
following subsections.

Criterion Values
global scene state centralized

distributed
delayed

immediate read of global scene state yes (usually local availability and push protocols)
no

immediate writes yes (often asynchronous writes and pull protocols)
no

scene constraints strong
strong on server only
strong on owned items only
weak

concurrent object/attribute manipulation reconciliation everywhere
reconciled on server only
reconciled on computer holding data ownership
user-defined

grouping of operations not supported
hard-coded actions
programmable actions

Area of Interest (AoI) supported
not supported
clients only

late join atomic state transfer
AoI style joins
pre-caching joins

Table 7: Consistency models classification criteria focused on usability
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Global scene state
I realized that global scene state is either centralized, distributed, or delayed. The type of global 
scene state is closely related to the replication model used in CVE system as shown in the figure 52.

Centralized Global Scene State
Centralized global scene state (figure 53) is used in client/server configurations when server holds 
all up-to-date scene state. All updates have to be done through the server because all primary replica 
copies are placed on it. The clients holds just back-up replicas that may not be up-to-date always. 
Centralized global scene state has its benefit in the up-to-date scene centralization that makes the 
strong scene validation easy to realize.

Fig. 53: Centralized global scene state
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Distributed Global Scene State

Distributed  global  scene  state  (figure  54)  means  that  global  state  is  distributed  among  several 
(possibly all) computers. Such configuration usually provides much more scalability. However, it is 
more difficult to access global state efficiently because of its distribution. The problem is usually 
seen from two sides:

– consistent reading of whole scene state

– atomic update of several data items

Both problems are related to strong/weak validation described in the section 3.2.

The first problem is related to tasks like saving whole simulation to a file for the sake of restoring it 
later or to recover it in the case of a system crash. Another task requiring access to whole scene is 
collision detection algorithms that avoids all  solid objects  to penetrate  to each other.  The most 
straightforward solution for the saving scene to file is  to stop the simulation,  wait  until  all  the 
remaining updates are communicated, read the scene state, write it to a file, and start the simulation 
again. The reading the scene state can be done locally only if area of interest techniques (see section 
2.8) are not in use. Otherwise, some additional communication may be necessary.

Applications are usually trying as much as possible to avoid atomic access to the whole scene state 
as it is performance expensive. The saving of simulation to the file is usually a rare operation and 
short simulation pause may be acceptable. But collision detection usually has to be performed in 
real-time many times per second and it is not possible to pause simulation each time the collision 
test should be done. This leads to optimizations like partitioning of the scene and to weakening of 
the  scene  consistency  that  may  enable  objects  to  temporary  penetrate  other  objects  until  the 
collision is safely handled.

Another problem in distributed scene state configuration is atomic update of several data items. An 
application may want to update two objects as a result of their interaction,  however the objects 
primary replicas may reside on different computers. One of the computers may refuse the update 
and it is not trivial to guarantee atomicity because and it is necessary to rollback the write on the 
other computer. The topic was investigated in database systems as two and three phase commit 
protocol  [Lampson  and  Sturgis  1979],  [Skeen  1981].  Another  solution  is  weakening  of  the 
atomicity requirement.

Distributed global scene state systems are often used for large simulations [ANSI 1993][Calvin et
al. 1993] while they are using weak consistency models to reach high performance even on large 
data sets.
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Fig. 54: Distributed global scene state
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Delayed Global Scene State
Delayed global scene state is based on principles of Delta Time protocol (section 2.4). The scene 
state is not known at present time t. The application can observe consistent scene state just at the 
time t-delta. The time interval delta should be longer than the longest possible network latency in 
the  system.  The  system uses  roughly  synchronized  clocks  on  each  computer  and  it  assigns  a 
timestamp to each update on its creation time tc. The update is delivered to all computers and it is 
put into the waiting queue. It waits until  the time  tc + delta.  Then, the update is applied to all 
computers. That way, delta time consistency is kept.

Fig. 55: Delayed global scene state

Delta time protocol provides also possibility to perform “non-timed” reads (and theoretically “non-
timed” writes) that does not keep the delta restrictions and gives the user the latest available value. 
Even although non-timed data values may not be consistent,  they can be used speculatively to 
provides the user with better responsiveness. But such data have to be used carefully, otherwise the 
scene consistency may be broken. The details on non-timed reads and writes are in the section 2.4.

Delayed Global Scene State is often used together with active replication, such as in [Bettner and
Terrano 2001]. It is often used on small scenes providing high consistency guarantees. Moreover, 
applications may utilize determinism, like in [Peciva 2006] to minimize network bandwidth and run 
complex simulations even on low bandwidth network connections like dial-up modems.

This thesis is focused especially on delayed global scene state because it is able to provide strong 
consistency guarantees, good responsiveness, and provides another possibilities for optimizations 
based on “non-timed” reads that will be described later.

Immediate reads
Immediate  read  on  replicated  data  item  means  that  the  valid  data  value  can  be  obtained 
immediately, without need of network communication because the communication may introduce 
unacceptable delay.  The requirement of immediate reads usually forces CVE to have up-to-date 
values of replicated data locally available.

Immediate  reads  and writes  are  closely  related  to  push  and  pull  update  propagation  strategies 
[Wiesmann et al. 2000]. Immediate reads are usually realized by the data replication that uses push-
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update  propagation  strategies.  As  a  result,  the  user's  read  operation  can  be  performed  locally 
without any need of network communication and associated latency.

Push propagation strategies ensure that each update at any replica immediately starts new value 
propagation  to  all  other  replicas.  In  the  contrast,  pull  propagation  strategies  delay  the  update 
propagation until the value is requested by, for example, some other replica because the user issued 
a read operation on it. So, the update propagation is postponed until the value is required.

Push propagation strategies are nearly always preferred in CVE over pull strategies as they enable 
the user to read data immediately but write operations usually take more time to proceed because all 
replicas have to be contacted to update their values.

Immediate writes
Immediate writes means that the user can issue write operation while it is finished immediately, 
without need of network communication that may introduce unacceptable delay. Immediate writes 
are somehow fighting against immediate reads. For example, they can be realized using pull update 
propagation strategies, compared with push strategies used in immediate reads.

Immediate writes can be obtained by these approaches:

– pull update propagation strategies

– client-server architecture while writes are done on server only

– writes on primary replicas only

Pull  update  propagation  strategies  are  used  only  in  special  cases  because  they  fight  against 
immediate reads that are usually more important.

Immediate writes can be realized on client-server architectures, particularly on centralized primaries 
consistency model (section 3.3). In such case, the write operations have to be performed on server 
only.  Then, no network communication is required. Actually,  the communication is required for 
updating other replicas, but this can be done asynchronously [Wiesmann et al. 2000] as it is usually 
done in CVE systems.

Asynchronous writes mean that the write operation can be finished without waiting for all the other 
replicas to update their values. Synchronous writes block all the execution until all replicas in whole 
system are updated and the acknowledgment is received from all of them. Weakening of this rule by 
using  asynchronous  writes  makes  the  consistency  and  safety  more  complex  but  blocking  of 
synchronous writes are usually not acceptable  in CVE systems.  Therefore,  CVE systems nearly 
always look for the consistency models and concepts that accept to live with asynchronous updates.

The  third  way to  realize  immediate  writes  is  to  perform writes  on  primaries  only.  If  the  data 
ownership is used, just “owned” data are writable immediately.

Scene Constraints
The scene constraints are restrictions and rules that may be specified for the scene. They force the 
scene  to  obey this  constraints  and,  for  example,  updates  may  be  refused  if  they  violate  some 
constraint.

The constraints may be considered as advanced topic and they were not much addressed by research 
papers in the 90's. But it is improving in this decade. The name “scene constraints” is used in this 
thesis because no term is currently settled for it.
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An example of scene constraint is collision detection that avoids penetration of solid objects in the 
scene into the each other (DOOM  [Roehl 1995a], projects of VR Group  [VR Group], and many 
others). Other examples are scene semantic constraints, such as elevator can carry just 11 people at 
the time. No more people in virtual scene are allowed to enter it. The shared manipulation is another 
example: some task in virtual environment can be completed only by cooperation of two people 
using the correct tools, as shown in Constructing virtual Gazebo [Roberts et al. 2003].

The  scene  constraints  are  easy  to  design  for  standalone  applications.  Primary-based  CVE 
applications may require advanced design to use scene constraints, however CVE applications using 
active replication are easy to realize but they require well defined abstraction of scene constraints 
because of the nature of active replication that executes the updates on all replicas.

The scene constraints are often implemented as a piece of code that is executed when certain update 
occurs. The constraints may influence the behavior of the update. They usually just allow or refuse 
the update. For example, a position update may be canceled because a constraint exists that allows 
people to move just in limited scene area and not outside of scene. Advanced architectures may 
enable constraints to do something more than just allow or refuse the update. They may perform 
some additional computing or, for example, reconcile the update with the current scene state, thus 
enabling execution of the update that should be refused otherwise.

The  constraints  are  usually  evaluated  through  the  validation  process  (see  section  3.2).  The 
validation is strong or weak. If the validation for certain constraint is strong, the constraint will be 
called strong in this work. If the validation is weak, the constraints will be called weak too. The 
table 8 summaries usual constraint types for different CVE architectures:

Replication model Constraints type Determinism
required

Centralized Primaries strong on server no

Distributed Primaries weak
(strong constraints possible with limited validation model)

no

Data Ownership strong constraints on owned items
(weak otherwise)

no

Active Replication strong yes

Table 8: Constraint types in different replication models

Strong constraints are never violated and all update requests that are violating them are rejected. 
Thus strong scene consistency is kept all the time. Weak constraints are not so strict in validation. 
They may use backup data that may be out-of-date for the constraint evaluation. It results in higher 
performance  but  the  validation  is  not  strict  and  the  constraints  and  scene  consistency may  be 
temporarily violated.

The limited and non-limited validation model used in the table 8 was explained in the section 3.2. 
Roughly said it indicates whether validation can use only “primary” data for validation that are up-
to-date but no all scene data are primaries (limited validation model) or it can use any data (non-
limited val. model) but they may not be consistent. The determinism requirement is important for 
active  replication  architectures.  There  are  various  sources  of  non-determinism  of  the  same 
execution performed on different computers. Some of them are:
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– differences in the scenes caused by delayed updates that already arrived to some computers but 
not to the others

– execution non-determinism: Some sources of non-determinism exist when executing the same 
code repeatable, or on different computers. They include followings:

– different machine code – Different compilers or even different compiler options may 
result in different machine code of the application. Some code differences may produce 
different results. For example, using SSE instructions instead of regular x86 code is not 
guaranteed to produce bit-by-bit equal results.

– different  software libraries  – Many libraries  exist  throughout  different  platforms that 
provides some standard functions for the applications. The behavior of the libraries may 
not be the same in all the cases because they may handle some conditions in a different 
way. For example,  some libraries may use high precision float routines even for low 
precision  float  numbers,  resulting  in  different  rounding  error,  thus  breaking  the 
determinism.

– hardware differences – Hardware differences ranges from bugs to accepted differences. 
A famous floating point bug was found in first Pentium processors, introducing some 
small error for some multiplications [Intel 2004]. An example of accepted difference is 
precision of sin(p) that for p=14885392687 may return 11.5% different value between 
Intel and AMD processors. The reason is because Intel is using 66-bit approximation for 
π, but AMD is using 256 bits [Monniaux 2007].

– using of multi-threading – task switching happens differently on different  computers 
thus requests are served in unspecified order, breaking the determinism requirement

– dependency on some local computer property. For example, using system time, access to 
random number generator, dependency on rendering speed (FPS), on CPU speed, and so 
on breaks the determinism.

One more type of constraint validation exists in some applications – some of them are using dead-
reckoning, frame interpolation, and similar techniques applied on user-view scene (see section 2.8). 
Weak constraints are often applied to user-view scene to avoid visual artifacts. These constraints 
usually has no real effect on shared collaborative scene because the constraints are applied to the 
user-view scene only and the changes do not propagate back to the collaborative scene.

Concurrent Object/Attribute Manipulation
Concurrent  object  and  concurrent  attribute  manipulation  were  deeply  studied  at  University  of 
Salford in this decade  [Otto et al.  2005][Roberts and Wolff  2004] and the problem was named 
closely coupled interaction. They made a distinction between concurrent manipulation of an object 
attribute and concurrent manipulation of an object when different attributes are manipulated. They 
demonstrated  the  problem  on  constructing  virtual  gazebo  [Roberts  et  al.  2003].  During  the 
construction, several people are interacting together for constructing the gazebo. For certain tasks, 
two people are necessary, such as moving heavy load. If two people are carrying heavy load, both 
of them are moving the object and both of them are manipulating the heavy object position attribute 
at the same time. If both users are changing the attribute at the same time, it is not clear, which 
user's values are valid. Moreover, there is some latency until other side realizes the update of each 
other.

However,  the  expected  behavior  is  different.  In  the  reality,  both  users  are  contributing  to  the 

66



3.4   Consistency Models Evaluation

movement  of the heavy load and they are cooperating on its  real  position.  [Wolff  et  al.  2004] 
suggest solution to use object behavior scripts and the problem was shifted to application level. 
Each application should handle the closely coupled interaction by itself while the scene consistency 
has to be kept.

The table  9 shows possible guarantors that may be responsible for scene consistency and update 
reconciliation:

Replication model Reconciliation of closely coupled interaction
Centralized Primaries reconciled on server

Distributed Primaries user-defined (not trivial to solve)

Data Ownership reconciled on computer holding data ownership
(on rare event occurrence, ownership transfer may be used also)

Active Replication reconciliation everywhere (i.e. on all computers in parallel)

Table 9: Closely coupled interaction consistency solving

In conclusion, closely coupled interaction is not trivial to solve and it is not easy to generalize it. 
Therefore, it is not trivial to make it part of a CVE library.

Grouping of Operations
Going through the recent research in CVE area, it can be said that two approaches are used:

– event based

– data centric

Event based approaches model any scene processing as an event. The event is created at a computer 
and sent  to  other  participating  computers.  When the event  is  received,  it  can be processed (or 
executed)  immediately,  or  its  processing  may  be  delayed,  for  example  until  some  consistency 
requirements are met. The event is the way to propagate changes among the computers.

Data centric  approaches  focus on the fact  that  the scene is  composed of replicated  data  items. 
Usually,  all the reads can be finished immediately because the data are replicated and available 
locally. However, writes require network communication to be done and it takes some time to finish 
the  write.  The  replication  algorithms  are  responsible  for  synchronization  of  the  scenes  among 
computers.

The  different  kinds  of  scene  data  access  levels  were  introduced  in  the  section  3.2 as  single 
operation,  hard-coded actions and programmed actions. The event based approaches are usually 
able to perform several operations in one event and to execute group of operations atomically. It 
corresponds with hard-coded action level. On the other side, the data centric approaches often does 
not allow grouping of operations at all (single operation access level).  Finally,  the flexibility of 
generating actions dynamically is rarely investigated or supported. The table 10 summarizes typical 
scene access levels used.
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Scene 
processing

Scene access type Comments on usage

event based single operation supported
hard-coded actions usually used
programmed operations advanced architectures only

data centric single operation often used
hard-coded operations often used as an extension to the single operation to 

provide robust solution for real applications
programmed operations investigated in this thesis

Table 10: Scene access levels

Area of Interest
Large scenes and large simulations often grow beyond performance limits of the system. As the 
simulation grows, more messages are transmitted through network and more computer resources are 
needed to process all the messages. Finally, some performance limit, such as network bandwidth or 
CPU performance, is reached and it is not possible to extend the simulation any more. 

A general  optimization to extend CVE system scalability is to introduce Area of Interest  (AoI) 
technique already described in the section 2.8. When using AoI, the messages are not transmitted to 
the computers that do not need them. For example, the user in his virtual room in fourth floor is not 
interested in updates produced by his colleague in third floor until he leaves his room and enters 
third floor. Until that, updates in third floor may not be sent to him. If we consider that there are for 
example teen floors, number of updates can be reduced to 10%. Another benefit is that it is not 
necessary to replicate data of other floors until they are needed. That is quite important in large 
simulations  when the  amount  of  replicated  data  is  much  higher  than  available  memory at  any 
computer.

AoI was used in SIMNET [Calvin et al. 1993] and DIS [ANSI 1993] projects.

Usage in the different replicated models are in the table 11:

Replication Model AoI supported
Centralized Primaries clients only

Distributed Primaries supported

Data Ownership supported

Active Replication not supported
(however this thesis suggests a solution in the section 5.3 for 
extending active replication to support AoI)

Table 11: Area of Interest in different consistency models
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Late Joins
In  CVE  applications,  it  is  often  required  that  even  after  the  application  is  started,  additional 
computers can join the simulation. The join operation is usually composed of the two steps:

1. replicating the scene state to the joining computer

2. registering the computer as a regular member of the simulation (e.g. creating an avatar for 
the user and other user defined actions)

The second step is mainly application dependent. However, the first one is challenging problem, 
especially for large dynamic scenes, because the join operation may overload the network and other 
resources. If not considering such cases, the straightforward solution is to replicate the scene by 
copying the up-to-date scene state to the joining computer. Such option is perfect for small scenes. 
Surely,  some optimizations can be used. Static scene parts can be placed into the non-replicated 
scene, so replicated part may be quite small. Anyway, there are still many applications that may 
need  to  transfer  so  much  data  to  the  joining  computer  that  it  may  overload  the  network  or 
processing  resources  of  involved  computers  resulting  in  temporal  simulation  stall  that  is  not 
acceptable  in  many  cases,  such  as  in  human-in-loop  systems  where  user  is  perceiving  or 
participating in the simulation and any system stall is noticeable to him.

I have identified three general approaches for late joins:

– atomic state transfer

– AoI style joins

– cache and validate algorithms

The atomic state transfer (used in Avocado [Tramberend 1999] and DIV [Hesina et al. 1999]) is the 
most straightforward approach when strong consistency is required. It can be implemented like:

1. the simulation is paused

2. the scene state is transferred to the joining computer

3. the simulation is resumed with joined computer

The state transfer can be done from any computer or several computers can be used to minimize 
transfer time. It is also desirable to eliminate need to pause simulation. That is sometimes possible 
even when strong consistency is required. But it requires special application and consistency model 
design.

However,  if  the scene is  large,  atomic  state  transfer may take too long time and may possibly 
overload  network  or  processing  resources  of  computers  involved.  For  such  cases,  additional 
optimizations are necessary.

Different approach is using a kind of Area of Interest (AoI, see section 2.8). At the time when join 
operation starts, the joining computer is interested just in a small piece of the scene. When the scene 
is successfully replicated, the area of interest is increased causing additional parts to be replicated. 
This way at the end, the whole scene may be replicated without causing system pauses, network 
bandwidth spikes or temporal system overloads.

Some applications, especially those using active replication, can not use AoI style joins because 
they do not support AoI, as already stated in the section 3.4. The atomic scene state transfer may be 
not acceptable for some applications because of the amount of data that has to be transferred is too 
big, or some other reason. The solution may be to pre-cache the data that should be replicated and to 
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validate them during the join operation. When some pre-cached data are found to be not valid, they 
are transmitted once again in atomic state transfer operation. But the validation of pre-cached data 
and state transfer has to be done atomically. Pre-caching may provide more smooth joins, but it is 
application dependent.

Summary table for late joins:

Replication Model Atomic state transfer AoI style join Pre-caching joins

Centralized Primaries yes yes yes

Distributed Primaries not used yes not used

Data Ownership not used yes not used

Active Replication yes no yes

Table 12: Late joins in different replication models

3.5   Results of Analysis
The comparison of the consistency models based on their usability and properties for an user is in 
the table  13.  The table  contains four models  studied deeply above in the section  3.4. The fifth 
column are expected properties of a novel approach of this thesis. The new model and discussion of 
its properties is bellow.

The most important property of consistency models in this thesis are the consistency properties 
because  they  are  directly  related  to  the  strength  of  the  consistency  and  the  usability  of  the 
consistency model.

The strongest consistency guarantees are provided by active replication models. Active replication 
has  the  advantage  of  keeping  the  scenes  completely  synchronized.  Since  the  primary-based 
approaches presented here do not provide complete scene synchronization, active replication is a 
good foundation for consistency models with high consistency guarantees.

The next important property is the way that the scene access is done. That is represented by several 
properties in the table 13: immediate reads and writes, concurrent object/attribute manipulation, and 
grouping of the operations. If not considering special cases, only active replication can read up-to-
date scene state of the whole scene at any computer. So, immediate reads are supported by active 
replication only. Immediate writes are usually not supported by any consistency model except the 
direct write to primary copy. Only server on centralized primaries model can write to whole scene 
directly. Immediate writes are the topic that should be addressed by the new consistency model.

Concurrent  manipulation  can  be  easily  solved  on  centralized  primaries  model  by  server,  or 
distributively on active  replication.  Grouping of the operations  is  usually solved on application 
level, not in consistency model.

The new consistency model should address all the issues of the data access. The chapter 4 will take 
a look at transactions as a way of data access used in database systems and it will propose a new 
model that is similar to transactions in databases, but the model will be designed with the respect to 
the particular requirements of CVE systems.
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The table 13 shows the expected properties of the new consistency model that should be based on 
transaction concept and active replication. The combination of transactions with active replication 
should provide additional benefits. Especially, grouping of operations and abstracting of the scene 
access may lead to additional optimizations such as speculative execution that is attacking problem 
of immediate writes that no consistency model presented here solves sufficiently.

The new model should bring many benefits for the scene consistency and usability.  It would be 
probably perfect solution for small and middle-sized virtual environments providing them with high 
level of data consistency.
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4   Active Transactions
This chapter presents the novel contribution of this thesis. It describes a new consistency model for 
Collaborative Virtual Environments (CVE). It is a novel approach whose theoretical foundations are 
using  proved  and widely  used  algorithms  of  database  and distributed  systems.  Using  database 
algorithms in CVE were neglected in the past for different performance requirements of CVE and 
database  systems.  CVE are  requiring  short  responsiveness  and  high  throughput  while  database 
systems honor consistency, durability, and fail resistance. Therefore, the algorithms of distributed 
systems were considered more appropriate for CVE systems. However, the situation is changing 
and real-time databases [Abbott and Garcia-Molina 1992] may better fit the requirements of CVE.

This  thesis  is  using  different  approach  and  instead  of  using  highest  performance  databases,  it 
proposes novel algorithms  that  provides the flexibility  of database systems  and performance of 
distributed  systems.  The  approach  is  focused  on  usability,  consistency  guaranties,  and  system 
performance. One of the most important characteristics is using of strong consistency that brings 
advantages from the usage point of view. An argument can be given that strong consistency lowers 
the system performance.  It is not true in many applications.  I have found also applications that 
benefit from the strong consistency and provides higher performance with strong consistency than 
with the weak one, as discussed in the chapter 5.

The name “Active transactions” was chosen as active replication (section 2.4) is used together with 
transaction  concept  similar  to  the  one  used  in  database  systems  (section  2.9).  The  transaction 
concept is adapted to the requirements of CVE and active replication. Active replication is used for 
the  strong consistency guarantees  (see  section  3.2).  The  details  of  connecting  transactions  and 
active replication will be presented in the following sections.

The first section  4.1 introduces the basis of the consistency model. Then, the model is compared 
with widely used consistency models that were described in the chapter 3. Finally, the consistency 
model is described in the detail. The evaluation is left for the chapter 5.

4.1   Overview of New Approach
The  consistency  models  were  described  in  the  chapter  3.  They  provide  different  consistency 
guarantees and different performance. Unfortunately, there is a trade-off between consistency and 
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performance. Even although this thesis is focused on as high consistency guarantees as possible, it 
still  provides  the  similar  performance  as  the  most  consistency  models  today.  Moreover,  some 
applications may benefit from the strong consistency, providing higher performance than weaker 
consistency models, as shown in the chapter 5.

Following concepts (shown in the figure 56) were chosen for the consistency model:

– active data replication

– scene access by transactions

– consistency control based on data timestamping

– total transaction order based on distributed timestamps generator

– speculative execution

These concepts are put together to provide similar or even better performance characteristics than 
other total message order approaches while providing much higher consistency guarantees.

Active data replication is used for strong consistency and complete scene synchronization. Using 
timestamp based consistency, it has also shorter update time than primary-based approaches. Active 
replication requires 0.5 round trip time (RTT) while primary-based replication requires 1 RTT, as 
shown in the section 3.3.

The  transaction  approach  is  inspired  by  database  systems.  Especially,  replicated  databases 
[Wiesmann et al. 2000] and multiversion databases [Reed 1978] brought key ideas for abstracting 
virtual scene as database, thus enabling transaction approach to be used. However, the transaction 
concept had to be adapted to better fit the requirements of CVE applications.

The figure 57 depicts the simple CVE system composed of four computers. Each of them holds a 
copy of the scene data. Actually, “scene database” is used instead of “scene data” or “scene graph” 
because it  better reflects  the nature of the data as replicated dataset  as will be explained in the 
section 4.2. Each computer can read its local copy of the scene database. When any computer wants 
to update the database, it has to create and schedule a transaction. During the scheduling process, 
the  transaction  is  multicasted  to  all  participating  computers.  The  computers  are  receiving  the 
transactions and executing them to apply their updates to their local copies of the scene database. If 
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4.1   Overview of New Approach

the atomicity of the multicast is kept and the receive order of the transactions are ensured to be the 
same on all computers, all the scenes remain synchronized according to the requirements of active 
replication.

Active transactions provide programmable atomic action scene access level. It is a core property of 
the transaction  model.  Hard-coded atomic  action  limits  the available  set  of  actions  that  can be 
performed in the scene. The single operation is even more limited, lacking the support for grouping 
of  the  operations  that  may  be  required  to  be  executed  atomically.  The  details  were  already 
mentioned in the section 3.2.

To summarize the reasons of using the transactions together with active replication: They provide 
natural access to the scene database guaranteeing atomicity, grouping of the operations, and total 
order  of  updates.  These properties  are  essential  for  Active transactions,  and they are  often not 
present in other consistency models named in the chapter 3.

The timestamping is used for advanced concurrency control. The timestamp concurrency control 
[Reed 1983] is often used with multiversion databases [Reed 1978] for advanced throughput of the 
system. Since multiple transactions may be scheduled before the first is committed, it is natural for 
CVE systems to cope with multiple versions of the data. Therefore, multiversion concept is used in 
Active transactions approach. The timestamping and multiversion concepts are rarely used in CVE 
systems.  The  reason  can  be  their  complexity  and  need  of  well  designed  protocol.  Details  of 
timestamping and data multiversioning will be described in the section 4.5

Total  transaction order is guaranteed by atomic multicast  (described in the section  2.4). Atomic 
multicast is time expensive communication primitive for its high guarantees. In [Birman 1993], fail 
safe atomic multicast takes 3 RTT before the transaction can be delivered to the application. This 
thesis  uses  different  approach  based  on  timestamps  and  distributed  timestamp  generator.  The 
generator  generates  system-wide  unique  timestamps  based  on  time  and  roughly  synchronized 
clocks. The generator assigns timestamp to each transaction when it is scheduled. The transactions 
timestamps totally order the transactions in the system. Using this approach, the transactions can be 
delivered to the application usually after 0.5 RTT, more precisely, after half of longest RTT in the 
system. The details are shown in the section 3.3. Primary-based approaches delay is usually 1 RTT 
(round trip to the server). Active replication often provides also delay of only half of the longest 
RTT in the system, such as in [Bettner and Terrano 2001].

The  transaction  approach  may  often  outperform  other  approaches  in  the  responsiveness.  The 
responsiveness  is  usually  quite  important.  Higher  responsiveness  compared  to  traditional 
approaches is enabled by speculative execution. The transactions can be speculatively executed to 
predict the most up-to-date scene state. The speculative scene state may be used to provide the user 
with much better responsiveness. The speculative execution can be coupled with dead-reckoning, 
prediction, and extrapolation algorithms, further improving the visual perception of the user. The 
speculative execution will be described in the section 4.8.

Another noticeable advantage of Active transactions is advanced consistency control. It is based on 
transaction  concurrency  control  used  in  multiversion  databases  [Reed  1978] called  timestamp 
concurrency control [Reed 1983]. Such consistency control was used in high performance databases 
like  Oracle  [Silberschatz  et  al.  2002],  however  the  concept  was  adapted  for  the  particular 
requirements of CVE. The details are left to the section 4.7.

The table  14 compares  Active  transactions  approach  with  active  replication  and primary-based 
approaches.  To  limit  the  size  of  the  table,  the  properties  of  hard-coded  scene  access  level  is 
compared only. The hard-coded level was chosen for its wide usage.
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Active Transactions Active Replication Primary-based
data abstraction replicated multiversion 

database
replicated data set replicated data set

access type transactions hard-coded actions hard-coded actions
access properties not limited set of actions

total order,
atomicity,

concurrency control

limited set of actions,
total order

limited set of actions,
total order

total order timestamps usually logical clocks sequencer
total order cost 0.5 0.5 1.0
speculative execution yes (by design) usually not supported or limited support

Table 14: Comparison of Active transactions with traditional consistency models

The most important advantages of the transaction can be summarized as:

– database approach – usually simplified application design compared to complexity of 
distributed system approaches

– high responsiveness – provided by speculative execution

– higher consistency guarantees – better usability

– peer-to-peer architecture – better scalability and crash tolerance

In conclusion, Active transactions are bringing new abilities and concepts for advanced control of 
CVE scene and distributed simulations processing as will be explained bellow in more detail. The 
advanced consistency mechanisms  provide additional  consistency guarantees  that  may result  in 
simplified  application  design,  moving  it  from  the  complexity  of  distributed  systems  to  much 
simpler setting of transaction parameters. Their usability will be verified on several applications 
demonstrated in the chapter  5. Active transactions model is using formally proved algorithms of 
database systems. Although the algorithms were adapted and used in a novel way, they are still 
equal  to  them.  Therefore,  it  is  not  necessary to formally prove Active  transactions  model  here 
because of the equality.

4.2   Replicated Scene Database
The 3D graphic scene is usually represented by scene graph, sometimes just by scene data. The 
scene data can be 3D coordinates, normals, textures, matrices, etc. Theoretically, it is possible to 
easily  store  all  these  data  in  the  database.  Each 3D coordinate  can  be stored in  one record  in 
coordinate table while each shape will reference set of 3D coordinates that compose 3D shape. The 
similar  approach  can  be  applied  on  normals,  textures,  transformations,  and  all  other  entities. 
However, traditional databases are considered too slow for usage in real-time virtual environment 
applications as the user is expecting to render the scene one hundred times per second. It means that 
the database has to retrieve the scene one hundred times per second. Such requirement can not be 
carried out on standard databases, but special architectures, such as real-time databases [Abbott and
Garcia-Molina 1992][Dayal et al. 1990], can achieve such task.
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Anyway, this thesis is not using any existing database system nor the experiments in the chapter 5. 
There  were  two  reasons:  database  overhead  performance  cost  and  the  need  to  adapt  database 
architecture  according  to particular  needs of  CVE. For  example,  SQL  [SQL-92] data  access is 
something that CVE system user does not expect. Therefore, the adaption was necessary, removing 
some database overhead and better fitting the performance requirements of CVE systems. The most 
important concepts of database systems are as follows:

– real-time multiversion database

– timestamp based concurrency control

– active replication of database among the computers

Multiversioning is necessary for speculative execution and event processing in general and it will be 
described in the section 4.5. Timestamp concurrency control guarantees advanced scene consistency 
and it is explained in the section  4.7. The scene data are replicated among the computers using 
active replication (sections 4.5 and section 4.6).

Moreover,  the explicit  control  of transaction processing and access to multiple  data  versions is 
required. Since no such specially configured system exists as far as I investigated, I implemented 
my own system that behaves like a database that is highly optimized for the particular usage as 
CVE system. The system will be described in the chapter 5, including the testing applications and 
experiments.

4.3   Transactions
Transactions are used in database systems as a way to access (possibly remote) data store. Usually, 
they are specified in high-level language, such as SQL [SQL-92]. They are designed to be able to 
perform multiple reads and writes on the data store while keeping ACID properties (Atomicity, 
Consistency,  Isolation,  and  Durability)  [Gray  and  Reuter  1992].  More  details  were  already 
presented in the section 2.9.

One traditional transaction execution used in database systems is depicted in the figure  58. The 
transaction is created by a client and scheduled for execution. The scheduler is collecting all the 
incoming transactions and reorders them to the new order that is more efficient for the performance 
of the database. Then, the transaction is executed. During the execution, read and write sets of the 
transaction are computed. The read set is composed of the data items that the transaction is reading 
and the write set of the items and the new values that should be written. Then, the concurrency 
control is validated and if everything went right, the transaction is committed. In the other case, the 
transaction  is  aborted.  The  abort  means  to  restore  the  database  state  to  the  point  before  the 
transaction execution started.  The commit  means to write all the data from the write set  to the 
database. If the database is replicated, it includes the update of all the replicas on the remote sites.
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The explicit mentioning of the read and write set during the transaction execution is not important if 
the transactions are not executed concurrently.  If the concurrent execution is used, the read and 
write sets are important for concurrency control. For example, if two transaction's read and write 
sets  does  not  overlap,  the  transactions  can  be  executed  concurrently  without  worrying  about 
concurrency control. In the other case, special algorithms has to be used to ensure correct execution. 
Two  kinds  of  the  approaches  are  used:  optimistic  and  pessimistic.  The  optimistic  approaches 
[Bernstein and Goodman 1981] executes the transaction and then checks for concurrency violations 
while pessimistic approaches are trying to avoid concurrency violations by good execution planning 
before the transactions are executed. To go forward, Active transactions approach is the optimistic 
approach that uses speculative execution (section  4.8) and precomputed read and write  sets for 
concurrency control (section 4.7).

This traditional transaction concept has to be adapted according to the needs of CVE systems. The 
list of the most important changes follows:

– CVE programmers usually expect API, not intermediate language like SQL

– read and write sets are precomputed during transaction creation

– optimized timestamp ordering protocol

– active replication is used instead of passive style transaction execution

Using intermediate language is really not a good option for CVE because the programmer usually 
wants just to specify which data is he operating on and new values that shall  be written to the 
database. This problem is no longer the case for Active transactions because the user is required to 
specify the read and write sets at the transaction creation.

The  read  and  write  set  is  computed,  in  classical  databases,  when transaction  is  executed.  The 
explicit knowledge of read and write set may help to optimize transaction execution planning. For 
instance, the scheduler may delay execution of some transaction because its read or write set is 
overlapping with the other transaction. Such optimization may avoid many concurrency violations 
followed by many restarts of aborted transactions. Active transactions concept is going even further 
and puts the responsibility of computation of read and write sets to the client issuing the transaction. 
More precisely, the transaction is ready to be issued when its read and write set is specified by the 
client. Such crucial change has several important consequences and makes transactions much better 
fit the requirements of CVE systems. More details about transaction specification is in the section 
4.4 and the concurrency control, that is based on precomputed read and write sets, is described in 
the section 4.7.

One of consequences of precomputed read and write sets is necessity of timestamps or some other 
data versioning control system. Such system is necessary for concurrency control reasons. Active 
transactions are using timestamps that are assigned to each transaction and to all the data items in 
the database. To avoid designing something that already exists, the gaze shall be again directed to 
the databases.  Multiversion  database concepts  [Reed 1978] already exist.  They are  used in  the 
systems like Oracle [Silberschatz et al. 2002]. Multiversion databases are using two timestamps for 
each data item – one for the read and one for the write operation. They are usually using timestamp 
ordering protocols [Reed 1983] for concurrency control. The protocol is composed of several rules 
that guarantee correct concurrent transaction execution.

However, timestamp ordering protocol can be simplified much. The reason is that transactions order 
is explicitly known by atomic multicast  while traditional databases can reorder transactions and 
execute them in whatever order they want. Forbidding such freedom in Active transactions concept 
simplifies the algorithms and brings higher performance for the system. Anyway, the reordering of 
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transactions is unwanted property because it breaks the determinism requirement of active replica-
tion. As a result of the simplification, the database contains just one timestamp per data item and six 
rules of timestamp ordering protocol (as stated in [Silberschatz et al. 2002]) is reduced to just one 
rule winning both – the simplicity and the performance. The details are described in the section 4.7.

The transaction  execution  is  modified  as  well.  One traditional  database  execution  scheme was 
descri-bed above and depicted in the figure 58. The figure is using passive-style replication that is 
much more used in database systems. Active transactions concept is using active replication. The 
transactions have to conform to several requirements given by active replication. The requirements 
are listed bellow. If the transactions conform to the following requirements, they are called Active 
transactions in this thesis:

– transactions have to be executed on all computers

– transactions execution have to be deterministic

– transactions have to be executed in the same order on all computers

– the database has to be fully replicated

The adapted concept of transaction execution to use active replication is shown in the figure  59. 
Atomic  multicast  [Birman  1993] is  used  for  distributing  the  transactions  to  all  computers. 
Multicast's  atomicity  has  two important  properties  here  referred as  atomic  delivery and atomic 
order. Atomic delivery means that the transaction is delivered to either all computers or no one. No 
one is just special case, for example, when sending computer crashes through the sending. Atomic 
order means that all computers are receiving the transactions in the same order. More about atomic 
multicast is in the section 2.4 and details of atomic delivery and atomic order are in the section 4.6.

Going through the list of active replication requirements, the first point is solved by executing the 
transaction after it  is received from atomic multicast,  the second point – it  is easy to guarantee 
determinism for transactions composed of read and write set because everything is precomputed. 
The third point is guaranteed by the atomic multicast and fourth point is completely in the hands of 
the programmer. Following sections are describing the Active transactions in more detail.

4.4   Transaction Structure
Database transactions are usually specified by a query written in 
database  language,  such  as  SQL  [SQL-92].  However,  this 
paradigm is altered here for the reasons shown in the section 4.3. 
Let's  recall  just  the  most  important  change  from  traditional 
database concepts that read and write set is not computed during 
the transaction execution, but it is precomputed by the computer 
that is creating the transaction.

The transaction is  composed of its  timestamp and its  read and 
write sets, as shown in the figure 60. The read and write sets are 
specified  at  the  time  of  the  transaction  creation.  The  read  set 
specifies  the  data  that  the  transaction  is  reading.  It  contains 
references to the data items and their timestamps. The timestamps 
are  used  to  specify  the  version  of  data  because  multiversion 
database is used. The read set is used for concurrency control that 

79

Fig. 60: Transaction structure



4   Active Transactions

is explained in the section 4.7. The write set is containing the references to the data items and new 
values that the transaction is writing.

The timestamp is assigned to the transaction by the computer that created it immediately before it is 
multicasted to other computers. The timestamp is system-wide unique (see section  2.4) and it is 
used for total ordering of the transactions in the system – all transactions with lower timestamp will 
be executed before the transaction and those with higher timestamp will be executed after it. Each 
computer orders the incoming transactions by their timestamp and then executes them in that order. 
The details are explained in the section 4.6.

The write set contains the references to the data items that should be updated and the new values. If 
the transaction is committed, the new values are written to the database. Because the multiversion 
database  is  used,  the  current  value  is  not  overwritten.  Instead,  a  new  data  version  is  created 
containing  the  new  value  and  timestamp  of  the  transaction.  The  timestamp  is  necessary  for 
concurrency control reasons.

The read set references the data that the transaction is reading. The reference is composed of two 
parts: the reference to the variable (item ID) and timestamp of the data version. The read set can be 
created automatically just by logging all the reads made to the database through the transaction 
creation  process  if  such  functionality  is  available,  or  it  can  be  specified  explicitly  by  the 
programmer. The read set is necessary for concurrency control reasons. When the transaction is 
about to be committed or aborted, the read set is used to make sure no other computer concurrently 
modified  the  database  in  a  way  that  violates  concurrency  between  transactions  and  that  the 
transaction can be safely committed. More details about concurrency control is in the section 4.7.

From the point of view of access level,  Active transactions are able to perform atomically any 
update  to  the  database.  The  update  can  be  of  any  complexity,  not  limited  by  an  intermediate 
language, such as SQL [SQL-92], because the computation is done locally on the computer that is 
creating  the transaction.  To go even further,  some computation  may be enabled  also when the 
transaction is about to commit or abort. It may reconcile changes to the database that were done 
concurrently by other computers with the content of the current transaction. In other words, it would 
reconcile  the transaction with the current  database data,  eliminating concurrency violations  and 
lowering the number  of aborted transactions.  However,  these ideas  are  putting  many questions 
about  the determinism and they are  going too far  behind the original  Active transactions  idea. 
Therefore, they are left unexplored as one interesting idea for the future research.

4.5   Timestamps and Multiversion Databases
Timestamps have important role in Active transactions concept. Particularly, they are essential for 
timestamp ordering concurrency control in multiversion databases. Both of them are used in Active 
transactions concept. They were just adapted for the particular requirements of Active transactions 
and CVE systems in general, as was shown in the section 4.3.

Timestamps are used for the following two tasks:

– transactions total ordering

– data versioning and concurrency control

Both  tasks  are  requiring  the  timestamps  to  be  unique,  to  support  test  on  equality,  and test  on 
younger/older relation. Any generated timestamp has to be unique throughout the whole system. 
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Moreover, it is required that each computer is able to generate such timestamps because it is not 
acceptable to use any network communication to get unique timestamps for example from dedicated 
timestamp server. So, distributed unique timestamp generator has to be designed.

One  solution  is  proposed  by  Lamport  [Lamport  1978].  He  suggests  that  timestamps  can  be 
generated by roughly synchronized clocks. Usually, the rough synchronization can be realized by 
exchanging the time information and adjusting it by the half of the network latency. Anyway, the 
system has to avoid some anomalies like receiving the message “from the future” that may happen 
because, for example, a small drift between clocks speed or strange network conditions avoiding 
precise enough clocks synchronization. In such situation, it is sufficient to shift local clocks forward 
to contain a slightly higher time than just received one.

Lamport  also suggests  the way to realize the system-wide unique timestamps.  If  the timestamp 
generator produces timestamps that are locally unique, system-wide uniqueness can be achieved by 
appending some unique suffix to the timestamp, for example computer's IP address. Even if two 
computers generate the same timestamp with the same time value, the timestamps are different as 
each of these computers  appended to the timestamp its  own IP address that  can be considered 
unique in most cases. More details were presented in the section 2.4.

If  the timestamp is defined according to Lamport  suggestions,  it  is easy to define equality and 
younger/older relation. The transaction equality means that all components (time and suffix in this 
case) of the timestamp are equal. The younger/older relation is based on comparison of times and 
suffixes of the transactions. If the time value, that can be represented by a float number, is higher, 
the timestamp will be called higher (they are sometimes called younger timestamps). If the time is 
lower,  the timestamp will  be called lower (sometimes  called older).  If  the times are  equal,  the 
transaction's suffix is used to decide younger/older relation.

Total transaction order
Utilizing system-wide unique timestamps, it may look straightforward to realize total transaction 
order.  The  transactions  are  received  on  each  computer.  At  first,  just  the  transactions  from the 
computers with the lowest network latency are received. The transactions are put into the queue in 
the order of their increasing timestamps. But the order is not finalized as many transactions did not 
arrive yet. Later, even the transactions from the most distant computers are received. At that very 
moment, the part of the transaction queue, that is complete now, is totally ordered and all computers 
see these transactions in the same order.

The remaining question is how to determine the part of the transactions queue that is complete. 
More precisely: How to determine the oldest missing transaction that is splitting the queue to the 
complete and incomplete part.

Fig. 61: Transaction processing
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The process of a transaction execution is depicted in the figure 61. The figure 62 shows the same 
scenario in the context of three computers. The transaction is created on some computer and unique 
timestamp is assigned to it. Then, the transaction is multicasted to all computers including the send-
ing one. For the simplicity, let's expect using of FIFO reliable multicast only. Then, all the compu-
ters receive the transaction. However, different computers may receive transactions in the different 
order  and with different  latency,  especially  if  the  computers  are  located  around the  world and 
different latencies are noticeable between different computers. So, the transactions are stored in the 
speculative queue and their timestamp is used for updating “list of highest timestamps”. Speculative 
queue got its name because it can be used for the speculative execution that will be explained in the 
section 4.8. Speculative queue is “non-complete” part of the transactions queue. The list of highest 
timestamps is used for determination which transactions can pass to the execution queue that is 
“complete” part of the transactions queue. Execution queue holds the transactions in total order of 
their increasing timestamps. The transactions are taken from execution queue, the oldest first, and 
they  are  executed.  The  execution  results  in  the  transaction's  commit  or  abort.  The  details  of 
transaction's execution are left for the sections Execution Stages 4.6 and Concurrency Control 4.7.

Fig. 62: Transaction processing for three computers

The list of highest timestamps determines which part of the transactions queue is complete. It holds 
one timestamp for each computer that contains the timestamp of last received transaction from that 
computer. Since only FIFO reliable multicast is considered, the transactions received from the same 
computer are received in the sending order and timestamp of each next transaction is higher than of 
the previous one. It means that list of highest timestamps contains for each computer the lowest 
“border” and only the transaction with higher timestamp can be received. The lowest value in the 
list of highest timestamps has the special meaning – no transaction with lower (and equal) value can 
be ever received.  So, all  the transactions with the lower (and the one with equal)  value can be 
moved from the “incomplete” speculative part of transactions queue to the execution part of the 
queue without worrying that any transaction will come and change the order of transactions in the 
execution part.
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Data versioning and concurrency control
More transactions can access one data item at a time. For example, ten transactions are issued, one 
after the another, in the interval of 100 ms. Each one of them is shifting the ball one meter forward, 
resulting in the distance of 10 meters after one second. Since the computers are quite distant with 
the latency of 600 ms, the time to the transactions commit is about the 600ms. So, ten transactions 
may exist in the system concurrently, waiting for commit, and an user may want to access them, use 
their  values  for  prediction  algorithms,  object  position  extrapolation,  interpolation  between 
simulation frames, or for other reasons. Since the transactions are marked by unique timestamps, it 
is  easy to  distinguish between different  data  versions.  Even if  the transaction is  committed,  its 
timestamp is used for the written data – so the data version is the same before and after the commit, 
making it easy to access the data.

When the programmer is creating a new transaction and he is creating the read set and more data 
versions exists for that data item, he can choose which data version he wants to use for fine-tunning 
the application. The default is to use the last version (the youngest one), that is the best option in the 
most cases. However, some optimizations may be possible.

4.6   Execution Stages
The Active transactions are going through the several stages, starting at their creation and finishing 
at their commit or abort. The stages are:

1. Creation

2. Scheduling

3. Receiving

4. Speculative execution

5. Validation

The transaction  is  created  on some computer.  The process  of the  creation usually  includes  the 
algorithm  that  computes  the  read  and  write  sets.  The  algorithm  is  reading  the  data  from the 
database. The reads may be logged and used for automatic read set construction. The writes can not 
be  written  directly  to  the  database  because  all  the  scene  changes  must  be  done  through  the 
transactions only. So, they are not really writing, but they can be logged and used for automatic 
write set construction. Open Inventor and similar libraries are good candidates for the automatic 
creation as they provide functionalities to catch read and write operations on the scene graph, as 
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shown in my paper [Peciva 2005]. Another option is to let the user specify the read and write set 
explicitly.  When the read and write sets specification is complete, the transaction is ready to be 
scheduled for execution.

The process of the issuing of the transaction will be called transaction's scheduling. Through the 
process  of  the  scheduling,  the timestamp is  assigned to  the  transaction  and it  is  passed to  the 
network layer for multicasting to all participating computers.

All  participating  computers  are  waiting  for  the  incoming  transactions.  When the  transaction  is 
received, no guarantees are given concerning the atomicity of the multicast. Atomic multicast has 
two properties here named as:

– atomic delivery – the transaction is delivered to all computers or no one

– atomic order – the transactions are delivered in the same order to all computers

The details  of  atomic  multicast  are  described in  detail in  [Birman 1993].  Atomic  delivery and 
atomic order validation are started whenever any transaction is received. Since it may possibly take 
a quite long time, depending on the network latencies and current network conditions, it may be a 
good idea to let these algorithms work in the background and to pass the transaction to the next 
stage for speculative execution.

Speculative execution provides the user by immediate results and even on long latency connections, 
the user shall still perceive a good system responsiveness. However, the results may not be accurate, 
and some transactions may be rolled back when concurrency is violated. But the concurrency is 
violated just for small number of transactions in the most of CVE applications (see figures 104 and 
105). The small number of aborted transactions is usually more than justified by a good system 
responsiveness. The details of speculative execution is described in the section 4.8.

When atomic order is validated, the transaction can pass from the speculative execution stage to be 
really executed. According the transaction ordering presented in the section  4.5, when the atomic 
order validation is finished for a given transaction, all previous transactions are already validated. 
So,  the  transactions  are  executed  in  the  order  of  their  increasing  timestamps  until  the  first 
transaction with not finished validation process is found.

The execution is composed of the checks for concurrency violations (section 4.7) and user-defined 
constraints.  User-defined  constraints  can  be  specified  for  the  scene  and they  can  be  used,  for 
example,  to avoid penetrating of two solid objects to each other by utilizing collision detection 
algorithms.  The  list  of  user-defined  constraints  can  be  specified  for  each  transaction,  so  the 
transaction  may perform just  tests  that  are  necessary,  like,  only close  objects,  skipping  all  the 
others, and saving the valuable computing resources.

The user-defined constraints are required to be deterministic and the result of their evaluation has to 
be  the  same  on  all  computers.  Let's  recall  that  all  scenes  are  completely  synchronized,  thus 
deterministic  execution  of  the  user-defined  constraints  will  produce  the  same  results  on  all 
computers.

If the transaction passed all checks, it is committed and the state of speculative data changed from 
speculative  to  committed.  Finally,  the  transaction  may  signal  commit  to  the  user  if  required. 
Otherwise, the transaction is aborted, removing all its speculative data from the database.

The  atomic  delivery  validation  can  be  done  independently  to  the  process  above.  Until  atomic 
delivery is validated, the transaction stream should be kept in the memory for the case of resending 
if some computer would be missing the transaction. If the computer is missing the transaction, it 
should ask the sending computer  to re-send it.  However,  the computer  may be temporarily not 
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responding or it  may crash. To avoid disconnect of all  the computers that  did not received the 
transaction, other computers that received it before the crash have to be able to resend it. If no such 
computer exists that received the missing transaction, the sending computer may be considered as 
crashed before it send the transaction and it can be safely kicked off the multicasting group without 
loosing the synchrony among the scenes. If the late joins are supported (see the section  3.4), the 
crashed computer may join the group again after it comes to life.

4.7   Concurrency Control
The source of concurrency control problems in CVE systems is network latency.  Typical values 
range nowadays from 100us on high speed local networks to half of second for intercontinental 
connections. Such latencies make problems for two reasons:

– long delay before the scene updates take effect

– concurrent updates may interfere and break the scene consistency

The special hardware can be used to lower the network latency. However, the application may be 
used inter-continentally and the light speed is the limit anyway, making impossible to move the 
latency below light  speed threshold that  is  about 1 ms per each 300 km.  However,  each 1 ms 
network  delay  may  results  in  3'000'000  waiting  cycles  of  3  GHz processor  per  each  network 
communication. Therefore, CVE systems are usually designed to be able to perform well on whole 
range of network latencies they will be used on.

The  effect  of  the  first  problem  can  be  minimized  by  using  dead-reckoning  (section  2.8) and 
prediction, as shown in [Hor and Yonekura 1999]. However, different approach is presented in this 
thesis  based  on  speculative  execution.  That  way,  the  user  or  scene  processing  are  producing 
transactions. Although the atomic multicast validation, particularly atomic order validation, is just 
starting, the transaction is speculatively executed and the user is perceiving perfect responsiveness 
even if  the atomic  order  validation  takes,  for  instance,  about  a  second as some of  participants 
computers are from the opposite side of Earth. More details on speculative execution are in the 
section 4.8.

The second problem of concurrency control brings questions like: What will happen if two users 
from the  opposite  side  of  Earth are  trying  to  modify  the  scene  in  a  non-compatible  way?  For 
example, two users are sharing the scene of three balls and the task is given to them to select one of 
them. By clicking on one of them, the remaining two are removed from the scene. If two users, each 
one on the opposite side of Earth, click at the same moment at different ball, the application may try 
to  remove one ball  two times.  If  there  is  no concurrency control,  application malfunction  may 
follow or even application crash if removing of non-existing ball incorrectly handled and it will 
perform, for instance, non-allocated memory access. As can be seen, concurrency control is often 
quite important and high consistency guarantees may eliminate may problems that have to be taken 
care otherwise by an application designer. For the remaining text, let's expect that the balls are not 
removed but just their visibility flag is changed. That simplifies the problem because no hierarchical 
data relations have to be considered.

Typical solutions are based on data ownership or primary-based replication (section 3.3). However, 
object  ownership  requires  transmission  of  ownership  each  time  the  data  item  is  modified  on 
different  computer.  If  different  computers  are  often  trying  to  do  so,  it  is  quickly  leading  to 
ownership competition  and performance  drops rapidly.  Moreover,  deadlocks  may occur,  if  two 
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computers are holding one lock and waiting for the lock of each other. Primary-based replication 
should  use  hard-coded  atomic  action  access  level  to  be  able  to  hide  two  balls  atomically.  If 
atomicity is not guaranteed, it may happen that all three balls disappear or ownership dead-lock may 
happen. Hard-coded atomic actions can solve the problem but they have to be designed for each 
particular task while Active transactions can handle the situation automatically.

Active transactions may perform the task in the following way. Since Active transactions are totally 
ordered, one of them has to be the first. So, the first transaction is executed. When the second one is 
about  to  be executed,  the concurrency violation  is  detected,  the transaction  is  aborted,  and the 
concurrency problem is safely solved.

The concurrency control is based on causality. It checks transaction's read set against the current 
state in the database. If all the referenced data contain the same timestamps as those in the read set, 
the transaction does not violates the concurrency. The three balls example can be easily solved that 
way. The solution is shown in the figure 64.

At the beginning, all three balls visibility flags are set to the initial state. It means, they are set to 
true and their  timestamps are set  to,  let's  say,  [0,3],  while  0 is  the time value and 3 is  unique 
computer identification that generated the timestamp and the transaction that originally wrote this 
value. When the first transaction T1 is created, its read set is composed of visibility flags of ball 1 
and 2 with timestamp [0,3]. The write set contains just visibility flags of ball 1 and 2 with new 
values set to false. The transaction timestamp is set to [1,4]. Then, the second transaction T2 is 
created concurrently with the timestamp [1,5]. As can be seen, it has the same time value, but the 
unique computer identification is different. Because its timestamp is higher, it will be executed as 
the second transaction. Its read set contains visibility flags of balls 2 and 3 with timestamp [0,3]. 
The write set contains false visibility values for these balls. When the transaction T1 is committed, 
the database contains balls 1 and 2 with visibility set to false and visibility timestamps are set to 
[1,4].  The  third  ball  visibility  is  still  true  and  timestamp  is  [0,3].  When  the  transaction  T2 is 
executed, read set timestamps are checked. The ball 3 has still correct timestamp, but ball 2 with 
value [1,4] does not agree with the requested value [0,3]. Therefore, the transaction is aborted and 
the state after T2 is the same as before T2.

If there is a need to restart the scenario, any computer can issue a transaction that sets the scene to 
its initial state. The situation is depicted in the figure 65. The computer that issued T2 is issuing T3 

for reseting the scene. T3 is generated with correct timestamps and, if the concurrency will not be 
violated  because  other  computers  may  try  to  restart  the  scenario  also,  the  transaction  will  be 
committed and the scene set to its initial state. 
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One can argue that it looks too expensive to abort a transaction just for a differences in timestamps. 
However for the data consistency, it is necessary to do so. Let's consider two architects designing 
new  building  on  their  computers.  One  of  them  may  delete  a  wall  to  make  different  room 
organization while the other may place the picture on the wall that is about to be deleted. Both 
operations are handled by issuing of a transaction. If the transactions are issued in about the same 
time, it may happen that the picture is placed on non-existing wall. Although the wall existed in the 
time of issuing of “place picture” transaction, it may not exists in the time of transaction commit. 
Thus, the transaction should be aborted.

Another  argument  can  be  given  that  some  reconciliation  can  be  done  before  the  transaction 
execution and if the wall no longer exists, the picture should be placed into the space on the same 
place but without the wall. That way, the architect would not be disturbed so much by disappeared 
picture  and he may manipulate  it  easily to another  position.  Such “advanced” computation and 
reconciliation at the time of transaction execution is interesting from the research point of view. But 
it is going far beyond the original Active transactions concept and it will require additional research 
efforts that are out of the scope of this thesis.

4.8   Speculative Execution
The speculative execution of transactions can rapidly increase responsiveness of the CVE system. It 
attacks  the  problem of  network  latency.  The  latency problem was  already addressed  by many 
people suggesting some prediction algorithms like dead-reckoning [Roehl 1995a][Cai et al. 1999] 
or object behavior extrapolation [Roehl 1995b]. Such approaches are usually extrapolating validated 
data.  Using  the  same  approach  in  this  work  would  result  in  extrapolating  of  committed  data. 
However,  this  thesis  is  going  even  further  and  shows  the  straightforward  way  for  using  non-
committed data that are more recent than committed data, thus prediction efficiency is improved 
much, resulting in better application responsiveness.

The  speculative  execution  is  the  optimistic  approach  [Bernstein  and  Goodman  1981] taking 
advantage of the fact that the most of the transactions are committed and just small amount of them 
are aborted in majority of CVE applications. The purpose of the speculative execution is to provide 
the user by the speculative results while some small risk may exists that the results may not be 
accurate. The probability is usually small enough and rarely shown inaccurate results are, in most 
cases, more acceptable than delaying the execution until all the update validation is finished. The 
execution delay may be unacceptable for many applications while inaccurate results may appear 
just for hundreds of milliseconds. They are often too small, and it is possible to hide their effect in 
Dead-reckoning and interpolation layer (see section 2.3). Finally, if the latency is not too high, the 
user may not notice anything even when inaccurate results has been speculatively predicted.
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Fig. 65: Causality in transaction processing
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Fig. 66: Speculative execution in transaction processing

The speculative execution in the context of Active transactions processing is shown in the figure 66. 
The transaction is multicasted, but the computers are not waiting for atomic multicast validation as 
it may take an unacceptable long time. Instead, as soon as each computer receives the transaction, it 
executes it speculatively and atomicity validation is started. The validation is composed of atomic 
order establishment and atomic delivery validation. Actually,  just the atomic order establishment 
has  to  be  finished  before  the  transaction  execution  because  atomic  delivery  can  be  validated 
independently on background as described in the section 4.6. When atomic order establishment is 
complete, the transaction can be executed resulting in its commit or abort. During the transaction's 
commit, the results of speculative execution are replaced by permanent records.

The speculative execution has the following requirements:

– the scene has to be fully replicated and active replication is used

– speculative database is used

The first point is fulfilled because these are the requirements of Active transactions concept. The 
realization of the second point is depicted in the figure 67. 

The data item may have associated several data versions. The committed data are consistent and 
they may differ  among the computers  only by the progress of transaction commitment  – some 
computer  may  already  commit  some  transactions  in  advance  and  some  may  be  behind  in  the 
progress of others. But for the same transaction commitment progress, the scenes have to be the 
same.
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4.8   Speculative Execution

The speculative database can be realized in either separate database or in multiversion database. If 
multiversion  database is  used,  the speculative  database  may be stored together  with committed 
database as a speculative versions that were not yet committed. Their commit is delayed because the 
atomic order of their transactions is not established yet. So, they form the speculative scene state 
that can be used immediately for a quick response to the user, improving the responsiveness of the 
application. Another reason of speculative scene state is multiversion execution that is shown in the 
section 4.9.

4.9   Multiversion Execution
Many versions of the data may exist in the database. Some of them may be just sequence of updates 
in  the  time  and some  of  them may  interfere  with  the  other  updates.  And it  may take  several 
hundreds of milliseconds or even seconds, depending on network conditions, before the transactions 
are committed. Therefore, it is desirable to evaluate the transactions and realize which ones seem to 
be  going  to  be  committed  and  which  seems  to  going  to  be  aborted.  For  this  purpose,  each 
transaction has assigned commit predictor that indicates the commit probability. The algorithm is 
going through not committed transactions according to their order of increasing timestamps. The 
concurrency  violations  are  evaluated  and  commit  predictors  are  set  accordingly.  Because  the 
algorithm can perform the evaluation just on the transactions that were already received and whose 
total order is still not complete, the predictors are just estimating the commit probabilities and they 
are not final commit indicators.

The figure 68 shows speculative database with predicted state. The predicted state is formed by the 
most  recent  data  items  that  belongs  to  the  transaction  with  commit  flag  set  to  true.  This  is 
considered the most recent speculative scene state. If a good responsiveness is required, this state 
can be immediately presented to the user.

Sometimes, the predicted data are not suitable for the user. For example, the application may be 
able to render the scene one hundred times per second and to perform just ten scene updates to save 
the  network  bandwidth  [Bettner  and  Terrano  2001].  The  user  will  be  seeing  jerky movements 
because of ten scene updates per second. To provide the user by output that is more natural for 
human perception,  another database called “user-view” is introduced. The database contains the 
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Fig. 68: Predicted state in database model
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data that is shown to the user. These data are different from the predicted one because of smoothing, 
keyframe interpolation, dead-reckoning [Roehl 1995a][Cai et al. 1999], and prediction algorithms 
may be applied on predicted scene and produce a new “user-view” scene that is optimized for the 
user perception. Moreover, the negative effect of transaction aborts and network latency spikes may 
be  hidden by those  algorithms.  However,  these  algorithms  belongs  to  the  Dead-reckoning and 
interpolation layer (see section 2.3) and they are not in the scope of this thesis. They are mentioned 
just for completeness of the whole CVE design concept.

4.10   Conclusion
This chapter presented the Active transactions consistency model. It is a novel approach for CVE. It 
is  based  on  unique  combination  of  active  replication  from distributed  systems  and  transaction 
concept from database systems.

Fig. 69: Overview of used concepts
(novel ideas in red, known concepts in blue)

The main used concepts are shown in the figure 69. Novel ideas of this thesis are shown in red and 
already known concepts are in blue.

The active replication is supported by the idea of precomputed read and write set and Lamport's 
distributed unique timestamp generator that can be used for system-wide update ordering. The idea 
of  accessing  data  by  transactions  comes  from database  systems.  Using  transactions  and  active 
replicated database is rarely studied combination, so I am not referencing any work of this kind. The 
data consistency model adapted Timestamp-ordering protocol from databases. At first, the protocol 
was  simplified  according  to  particular  requirements  of  CVE  and  requirements  of  Active 
transactions, then I extended it to reach its optimal performance if data multiversioning is used. 
Because  of  fundamental  changes,  Timestamp  consistency  contol  is  also  considered  one  of 
contributions  of  the  thesis.  Data  multiversioning  was  taken  from  multiversion  databases  and 
enabled me to design the concept of speculative execution. The concept was tested with Active 
transactions  resulting in  rapidly improved application responsiveness particularly  when network 
latency is noticeable.

The  whole  system was  implemented,  including  several  testing  applications,  for  verification  of 
Active transactions concept (see chapter 5). Many used ideas mentioned above are already verified 
and  proved,  such  as  active  replication,  Lamport's  unique  timestamp  generator,  timestamp  and 
multiversion timestamp ordering protocols. Proposed consistency model is adapted to requirements 
of Active transactions, but it is still equal multiversion timestamp ordering protocol. Therefore, it is 
not proved here.
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5   Experiments
To verify the ideas of Active transactions, the software system were developed, including several 
demonstration  applications.  The  kernel  of  the  system  is  CVE  library.  The  library  uses  Open 
Inventor [Inventor], whose API is extended to provide collaborative abilities. Several demonstration 
applications are presented that are using the library.

This chapter shows the integration details briefly, followed by the demonstration applications and 
measurements of the performance of the library.

5.1   CVE Library
Open Inventor [Inventor] is a high level rendering library using the concept of scene graph. Thus, 
CVE Library was developed to handle hierarchical data organization. The scene graph is composed 
of  nodes.  Different  node types  are  carrying  different  kind of  information,  such as  coordinates, 
materials, textures, geometry, and many others. The nodes usually contain fields that are holding the 
data of nodes. The fields are providing the abilities to load and store the values to file, notification 
abilities, and other functionalities. Detailed Open Inventor overview is in the [Mentor] and [Peciva
2003].

The important property of Open Inventor, compared to OpenGL Performer [Performer] and some 
other libraries,  is abilities  to catch read and write events on fields. The used principle is called 
notification. A notification event propagates from the modified item up to the root of the scene 
graph as shown in the figure 70.

Fig. 70: Notification in Open Inventor scene graph

The notification is important for re-rendering the scene whenever it changes, for keeping Inventor 
caches (render caching,  bounding box caching,...)  up to date, and for other functionalities. CVE 
library took the idea to utilize notification for catching all write events and to distribute them to 
other computers, resulting in collaborative scenes that update themselves distributively (see figure 
71). The details of the work are described in my paper [Peciva 2005].

However,  the  distribution  of  updates  does  not  guarantee  that  the  scenes  will  stay  consistent. 
Timestamp consistency [Nijholt et al. 2005][Nijholt et al. 2007] may be used to provide the data 
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with consistency while preserving the high performance of the system. High level of consistency 
based on Active transactions were presented by me in  [Peciva 2006] and it is described above in 
this thesis in more detail.

CVE library is  easy-to-use Open Inventor  based CVE library with high consistency guarantees 
provided  by  the  Active  transactions  concept.  Its  main  benefits  are  responsiveness  based  on 
speculative execution, strong consistency, and high performance.

Fig. 71: Scene synchronization in Open Inventor

5.2   Demonstration Applications
Several applications were developed for testing of CVE library. They are presented in this section. 
To introduce the consistency problem, the simple example of two moving balls is explained at first. 
Then, several demonstration applications are shown. The outline of the applications follows:

– Moving Balls Example – simple Active transactions application

– Advanced Balls Example – collision detection with Active transactions concept

– Simple Space Simulator – non-transaction CVE demonstration

– Collaborative Data Sharing – advanced interaction

– Collaborative Viewer – CVE encapsulation into the Open Inventor

– Collaborative Maze – CVE encapsulation into the Open Inventor

– Multi-user Flight Simulator – Collaborative landscape exploration

– Distributed Virtual Meeting Room – advanced interaction among distributed meeting 
participants

– Distributed Billiard – interaction intensive environment demonstration

– Distributed Cyclotron – computing intensive simulation

Some of the applications are available for download at http://www.fit.vutbr.cz/~peciva/CVE/.

Moving Balls Example
Moving balls example demonstrates the Active transactions processing in the 3D environment with 
the collision detection. The system was built using Open Inventor [Inventor] graphics library with 
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CVE extension  developed  for  this  thesis.  The  figure  72 
shows a single ball that is moving. At the time 0 ms, the 
ball  is  at  its  initial  position.  The  mark   means  it  is 
committed  position.  The  updates  to  the ball  position  are 
issued, for example, each 100 ms. So, at the time 100 ms, a 
transaction is scheduled with an updated ball position. At 
the time 200 ms, another transaction is scheduled. Both of 
the new transactions are speculatively executed,  however 
they are not committed as not all consistency requirements 
are  fulfilled  yet  for  the  safe  commit  (see  the  atomic 
multicast requirements in the section 4.6). At the time 300 
ms,  another  update  is  scheduled  and  the  system  may 
indicate  that  the  first  speculative  transaction  can  be 
committed,  so it  is  committed.  At the time 400 ms,  one 
more transaction is  scheduled and the second transaction 
may be committed.

The programmer can use the latest speculative value (the 
right-most) to show the user the most recent ball position if 
he  prefers  the  responsiveness.  Or,  he  can  use  the  most 
recent  committed  value  if  he  prefers  to  give  the  user 
always-consistent  view  of  the  scene.  The  responsiveness  is  usually  better  option  because  the 
artifacts caused by the transaction aborts are often not so important or noticeable and they can be 
hidden by another techniques mentioned in the section 2.8.

The  yellow  arrows  are  showing  the  dependencies  among  the  transactions.  Actually,  they  are 
graphics representation of relations between read and write sets of the transactions. As shown in the 
figure 73, the second ball is dependent on the first one, the third on the second and the fourth on the 
third one.

Transactions are scheduled in the order of object position updates.

Sometimes, different dependencies exist, such as in the figure 74.

Transactions are scheduled "concurrently". Only one of  
them can be committed.

Such dependency graph can be result of, for example, concurrent write of three computers. Because 
of the dependencies, only one of the transactions can be committed. The result is shown in the 
figure 75.
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Fig. 73: Sequential transaction scheduling

Fig. 74: Concurrent transaction scheduling

Fig. 72: Transaction processing of Moving 
balls example
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after the execution

When the first update is committed, other two have no longer valid read sets. They are aborted 
(represented by ) and the scene consistency is kept.

Fig. 76: Cascade abort caused by the second transaction

The abort of one transaction may lead to cascade aborts of other transactions. The cascade aborts 
are one of the consequences of Active transactions concurrency control. The figure  76 shows an 
example when the second transaction is aborted. Because its write set does never appear in the 
database,  the third transaction can not commit  because its  read set  depends on write set  of the 
second transaction. Thus, the third transaction can be safely aborted.

The figure 76 may show an scenario when the second transaction is aborted because of a collision 
with another object. The collision usually results in the change of the object's trajectory at the point 
of the collision. Therefore, the third and fourth transactions are not valid any more. The dependency 
on the second transaction is expressed by their read sets, and it is marked by yellow arrow. Abort of 
the second transaction makes recursive abort of all dependent transactions, thus resulting in the 
cascade abort. It may seem performance expensive to abort possibly many transactions, but aborts 
are necessary for consistency reasons. On the other side, cascade aborts are usually rare on short 
latency networks and their number can be even decreased by well designed dependencies among the 
transactions.

Advanced Balls Example
The advanced ball example shows a collision of two balls in the scene. Such situation is not trivial 
to be handled properly in CVE systems. These are the typical problematic points:

– invariance problem: the collision is detected on some computers but not on the others

– multiple handling: the collision of two objects of two different computers is detected. Which 
one of the computers should handle the collision? Or, can it be solved by both in parallel? The 
problem that is appearing is that some operations like removing object from the scene must be 
ensured to be done only once because multiple removals may cause problems to the application.

– stability:  handling of the collision may shift the colliding objects on a new positions, so that 
they are not penetrating to each other. But the new positions may produce collisions with other 
objects. This has to be safely handled.

The  invariance  problem is  already  solved  by  Active  transactions  as  the  scenes  are  completely 
synchronized among the computers and the collisions are detected on all computers in the same way 
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with the same results. Otherwise, one of crucial requirements of active replication would be broken.

Multiple handling problem can be solved by the idea: “Let's each computer handle just its own 
objects.”  All  computers  see  all  collisions,  they  evaluate  all  crashes,  but  they  adjusts  the  new 
positions just to its own objects. Such approach requires introduction of a kind of ownership. As a 
ball owner, I used the computer responsible for sending update transactions of the ball position.

Another, less optimized, option may be to use inherent property of Active transactions to handle 
concurrent  writes,  and  let  all  the  computers  handle  all  the  collisions,  updating  position  of  all 
involved balls,  while  concurrent  writes  are solved by the transactions,  therefore the problem is 
solved  automatically.  This  would  result  in  the  commit  of  transactions  from  a  computer  that 
scheduled  the  transactions  with  the  lower  timestamp  and  abort  of  transactions  of  the  other 
computer. The last option would be to let all computers solve the collision and update the position 
of the objects without sending any transactions. If the determinism would be guaranteed, the same 
results  would  be  produced  on  all  computers.  However,  this  idea  is  requiring  some  advanced 
computation  while  the  transaction  is  executed  and  it  is  not  covered  by  the  original  Active 
transactions concept. But it stays as a hot topic for a future research.

Stability is usually not a problem of Active transactions because there is always committed value 
until it is overwritten by a new committed value. Therefore, even if the simulation is unstable and 
the system is not able to create committable transaction, the last consistent state is always available 
that can be, for example, saved to disk as the result of the simulation.

Fig. 77: Two colliding balls

The  figure  77 shows  typical  collision  scenario:  two  balls  are  going  to  collide,  while  the  4th 

transaction is the first  one that fails  to commit  because a collision is  detected.  The collision is 
detected on all computers connected to the system.

The figure  78 is showing the first abort:  The 4th transaction is aborted and it calls  abort  on all 
dependent  transactions.  The  transaction  6  is  aborted  because  of  cascade  dependency  while  5th 

transaction has to be aborted explicitly in the collision handling code. 
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Fig. 78: Colliding transaction execution

The collision handling code aborts the transactions of the collision counterpart object and then new 
trajectory is computed for red and blue objects, as can be seen in the figure 79.

Fig. 79: Collision after the handling the collision

However, the multiple handling problem has to be solved properly. Therefore, following scenario is 
used when the collision is detected:

– counterpart object transactions are aborted (done in parallel on all computers)

– computation of new object trajectories (done just by the computers responsible of red and blue 
ball movement)

– new transactions are scheduled – the transaction 7 is scheduled by the computer responsible of 
blue ball and transaction 8 by red ball computer

Finally, the results of the collision handling are shown in the figure 80.
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Fig. 80: Collision solved

The figure  81 shows an  advanced  interaction  of  three  balls.  All  balls  are  starting  at  the  same 
moment and the blue ball is the first one that causes the collision. The collision is detected at the 
transaction's commit; therefore, there may be few non-committed transactions of both balls pending 
for the execution. At that moment,  all the non-committed transactions of red and blue balls are 
aborted and new balls positions are computed. The blue ball continues without other collisions, but 
the new position of the red ball after the collision is causing the collision with yellow ball. The 
situation is repeated once again, resulting in new positions and directions of red and yellow ball.

Fig. 81: Transactions in more complex object interaction

The simulation is  usually done in discrete steps that  are usually small  enough, so the user has 
impression  of  smooth  simulation.  In  the  figure  81,  the  simulation  step  is  higher  to  better 
demonstrate  the  problem. Anyway,  the applications  with  longer  simulation  steps  may exist  for 
various reasons, such as small computer performance or low network requirements, and the object 
animation should be smoothed by key-position interpolation [Bettner and Terrano 2001] and other 

97



5   Experiments

techniques that belong to Dead-reckoning and interpolation layer (see section 2.3). The layer should 
produce the balls trajectories as shown by the blue, red, and yellow lines in the figure. The user 
should not see discrete balls positions but the smoothed balls movements.

Smoothing techniques are often used in CVE systems. One of their purposes is to minimize the 
effect of wrongly predicted object behavior – wrong behavior is smoothly interpolated back to the 
correct object behavior. This advantage is applicable to transaction concept also and the effect of 
transaction aborts may be minimized – the wrongly predicted balls positions are interpolated back 
to their correct trajectories that were produced by the proper collision handling.

Simple Space Simulator
Space Simulator is a simple application supporting free flight in space with the collision detection. 
Two users can control two space ships interacting with each other. The application was developed 
by me in pre-research times. It is just a demonstration application that is not using Active trans-
actions and that suffers from the several consistency problems described above in the section 3.1.

The application is synchronizing the positions of the two space ships. Therefore, it is possible to 
violate  invariance problem and the collision may be detected on one computer  and not another 
because  network  latency  caused  delaying  of  some  updates,  thus  space  ship  positions  may  be 
different on both computers. Or, the collision is detected on both computers, but one of them may 
detect “touch” collision while other detects “crash” that damages the space ship.

Fig. 82: Space Simulator

The multiple handling problem and invariance problem were not even attempted to be solved. The 
collisions  among movable  objects  would  require  much of  additional  coding and therefore,  just 
movable-static object collisions are handled properly. However, movable-movable object collisions 
would be possible to handle properly using Active transactions and similar scenarios like presented 
above in the moving balls examples.

As a  conclusion,  object  attribute  synchronization,  like  in  Simple  Space  Simulator,  may be  not 
considered sufficient for robust CVE system. It tends to be difficult to design from the point of data 
consistency and heavy to maintain when adding new behavior and new types of objects. Active 
transactions concept is designed to address those issues and handle the most of them for an user.
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Collaborative Data Sharing
Collaborative data sharing (CDS) was developed for AMI (Augmented Multi-modal Interaction) 
European research project using Active transactions. The application enables group of people to 
collaboratively manipulate and examine the shared data set. A typical usage is group of engineers 
designing  some  mechanical  parts  and  discussing  the  best  solution  of  the  design,  or  group  of 
architects responsible of a design of a large building. They may need to consult their ideas and 
receive impressions from their clients or other architects. Medical doctors may need to consult some 
aspects  of  a  surgery  while  they  may  not  have  enough  time  to  invite  foreign  experts.  CDS 
application enables them to discuss various aspects of the surgery while they can collaboratively 
interact, manipulate, and examine shared virtual model of the organ or the part of the body that was 
made, for example, by 3D CT/MR scanner.

CDS application provides two main abilities:

– collaborative examining of the model

– collaborative model manipulation

Collaborative  model  examination  is  realized  by  consistent  camera  position  and  orientation 
synchronization using Active transactions concept. The camera can be concurrently manipulated, 
but  Active  transactions  guarantee  that  any  consistency  violations  caused  by  concurrent 
manipulations are handled correctly.

Collaborative model  manipulation is  realized by a tool  that  can alter  the model  shape.  The cut 
operation  was  used  and  the  tool  can  extract  pieces  of  the  geometry  from  the  model.  Open 
CASCADE library [OpenCASCADE] was used for geometry cutting and Open Inventor with CVE 
extension for visualization of the model.

When the application was designed, two replication approaches were possible: active or passive. 
Passive approach would result in object geometry transmissions on each object alteration, thus large 
bandwidth would be necessary. Active approach transmits just the tool and model positions and 
orientation while  the model  alterations  are computed  on each computer  in parallel,  thus saving 
bandwidth because only object positions and orientations have to be synchronized. However, the 
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determinism of the cutting algorithm has to be ensured that all computers will compute the new 
geometry with the same results.  Fulfilling this condition of active approach, the application has 
quite  low  network  requirements  that  is  linearly  dependent  on  the  amount  of  updates.  Active 
transactions were used for tool and object position and orientation synchronization. Cut operation 
was made  by a  special  Active  transaction  that  has  empty  read  and write  set,  but  that  triggers 
function execution on its commit. Through its commit, the new object geometry is computed. If the 
cut  transaction  is  aborted,  nothing  happens.  Active  transactions  concept  guarantees  that  even 
concurrent cut operations scheduled at different computers are handled consistently.

Collaborative Viewer
Collaborative viewer is an application for the collabo-
rative object viewing. The viewer is based on Open 
Inventor and it was developed to verify the idea that 
some  stand-alone  applications  can  be  turned  to  the 
collaborative one by just extending the scene graph 
by the collaborative algorithms. Not even a single line 
of  code  was  changed  inside  ivview,  just  the  Open 
Inventor  library  was  changed.  The  scene  graph 
classes  were  extended  by  collaborative  algorithms. 
The network setup was done by setting environment 
variables and the collaborative viewer experiment proved, that collaborative algorithms can be well 
encapsulated in some high-level scene graph libraries. More details are in [Peciva 2005].

Collaborative Maze
Maze is one of standard demonstration games coming with Open Inventor library. Maze is designed 
in a way that not all scene-related state is stored in the scene graph. As a result, if Open Inventor 
library is changed to the one that contains collaborative extension, the user is experiencing jerky 
movements.  The scene consistency is  never  broken, but Collaborative Maze is  one example of 
applications that should be adapted to be smoothly used as collaborative applications.

Fig. 85: Collaborative Maze
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Multi-user Flight Simulator
Simple Flight Simulator application was easily changed, without much of programmer efforts, into 
the collaborative one. Two fighters are flying over the infinite landscape. They can see each other 
and  fly  together.  The  movements  of  fighters  are  synchronized  using  Active  transactions.  The 
landscape  does  not  requires  any  synchronization  as  active  replication  approach  was  used  and 
landscape is generated by a fractal algorithm producing the same landscape on each computer.

Fig. 86: Multi-user flight simulator

The  application  was  demonstrated  at  INTETAIN  2005  conference  [Peciva  2005] and  proved 
usability of Active transactions in practice with real human users. The standalone application was 
developed by Martin Havlicek [Havlicek 2005] and extended to collaborative one by me.

Distributed Virtual Meeting Room
Distributed Virtual Meeting Room is an application for collaborative interaction of more people in a 
shared virtual room. The application was developed with cooperation between University of Twente 
(NL)  and Brno University  of  Technology (CZ)  for  AMI (Augmented  Multi-modal  Interaction) 
European research project using Active transactions.

Fig. 87: Distributed virtual meeting room
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The meeting room provides the participants to see others, their gestures, the direction that they are 
gazing, and it is enabled for them to collaboratively interact with remote control object. They can 
pick it, manipulate it, change color, and discuss its design. The other participants can connect over 
the  Internet  to  the  meeting  room  and  participate  on  the  meeting.  Flock  of  birds  is  used  for 
participant movements tracking. The movements are immediately applied to the virtual avatar that 
represents the person in the virtual meeting room. Active transactions are used for automatic data 
synchronization among all participating computers. The system proved the usability of Active trans-
actions in non-trivial distributed interaction applications.

Distributed Billiard
Distributed  Billiard  is  a  CVE application  for 
testing and demonstration of advanced features 
of Active transactions. It simulates movements 
of several moving objects with big amount of 
interaction. The balls are moving and they are 
crashing  to  each  other.  During  the  collision, 
new object velocity vector is computed. Since 
each  ball  movement  is  computed  on  the 
different  computer,  it  is  not  a  trivial  task  to 
consistently detect  the collision.  According to 
Active  transactions  concept,  the collision  test 
has  to  be  performed  at  the  transaction's 
commit.  If  the  collision  is  detected,  the 
transaction is aborted.

The  speculative  execution  makes  the  collisions  even  more  complex.  Speculatively  executed 
transactions are shown as a gray circles in the figure  88. The colored ball is the committed ball 
position.  If  the  collision  is  detected  during  the  commit,  the  transaction  is  aborted  and  all 
speculatively executed transactions of the ball are aborted also because the trajectory is no longer 
valid.  Then, the new ball  position and velocity  vector  are computed and the ball  movement  is 
restored on the different trajectory.

Distributed Billiard is the example of the application of high amount of interaction, concurrency 
violations, and transaction aborts. It shows that Active transactions are suitable for such kind of 
applications.

Distributed Cyclotron
Distributed  Cyclotron  is  computing  intensive 
distributed  simulation  to  measure  performance 
characteristics of Active transactions. The elect-
rons are emitted from emitter and accelerated by 
magnetic field until they left the cyclotron. The 
electrons are distributed among the computers to 
distribute  the  computing  load.  The  electron 
trajectory  is  computed  on  one  computer  and 
results  are  transmitted  to  all  other  computers. 
The  simulation  was  tested  with  about  1000 
electrons distributed among three computers.
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5.3   Measurements
Active transactions processing should be analyzed to get performance characteristics of their usage 
in real conditions. Two applications were chosen from the section 5.2 for the analysis. Distributed 
cyclotron is a performance intensive application, therefore it is a good candidate for measurements 
of performance characteristics of CVE library and Active transactions. The interest  of measure-
ments will be network and CPU load. The measurements should prove linear dependency of CPU 
and network load on number of simulated electrons.

Another application was needed for measuring of the scenes with high level of interaction among 
the  objects.  It's  analysis  will  address  dynamic  properties  of  the  transaction  execution,  such  as 
transaction processing latency,  length of speculative queue, and number of aborts depending on 
network latency. Distributed balls application was chosen for these measurements. 

Distributed Cyclotron
The performance measurements focused on two important areas: network load and CPU load. The 
network load was analyzed on varying number of moving electrons in the cyclotron that resulted in 
varying number of transactions exchanged among the computers. CPU load analyzed the required 
processing time of these transactions.

The first measurements were using adaptive simulation step to keep the constant frame rate. The 
number of electrons were changing from 0 to 50 and the network load grew from 0 to 180KB/s as 
shown in the figure  90. The measurements were done using 2, 3, and 4 computers with Intel® 
Celeron® 2.66 GHz processor.

It can be seen that the network load is increasing with the number of simulated electrons, but it does 
not grow linearly. The non-linearity is caused by adaptive simulation step.

The  CPU load  is  shown in  the  figure  91.  Depending  on  number  of  electrons  and  number  of 
computers, it grows up to 80ms per each simulation step when using 4 computers while each of 
them is holding 50 electrons. Such performance requirements were not bad for the first prototype, 
but they were not acceptable for the next development.
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Fig. 91: Distributed cyclotron CPU loading
(processing time of transactions per simulation step)
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Network Loading Characteristics
New detailed  measurements  were  done  after  many  improvements  of  the  first  prototype.  They 
focused once again on network and CPU load. All the measurements were done on Intel© CoreTM 

Duo 1.8 GHz processors.

The figure  92 shows the network load of each computer. It counts number of sent and received 
bytes of the computer per simulation step. The amount of traffic grows linearly with number of 
simulated electrons. The figure 93 shows the traffic when 20 simulation steps are performed each 
second.

Fig. 94: Total network traffic in the system
per simulation step

The total network traffic is shown in the figure 94. It shows the sum of all the data transmitted over 
the network. The traffic grows with the number of simulated electrons and with the number of 
computers. The traffic is composed mainly of update transactions, each counting about 100 bytes. 
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Fig. 92: Network traffic per computer
per simulation step

Fig. 93: Network traffic per computer when doing 20 
simulation steps per second
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Although the transactions are carrying whole 4x4 position matrix in text format, the decision was 
made to not optimize it to better prove network characteristics.

The  conclusion  from  the  figures  92,  93,  and  94 can  be  given  that  network  load  of  my 
implementation of Active transactions grows linearly with number of simulated objects. The open 
question is scalability on the increasing number of computers. It is addressed in following graphs.

Fig. 95: Network traffic of each computer

The network traffic dependency on number of computers is shown in the figure  95. The network 
traffic grows asymptotically to some value as the number of computers grows. Because the traffic is 
not growing over some threshold until number of computers is equal to number of electrons, there is 
no scalability limit until this point (assuming there are no other network bottlenecks in the system). 
The only limit is the throughput of the network card of each computer.

Fig. 96: Total network traffic dependence on number of computers
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Total network traffic, according to the figure 96, grows linearly with the number of computers and 
with the number of simulated electrons. The linearity is given by point-to-point communication 
used for distribution of each message to all the computers. Using of multicast or broadcast (see 
section  2.6 may  improve  scalability  much  and  avoid  possible  overloading  of  internal  network 
switches throughput. The figure 97 depicts expected total network traffic when using broadcast.

Fig. 97: Expected total network traffic when using broadcast

As it can be seen, the network traffic is constant for the same number of simulated electrons. So, the 
number of participating computers does not influence the total network traffic. However, broadcast 
is usually not reliable and it is often limited to local network only. Therefore, reliable multicast, 
such as SRM [Floyd et al. 1997], is often used instead.

The final conclusion of network loading is that it grows linearly with the number of electrons. If 
using point-to-point communication,  total  network traffic  grows linearly on growing number of 
computers  while  per-computer  network  traffic  grows  asymptotically  until  number  of  electrons 
becomes closer to the number of computers. Broadcast  can make network loading constant and 
independent on number of computers.
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5.3   Measurements

CPU Loading Characteristics
To get correct CPU load, only time for processing of transactions was measured, skipping all the 
visualization time and simulation computations.

The  figure  98 shows  the  processing  time  of  non-optimized  version.  It  can  be  seen  that  the 
processing time is increasing with the number of computers  and with the number of simulated 
electrons  that  produce  more  transactions.  The  figure  99 shows that  there  is  a  small  additional 
performance cost when increasing the number of computers even though the number of simulated 
electrons stays the same. The additional cost is caused by the lower amount of owned electrons and 
increased number of incoming update transactions for “non-owned” electrons.

The optimized version brings big performance boost by factor 5 just by switching the compiler code 
optimizations on. The figures 100 and 101 shows the results of optimizations.
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Fig. 98: CPU loading - processing time of transactions
per simulation step

Fig. 99: CPU loading – processing time of transactions  
depending on the number of objects

Fig. 100: Processing time of transactions with 
optimizations per simulation step

Fig. 101: Processing time of transactions with 
optimizations depending of number of objects

in the system
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5   Experiments

Such  performance  is  acceptable  for  the  usability  in  many  applications.  The  closer  look  on 
performance  characteristics  reveals  some  anomalies.  The  most  noticeable  is  the  strange 
characteristic  if  using  3  computers  and  up  to  40  electrons  on  each  computer.  The  transaction 
processing requires more time than if 4 computers are used. Moreover, if more than 40 electrons are 
used on 3 computers,  the  performance  grows and it  requires  less  time  than 2 and 4 computer 
configurations.  This  is  persistent  anomaly and it  is  probably caused by some internal  Winsock 
(Windows Sockets) behavior when distributing the transactions to other computers.

The figure  101 shows that the processing time is about to be linearly dependent on number of 
objects in the system and it does not depend much on the number of computers. From this point of 
view, the system should be well scalable on high number of computers or large clusters.

Distributed Balls
Distributed  Balls  example  was  used  for 
evaluation  of  dynamic  properties  of  Active 
transactions  when  high  level  of  interaction 
exists among the scene objects.

The figure 102 shows speculative transaction 
processing. Three balls are moving, doing 10 
simulation  steps  per  second  while  extreme 
network latency of one second is simulated. 
Each  ball  is  controlled  by  different 
computer.  One  second  latency  makes  the 
processing  of  collisions  not  trivial  task. 
However, they are handled automatically by 
Active transactions.  Each time the collision 
is  detected,  the  associated  transaction  is 
aborted.  Grey  circles  are  representing 
speculative  transactions  whose  validation 
process is still not finished. Dark grey circles 
are transactions that caused the collision and they will be aborted. The light grey circles should be 
committed if conditions will not change until validation is finished.

The  figure  103 shows  the  length  of  speculative 
transaction  queue  associated  with  one data  item.  The 
queue is getting longer as the network latency grows. 
The  measurement  was  done  on  12  update  steps  per 
second. All the following measurements were done on 
12 updates per second also.

The  latency  deeply  influences  the  performance 
characteristics  of  the  transaction  execution.  Longer 
latency means more speculative transactions and more 
performance  expensive  cascade  aborts.  However,  the 
network latency is usually bellow 100 ms todays. But 
exceptions exists, such as intercontinental connections. 
Such  long  latencies  are  addressed  by  this  work 
especially  by  speculative  execution  ability  of  Active 
transactions.
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Fig. 103: Speculative transaction queue length
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5.3   Measurements

Fig. 104: Number of commits and aborts per 1000 executed  
transactions

The figure  104 shows the number of commits and aborts per 1000 executed transactions as the 
network latency is growing. Only 5% of transactions is aborted if the latency is bellow 100 ms. 
About 18% is aborted on 400 ms latencies. And even if the latencies are about one second, the 
scene processing works correctly and the scene is kept consistent among the computers. The cost of 
high latency is only the increased number of aborted transactions – about one third of them. This 
can be considered as a big success as the scene processing and distributed collision decisions can be 
consistently realized even on so high network latencies.

Fig. 105: Commit/abort ratio dependency on network latency

The figure 105 shows commit/abort ratio dependency on network latency for two, three, and four 
moving balls. Four moving balls has bigger amount of interaction, i.e. they are colliding more often. 
Therefore, more aborts occur.
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5   Experiments

Fig. 106: Number of aborts per collision

Theoretically, only two transactions may be required to be aborted when collision happens between 
two  balls  on  zero  latency  networks  –  one  transaction  abort  for  each  colliding  ball.  However, 
because the latency is always a little bit above zero, the measurement in the figure 106 starts with 3 
aborts  per collision.  All the remaining aborts  caused by the collision are usually caused by the 
cascade aborts. Increasing number of transactions are aborted if the latency is growing.

In  conclusion,  the  transaction  execution  makes  distributed  decisions  and  distributed  scene 
processing  possible  even  on  high  latency  networks.  Depending  on  the  application,  amount  of 
aborted  transactions  may  grow  as  the  network  latency  increases.  However,  the  scene  is  kept 
consistent and application should perform well even on varying network conditions.

5.4   Performance and Scalability Considerations
Active transactions are keeping strong scene consistency in all conditions and the scene consistency 
is  never  broken,  independently  on  the  network  latency  or  system  loading.  The  transaction 
processing handles  the long latencies  as well,  providing the user  with excellent  responsiveness 
based on speculative execution.

Performance considerations are based on measurements above. Active transactions seem to scale 
well on large clusters of computers (figure 101), but they may reach CPU performance limits when 
number of transactions to process is too high (the same figure). Overcoming of this limit will be 
discussed bellow.

Network  scalability  is  bounded by linear  growth  of  network traffic  with  increasing  number  of 
transactions (figure 94). However, it scales well on large number of computers (figure 95), like in 
the  case  when considering  CPU-related  scalability.  The  possible  bottlenecks  are  throughput  of 
network interface of each computer (relates to figure  95) and overall network throughput (figure 
96). The network scalability can be increased by utilizing broadcast or multicast abilities that may 
lower the network requirements rapidly (figure 97).

Some of scalability limitations are given “by design”. The requirement of active replication forces 
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5.4   Performance and Scalability Considerations

all  the  computers  to  process  all  the  transactions  that  were  issued  in  the  system.  So,  the  peak 
performance of the whole system is determined by the slowest computer. Another limitation is the 
requirement of whole scene replication – all computers have to replicate whole shared scene. This is 
also the requirement of active replication. It limits the size of the scene by the computer that has the 
least available memory.

Many of the limits mentioned above can be overcome. One of general solutions are using of Area-
of-interest techniques. Although active replication does not support it, some solutions can still be 
found.  For  instance,  a  scene  of  a  big  building  can  be  split  spatially  into  the  several  smaller 
subscenes  of the house floors.  This  subscenes  would behave like independent  active  replicated 
scenes with its own transaction processing. The objects would be leaving and entering the scenes as 
they are  going  upstairs  and  downstairs  (see  figure  107).  That  would  enable  to  utilize  Area  of 
Interest techniques and the computers may replicate just those subscenes that they are interested in. 
So, the memory consumption would be lowered and the transaction processing would include just 
those transactions that belong to the subscenes that the computer is replicating.

Fig. 107: AoI support in Active transactions

The problem is just in cooperation of the subscenes. For instance, one object may need to leave one 
subscene and enter another one, or two objects of the different subscenes may want to interact. Such 
operations are typical for the scenes that are split spatially to the subscenes and the object may need 
to cross the border and enter other subscene, or it may want to start some interaction with the close 
object that is behind the border. The transfer of the object to the other subscene can be done by two 
transactions – one will be sent to the first subscene to remove the object from it and the second will 
be  sent  to  the  second subscene  to  append the  object  to  it.  However,  there  is  no  guarantee  of 
atomicity and one of transactions may be aborted while the other is committed. In such case, the 
object will stay in no subscene or at both at the same time and that should be avoided. However, 
that is out of scope of Active transactions because they guarantee atomicity for the replicated scene 
or subscene. Inter-scene operations are not supported because they are breaking requirements of 
active replication and they stay as a topic for the future research for the further increasing of the 
scalability.  Another option may be to establish some “connecting zone” and to enable objects to 
stay for a while in both scenes. The principle is 
shown  in  the  figure  108.  However,  even  this 
scenario does not solve all consistency problems. 
For  instance,  collision  detection  may  not  be 
solved properly if an object in “connecting zone” 
is  signed  to  both  scenes  and  it  collides  with 
another object that is signed to one of the scenes 
only. The collision test ends with different results 
in the scenes. Even this approach is a hot topic for 
the future research.
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5   Experiments

Final Evaluation
For the final evaluation of Active transactions, four criteria were chosen according to the priorities 
set for this thesis:

strength of consistency excellent
Active transactions are focused on consistency and they 
provides high consistency guarantees. Therefore, the 
programming style of Active transactions is similar to the 
programming style of standalone applications.

performance requirements good / acceptable
The measurements in the section 5.3 proves good usability 
even on 800 of simulated objects. That is sufficient for many 
applications, including majority of today's computer games.

scalability small and middle-sized scenes only
Active transactions are focused on mainstream applications 
that are usually handing limited size scenes. Large scenes and 
large simulations seems possible and they stays as a topic for 
the future research.

usability very good
Proved by embedding into Inventor library and
by number of testing applications shown in the section 5.2.

Table 15: Active transactions evaluation

The evaluation shown in the table 15 shows that strength of consistency and usability are the main 
merits of Active transactions and that they are well suitable to be used in practice.

112



6   Conclusions

6   Conclusions
The goal of the presented work was to design such consistency model that  would provide high 
consistency guarantees and responsiveness while respecting the performance requirement. The goal 
was reached. The new consistency model is based on Active transactions described in the chapter 4 
of this thesis. It provides high consistency guarantees by complete scene synchronization based on 
active  replication.  High responsiveness  was  enabled  by speculative  execution  ability  of  Active 
transactions (section 4.8) and the performance verification was shown in the chapter 5. The model 
was proved by designing and implementation of CVE library and several testing applications shown 
in the section 5.2.

Additional results include:

– Existing CVE consistency models have been investigated and their properties have been 
classified – described in the chapter 3.

– Close research areas have been investigated for the algorithms similar to the ones used in CVE 
systems – chapter 2.

– The new consistency model usage in practice was verified on several testing applications and 
measurements – chapter 5.

The  design  of  Active  transactions  consistency  model  is  based  on  active  replication  used  in 
distributed  systems  and transaction  concept  developed in  database  systems.  The novelty  of  the 
approach is the unique combination of active replication with the transaction concept and both of 
the concepts are combined into a new consistency model.

The design of the new consistency model required deep understanding of consistency models in 
distributed systems and deep understanding of database concepts. Their fitting together with the 
requirements of CVE systems was difficult also because the system had to be implemented in order 
to prove the concepts. The implementation verified the ideas of the design process and provided 
valuable  feedback  for  improvements.  Finally,  the  CVE code  was  encapsulated  in  the  software 
library and it was shown that the the model is easily usable for real application development.

Usability of a consistency model is related to the strength of consistency model and consistency 
guarantees.  Active  transactions  were  designed  to  keep  strong  consistency,  thus  providing  easy 
programming model well usable in many todays CVE applications. The usability was proved by 
implementation  of  the  consistency  model,  its  embedding  into  the  Open  Inventor  library,  and 
development  of  several  testing  applications.  High  responsiveness  is  reached  by  speculative 
execution that is kept even on bad network conditions.  High performance is based on using of 
multiversion databases in the proposed system.

The scalability was verified by several measurements. They show linear dependency of CPU and 
network load on number of executed transactions per time interval and good scalability on large 
clusters of computers. Even more improved scalability can be reached using broadcast. In that case, 
the CPU and network load is constant and it does not change on number of participating computers. 
The load would change just with the number of executed transactions per time interval.

The contribution of the dissertation is the Active transactions consistency model. Its novelty is in 
combining  of  known algorithms,  especially  from distributed  and database  systems,  into  a  new 
consistency  model  for  CVE  applications.  Another  important  contribution  is  investigation  and 
classification of consistency models used in CVE presented in the chapter  3 that summarizes the 
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state of the art in the CVE consistency models.

In the future research, I would like to address some advanced behavior of transaction execution, 
such  as  executing  of  user  defined  code  at  transaction  commit  that  may  enable  additional 
optimizations.  Another  topic  is  investigation  of  “passive”  transactions  that  would  introduce 
transaction concept to passive replication. A tempting idea is also investigation of scalability that 
would shift performance limits of Active transactions from middle-sized virtual environments to 
possibly very large environments.

The  research  may be directed  also to  the  commercial  sector  –  the usability  of  the consistency 
models and their implementation and evaluation. Particularly, the encapsulation of CVE algorithms 
into the library, like it was done for Open Inventor  [Inventor], may be brought to a commercial 
solution to be used in professional applications.
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7   Appendix - Network Latency Measurement

The familiarity  with real  network conditions  is  important  to  appropriately  design CVE system. 
Especially,  latency variations, latency spikes, and lost packet penalties may influence deeply the 
final design of the CVE application. To get the idea about the real network conditions, the figures 
109 and 110 show histograms of local network latencies and figures 111 and 112 histograms of a 
long Internet connection from Brno (Czech Republic)  to Bristol  (United Kingdom) of a simple 
ping-pong application.

Local network
number of packets sent:  199'000'000
computer loading: OpenGL screensaver
operating system: Linux
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Fig. 109: Round trip time of two computers on high-speed LAN
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7   Appendix - Network Latency Measurement

Fig. 110: Detailed round trip time of two computers on high-speed LAN

The figure 110 shows that nearly all packets were delivered in one millisecond. Actually, 99% of 
them arrived in about 200us. However, another important points can be seen – the peaks at 10ms, 
20ms,  30 and 40 milliseconds latency.  These had probably the relation  to operating system 10 
millisecond task switching. Loaded computer or operating system activity may have deep impact on 
measured  values.  Whole  CVE system should  be  robust  enough to  safely  handle  possibly  long 
unavailability  of  some  computers  because  of  some  unpredicted  loading  of  the  computer,  disk 
swapping, or some other activity.

Distant connection
Location: Bristol (UK) – Brno (CZ), about 2000 km

number of packets sent:  720'000
computer loading: OpenGL screensaver
operating system: Linux
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7   Appendix - Network Latency Measurement

The figures 111 and 112 show that no packet arrived until 36 ms elapsed and 99.9% packets arrived 
before 60ms. A strange peak can be noticed around 300ms that counts about 0.07% of total packet 
number. They are probably the lost packets that required resending by TCP/IP layer. Maybe, the 
communication distance of about 2'000 km may be one of the factors of the lost packets.

Even worse results can be expected on wireless networks and mobile phone Internet connections. 
The number  of  lost  packets  may be even higher,  and connection  quality  and accessibility  may 
change over time. Some mobile phone Internet connections shows average latencies over 100ms 
and sometimes even over half  of second. Such latencies may not be acceptable for many CVE 
applications.

117

Fig. 111: Round trip time of Czech Rep. to United Kingdom communication
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Fig. 112: Detailed round trip time of Czech Rep. to United Kingdom communication
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