Development of a Distributed Scene Toolkit
Based on Open Inventor

Jan Peciva

2002

Abstract

A distributed scene toolkit may be very useful for development of shared virtual environment
applications, for example 3D multiplayer games, because time-sensitive distributed applications
cause programmers many extraordinary consistency problems. In this thesis we will present
the basis of such a toolkit, its design and implementation based on the popular Open Inventor
library. The core idea is that one computer is the scene server and all others are the clients.
The scene server manages the scene graph and can be used for viewing and modifying the scene
as clients do. The client computers are like replica managers. They hold copies of the server’s
scene graph and make all the synchronization work. The toolkit implements algorithms for
maintaining a scene consistency. The Network interface provides a convenient access to network
functions and the whole toolkit should help programmers in the development of 3D graphics
distributed applications.

Keywords:

distributed scene, distributed graphics, distributed virtual environment, computer supported
cooperative work, virtual reality, scene graph, Open Inventor

Contents

1 Introduction

1.1 Project Aims L e e e e e e e
1.2 OpenInventor e e
1.3 Usability o e
2 Design
2.1 OVErVIEW . . . o i o e e e e e
2.2 Introduction to Open Inventor Architecture,
23 General Design Lo
2.4 Modifications Handling L o
2.5 Counsistency Handling o
3 SoField Extensions
3.1 Overview e e e e
3.2 Synchronization of a Field’s Value Over Network
3.3 Process of Connecting of one Field to the Another
3.4 Disconnect and Cancel Operations
3.5 Public Network Connection Related Functions
3.6 Additional SoField Internal Data,
4 SoFieldContainer Extensions
4.1 OVEIVIEW . . . o o i e e e e e e e
4.2 Synchronization of a Field Containers Over Network
4.3 Process of Connecting of one Container to the Another
4.4 Disconnect and Cancel Operations
4.5 Public Network Connection Related Functions
4.6 Additional SoFieldContainer Internal Data
5 SoGroup Extensions
5.1 Overview e e e e e e e e e e e
5.2 Synchronization of Graphs Over Network
5.3 Process of Connecting of one Scene Graph to Another
5.4 Disconnect and Cancel Operations
5.5 Public Network Connection Related Functions
5.6 Additional SoFieldContainer Internal Data

~ow ow W

o~y o ot ot

10
10
10
11
12
13
14

15
15
15
16
17
18
18

CONTENTS

6 SoDS Global Class

6.1 Overview L e e e e
6.2 Public SoDS APT e
6.3 Connecting Other Computers it

7 Network Layer

7.1 OVEIVIEW . . . o o o e e e e e e e e e e
7.2 Handling of Scene Modifications 00000,
7.3 General Design
7.4 Mechanism of Sending Messages oo
7.5 Handling the Scene Consistency
7.6 Limited-Bandwidth Networks
7.7 Process of Receiving Messages
7.8 Abstract Message Classes o e
7.9 Network Messages 0 o i i i e e e e
8 Results
8.1 OVerview e e e e e e e e e
8.2 Testing o L e
8.3 Conclusion e e

8.4 Future Work e e

23
23
23
26

27
27
27
28
29
30
30
30
30
32

Chapter 1

Introduction

1.1 Project Aims

This work aims to develop a toolkit for distributed shared virtual scenes. The work connects
the world of 3D graphics and the world of distributed systems. The world of 3D graphics is
represented by Inventor toolkits. Open Inventor is the de facto standard for visualization in the
scientific and engineering community. On the other side, the world of distributed systems gives
some principles for designing a toolkit for distributed 3D graphics.

The toolkit for distributed 3D graphics may be very useful, especially with internet and
high speed local networks. On the one hand, vertical distribution can be used for parallel pro-
cessing of a scene increasing performance by distributing tasks among computers. On the other
hand, horizontal distribution for applications means that users can work together, cooperatively,
possibly over large distances. Successful areas are Distributed Virtual Environments (DVEs),
Computer Supported Cooperative Work (CSCW) and multiplayer 3D computer games running
over networks.

This work presents the design of such a toolkit giving the programmer an easy-to-use API
for programming distributed 3D graphics applications. We will present the design of Network
Layer and the network protocol, and their integration into Coin, a free library that implements
Open Inventor 2.1 API.

1.2 Open Inventor

Open Inventor is an OpenGL-based, retain-mode, 3D model scene-graph rendering and interac-
tion library, which has became de facto standard in the scientific and engineering community.
The first version of Open Inventor was released by SGI in 1991 and after that it has been devel-
oped for another seven years. Because of its well designed API Open Inventor still lives and is
developed by other companies. In 2001, TGS released a new thread-safe version and opened the
world of multiprocessing for Open Inventor. My work is a step in a different direction, a step
towards distributed processing. I have used the word ‘step’, because this area is too large and
development of a full toolkit will take a long time. So, this thesis describes the basis of such a
toolkit.

CHAPTER 1. INTRODUCTION 4

1.3 Usability

With growing importance of networks and high-speed internet, the importance of the distributed
systems also grows. People want to be connected together. They may want not only to com-
municate together through network, but to see one another and also to share the same virtual
environment with others. A great development has been made on 3D multiplayer computer
games which are typical distributed 3D applications very popular today.

Developing of a distributed 3D application is a hard problem. The network latency among
the computers is usually tens of milliseconds, a typical value is 40ms. In the 40 milliseconds the
application can render four frames (when 100 FPS) and still may not have some actual scene data
from the other computers. So, it is a question how to perform, for example, collision detection
on the objects we do not know their actual position. This leads to complex problems of relaxed
consistency models. This inspired me to develop a library that will make a programmer’s life
easier. The library, presented here, should be useful in two points:

e It removes from a programmer all low-level network troubles and handles most of commu-
nication for him.

¢ It automatically synchronizes the scenes among computers while keeping the scene consis-
tency.

Chapter 2

Design

2.1 Overview

The purpose of this work is to design Open Inventor API extension and implement it into Coin,
a free library that implements Open Inventor API. So, in this chapter, we will describe the
theoretical basis on which the work is built, then the concept of the design. The implementation
is presented in succeeding chapters.

2.2 Introduction to Open Inventor Architecture

A scene in Open Inventor consists of nodes. Each node represents a geometry, property or
grouping object. Because of grouping objects, we can organize nodes in a hierarchical structure
called a directed acyclic graph. We will call it simply ‘scene graph’. The scene graph is an
representation of the scene in Invetor. Note, that if we use the term ‘scene graph’, it may mean
a whole scene graph or any of its subgraphs or just a single node.

Nodes are C++ objects and there are three types of nodes:
e Shape nodes represent 3D geometry.
e Property nodes represent appearance and other qualitative characteristics of the scene.

e Group nodes are containers that collects nodes into graphs.

Each node usually contains some data items called fields. Fields are data encapsulation
providing many mechanisms for Inventor application, like automatic read and write to files,
detection of changes and connecting one field to the another.

Performing an action on a scene graph means to traverse an Inventor’s scene graph. Typical
traversing is done from top to bottom and from right to left. This way is usually performed
rendering actions. There are also actions for writing the scene to the file, for picking objects
along a ray, for computing the bounding box of the scene graph and some others.

Fields can be connected to the other fields. If a field is connected to the other field, it means
one is master and other slave and each time the master is modified, the slave is notified about
the modification to re-synchronize its value.

The notification mechanism is very important in Inventor. It is an advanced topic that is
not completely important for Inventor users. But it is important for programmers extending

CHAPTER 2. DESIGN 6

Group
(Field) Field Field
Container Container Container
Field 1 Field 1 Field 1
Field 2 Field 2
 —
Field 3
—

Figure 2.1: A simple Inventor graph

Inventor’s functionality and also for this work. Whenever user modifies something in the scene
graph, the notification is started. For example, when user modifies the field containing the
geometry of some scene object, notification starts. The node within field is placed is notified
and notification propagates up to the root of the scene graph. When the root node of the scene
graph is notified, the scene is scheduled to be rendered to update the picture on the screen.
So, the scene is rendered only, if something is changing in the scene. Another advantage is,
that rarely changing parts of the scene graph we can use some caching mechanisms, like render-
caching in OpenGL display lists. And if some modification happens, the notification mechanism
tell the cache to update its content.

More informations about Inventor are in The Inventor Mentor book [8], some additional
informations are in The Inventor Toolmaker [9].

2.3 General Design

The question is What is a distributed shared scene graph? It is a scene graph shared among
some computers. Each computer keeps its own copy of the scene graph, which must be kept
synchronized with the others. The best solution is to implement the distributed shared scene
graph to behave as if it was stored in distributed shared memory (DSM) [1]. In this case it
will be nearly transparent for the programmer using such a scene graph whether he is writing
a local or distributed application. However, for realization of DSM we have to use sequential
consistency for all reads and writes to the DSM on the all computers. This is impossible to
be done with sufficient performance, because of network latencies among computers. Therefore
some less restrictive consistency model must be used.

My work, however, did not take the route of complex consistency models, but I made some
restrictions to the concept of distributed shared scene graphs. If we make all shared scene graphs
on all computers only readable (not writeable) except one that we make readable and writeable,
we find a system that is easy to gain consistency for. In my work I will call such a configuration

CHAPTER 2. DESIGN 7

‘master-slave’, because there is one writeable master scene graph and the rest are read-only slave
graphs keeping everything synchronized with the master. Unfortunately, it looks like a great
limitation to be able to modify the scene graph on one computer only. But we can use a simple
workaround. We can send a modification request from slave to master scene graph each time
we want to modify slave. And the master replies whether he has modified the value or not. A
reason for refusing the modification may be, for example, if we are utilizing collision detection,
to try to move one object into another. The collision detection is usually centralized, because
only the ‘scene server’ knows valid positions of all objects in the scene. Until the reply, the slave
scene graph asking for the modification may contain both — old or new value, depending on
programmer’s choice.

Master-slave architecture perfectly fits the original Open Inventor design where we can find
connect operation from one field to another. In Inventor, connecting one field to another means
one is the master and when its value is changed, all slaves are notified about this to re-synchronize
their values. I will use same idea for my network connection. Moreover, I will extend the idea
of connecting fields to connecting nodes and also graphs. We can not see anything like this in
Inventor APT because connecting graphs only has its meaning when it is over a network. Locally
it is handled by multiple references to nodes.

The question is For what can be master-slave architecture be used for? General answer
is: For each client-server designed application. These are most of today’s 3D games and VR
systems. So, it is not a problem. Also, special usage may be distributed rendering of very
complex scenes or another scene processing.

2.4 Modifications Handling

master scene graph slave scene graph

network| 3.| ..|network

layer - layer 4

2./
I '

1
1
1
' M

© 0O © 0

"'setValue

Figure 2.2: Handling of a scene modification

In figure 2.2 there is a simple example showing the way modifications are going to keep the
slave scene graph synchronized. There are two scene graphs on two computers. One graph is
master, second is slave. The scenes are composed of four nodes — one separator and three its
children, first from left is some transform node, then some appearance node and right node is
shape. Master-slave relation, in this example, is made by connection between the separator in

CHAPTER 2. DESIGN 8

the master scene graph and the separator in the slave scene graph. The example is showing the
way the transform node modification is going to keep slave scene graph synchronized with the
master scene graph:

1. The scene is modified and the notification starts. In this stage when separator is notified,
it realizes that it has some ‘network-slave’ connections.

2. The separator notifies Network Layer about the modification and Network Layer does the
rest.

3. The modification is stored in a network stream. The stream is sent and then received by
another computer. This can last some tens of milliseconds.

4. The modification is read from the stream and sent to the slave separator.

5. The separator updates the value of the slave transform node.

2.5 Consistency Handling

Even though I am not using any consistency models in my work yet, there are some consistency
problems. The problems come from generic Inventor behavior, because a scene graph is not
always consistent.

For example, there are different nodes for storing geomery coordinates (SoCoordinate3) and
texture coodinates (SoTextureCoordinate2). When an user is modifying geometry of some scene
object by adding some coordinates to SoCoordinate3 node and textures are used for the object,
the scene is inconsistent until texture coordinates are also modified to fit the number of coordi-
nates in SoCoordinate3 node. A rendering of such inconsistent scene may cause the geometry
of the object to be not rendered and on weak implementations it may cause an application to
crash. This problem is not important on non-distributed scene graphs, because it is simply
a programmer’s mistake to render an inconsistent scene. But if we are working with the dis-
tributed scene graph, the master is producing a stream of modifications and slaves are receiving
the stream and applying the modifications to their scene graphs. But because of the network
communication, some modifications may yet arrived, some may be on the way. In our example,
the SoCoordinate3 modification may be yet received, but the SoTextureCoordinate2 one may
be still on the way. Applying the SoCoordinate3 modification without SoTextureCoordinate2
will break the scene consistency. This problem must be avoided.

We can use two equal solutions: To send modifications in chunks and ensure that applying
all messages in the chunk at once does not break the consistency. The second solution is to put
a special message to a stream sent to slave to tell it ‘at this moment the scene is consistent’, so
it can apply all received modifications.

For finding a solution we need to answer for a simple question: When can we be sure that
the scene is consistent in a properly working Inventor application? Generally never, because
a programmer may use some very strange programming techniques. But we will expect that
the scene is consistent at least just before and after the scene is rendered. This is true in the
most of cases. So, each time before and after the scene is rendered, Network Layer takes all
master scenes modifications and sends them in one great chunk to all slaves. All the slaves
take the modifications before and after scene graph rendering and update their scene graphs.

CHAPTER 2. DESIGN 9

This solution is sufficient in the most of cases. For special application demands it is possible
to customize this behavior, for example, to perform updates more often. More details about
handling network messages and the scene consistency will be in the chapter 7 about Network
Layer.

Chapter 3

SoField Extensions

3.1 Overview

All extensions of the SoField concern the synchronization of fields over network. They introduce
some basic principles that will be used and extended later by the SoFieldContainer and SoGroup
classes (chapters 4 and 5).

Connecting one field to the other means to make one slave and the other master. The master
has always a valid value and all modifications to its value are sent to all its slaves. If a user
wants to modify a slave field, the field must ask the master field for validating the modification.
This a powerful solution that make it easy for a programmer to keep the scene consistency up.

3.2 Synchronization of a Field’s Value Over Network

For updating values of slave fields, we must use a little bit different principle than Inventor uses.
Because of network latency we will not send a notification to slaves to invalidate their values
and later during read operation perform real updating of their values. Instead, we will send a
new value immediately.

The process of a modification at the master consists of five steps:
1. An user modifies the field’s value.
2. The notification is performed (on the local scene graph).

3. The check for field’s network connections is performed; if there are no slaves connected to
this field then return.

4. The check is performed whether the value has been really changed; if not, then return.
5. Call to Network Layer for updating all network slave fields.

First two steps are generic Inventor behavior. In third step there is a test for network-slave
connections. If none, then can be nothing done and the field behaves like genuine Inventor field.
At fourth step we proceed in the case that field value has been really changed. So, touching or
writing same value has no effect on network connections. At step five all necessary information

10

CHAPTER 3. SOFIELD EXTENSIONS 11

are passed to Network Layer. Network Layer will send ‘new value’ message to all slave fields.
More detailed description of Network Layer will be described in the chapter 7.

There is a problem how to transfer fields value. We need general principle for all types of
field. This can be very easily done by built-in mechanism for writing and reading fields. So, we
use Solnput and SoOutput classes with buffers set to memory. Then we read or write fields value.
There is a problem with amount of transferred data. If a field is modified, we are transferring
whole field content. This is not a problem in most cases. But sometimes we are modifying large
multiple value fields or texture data. There can be done additional research to minimize amount
of the transferred data, to avoid, for example, the whole texture being transferred if its single
pixel is modified.

The process of updating slave’s value:

1. Network Layer decodes message and sends it to target field.

2. Field checks connection status; if connection is no longer active then return.
3. Update field’s value.

Step 2 is especially important because connection may be closed on slave’s side, but it take
some time to deliver disconnect request to the master and also there may be messages on the
way. S0, all messages received after disconnect operation and before disconnect acknowledge
message from master must be ignored.

Yet, there are some additional extensions related to SoField synchronization based on con-
necting scene graphs, instead of single fields. They will be described in the chapter 4 and 5 that
will explain SoFieldContainer and SoGroup extensions.

3.3 Process of Connecting of one Field to the Another

There are some differences between Inventor’s connectFrom and our network version. First
noticeable difference is that value of slave field is not immediately available. New value is present
at the very moment connection is acknowledged from master’s side. Until this, the old field’s
value is present. Testing for invalid field’s value can be made by function netInvalidValue().
Another difference is that connection may be refused if target field does not exist, has been
destroyed or is of different type. If connection is refused, field’s value are left unchanged. Fields
must be exactly of same type. No conversions are supported, but it may be not a problem to
implement this if there will be a serious reason for it.

The process of the connecting:

1. The slave sends the connection request to the master.

2. The master accepts/refuses the connection, the answer is sent to the slave.
3. The answer received by the slave, the connection is established/canceled.

4. If the connection is established, the field’s value is updated.

CHAPTER 3. SOFIELD EXTENSIONS 12

Connecting functions:

void netConnectFrom(int ip, SoField *master)

void netConnectFrom(int ip, SoFieldContainer *container, const char *fieldName)
void netConnectFrom(int ip, SoFieldContainer *container, SbName &fieldName)
void netConnectFrom(int ip, SbName &nodeName, SbName &fieldName)

void netConnectFrom(int ip, SbName &nodeName, const char *fieldName)

void netConnectFrom(int ip, const char *nodeName, SbName &fieldName)

void netConnectFrom(int ip, const char *nodeName, const char *fieldName)

Connection request is specified by IP address and some field’s identification on target com-
puter. Easiest and most safe field’s identification is by node and field name (case 4 to 7). Field’s
identification by its pointer (case 1) or container’s pointer and field’s name (case 2, 3) is poten-
tially dangerous. We must be sure that no-one destroys an object at target computer pointed
by our pointer, otherwise application may crash.

3.4 Disconnect and Cancel Operations

Disconnect operation executed on a slave field disconnects it from its master. On the other side,
Cancel operation, performed on master, disconnect all its slaves from it. Both operations are
implemented in a way that it is transparent for user whether he uses local disconnect or network
disconnect or cancel operation.

After performing disconnect or cancelConnection function field is behaving as if it was uncon-
nected. It ignores all network messages that may be ‘on the way’ before disconnect acknowledge
comes. Then slave field is sure that no more messages come from the master and completely
deletes the connection.

The process of the disconnecting:

The slave side after calling netDisconnect function:
1. The disconnect request is sent to the master.
2. The reference counter of the slave’s container is incremented.

3. The slave field marks the connection as ‘closing’ and any incoming messages through the
connection are ignored.

4. The field’s behavior is restored to be ‘like an unconnected field’.
The master side after receiving the disconnect request:

5. The network connection at the master field is removed.

6. The disconnect acknowledgement is sent to the slave.
The slave side after receiving the disconnect acknowledgement:

7. The slave removes the connection and unreferences its container.

CHAPTER 3. SOFIELD EXTENSIONS 13

The process of canceling a connection is the same, only master and slave roles are exchanged.

Important point of disconnecting is incrementing and decrementing of container’s references
counter. It is very important for field that has not completely closed connections not to be
destroyed. This is the easiest way to handle this. The danger comes from network messages
that must not be sent to non-existing fields otherwise application may crash.

Disconnect function prototypes:

void netDisconnect ()

void netDisconnect(int ip, SoField *master)

void netDisconnect(int ip, SoFieldContainer *container, const char *fieldName)
void netDisconnect(int ip, SoFieldContainer *container, SbName &fieldName)

CancelConnection function prototypes:

void netCancelConnection(int ip, SoField *field)

void netCancelConnection(int ip, SoFieldContainer *container,
const char *fieldName)

void netCancelConnection(int ip, SoFieldContainer *container,
SbName &fieldName)

void netCancelConnections()

For convenience there is one function for closing all network connections:

void closeNetwork()

3.5 Public Network Connection Related Functions

bool netInvalidValue()
The function returns true in the case that the field has been connected but value has not
been updated yet. Until new value comes, old value of the field is present.

bool hasNetConnections()
The function returns true, if the field is connected through the network, or someone is
connected to it through the network.

bool isNetMaster()
The function returns true if some field is connected to this field over network.

bool isNetSlave()
The function returns true if this field is connected to some field over network.

int getNetMasterNum()
It returns the number of connections this field is connected from. Currently, returned
value can be only 0 or 1, no netAppendConnection() is implemented yet.

SbBool getNetMasterConnections(SoNetConnectionList &list)
In list it returns the list of connections this field is connected from.

const SoNetConnectionList* getNetMasterConnections()
It returns the list of connections this field is connected from.

CHAPTER 3. SOFIELD EXTENSIONS 14

int getNetSlaveNum()
The function returns the number of fields that are connected to this field.

SbBool getNetSlaveConnections(SoNetConnectionList &list)
In list it returns the list of connections to this field.

const SoNetConnectionList* getNetSlaveConnections()
The function returns the list of connections to this field.

3.6 Additional SoField Internal Data

Because of extending of functionality we need also to add some data in the SoField class.
However, amount of the data must be minimized because SoField objects are ubiquitous in
Inventor applications.

Our solution increased the size of SoField class only by 8 bytes (on 32-bit architectures),
although there are four data items that we need to be stored somewhere around SoField class:

netMasters
List of connections to the masters.

netSlaves
List of connections to the slaves.

currentStream
Pointer to the buffer where actual field’s content is stored.

scheduledMsgs
Internal pointer used by Network Layer.

Most painful are first two items, because lists are classes and take a lot of memory even if
they are empty. However, all Inventor implementations, as far as I know, do not store connection
related informations directly in SoField class, because most of fields do not have any connections.
Rather, if connection informations need to be stored for a certain field, additional memory is
allocated. So, we can place our lists to such on-demand allocated memory. The resting two
items — both pointers taking 4 byte each at 32-bit architectures, should be placed directly in
SoField class. The reason is that if user connects large scene graph, all fields at the scene graph
need to use this two data items. If we place the items to the on-demand allocated memory, all
fields in the connected graph will allocate it, so we will waste too much of memory.

Chapter 4

SoFieldContainer Extensions

4.1 Overview

SoFieldContainer extensions concern synchronization of all the container’s fields. This is a
necessary step to synchronizing whole scene graphs as it will be described in the chapter 5
about SoGroup extensions.

The connecting of one SoFieldContainer the other means to make one slave and other master.
All we need is to synchronize all fields of the SoFieldContainer. So, fields of the master container
has always valid values and fields of the slave container is synchronized with master’s values.
As we can see, connecting one container to the other one has same effect as connecting all slave
container’s fields, one by one, to their master fields, but the connecting of the SoFieldContainer
is more convenient and saves memory resources.

4.2 Synchronization of a Field Containers Over Network

If we are connecting some large structures, we need to use some general mechanism for getting
modifications from the master structure and sending them through network to all slaves. In
well designed Inventor API we can find easily a solution. We can use notification to detect
that something has been changed and also to locate the source of notification. In the case of
connected container, notification source is, in most of cases, one of its fields.

Process of modification on master side:
1. An user modifies some field’s value.
2. The field’s container is notified about the modification.

3. If the container does not have any network-slave connections, do nothing and continue in
the notification.

4. Locate the source of the notification; this information is accessible through SoNotList class
passed as a parameter while notifying.

5. If the notification source is a field, tell the field about all network-slave connections at this
container.

15

CHAPTER 4. SOFIELDCONTAINER EXTENSIONS 16

6. Continue in the notification (go to the step 3).
7. Check whether value of the field has been really changed; if not, then return.

8. The modified field call Network Layer to send the ‘new value’ message through all network-
slave connections.

The containers process of synchronization is the extension of field’s synchronization process
(see the section 3.2). We are using notification to detect and locate modified field and then we
pass all connection-related data to the field. After notification is done, the field calls Network
Layer for send ‘new value’ message through all network-slave connections, this include the field’s
connections and also connections of its container.

There is a problem, how to identify fields in the container for sending ‘new value’ messages.
We are simply using field’s name string, because field’s name is unique in one container. A small
disadvantge of this is increased network bandwidth. Another solution can be to use an integer
giving the index of the field that has been modified. However, using field’s names is the most
safe solution among all Inventors, therefore it is used.

Process of modification on slave side:
1. Network Layer decodes the message and send it to the ‘slave container’.

2. The container checks the connection status; if the connection is no longer active, then
return.

3. The container finds target the field.
4. The value of the target field is updated.

On the slave side we are using nearly same process as field’s modifications do (see the section
3.2). Only difference is that ‘new value’ message is passed to a container and the container
respousible for locating and updating of the appropriate field.

4.3 Process of Connecting of one Container to the Another

A process of connecting of containers is nearly the same as connecting of fields (see the section
3.3). Containers connecting together must be exactly of same type. After connectFrom function
call, all fields in the container remain with their old values until the connection is fully established
by an acknowledge message. At the very moment connection is established, all fields get a new
value. There are consistency reasons for this. If the connection is refused, all fields are left
unchanged.

Process of the connecting:

1. The slave sends connection request to the master.

2. The master accepts/refuses the connection, the answer is sent to the slave.
3. The answer is received by the slave, the connection is established /canceled.

4. If the connection is established, values of all fields are updated.

CHAPTER 4. SOFIELDCONTAINER EXTENSIONS 17

Function prototypes:

void netConnectFrom(int ip, SoFieldContainer #*fc)
void netConnectFrom(int ip, comnst char *name)
void netConnectFrom(int ip, const SbName &name)

4.4 Disconnect and Cancel Operations

Disconnect and cancel operations on containers have same meaning as their field’s versions (see
the section 3.4), here we will speak only about differences and extensions. At the moment of
disconnection updating of container’s fields are stopped and their values are no longer changed
by the connection. Even, if container is about to destroy, it must wait for disconnect acknowledge
from all its network ‘friends’.

Process of disconnecting:

The slave side after calling netDisconnect function:
1. The disconnect request is sent to the master.
2. The reference counter of the slave container is incremented.

3. The slave container marks the connection as ‘closing’ and any incoming messages through
the connection are ignored.

4. The container’s behavior is restored to be ‘like an unconnected container’.
The master side after receiving the disconnect request:

5. The network connection at the master container is removed.

6. The disconnect acknowledgement is sent to the slave.
The slave side after receiving the disconnect acknowledgement:

7. The slave removes the connection and unreferences itself.

The process of canceling a connection is the same, only master and slave roles are exchanged.

Disconnect function prototypes:

void netDisconnect ()
void netDiscomnnect(int ip, SoFieldContainer #*fc)

CancelConnection function prototypes:

void netCancelConnections()
void netCancelConnection(int ip, SoFieldContainer *fc)

For convenience there is one function for closing all network connections including also all
connections of container’s fields:

void closeNetwork()

CHAPTER 4. SOFIELDCONTAINER EXTENSIONS 18

4.5 Public Network Connection Related Functions

bool netInvalidValue()
The function returns true in the case that the field has been connected but value has not
been updated yet. Until new value comes, old value of the field is present.

bool hasNetConnections()
The function returns true, if the field is connected through the network, or someone is
connected to it through the network.

bool hasFieldsNetConnections()
The function returns true, if any of the container’s fields has network-master or network-
slave connections.

bool isNetMaster()
The function returns true if some field is connected to this field over network.

bool isNetSlave()
The function returns true if this field is connected to some field over network.

int getNetMasterNum()
It returns the number of connections this field is connected from. Currently, returned
value can be only 0 or 1, no netAppendConnection() is implemented yet.

SbBool getNetMasterConnections(SoNetConnectionList &list)
In list it returns the list of connections this field is connected from.

const SoNetConnectionList* getNetMasterConnections()
It returns the list of connections this field is connected from.

int getNetSlaveNum()
The function returns the number of fields that are connected to this field.

SbBool getNetSlaveConnections(SoNetConnectionList &list)
In list it returns the list of connections to this field.

const SoNetConnectionList* getNetSlaveConnections()
The function returns the list of connections to this field.

4.6 Additional SoFieldContainer Internal Data

There are two data items added to SoFieldContainer class:

netMasters
List of connections to the masters.

netSlaves
List of connections to the slaves.

Because only few containers usually have network connections, there are only two pointers
placed directly to the SoFieldContainer class and when we need to store some connections in
the container, we allocate the appropriate list.

Chapter 5

SoGroup Extensions

5.1 Overview

SoGroup extensions is based on the SoFieldContainer ones (see the chapter 4), because SoGroup
is derived from SoFieldContainer. Additionally, SoGroup extends the behavior of SoFieldCon-
tainer to take care about its children nodes.

If one group is synchronized over network, all its fields and children must be synchronized.
The fields are synchronized in the manner presented in the chapter 4 about SoFieldContainer
extensions. The child adding and removing from the group must be handled. Moreover, all
children must be synchronized in the same way as they alone have been connected. In the case
of SoGroup child it means recursive behavior. So, whole scene graph under our heading group
is synchronized.

5.2 Synchronization of Graphs Over Network

If a SoGroup object has some slave connection, we need to synchronize whole scene graph under
the SoGroup. So, we utilize Inventor notification mechanism and during this process we need
to find ‘the notification path’, or simply the path from the connected SoGroup object to the
initiator of the notification. Then, in the case of a scene graph structure modification, we have
to send the path from the connected SoGroup to the modified object and the data related to
the type of modification. In the case of field’s value modification, we are sending the path to
field’s container, the field’s name and new value data.

Getting a notification path is a problem because each Inventor can implement the notification
in a little bit different way. So, I have tried to make independent implementation. It simply
make calls to special notification handling functions for each notified object in the scene graph
when the object is entered and left by notification. This can be easy done by modifying SoBase
and SoField notify method, because most of objects in the scene graph are derived from them.
The two handling functions, one when object is entered, one when leaving, keep the record of
the notification path. Actually, for the best performance, nothing is done until we find some
node with network connections. Then, when notification is going back and stack is popped, the
notification path is built.

If a field has been modified, after notification it receives list of notification paths. These
paths represents paths from nodes, containing network-slave connections, to the container of

19

CHAPTER 5. SOGROUP EXTENSIONS 20

the modified field. Usually, only one notification path is received, but it is not a general case,
because some nodes on the notification path can also have network-slave connections or because
of multiple references. So, the field takes all network-slave connections from all connected nodes
found during the notification and it sends ‘new value’ messages through them. Three things
is needed for creating such messages: the notification path, the name of the field and the new
value data. The ‘new value’ messages, generated by the SoField and SoFieldContainer extensions
(chapters 3 and 4), is handled together with these messages until entering Network Layer. Then
different message formats are used.

When the scene graph structure is modified, some little bit different things happen. After
notification process is done, group object, whose children list has been modified, receives list of
notification paths. The rest of work depends on the type of modification. Simplest operation is
removing a child. All we need is to send the path to the group whose children are modified and
index of removed child. If we are inserting a single node, we must send the type of inserting
node and values of all its fields. In the case of inserting a large scene graph we must send whole
scene graph structure and values of all fields in the scene graph.

There should be implemented a special mechanism of handling multiple references to be
correctly transferred from the master scene graph to all slave graphs. This is not currently
implemented in our ‘research’ code, because it will need deeper digging in the Inventor’s source
code to get an efficient solution. Generally, we should test all nodes in the graph, that is about
to be inserted, for network-slave connections. If we find some connections, we should compare
IP addresses of the connections and connections of connected scene graph we are inserting to.
The same IP addresses means multiple references and we must handle them by special network
messages when connecting and disconnecting.

The process of the modification on the master side:

1. An user modifies something in the scene graph headed by a group with network-slave
connections.

2. The notification is performed and the list of paths to nodes with network-slave connections
is returned.

3. The modification is handled.

4. Call Network Layer for sending appropriate messages to all network-slaves graphs.
The step 3 depends on the type of the modification:

e Field modifications are handled by preparing the ‘new value’ message data for sending.

e Removing something from the scene graph are handled simply by getting index of the
removed child.

e Inserting something to the scene graph are handled in three steps:

1. Multiple connection checking of each node in the inserted scene graph.

2. Storing inserted scene graph structure in the stream in the order to reconstruct it on
all slaves.

3. Preparing to send all fields values in the inserted scene graph.

CHAPTER 5. SOGROUP EXTENSIONS 21

The process of the modification on the slave side:
1. Network Layer decodes the message and send it to the appropriate SoGroup object.

2. The group object checks the connection status; if the connection is no longer active, then
return.

3. The group finds the target object for the modification by the path information from the
message

4. The modification is applied.

5.3 Process of Connecting of one Scene Graph to Another

The connecting one scene graph to another is composed of three steps. At first, we establish
the connection between the heading node of the master scene graph to the heading node of the
slave scene graph. At second, we must copy the master’s scene graph structure to the slave. At
third, we must copy values of all fields from the master to the slave. The second and the third
step must be made as one atomic operation because of consistency reasons. How this is handled
will be described in the capter 7 about Network Layer.

The process of the connecting:

1. The slave sends connection request to the master.
2. The master accepts/refuses the connection, the answer is sent to the slave.
3. The answer is received by the slave, the connection is established /canceled.

4. If the connection is established, the scene graph structure is synchronized and values of
all fields are updated

The function prototypes are same as for SoFieldContainer:

void netConnectFrom(int ip, SoFieldContainer #*fc)
void netConnectFrom(int ip, const char *name)
void netConnectFrom(int ip, const SbName &name)

5.4 Disconnect and Cancel Operations

Disconnect and cancel operations are using same algorithms as their SoFieldContainer’s versions
(see the section 4.4). At the moment of the disconnecting, although the connection is not
completely deleted, scene graph behaves like unconnected and no changes coming through the
network are applied. Note, that when we disconnect a scene graph, some parts of it may still
be connected. Because of multiple references they may still be parts of other connected graphs.

CHAPTER 5. SOGROUP EXTENSIONS 22

The process of the disconnecting:

The slave side after calling netDisconnect function:
1. The disconnect request is sent to the master.
2. The reference counter of heading group is incremented.

3. The slave container marks the connection as ‘closing’ and any incoming messages through
the connection are ignored.

4. The scene graph’s behavior is restored to be ‘like an unconnected scene graph’
The master side after receiving the disconnect request:

5. The network connection at the master heading group is removed.

6. The disconnect acknowledgement is sent to the slave.
The slave side after receiving the disconnect acknowledgement:

7. The slave removes the connection and unreferences the heading group.

The process of canceling a connection is the same, only master and slave roles are exchanged.

Disconnect function prototypes (same as for SoFieldContainer):

void netDisconnect ()
void netDisconnect(int ip, SoFieldContainer #*fc)

CancelConnection function prototypes (same as for SoField Container):

void netCancelConnections()
void netCancelConnection(int ip, SoFieldContainer *fc)

For convenience there is one function for closing all network connections of whole scene graph
including all node’s connections and all fields connections:

void closeNetwork()

5.5 Public Network Connection Related Functions

The functions are completely the same as in the SoFieldContainer, see the section 4.5.

5.6 Additional SoFieldContainer Internal Data

The functions are completely the same as in the SoFieldContainer, see the section 4.6.

Chapter 6

SoDS Global Class

6.1 Overview

SoDS (Distributed Scene) global class gives a programmer an access to the network functions.
It is Inventor manner to not leave global functions alone, but to group them to global classes
like SoDS class (scene database) or SoSensorManager class (sensors).

SoDS class is a public interface to the internal Network Layer functions. Network Layer will
be described in the chapter 7.

6.2 Public SoDS API

e initialization/finalization functions:

void init(bool initNetwork = true)
void done()

bool isNetworkOpen()

bool openNetwork()

void closeNetwork()

e connection management:
void connectComputer (uint32_t ip)
void disconnectComputer (uint32_t ip)
void dropAllNonEstablishedConnections()
void disconnectAllComputers()

e processing functions:
void processNetwork()
void processReceivedMessages ()

void performSending()

e getting network informations:

23

CHAPTER 6. SODS GLOBAL CLASS 24

const SbString& getHostName ()
uint32_t getHostIP()
SoMFString* getComputerNames ()
SoMFUInt32* getComputerIPs()

e callbacks:

void setComputerListChangedCallback(SoDSComputerListChangedCB *f,

void *userData = NULL)
void setConnectQueryCallback(SoDSConnectQueryCB *f, void *userData = NULL)
void setUserMsgCallback(SoDSUserMsgCB *f)

The function descriptions:

e initialization/finalization functions:

void init(bool initNetwork = true)
Initializes all internal data structures. If initNetwork parameter is true, it also ini-
tializes network by calling openNetwork function.

void done()
Closes network and frees all allocated resources.

bool openNetwork()
Initializes network. So, other computers can connect to this computer and this com-
puter can make connections to the others.

void closeNetwork()
Closes network. All connected fields and containers in all scene graphs in the ap-
plication are disconnected. Then connections to the other computers are closed and
network resources are freed.

bool isNetworkOpen()
Returns true, if network has been successfully initialized by openNetwork().

e connection management:

void connectComputer(uint32.t ip)
Establish connection between this computer and computer identified by ip. The
connection is not established immediately. There must be done some connecting
work. After everything is done, connection is append to the global connection list.

void disconnectComputer (uint32.t ip)
Disconnect computer identified by ip. At first, all fields and containers network
connections are disconnected. Then connection is safety closed.

void dropAllNonEstablishedConnections()
All connections which are currently trying to be established or their establishing
process is in the progress are dropped.

void disconnectAllComputers()
Connections to all computers are closed. It is nearly same operation like calling
disconnectComputer() for all the connections.

CHAPTER 6. SODS GLOBAL CLASS 25

e processing functions:

void processNetwork()
Performs sending and receiving network operations. It is equal to call processRe-
ceivedMessages() and performsending().

void processReceivedMessages ()
All messages received by network and waiting to be processed and applied to the
scene graph are processed.

void performSending()
All messages waiting to be send are sent.

void sendMessage(uint32.t ip, int msgld, void *buf, int size)
Sends user message to computer identified by IP. The computer must be in the global
connected computer list. The message, specified by a pointer and a size, is marked
by msgld parameter and sent to the target computer.

e getting network informations:

const SbString& getHostName ()
Returns host name of this computer.
uint32_t getHostIP()
Returns IP address of this computer.
SoMFString* getComputerNames ()
Returns global SoMFString field containing names of all connected computers.

SoMFUInt32* getComputerIPs()
Returns global SoOMFUInt32 field containing IP addresses of all connected computers.

e callbacks:

typedef void SoDSComputerListChangedCB(void * userdata)
void setComputerListChangedCallback(
SoDSComputerListChangedCB *f, void *userData = NULL)
Sets the callback that is called each time global computer list is modified. The
computer list is changing each time some computer is successfully connected or dis-
connected.
typedef bool SoDSConnectQueryCB(uint32t ip, const char* hostName,
void *userData, int userDataSize, int &errorCode)
void setConnectQueryCallback(SoDSConnectQueryCB *f,
void *userData = NULL)
Sets the callback that is called each time some computer tries to connect to this

computer. User is allowed to accept or denies to the computer to connect. If no
callback is registered, all computers can connect to this computer.

typedef void SoDSUserMsgCB(int id, uint32_t ip, void *buf, int size)
void setUserMsgCallback(SoDSUserMsgCB *f)

Sets the callback that is called each time some connected computer sends user mes-
sage. If no callback is registered, message is ignored.

CHAPTER 6. SODS GLOBAL CLASS 26

6.3 Connecting Other Computers

To have fully established connection between two computers requires some conditions to be
satisfied:

1. To get the agreement to connect from the other computer.

2. To have a safe network connection.

3. To be sure about the same types assigned to Inventor classes on both computers.
4. To have synchronized Inventor’s time on both computers.

5. To pass the measurement of the network bandwidth and ping times.

In first step we are asking another computer whether it accepts our connection. There is
an user defined callback on the target computer and user may refuse the connection. If the
connection is accepted we need to establish safe network connection. To have the safe network
connection means not to worry about lost packets and incoming packet order. This can be done
in the software wrapping OS sockets. The third point is important if we are using different types
of Inventors. It is not much usual, so it is currently nothing done for this. The fourth step is very
important for running engines and animations based on global Inventor’s time, because we want
to they work same on the all computers. The last step should get an idea about the network
connection performance, because this information is important for Network Layer. After all this
is passed, the connection is fully established and appended to the global connection list.

Currently, the connecting computers algorithms are in the ‘before realization’ state, because
it is on the edge of this topic. Instead, we are using PVM toolkit [2] for handling all network
communication.

Chapter 7

Network Layer

7.1 Overview

Network Layer is the core network implementation providing convenient API interface for the
rest of the distributed scene implementation. It is composed of three parts:

e network message classes
e low-level networking
e network management with public API by SoDS global class

Note that all Network Layer API is private and used throughout the distributed scene extension.
Only public APT is accessible through SoDS global class (see the chapter 6).
Network Layer has several important functions:

e It provides the hi-level network API for other distributed scene modules.

e It contains the rich set of network messages and several abstract classes for deriving addi-
tional messages.

e It automatically handles messages sending and receiving.

e It provides the convenient mechanisms for keeping the scene consistency up.

7.2 Handling of Scene Modifications

In figure 7.1 we can see the modification process from the section 2.4 with special focus on
Network Layer. In the figure we can see two scene graphs. The left is master, the right slave.
The process of the modification of the field in the transform node follows:

1. An user modifies the field.
2. The heading group of the scene graph is notified about the scene graph modification.

3. The modified field receives the path starting at the heading group and terminating at the
field’s container. It also receives the list of all network-slave connections of the heading
node.

27

CHAPTER 7. NETWORK LAYER

master scene graph

seraiue
network

layer

-
[P R

outgoing messages

e ———

28
slave scene graph
7.
network
layer

incoming messages

Figure 7.1: Handling of a scene modification

4. All appropriate data is passed from the field to Network Layer. The network message

object is created and put to the queue.

5. All messages are sent to all their computer recipients.

6. After receiving, messages are sent to their destination objects in the scene graph.

7. The destination object applies message ‘new value’ message to the appropriate field.

The steps 1,2 and 3 has been well described in the section 2.4 about modifications handling.
The fourth, fifth and sixth step will be described in this chapter that is focused on the basic
distributed scene related problems. The seventh step again in the section 2.4.

7.3 General Design

Typical Inventor applications work in two stages (figure 7.2a):

1. Application processing and modifying of the scene

2. Rendering of the scene

Inventor applications using our network extension will work usually in four stages (figure 7.2b):

1. Application processing and modifying of the scene

CHAPTER 7. NETWORK LAYER 29

Network

Application processin_g

processing

1 '
] 1
]]
1]
1 r

Applicatibn
processing

Rendering “Network

processing

a) b)

Figure 7.2: The application processing loop: a) without network b) with network

2. Network processing — sending and receiving the scene modifications
3. Rendering of the scene
4. Network processing — sending and receiving the scene modifications

We are updating the scene two times to keep the scene in the most possible actual state. This
handles most of all cases. Anyway, if an user has some special needs, he can handle network
processing by himself. There are three functions in global SoDS class for handling this: per-
formSending, processReceivedMessages and processNetwork. For more information about the
functions see the section 6.2.

The network is handled by main application thread, so we do not have problems with locking
and interfering among threads. Anyway, multithreaded version should be not a great problem,
because Network Layer strictly separates its data and the data of the scene graph.

7.4 Mechanism of Sending Messages

We do not pass messages directly to the network sockets, instead we are scheduling them in the
queue and sending them together. There are two reasons for this:

e Sending large stream can be much more efficient then sending many small streams.

o We can easily detect multiple modifications of one field and send only the latest modifica-
tion.

When a message is about to be scheduled in the outgoing network queue, the queue is first
searched for messages that can be removed because they will lose their meaning by scheduling
the message. For example, older modification of the same field may be in the queue. All this
can be done only if we keep some consistency dependencies.

All messages are put in the queue until SoDS::performSending() is called. Then the sending
starts. For each target computer we create list of messages from the queue. Then we store them
to the streams and send the streams to their computers.

CHAPTER 7. NETWORK LAYER 30

7.5 Handling the Scene Consistency

Some discussion about scene consistency has been given in the section 2.5. Now, because of the
design of the message handling presented in the previous sections in this chapter, the handling
of the consistency is quite easy. We will expect, the scene is consistent at the moment before and
after scene is rendered. At these times the network is processed and all messages in the outgoing
queue are sent. Because the scene is consistent at the time of processing, we can put ‘consistency
valid’ message at the end of the queue. Each computer, when it receives this message, can be
sure that applying all previous messages coming from the same computer do not break the scene
consistency.

7.6 Limited-Bandwidth Networks

Sometimes there may be a problem with a network bandwidth. A programmer can make a very
‘modification extensive’ application that will need more network bandwidth than is available.
The same problem can arise when too many computers are connected to one computer or only
dial-up connection is available.

The most terrible scenario is that a server is making very many modifications and its sending
queue is getting terribly long. Time from a modification on the server to updating all slaves takes
many seconds. Finally, server’s outgoing queue take all server’s free memory and application
crashes.

We should handle these problems. Some optimization work can be done on outgoing message
queue. For example, we can remove ‘consistency valid’ messages of the long message queue to
remove some consistency constraints and purge possibly many ‘new value’ messages. All this is
for future research.

7.7 Process of Receiving Messages

Incoming messages stays in OS buffers until network is processed. It is done before and after
rendering. All streams are read from the socket and they are processed. Messages are read from
them and if ‘consistency valid’ message is found, all previous messages of the stream are applied
to the scene graph.

7.8 Abstract Message Classes

I am using message classes derived from NSMessage (Network Sent Message) for sending and
message classes derived from NRMessage (Network Received Message) for decoding and applying
messages on the target computer.

class NSMessage

{

public:
NSMessage* getNext() const;
NSMessage* getPrev() const;

CHAPTER 7. NETWORK LAYER 31

virtual uint32_t getOneTargetIP() const;
virtual bool isTargetingIP(uint32_t ip) const;
virtual bool isEmpty() const;

virtual void onSchedule();
virtual void write(uint32_t ip, std::ostream &out);

virtual “NSMessage(Q);

void send();

};

NSMessage* getNext() const;NSMessage* getPrev() const;
The functions used for browsing in the outgoing message queue.

virtual uint32_t getOneTargetIP() const = 0O;
The function returns one of the message target ip addresses.

virtual bool isTargetingIP(uint32.t ip) const = 0;
The function is testing whether ip is one of the target ip addresses of the message.

virtual bool isEmpty() const = 0;
The function returns false, if the message has been sent to all its target ip addresses.

virtual void onSchedule();
This virtual function does nothing by default, but it can be overridden by descendants
to perform some actions when message is scheduled. It is called immediately before the
message is put to the queue.

virtual void write(uint32.t ip, std::ostream &out) = 0;
The function writes the message to the stream specified by out parameter. When message
is written, target ip address is removed from list of message targets. If no more messages
rest, calling isEmpty() will return true.

virtual ~NSMessage();
Virtual destructor. It frees all allocated resources.

void send();
Schedules the message to be sent. It calls onSchedule() virtual function and then inserts
message to the outgoing message queue.

class NRMessage

{

public:
NRMessage* getNext() const;
uint32_t getIP() const;
void setIP(uint32_t ip);

virtual void read(std::istream &in) = O;

CHAPTER 7. NETWORK LAYER

virtual void apply() = 0;
static void processMessages(std::istream &in, uint32_t ip);

NRMessage (uint32_t ip);
virtual “NRMessage(Q);
};

NRMessage* getNext() const;
The function returns next message in the incoming message queue.

uint32_t getIP() const ;
The function returns the ip address the message comes from.

void setIP(uint32.t ip);
The function for setting the message ip address.

virtual void read(std::istream &in) = 0;
The function reads the message from the stream.

virtual void apply() = 0;

32

The function ‘executes’ the message. Its content is applied to the scene graph. If there is

a response, it will be passed to the outgoing message queue.

static void processMessages(std::istream &in, uint32.t ip);

The function creates appropriate message object, reads it from the stream and executes

the message object.

NRMessage (uint32_t ip);

Constructor. It sets message ip address where the message comes from.

virtual ~NRMessage();
Virtual destructor. It frees all allocated resources.

7.9 Network Messages

e System messages:
MSG_END_OF_STREAM

MSG_PING

e Connecting computers:

MSG_COMP_REG_REQ
MSG_COMP_REG_ACK
MSG_COMP_UNREG_REQ
MSG_COMP_UNREG_ACK

o User messages:
MSG_USER-MESSAGE

CHAPTER 7. NETWORK LAYER 33

o Fields messages:
MSG_FIELD_CONNECT FROM_BY_PTR

MSG_FIELD_CONNECT_FROM_BY_NAME
MSG_FIELD_UPDATE_PTR
MSG_FIELD_DISCONNECT_REQ
MSG_FIELD_DISCONNECT_ACK
MSG_FIELD_CANCEL_REQ
MSG_FIELD_NEW_VALUE

e Containers messages:
MSG_CONTAINER_CONNECT _FROM BY_PTR
MSG_CONTAINER_CONNECT_FROM_BY_NAME
MSG_CONTAINER_UPDATE PTR
MSG_CONTAINER_DISCONNECT_REQ
MSG_CONTAINER_DISCONNECT_ACK
MSG_CONTAINER_CANCEL _REQ
MSG_FIELD_CONNECT FROM_BY_CONTAINER
MSG_CONTAINER NEW VALUE

The message descriptions:

e System messages:

MSG_END_OF_STREAM
The message is present on the each stream sent through the network. It serves also
as ‘consistency mark’.

Message data:

< no data >

MSG_PING
The message is used for measuring ping times among computers. Not implemented
yet.

Message data:

time of sending
e Connecting computers:

MSG_COMP_REG_REQ
The message is sent to the another computer to ask it for establishing the connection.
This is the only one message together with MSG_COMP_REG_ACK that can be sent
without the non-established safe network connection.

Message data:
char[] hostName
network name of the requesting computer

void[] userData
user data

CHAPTER 7. NETWORK LAYER 34

int userDataSize
data size

MSG_COMP_REG_ACK
The message is the answer for receiving MSG_COMP_REG_REQ. If connection is
accepted, accept is true and the safe network connection is established. Otherwise,
accept is false and the connection is not established.

Message data:
bool accept
true, if the connection has been accepted

int errorCode
error code value; can be set independently whether the connection has been
accepted or not

void[] userData
user data

int userDataSize
user data size

MSG_COMP_UNREG_REQ
The sending computer is asking the another computer for closing the safe network
connection and to disconnect. There is not possible to refuse the message. This mes-
sage must be the last sent message of the sending computer, because the connection
is supposed to be closed by the sending computer.

Message data:
< no data >

MSG_COMP_UNREG_ACK
The message means the connection is closed and no more messages will arrive from
the sending computer.

Message data:

< no data >
e User messages:

MSG_USER _MESSAGE
This is user defined message. A user can send his own messages. The message is
marked with id identifier for user convenience. Data are specified as an array of chars
of specified size.

Message data:
int id
message id
char[] data
data buffer
int dataSize
data size

CHAPTER 7. NETWORK LAYER 35

o Fields messages:

MSG_FIELD_CONNECT_FROM_BY PTR
This is the connection request based on the destination field address.

Message data:
SoField *dest

destination field pointer
SoField *src

source field pointer

MSG_FIELD_CONNECT _FROM_BY _NAME
This is the connection request based on the field’s name and name of its container.

Message data:
char[] containerName
destination field’s container name

char[] fieldName
destination field name
SoField *src
source field pointer

MSG_FIELD _UPDATE PTR
The message is response to the MSG_FIELD_CONNECT_FROM_BY_NAME mes-
sage, because for the full established connection we need to know the pointer of the
target object.

Message data:
SoField *dest

destination field pointer
SoField *src

source field pointer

MSG_FIELD DISCONNECT REQ
The slave field is asking master for disconnecting.

Message data:
SoField *dest

destination field pointer
SoField *src

source field pointer

MSG_FIELD DISCONNECT_ACK
This is a common answer for MSG_FIELD _DISCONNECT _REQ and MSG_FIELD-
_CANCEL_REQ messages.

Message data:

SoField *dest
destination field pointer

CHAPTER 7. NETWORK LAYER 36

MSG_FIELD_CANCEL_REQ
The master field is asking the slave field for disconnecting.

Message data:
SoField *dest

destination field pointer
SoField *src

source field pointer

MSG_FIELD NEW_VALUE
The new value message sent by master field to the slave field.

Message data:
SoField *dest
destination field pointer
char[] data
new value’s data
int dataSize
data size

o Containers messages:

MSG_CONTAINER_CONNECT FROM_BY_PTR
The message is connection request based on pointer to destination object. The con-
necting objects can be SoFieldContainer’s descendants. This includes SoGroup, so
this message is also used to connect graphs.

Message data:

SoFieldContainer *dest
destination container pointer
SoFieldContainer *src
source container pointer

MSG_CONTAINER_CONNECT FROM_BY_NAME
The message is connection request based on name of destination object. The con-
necting objects can be SoFieldContainer’s descendants. This includes SoGroup, so
this message is also used to connect graphs.

Message data:

char[] containerName

name of the destination container
SoFieldContainer *src

source container pointer

MSG_CONTAINER_UPDATE PTR
The message is response to the MSG_CONTAINER_CONNECT FROM _BY _NAME
message, because for the full established connection we need to know the pointer of
the target object.

CHAPTER 7. NETWORK LAYER 37

Message data:
SoField *dest

destination container pointer
SoField *src

source container pointer

MSG_CONTAINER DISCONNECT REQ
The slave is asking master for disconnecting.

Message data:
SoField *dest
destination container pointer
SoField *src
source container pointer
MSG_CONTAINER DISCONNECT_ACK

This is a common answer for MSG_CONTAINER _DISCONNECT REQ and MSG-
_CONTAINER_CANCEL_REQ messages.

Message data:
SoField *dest

destination container pointer

MSG_CONTAINER_CANCEL_REQ
The master is asking the slave for disconnecting.

Message data:
SoField *dest
destination container pointer
SoField *src
source container pointer
MSG_FIELD_CONNECT _FROM_BY_CONTAINER

This is the connection request to connect one field to the another based on the pointer
to container and the destination field name.

Message data:

SoFieldContainer *container
pointer to the container
char[] fieldName
name of the target field
SoField *src
source container pointer
MSG_CONTAINER NEW_VALUE

The new value message sent by master to the slave. The target field is found by path
and field name.

CHAPTER 7. NETWORK LAYER

Message data:

SoFieldContainer *dest
destination container /heading node pointer
path
path from the heading node to the field’s container
fieldName
name of the target field
char[] data
‘new value’ data
int dataSize
data size

38

Chapter 8

Results

8.1 Overview

The purpose of the distributed scene toolkit is to give a programmers convenient API for de-
velopment of shared distributed scenes. We have chosen to implement our distributed scene
extension into Coin, a library that fully implements Open Inventor 2.1 API.

We have designed an easy-to-use API extension that is following the clear Open Inventor API
design. We have choose to use master-slave architecture for synchronization of scene graphs,
nodes and fields. Some investigation has been done to maintain consistency of distributed scenes.

We have verified that the robustness of Open Inventor can handle all demands for realization
of the distributed scene. Moreover, there has been no need to use any hacks into Inventor’s
design.

8.2 Testing

I have developed an application for testing and demonstration purposes of my distributed scene
extension. It is simple space scene viewer with implemented collision detection and one addi-
tional computer-driven ship.

For a testing purposes I have run the application on two computers and made connection
among the scene graphs of the computer-driven ships, so the slave ship has been synchronized
as it received the update messages from the master ship on the other computer. A screenshot
is shown in figure 8.1.

There is another test shown in figure 8.2. I have established the connection between the
root-nodes of the scene graphs of the two computers. So, the whole scene graphs are kept
synchronized. We can see the same rotation of the planets and the same position and direction
of the viewer. The slightly strange differencies between the positions of the computer-driven
ships is caused by the ’latency’ among the applications (non-accelerated OpenGL and very low
Frames Per Second — FPS).

Finally some additional testing has been made to some special cases, like deletion of one
of the computer-driven ships, to prove there is not a problem with Inventor design and the
connection can be safely closed. We have not discovered any such problems and all special cases
are handled in regular ways without using special hacks into Inventor implementation.

39

CHAPTER 8. RESULTS 40

Bl Sector &

FPS

gluthtml OpenGL_D..
b t

Figure 8.1: The testing and demonstration application: synchronizing positions of the two space
ships between the two applications. Because of the screenshot the applications has been run on
the same computer.

8 Sector &

FOT

glut. html . Diigger
i 3 1

Figure 8.2: The testing and demonstration application: synchronization of the two scenes. We
can see the same rotation of the planets, the same position and direction of the viewer and
"latency’ caused differencies among the computer-driven ships (because about 1 FPS).

CHAPTER 8. RESULTS 41

8.3 Conclusion

In the past time a programmer of distributed 3D graphics applications must hardly implement
the difficult network functionality and then fight with objects synchronization, distributed ob-
jects interaction and the scene consistency.

Now, a programmer is saved from all network troubles, because all network functionality
is implemented for him. The objects synchronization is handled in elegant ways and there are
introduced some mechanisms for a programmer that can help him much to face the distributed
scene pecularities.

The easiness of development Inventor local 3D applications is now extended by distributed
abilities, so development of distributed 3D applications should be no longer hard work. I hope,
this extension move the people’s horizon of possibilities yet a little bit further.

8.4 Future Work

The aim of this work, to design a toolkit for distributed 3D graphics, has been accomplished.
It means to touch many internal Inventor implementation principles to see posibilities of the
design of the toolkit. Finally, our ‘research’ implementation proved that the ways of the design
are right.

The first steps in the future research will probably be to turn our ‘research’ implementation
to the ‘public’ one. It means especially to implement some convenient functionality that has not
been in the center of the scope of this research work.

We expect additional reseach at the area of consistency models for the distributed virtual
scenes. This, we hope, should minimize the amount of consistency problems a programmer must
take care about.

Finally, some classes should be developed for making the development of the distributed
scenes easier. There should be some motion related classes to make objects’ motion smooth and
to solve some collision detection related problems in distributed scenes.

Bibliography

[10]

[11]

[12]
[13]

George Colouris, Jean Dollimore, Tim Kindberg, Distributed Systems Concepts and Design,
Addison-Wesley, 1996

PVM (Parallel Virtual Machine), http://www.csm.ornl.gov/pvm/pvm_home.html

Gerd Hesina, Distributed Open Inventor: A Practical Approach to Distributed 3D Graphics,
1999, http://www.cg.tuwien.ac.at /research/vr/div/

V. Krishnaswamy, M. Ahamad, M. Raynal, D. Bakken, Shared State Consistency for Time-
Sensitive Distributed Applications, in Newsletter of the Technical Commitee on Distributed
Processing Fall 2001

Systems in Motion, Coin3D, http://www.coin3d.org/

SGI, Open Inventor, http://www.sgi.com/software/inventor/
Template Graphics Software, Open Inventor, http://www.tgs.com/
Josie Wernecke, The Inventor Mentor, Addison-Wesley, 1994

Josie Wernecke, The Inventor Toolmaker, Addison-Wesley, 1994

SGI, OpenGL Performer Getting Started Guide, 2000,
http://techpubs.sgi.com/library /manuals/3000/007-3560-002/pdf/007-3560-002.pdf

SGI, OpenGL Performer Programmer’s Guide, 2001,
http://techpubs.sgi.com/library /manuals/1000/007-1680-070/pdf/007-1680-070.pdf

Viéclav Dvoidk, Advanced Computer Architecture, Vysoké uéeni technické v Brné, 1997

SGI, The OpenGL Graphics System: A Specification (Version 1.8), 2001,
http://www.opengl.org/developers/documentation/versionl_3/glspecl3.pdf

42

