
Compositional Entailment Checking
for a Fragment of Separation Logic

FIT BUT Technical Report Series

Constantin Enea, Onďrej Lengál,
Mihaela Sighireanu, and Tomáš Vojnar

Technical Report No. FIT-TR-2014-01
Faculty of Information Technology, Brno University of Technology

Last modified: October 2, 2014

Compositional Entailment Checking for a Fragment of
Separation Logic

Constantin Enea1, Ondřej Lengál2, Mihaela Sighireanu1, and Tomáš Vojnar2

1 Univ. Paris Diderot, LIAFA CNRS UMR 7089
2 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. We present a (semi-)decision procedure for checking entailment be-
tween separation logic formulas with inductive predicates specifying complex
data structures corresponding to finite nesting of various kinds of linked lists:
acyclic or cyclic, singly or doubly linked, skip lists, etc. The decision procedure
is compositional in the sense that it reduces the problem of checking entailment
between two arbitrary formulas to the problem of checking entailment between
a formula and an atom. Subsequently, in case the atom is a predicate, we reduce
the entailment to testing membership of a tree derived from the formula in the
language of a tree automaton derived from the predicate. We implemented this
decision procedure and tested it successfully on verification conditions obtained
from programs using singly and doubly linked nested lists as well as skip lists.

1 Introduction
Automatic verification of programs manipulating dynamic linked data structures is
highly challenging since it requires one to reason about complex program configura-
tions having the form of graphs of an unbounded size. For that, a highly expressive
formalism is needed. Moreover, in order to scale to large programs, the use of such
a formalism within program analysis should be highly efficient. In this context, separa-
tion logic (SL) [14,19] has emerged as one of the most promising formalisms, offering
both high expressiveness and scalability. The latter is due to its support of composi-
tional reasoning based on the separating conjunction ∗ and the frame rule, which states
that if a Hoare triple {φ}P{ψ} holds and P does not alter free variables in σ, then
{φ ∗σ}P{ψ ∗σ} holds too. Therefore, when reasoning about P , one has to manipulate
only specifications for the heap region altered by P .

Usually, SL is used together with higher-order inductive definitions that describe
the data structures manipulated by the program. If we consider general inductive defi-
nitions, then SL is undecidable [5]. Various decidable fragments of SL have been intro-
duced in the literature [1,13,17,3] by restricting the syntax of the inductive definitions
and the boolean structure of the formulas.

In this work, we focus on a fragment of SL with inductive definitions that allows one
to specify program configurations (heaps) containing finite nestings of various kinds
of linked lists (acyclic or cyclic, singly or doubly linked, skip lists, etc.), which are
common in practice. This fragment contains formulas of the form ∃

−→
X.Π ∧ Σ where

X is a set of variables, Π is a conjunction of (dis)equalities, and Σ is a set of spatial
atoms connected by the separating conjunction. Spatial atoms can be points-to atoms,
which describe values of pointer fields of a given heap location, or inductively defined
predicates, which describe data structures of an unbounded size. We propose a novel
(semi-)decision procedure for checking the validity of entailments of the form ϕ ⇒ ψ

where ϕ may contain existential quantifiers and ψ is a quantifier-free formula. Such
a decision procedure can be used in Hoare-style reasoning to check inductive invariants
but also in program analysis frameworks to decide termination of fixpoint computations.
As usual, checking entailments of the form

∨
i ϕi ⇒

∨
j ψj can be soundly reduced to

checking that for each i there exists j such that ϕi ⇒ ψj .
The key insight of our decision procedure is an idea to use the semantics of the sep-

arating conjunction in order to reduce the problem of checking ϕ ⇒ ψ to the problem
of checking a set of simpler entailments where the right-hand side is an inductively-
defined predicate P (. . .). This reduction shows that the compositionality principle holds
not only for deciding the validity of Hoare triples but also for deciding the validity of
entailments between two formulas. To infer (dis)equalities implied by spatial atoms, our
reduction to checking simpler entailments is based on boolean unsatisfiability checking,
which is in co-NP but can usually be checked efficiently by current SAT solvers.

Further, to check entailments ϕ ⇒ P (. . .) resulting from the above reduction, we
define a decision procedure based on the membership problem for tree automata (TA).
In particular, we reduce the entailment to testing membership of a tree derived from ϕ
in the language of a TA A[P] derived from P (. . .). The tree encoding of ϕ preserves
some edges of the graph, called backbone edges, while others are re-directed to new
nodes, related to the original destination by special symbols. Roughly, such a symbol
may be a variable represented by the original destination, or it may show how to reach
the original destination using backbone edges only.

Our procedure is complete for formulas speaking about non-nested singly as well as
doubly linked lists. Moreover, it runs in polynomial time modulo an oracle for deciding
validity of a boolean formula. The procedure is incomplete for nested list structures due
to not considering all possible ways in which targets of inner pointer fields of nested list
predicates can be aliased. The construction can be easily extended to become complete
even in such cases, but then it becomes exponential. However, even in this case, it
is exponential in the size of the inductive predicates used, and not in the size of the
formulas, which remains acceptable in practice.

We implemented our decision procedure and tested it successfully on verification
conditions obtained from programs using singly and doubly linked nested lists as well
as skip lists. The results show that our procedure does not only have a theoretically
favorable complexity (for the given context), but it also behaves nicely in practice, at
the same time offering the additional benefit of compositionality that can be exploited
within larger verification frameworks caching the simpler entailment queries.

Contribution. Overall, the contribution of this paper is a novel (semi-)decision proce-
dure for a rich class of verification conditions with singly as well as doubly linked lists,
nested lists, and skip lists. As discussed in more detail in Section 9, existing works that
can efficiently deal with fragments of SL capable of expressing verification conditions
for programs handling complex dynamic data structures are still rare. Indeed, we are not
aware of any techniques that could decide the class of verification conditions considered
in this paper at the same level of efficiency as our procedure. In particular, compared
with other approaches using TAs [13,12], our procedure is compositional as it uses TAs
recognizing models of predicates, not models of entire formulas (further differences are
discussed in the related work section). Moreover, our TAs recognize in fact formulas

2

that entail a given predicate, reducing SL entailment to the membership problem for
TAs, not the more expensive inclusion problem as in other works.

2 Separation Logic Fragment

Let Vars be a set of program variables, ranged over using x, y, z, and LVars a set of
logical variables, disjoint from Vars , ranged over usingX , Y , Z. We assume that Vars
contains a variable NULL. Also, let F be a set of fields.

We consider the fragment of separation logic whose syntax is given below:

x, y ∈ Vars program variables X,Y ∈ LVars logical variables E,F ::= x | X
f ∈ F fields ρ ::= (f,E) | ρ, ρ P ∈ P predicates

−→
B ∈ (Vars ∪ LVars)∗ vectors of variables

Π ::= E = F | E 6= F | Π ∧Π pure formulas

Σ ::= emp | E 7→ {ρ} | P (E,F,
−→
B) | Σ ∗Σ spatial formulas

ϕ , ∃
−→
X.Π ∧Σ formulas

W.l.o.g., we assume that existentially quantified logical variables have unique names.
The set of program variables used in a formula ϕ is denoted by pv(ϕ). By ϕ(

−→
E) (resp.

ρ(
−→
E)), we denote a formula (resp. a set of field-variable couples) whose set of free vari-

ables is
−→
E . Given a formula ϕ, pure(ϕ) denotes its pure partΠ . We allow set operations

to be applied on vectors. Moreover, E 6=
−→
B is a shorthand for

∧
Bi∈
−→
B
E 6= Bi.

The points-to atom E 7→ {(fi, Fi)}i∈I specifies that the heap contains a location
E whose fi field points to Fi, for all i. W.l.o.g., we assume that each field fi appears
at most once in a set of pairs ρ. The fragment is parameterized by a set P of inductively
defined predicates; intuitively, P (E,F,

−→
B) describes a possibly empty nested list seg-

ment delimited by its arguments, i.e., all the locations it represents are reachable from
E and allocated on the heap except the locations in {F} ∪

−→
B .

Inductively defined predicates. We consider predicates defined as

P (E,F,
−→
B) , (E = F ∧ emp)∨(

E 6= {F} ∪
−→
B ∧ ∃Xtl. Σ(E,Xtl,

−→
B) ∗ P (Xtl, F,

−→
B)
) (1)

where Σ is an existentially-quantified formula, called the matrix of P , of the form:

Σ(E,Xtl,
−→
B) , ∃

−→
Z .E 7→ {ρ({Xtl} ∪

−→
V)} ∗Σ′ where

−→
V ⊆

−→
Z ∪
−→
B and

Σ′ ::= Q(Z,U,
−→
Y) | 	1+ Q[Z,

−→
Y] | Σ′ ∗Σ′

for Z ∈
−→
Z , U ∈

−→
Z ∪
−→
B ∪ {E,Xtl},

−→
Y ⊆

−→
B ∪ {E,Xtl}, and

	1+ Q[Z,
−→
Y] , ∃Z′. ΣQ(Z,Z′,

−→
Y) ∗Q(Z′, Z,

−→
Y) where ΣQ is the matrix of Q.

(2)

The formula Σ specifies the values of the fields defined in E (using the atom E 7→
{ρ({Xtl} ∪

−→
V)}, where the fields in ρ are constants in F) and the (possibly cyclic)

nested list segments starting at the locations
−→
Z referenced by fields of E. We assume

3

singly linked lists:
ls(E,F) , lemp(E,F) ∨ (E 6= F ∧ ∃Xtl. E 7→ {(f,Xtl)} ∗ ls(Xtl, F))

lists of acyclic lists:
nll(E,F,B) , lemp(E,F) ∨ (E 6= {F,B} ∧ ∃Xtl, Z. E 7→ {(s,Xtl), (h, Z)} ∗

ls(Z,B) ∗ nll(Xtl, F,B))lists of cyclic lists:
nlcl(E,F) , lemp(E,F) ∨ (E 6= F ∧ ∃Xtl, Z. E 7→ {(s,Xtl), (h, Z)} ∗

	1+ ls[Z] ∗ nlcl(Xtl, F))skip lists with three levels:
skl3(E,F) , lemp(E,F) ∨ (E 6= F ∧ ∃Xtl, Z1, Z2. E 7→ {(f3, Xtl), (f2, Z2),

(f1, Z1)} ∗ skl1(Z1, Z2) ∗ skl2(Z2, Xtl) ∗ skl3(Xtl, F))

skl2(E,F) , lemp(E,F) ∨ (E 6= F ∧ ∃Xtl, Z1. E 7→ {(f3,NULL), (f2, Xtl),
(f1, Z1)} ∗ skl1(Z1, Xtl) ∗ skl2(Xtl, F))

skl1(E,F) , lemp(E,F) ∨ (E 6= F ∧ ∃Xtl. E 7→ {(f3,NULL), (f2,NULL),
(f1, Xtl)} ∗ skl1(Xtl, F))

Fig. 1. Examples of inductive definitions (lemp(E,F) , E = F ∧ emp).

thatΣ contains a single points-to atom in order to simplify the presentation. Notice that
the matrix of a predicate P does not contain applications of P .

The macro 	1+ Q[Z,
−→
Y] is used to represent a non-empty cyclic (nested) list seg-

ment on Z whose shape is described by the predicate Q.
We consider several restrictions on Σ which are defined using its Gaifman graph

Gf [Σ]. The set of vertices of Gf [Σ] is given by the set of free and existentially quan-
tified variables in Σ, i.e., {E,Xtl} ∪

−→
B ∪

−→
Z . The edges in Gf [Σ] represent spatial

atoms: for every (f,X) in ρ, Gf [Σ] contains an edge from E to X labeled by f ; for
every predicate Q(Z,U,

−→
Y), Gf [Σ] contains an edge from Z to U labeled by Q; and

for every macro 	1+ Q[Z,
−→
Y], Gf [Σ] contains a self-loop on Z labeled by Q.

The first restriction is that Gf [Σ] contains no cycles other than self-loops built
solely of edges labeled by predicates. This ensures that the predicate is precise, i.e.,
for any heap, there exists at most one sub-heap on which the predicate holds. Precise
assertions are very important for concurrent separation logic [10].

The second restriction requires that all the maximal paths of Gf [Σ] start in E and
end either in a self-loop or in a node from

−→
B ∪ {E,Xtl}. This restriction ensures that

(a) all the heap locations in the interpretation of a predicate are reachable from the
head of the list and that (b) only the locations represented by variables in F ∪

−→
B are

dangling. Moreover, for simplicity, we require that every vertex of Gf [Σ] has at most
one outgoing edge labeled by a predicate.

For example, the predicates given in Fig. 1 describe singly linked lists, lists of
acyclic lists, lists of cyclic lists, and skip lists with three levels.

We define the relation ≺P on P by P1 ≺P P2 iff P2 appears in the matrix of
P1. The reflexive and transitive closure of ≺P is denoted by ≺∗P. For example, if
P = {skl1, skl2, skl3}, then skl3 ≺P skl2 and skl3 ≺∗P skl1.

Given a predicate P of the matrix Σ as in (2), let F 7→(P) denote the set of fields
f occurring in a pair (f,X) of ρ. For example, F7→(nll) = {s, h} and F7→(skl3) =
F7→(skl1) = {f3, f2, f1}. Also, let F∗7→(P) denote the union of F7→(P ′) for all P ≺∗P
P ′. For example, F∗7→(nll) = {s, h, f}.

We assume that≺∗P is a partial order, i.e., there are no mutually recursive definitions
in P. Moreover, for simplicity, we assume that for any two predicates P1 and P2 which

4

(S,H) |= P (E,F,
−→
B) iff there exists k ∈ N s.t. (S,H) |= P k(E,F,

−→
B) and

ldom(H) ∩ ({S(F)} ∪ {S(B) | B ∈
−→
B}) = ∅

(S,H) |= P 0(E,F,
−→
B) iff (S,H) |= E = F ∧ emp

(S,H) |= P k+1(E,F,
−→
B) iff (S,H) |= E 6= {F} ∪

−→
B ∧ ∃Xtl. Σ(E,Xtl,

−→
B) ∗ P k(Xtl, F,

−→
B)

Fig. 2. The semantics of inductive predicates.

are incomparable w.r.t.≺∗P, it holds that F7→(P1)∩F7→(P2) = ∅. This assumption avoids
predicates named differently but having exactly the same set of models.

Semantics. Let Locs be a set of locations. A heap is a pair (S,H) where S : Vars ∪
LVars → Locs maps variables to locations and H : Locs × F ⇀ Locs is a partial
function that defines values of fields for some of the locations in Locs . The domain of
H is denoted by dom(H) and the set of locations in the domain of H is denoted by
ldom(H). We say that a location ` (resp., a variable E) is allocated in the heap (S,H)
or that (S,H) allocates ` (resp., E) iff ` (resp., S(E)) belongs to ldom(H).

The set of heaps satisfying a formula ϕ is defined by the relation (S,H) |= ϕ. For
brevity, in Fig. 2, we give the definition of |= for inductive predicates only. The complete
definition can be found in App. A. Note that a heap satisfying a predicate P (E,F,

−→
B)

should not allocate any variable in F ∪
−→
B since these variables are considered not to be

a part of its domain. A heap satisfying this property is called well-formed w.r.t. the atom
P (E,F,

−→
B). The set of models of a formula ϕ is denoted by [[ϕ]]. Given two formulas

ϕ1 and ϕ2, we say that ϕ1 entails ϕ2, denoted by ϕ1 ⇒ ϕ2, iff [[ϕ1]] ⊆ [[ϕ2]]. By an
abuse of notation, ϕ1 ⇒ E = F (resp., ϕ1 ⇒ E 6= F) denotes the fact that E and F
are interpreted to the same location (resp., different locations) in all models of ϕ1.

3 Compositional Entailment Checking

We define a procedure for reducing the problem of checking the validity of an entail-
ment between two formulas to the problem of checking the validity of an entailment
between a formula and an atom. We assume that the right-hand side of the entailment is
a quantifier-free formula (which usually suffices for checking verification conditions in
practice). The reduction can be extended to the general case, but it becomes incomplete.

3.1 Overview of the Reduction Procedure

We consider the problem of deciding validity of entailments ϕ1 ⇒ ϕ2 with ϕ2

quantifier-free. We assume pv(ϕ2) ⊆ pv(ϕ1); otherwise, the entailment is not valid.
The main steps of the reduction are given in Fig. 3. The reduction starts by a nor-

malization step (described in Sec. 3.2), which adds to each of the two formulas all
(dis-)equalities implied by spatial sub-formulas and removes all atoms P (E,F,

−→
B)

representing empty list segments, i.e., those where E = F occurs in the pure part.
The normalization of a formula outputs false iff the input formula is unsatisfiable.

In the second step, the procedure tests the entailment between the pure parts of the
normalized formulas. This can be done using any decision procedure for quantifier-free
formulas in the first-order theory with equality.

For the spatial parts, the procedure builds a mapping from spatial atoms of ϕ2 to
sub-formulas of ϕ1. Intuitively, the sub-formula ϕ1[a2] associated to an atom a2 of ϕ2,

5

ϕ1 ← norm(ϕ1); ϕ2 ← norm(ϕ2); // normalization
if ϕ1 = false then return true;
if ϕ2 = false then return false;
if pure(ϕ1) 6⇒ pure(ϕ2) then return false; // entailment of pure parts
foreach a2 : points-to atom in ϕ2 do // entailment of shape parts

ϕ1[a2]← select(ϕ1, a2);
if ϕ1[a2] 6⇒ a2 then return false;

for P2 ← max≺(P) down to min≺(P) do
forall the a2 = P2(E,F,

−→
B) : predicate atom in ϕ2 s.t. pure(ϕ1) 6⇒ E = F do

ϕ1[a2]← select(ϕ1, a2);
if ϕ1[a2] 6⇒sh a2 then return false;

return isMarked(ϕ1);

Fig. 3. Compositional entailment checking (≺ is any total order compatible with ≺∗P).

computed by select, describes the region of a heap modeled by ϕ1 that should sat-
isfy a2. For predicate atoms a2 = P2(E,F,

−→
B), select is called (in the second loop)

only if there exists a model of ϕ1 where the heap region that should satisfy a2 is non-
empty, i.e., E = F does not occur in ϕ1. In this case, select does also check that
for any model of ϕ1, the sub-heap corresponding to the atoms in ϕ1[a2] is well-formed
w.r.t. a2 (see Sec. 3.3). This is needed since all heaps described by a2 are well-formed.

Note that in the well-formedness check above, one cannot speak about ϕ1[a2] alone.
This is because without the rest of ϕ1, ϕ1[a2] may have models which are not well-
formed w.r.t. a2 even if the sub-heap corresponding to ϕ1[a2] is well-formed for any
model of ϕ1. For example, let ϕ1 = ls(x, y) ∗ ls(y, z) ∗ z 7→ {(f, t)}, a2 = ls(x, z),
and ϕ1[a2] = ls(x, y) ∗ ls(y, z). If we consider only models of ϕ1, the sub-heaps
corresponding to ϕ1[a2] are all well-formed w.r.t. a2, i.e., the location bound to z is not
allocated in these sub-heaps. However, ϕ1[a2] alone has lasso-shaped models where the
location bound to z is allocated on the path between x and y.

Once ϕ1[a2] is obtained, one needs to check that all sub-heaps modeled by ϕ1[a2]
are also models of a2. For points-to atoms a2, this boils down to a syntactic identity
(modulo some renaming given by the equalities in the pure part of ϕ1). For predicate
atoms a2, a special entailment operator ⇒sh (defined in Sec. 3.5) is used. We cannot
use the usual entailment ⇒ since, as we have seen in the example above, ϕ1[a2] may
have models which are not sub-heaps of models of ϕ1. Thus, ϕ1[a2] ⇒sh a2 holds iff
all models of ϕ1[a2], which are well-formed w.r.t. a2, are also models of a2.

If there exists an atom a2 of ϕ2, which is not entailed by the associated sub-formula,
then ϕ1 ⇒ ϕ2 is not valid. By the semantics of the separating conjunction, the sub-
formulas of ϕ1 associated with two different atoms of ϕ2 must not share spatial atoms.
To this, the spatial atoms obtained from each application of select are marked and
cannot be reused in the future. Note that the mapping is built by enumerating the atoms
of ϕ2 in a particular order: first, the points-to atoms and then the inductive predicates,
in a decreasing order wrt ≺P. This is important for completeness (see Sec. 3.3).

The procedure select is detailed in Sec. 3.3. It returns emp if the construction of
the sub-formula of ϕ1 associated with the input atom fails (this implies that also the
entailment ϕ1 ⇒ ϕ2 is not valid). If all entailments between formulas and atoms are
valid, then ϕ1 ⇒ ϕ2 holds provided that all spatial atoms of ϕ1 are marked (tested by

6

Initially: ψ1 ⇒ ψ2

x

z

y Y3

t

Y4

Y1 Y2

s s

h h

ls ls

skl2 f2

f1 f1

ls

ls

s

⇒ x y tnll(z) skl2

s

After normalization: norm(ψ1)⇒ norm(ψ2)

x

z

y
Y1, Y2

Y3

t

Y4

s s

h h

ls ls

skl2 f2

f1 f1

s

⇒ x y tnll(z) skl2

s

select(ψ1, nll(x, y, z))
select(ψ1, skl2(y, t))

Fig. 4. An example of applying compositional entailment checking. Points-to edges are repre-
sented by simple lines, predicate edges by double lines, and disequality edges by dashed lines.
For readability, we omit some of the labeling with existentially-quantified variables and some of
the disequality edges in the normalized graphs.

isMarked). In Sec. 3.5, we introduce a procedure for checking entailments between
a formula and a spatial atom.
Graph representations. Some of the sub-procedures mentioned above work on a graph
representation of the input formulas, called SL graphs (which are different from the
Gaifman graphs of Sec. 2). Thus, a formula ϕ is represented by a directed graph G[ϕ]
where each node represents a maximal set of variables equal w.r.t. the pure part of ϕ,
and each edge represents a disequalityE 6= F or a spatial atom. Every node n is labeled
by the set of variables Var(n) it represents; for every variable E, Node(E) denotes the
node n s.t. E ∈ Var(n). Next, (1) a disequality E 6= F is represented by an undirected
edge from Node(E) to Node(F), (2) a spatial atom E 7→ {(f1, E1), . . . , (fn, En)}
is represented by n directed edges from Node(E) to Node(Ei) labeled by fi for each
1 ≤ i ≤ n, and (3) a spatial atom P (E,F,

−→
B) is represented by a directed edge from

Node(E) to Node(F) labeled by P (
−→
B). Edges are referred to as disequality, points-to,

or predicate edges, depending on the atom they represent. For simplicity, we may say
that the graph representation of a formula is simply a formula.
Running example. In the following, we use as a running example the entailment ψ1 ⇒
ψ2 between the following formulas:
ψ1 ≡ ∃Y1, Y2, Y3, Y4, Z1, Z2, Z3. x 6= z ∧ Z2 6= z ∧ (3)

x 7→ {(s, Z2), (h, Z1)} ∗ Z2 7→ {(s, y), (h, Z3)} ∗ ls(Z1, z) ∗ ls(Z3, z) ∗
ls(y, Y1) ∗ skl2(y, Y3) ∗ ls(Y1, Y2) ∗
Y3 7→ {(f2, t), (f1, Y4)} ∗ Y4 7→ {(f2,NULL), (f1, t)} ∗ t 7→ {(s, Y2)}

ψ2 ≡ y 6= t ∧ nll(x, y, z) ∗ skl2(y, t) ∗ t 7→ {(s, y)} (4)

The graph representations of these formulas are drawn in the top part of Fig. 4.7

3.2 Normalization
To infer the implicit (dis-)equalities in a formula, we adapt the boolean abstraction
proposed in [9] for our logic. Therefore, given a formula ϕ, we define an equisatisfiable
boolean formula BoolAbs[ϕ] in CNF over a set of boolean variables containing the
boolean variable [E = F] for every two variables E and F occuring in ϕ and the
boolean variable [E, a] for every variable E and spatial atom a of the form E 7→ {ρ} or
P (E,F,

−→
B) in ϕ. The variable [E = F] denotes the equality between E and F while

[E, a] denotes the fact that the atom a describes a heap where E is allocated.
Given ϕ , ∃

−→
X.Π ∧Σ, BoolAbs[ϕ] , F (Π)∧F (Σ)∧F= ∧F∗ where F (Π) and

F (Σ) encode the atoms of ϕ (using⊕ to denote xor), F= encodes reflexivity, symmetry,
and transitivity of equality, and F∗ encodes the semantics of the separating conjunction:

F (Π) ,
∧

E=F∈Π

[E = F] ∧
∧

E 6=F∈Π

¬[E = F] F (Σ) ,
∧

a=E 7→{ρ}∈Σ

[E, a] ∧
∧

a=P (E,F,
−→
B)∈Σ

[E, a]⊕ [E = F]

F= ,
∧

E1,E2,E3 variables in ϕ

[E1 = E1]∧ ([E1 = E2]⇔ [E2 = E1])∧ ([E1 = E2]∧[E2 = E3]⇒ [E1 = E3])

F∗ ,
∧

E,F variables in ϕ
a, a′different atoms inΣ

([E = F] ∧ [E, a])⇒ ¬[F, a′]

For the formula ψ1 in our running example (Eq. 3), BoolAbs[ψ1] is a conjunction
of several formulas including:

1. [y, skl2(y, Y3)]⊕ [y = Y3], which encodes the atom skl2(y, Y3),
2. [Y3, Y3 7→ {(f1, Y4), (f2, t)}] and [t, t 7→ {(s, Y2)}], encoding points-to atoms,
3. ([y = t] ∧ [t, t 7→ {(s, Y2)}]) ⇒ ¬[y, skl2(y, Y3)], which encodes the separating

conjunction between t 7→ {(s, Y2)} and skl2(y, Y3),
4. ([Y3 = t] ∧ [t, t 7→ {(s, Y2)}]) ⇒ ¬[Y3, Y3 7→ {(f1, Y4), (f2, t)}], which encodes

the separating conjunction between t 7→ {(s, Y2)} and Y3 7→ {(f1, Y4), (f2, t)}.

Proposition 1. Let ϕ be a formula. Then, BoolAbs[ϕ] is equisatisfiable with ϕ, and for
any variablesE and F of ϕ, BoolAbs[ϕ]⇒ [E = F] (resp., BoolAbs[ϕ]⇒ ¬[E = F])
iff ϕ⇒ E = F (resp. ϕ⇒ E 6= F).

For example, BoolAbs[ψ1] ⇒ ¬[y = t], which is a consequence of the sub-formulas
we have given above together with F=.

If BoolAbs[ϕ] is unsatisfiable, then the output of norm(ϕ) is false . Otherwise, the
output of norm(ϕ) is the formula ϕ′ obtained from ϕ by (1) adding all (dis-)equalities
implied by BoolAbs[ϕ] and (2) removing all predicates P (E,F,

−→
B) s.t. E = F oc-

curs in the pure part. For example, the normalizations of ψ1 and ψ2 are given in the
bottom part of Fig. 4. Note that the ls atoms reachable from y are removed because
BoolAbs[ψ1]⇒ [y = Y1] and BoolAbs[ψ1]⇒ [Y1 = Y2].

The following result is important for the completeness of the select procedure.

Proposition 2. Let norm(ϕ) be the normal form of a formula ϕ. For any two distinct
nodes n and n′ in the SL graph of norm(ϕ), there cannot exist two disjoint sets of atoms
A and A′ in norm(ϕ) s.t. both A and A′ represent paths between n and n′.

If we assume for contradiction that norm(ϕ) contains two such sets of atoms, then,
by the semantics of the separating conjunction, ϕ ⇒ E = F where E and F label n
and n′, respectively. Therefore, norm(ϕ) does not include all equalities implied by ϕ,
which contradicts its definition.

8

3.3 Selection of Spatial Atoms

Points-to atoms. Let ϕ1 , ∃
−→
X.Π1 ∧ Σ1 be a normalized formula. The procedure

select(ϕ1, E2 7→ {ρ2}) outputs the sub-formula ∃
−→
X.Π1 ∧ E1 7→ {ρ1} s.t. E1 = E2

occurs in Π1 if it exists, or emp otherwise. The procedure select is called only if ϕ1

is satisfiable and consequently, ϕ1 cannot contain two different atoms E1 7→ {ρ1} and
E′1 7→ {ρ′1} such that E1 = E′1 = E2. Also, if there exists no such points-to atom,
then ϕ1 ⇒ ϕ2 is not valid. Indeed, since ϕ2 does not contain existentially quantified
variables, a points-to atom in ϕ2 could be entailed only by a points-to atom in ϕ1.

In the running example, select(ψ1, t 7→ {(s, y)}) = ∃Y2. y = Y2 ∧ . . . ∧ t 7→
{(s, Y2)} (we have omitted some existential variables and pure atoms).

Predicate atoms. Given an atom a2 = P2(E2, F2,
−→
B2), select(ϕ1, a2) builds a sub-

graph G′ of G[ϕ1], and then it checks whether the sub-heaps described by G′ are well-
formed w.r.t. a2. If this is not true or if G′ is empty, then it outputs emp. Otherwise, it
outputs the formula ∃

−→
X.Π1 ∧Σ′ where Σ′ consists of all atoms represented by edges

of the sub-graph G′. Let Dangling[a2] = Node(F2) ∪ {Node(B) | B ∈
−→
B2}.

The sub-graph G′ is defined as the union of all paths of G[ϕ1] that (1) consist of
edges labeled by fields in F∗7→(P2) or predicates Q with P2 ≺∗P Q, (2) start in the node
labeled by E2, and (3) end either in a node from Dangling[a2] or in a cycle, in which
case they must not traverse nodes in Dangling[a2]. The paths in G′ that end in a node
from Dangling[a2] must not traverse other nodes from Dangling[a2]. Therefore, G′

does not contain edges that start in a node from Dangling[a2]. The instances of G′ for
select(ψ1, nll(x, y, z)) and select(ψ1, skl2(y, t)) are emphasized in Fig. 4.

Next, the procedure select checks that in every model of ϕ1, the sub-heap de-
scribed by G′ is well-formed w.r.t. a2. Intuitively, this means that all cycles in the
sub-heap are explicitly described in the inductive definition of P2. For example, if
ϕ1 = ls(x, y) ∗ ls(y, z) and ϕ2 = a2 = ls(x, z), then the graph G′ corresponds
to the entire formula ϕ1 and it may have lasso-shaped models (z may belong to the path
between x and y) that are not well-formed w.r.t. ls(x, z) (whose inductive definition
describes only acyclic heaps). Therefore, the procedure select returns emp, which
proves that the entailment ϕ1 ⇒ ϕ2 does not hold. For our running example, for any
model of ψ1, in the sub-heap modeled by the graph select(ψ1, skl2(y, t)) in Fig. 4, t
should not be (1) interpreted as an allocated location in the list segment skl2(y, Y3) or
(2) aliased to one of nodes labeled by Y3 and Y4.

The well-formedness test is equivalent to the fact that for every variable V ∈
{F2} ∪

−→
B2 and every model of ϕ1, the interpretation of V is different from all allo-

cated locations in the sub-heap described by G′. This is in turn equivalent to the fact
that for every variable V ∈ {F2} ∪

−→
B2, the two following conditions hold:

1. For every predicate edge e included in G′ that does not end in Node(V), V is
allocated in all models of E 6= F ∧ (ϕ1 \G′) where E and F are variables labeling
the source and the destination of e, respectively, and ϕ1 \ G′ is obtained from ϕ1

by deleting all spatial atoms represented by edges of G′.
2. For every variable V ′ labeling the source of a points-to edge of G′, ϕ1 ⇒ V 6= V ′.

The first condition guarantees that V is not interpreted as an allocated location in
a list segment described by a predicate edge of G′ (this trivially holds for predicate
edges ending in Node(V)). If V was not allocated in some model (S,H1) of E 6=

9

F ∧ (ϕ1 \ G′), then one could construct a model (S,H2) of G′ where e would be
interpreted to a non-empty list and S(V) would equal an allocated location inside this
list. Therefore, there would exist a model of ϕ1, defined as the union of (S,H1) and
(S,H2), in which the heap region described by G′ would not be well-formed w.r.t. a2.

For example, in the graph select(ψ1, skl2(y, t)) in Fig. 4, t is not interpreted as
an allocated location in the list segment skl2(y, Y3) since t is allocated (due to the atom
t 7→ {(s, Y2)}) in all models of y 6= Y3 ∧ (ψ1 \ select(ψ1, skl2(y, t))).

To check that variables are allocated, we use the following property: given a formula
ϕ , ∃

−→
X.Π ∧Σ, a variable V is allocated in every model of ϕ iff ∃

−→
X.Π ∧Σ ∗ V 7→

{(f, V1)} is unsatisfiable. Here, we assume that f and V1 are not used in ϕ. Note that,
by Prop. 1, unsatisfiability can be decided using the boolean abstraction BoolAbs.

The second condition guarantees that V is different from all allocated locations
represented by sources of points-to edges inG′. For the graph select(ψ1, nll(x, y, z))
in Fig. 4, the variable z must be different from all existential variables labeling a node
which is the source of a points-to edge. These disequalities appear explicitly in the
formula. By Prop. 1, ϕ1 ⇒ V 6= V ′ can be decided using the boolean abstraction.

3.4 Soundness and Completeness

The following theorem states that the procedure given in Fig. 3 is sound and complete.
The soundness is a direct consequence of the semantics. The completeness is a conse-
quence of Prop. 1 and 2. In particular, Prop. 2 implies that the sub-formula returned by
select(ϕ1, a2) is the only one that can describe a heap region satisfying a2.
Theorem 1. Let ϕ1 and ϕ2 be two formulas s.t. ϕ2 is quantifier-free. Then, ϕ1 ⇒ ϕ2

iff the procedure in Fig. 3 returns true.

3.5 Checking Entailments between a Formula and an Atom

Given a formula ϕ and an atom P (E,F,
−→
B), we define a procedure for checking that

ϕ ⇒sh P (E,F,
−→
B), which works as follows: (1) G[ϕ] is transformed into a tree T [ϕ]

by splitting nodes that have multiple incoming edges, (2) the inductive definition of
P (E,F,

−→
B) is used to define a TAA[P] s.t. T [ϕ] belongs to the language ofA[P] only

if ϕ⇒sh P (E,F,
−→
B). Notice that we do not require the reverse implication in order to

keep the size ofA[P] polynomial in the size of the inductive definition of P . Thus,A[P]
does not recognize the tree representations of all formulas ϕ s.t. ϕ ⇒sh P (E,F,

−→
B).

The transformation of graphs into trees is presented in Sec. 4 while the definition of the
TA is introduced in Sec. 5. In the latter section, we also discuss how to obtain a complete
method by generating a TA A[P] of an exponential size.

4 Representing SL Graphs as Trees

We define a canonical representation of SL graphs in the form of trees, which we use
for checking⇒sh . In this representation, the disequality edges are ignored because they
have been dealt with previously when checking entailment of pure parts.

We start by explaining the main concepts of the tree encoding using the generic
labeled graph in Fig. 5(a). We consider a graph G where all nodes are reachable from a

10

distinguished node called Root (this property is satisfied by all SL graphs returned by
the select procedure). To construct a tree representation of G, we start with its span-
ning tree (emphasized using bold edges) and proceed with splitting any node with at
least two incoming edges, called a join node, into several copies, one for each incoming
edge not contained in the spanning tree. The obtained tree is given in Fig. 5(b).

Not to loose any information, the copies of nodes should be labeled with the identity
of the original node, which is kept in the spanning tree. However, since the representa-
tion does not use node identities, we label every original node with a representation of

Rootf1

f2

f3

f3

g1

g2 g2

(a) A labeled graph G

Root

alias ↑↓[f1 f2]

alias ↑[g1]

f1

f2

f3

f3

g1

g2

g2

(b) A tree representation of G

Fig. 5. The tree representation
of a generic graph.

the path from Root to this node in the spanning tree,
and we assign every copied node a label describing how
it can reach the original node in the spanning tree. For
example, if a node n has the label alias ↑[g1], this de-
notes the fact that n is a copy of some join node, which
is the first ancestor of n in the spanning tree that is reach-
able from Root by a path formed of a (non-empty) se-
quence of g1 edges. Further, n labelled by alias ↑↓[f1 f2]
denotes roughly that (1) the original node is reachable
from Root by a path formed by a (non-empty) sequence
of f1 edges followed by a (non-empty) sequence of f2
edges, and (2) the original node can be reached from n
by going up in the tree until the first node that is labelled
by a prefix of f1 f2 and then down until the first node
labelled with f1 f2. The exact definition of these labels
can be found later in this section. In general, a label of
the form alias ↑[. . .] will be used when breaking loops
while a label of the form alias ↑↓[. . .] will be used when
breaking parallel paths between nodes. Moreover, if the
original node is labeled by a variable, e.g., x, then we
will use a label of the form alias [x]. This set of labels
is enough to obtain a tree representation from SL graphs
that can entail a spatial atom from the considered frag-
ment; for arbitrary graphs, this is not the case.

When applying this construction to an SL graph, the most technical part consists in
defining the spanning tree. Based on the inductive definition of predicates, we consider
a total order on fields≺F that is extended to sequences of fields,≺F∗ , in a lexicographic
way. Then, the spanning tree is defined by the set of paths labeled by sequences of fields
which are minimum according to the order ≺F∗ .

Intuitively, the order ≺F reflects the order in which the unfolding of the inductive
definition of P is done: (1) Fields used in the atom E 7→ ρ of the matrix of P are
ordered before fields of any other predicate called by P . (2) Fields appearing in ρ and
going “one-step forward” (i.e., occurring in a pair (f,Xtl)) are ordered before fields
going “down” (i.e., occurring in a pair (f, Z) with Z ∈

−→
Z), which are ordered before

fields going to the “border” (i.e., occurring in a pair (f,X) with X ∈
−→
B).

Formally, given a predicate P with the matrix Σ as in (2), we split the set F7→(P)
in three disjoint sets: (a) F7→Xtl

(P) is the set of fields f occurring in a pair (f,Xtl)

11

of ρ, (b) F7→−→Z (P) the set of fields f occurring in a pair (f, Z) of ρ with Z ∈
−→
Z , and

(c) F7→−→B (P) the set of fields f occurring in a pair (f,X) of ρ with X ∈
−→
B . Then, we

assume that there exists a total order ≺F on fields s.t., for all P , P1, P2 in P:

∀f1 ∈ F 7→Xtl
(P) ∀f2 ∈ F7→−→Z (P) ∀f3 ∈ F7→−→B (P). f1 ≺F f2 ≺F f3 and

(f1 ∈ F7→(P1) ∧ f2 ∈ F7→(P2) ∧ f1 6= f2 ∧ P1 ≺P P2)⇒ f1 ≺F f2.

For example, if P = {nll, ls} or P = {nlcl, ls}, then s ≺F h ≺F f ; and if P =
{skl2, skl1}, then f2 ≺F f1. The order ≺F is extended to a lexicographic order ≺F∗

over sequences in F∗.
An f -edge of an SL graph is a points-to edge labeled by f or a predicate edge

labeled by P (
−→
N) s.t. the minimum field in F7→(P) w.r.t. ≺F is f .

Let G be an SL graph and P (E,F,
−→
B) an atom for which we want to prove that

G⇒sh P (E,F,
−→
B). We assume that all nodes of G are reachable from the node Root

labeled by E, which is ensured when G is constructed by select. The tree encod-
ing of G is computed by the procedure toTree(G,P (E,F,

−→
B)) that consists of four

consecutive steps that are presented below (see also App. B).
Node marking. First, toTree computes a mapping M, called node marking, which
defines the spanning tree of G. Intuitively, for each node n, M(n) is the sequence of
fields labeling a path reaching n from Root that is minimal w.r.t. ≺F∗ . Formally, let π
be a path in G starting in Root and consisting of the sequence of edges e1 e2 . . . en.
The labeling of π, denoted by L(π), is the sequence of fields f1 f2 . . . fn s.t. for all i,
ei is an fi-edge. The node marking is defined by

∀n ∈ G M(n) , Reduce(min≺F(F7→(P)) Lmin(n)), (5)
Lmin(n) , min≺F∗{L(π) | Root

π−→n} (6)

where Reduce rewrites the sub-words of the form f+ to f , for any field f . For technical
reasons, we add the minimum field (w.r.t. ≺F) in F7→(P) at the beginning of all M(n).

Fig. 6(b)–(c) depicts two graphs and the markings of their nodes. (For readability,
we omit the markings of the nodes labeled by y and t.)
Splitting join nodes. The join nodes are split in two consecutive steps, denoted as
splitLabeledJoin and splitJoin, depending on whether they are labeled by vari-
ables in {E,F} ∪

−→
B or not. In both cases, only the edges of the spanning tree are kept

in the tree, the other edges are redirected to fresh copies labeled by some alias [..].
For any join node n, the spanning tree edge is the f -edge (m,n) such that

Reduce(M(m) f) = M(n), i.e., (m,n) is at the end of the minimum path leading
to n. (For Root , all incoming edges are not in the spanning tree.)

In splitLabeledJoin, a graph G′ is obtained by replacing in G any edge (m,n)

such that n is labeled by some V ∈ {E,F}∪
−→
B and (m,n) is not in the spanning tree by

an edge (m,n′) with the same label, where n′ is a fresh copy of n labeled by alias [V].
Moreover, for uniformity, all (even non-join) nodes labeled by a variable V ∈ F ∪

−→
B

are labeled by alias [V] in G′. Fig. 6(a) gives the output graph of splitLabeledJoin
on the SL graphs returned in our running example by select(ψ1, nll(x, y, z)) and
select(ψ1, skl2(y, t)).

12

Subsequently, splitJoin builds from G′ a tree by splitting unlabeled join nodes
as follows. Let n be a join node and (m,n) an edge not in the spanning tree of G′ (and
G). The edge (m,n) is replaced in the tree by an edge (m,n′) with the same edge label,
where n′ is a fresh copy of n labeled by:

– alias ↑[M(n)] ifm is reachable from n and all predecessors ofm (by a simple path)
marked by M(n) are also predecessors of n. Intuitively, this label is used to break
loops, and it refers to the closest predecessor of n′ having the given marking. The
use of this labeling is illustrated in Fig. 6(b).

– alias ↑↓[M(n)] if there is a node p which is a predecessor of m s.t. all predecessors
of m that have a unique successor marked by M(n) are also predecessors of p, and
n is the unique successor of p marked by M(n). Intuitively, this transformation is
used to break multiple paths between p and n as illustrated in Fig. 6(c).3

If the relation between n and n′ does not satisfy the constraints mentioned above, the
result of splitJoin is an error, i.e., the ⊥ tree.

At the end of these steps, we obtain a tree with labels on edges (using fields f ∈ F
or predicates Q(

−→
B)) and labels on nodes of the form alias [..]; its root is labeled by E.

Updating the labels. In the last step, two transformations are done on the tree. First,
the labels of predicate edges are changed in order to replace each argument X different
from {F} ∪

−→
B by a label alias ↑[M(n)] or alias ↑↓[M(n)], which describes the position

of the node n labeled by X w.r.t. the node of G labeled by E.
Finally, as the generated trees will be tested for membership in the language of a TA

which accepts node-labelled trees only, the labels of edges are moved to the labels of
their source nodes and concatenated in the order given by ≺F (predicates in the labels
are ordered according to the minimum field in their matrix).

The following property ensures the soundness of the entailment procedure:

Proposition 3. Let P (E,F,
−→
B) be an atom and G an SL graph. If

toTree(G,P (E,F,
−→
B)) = ⊥, then G 6⇒ P (E,F,

−→
B).

5 Tree Automata Recognizing Tree Encodings of SL Graphs

Next, we proceed to the construction of tree automata A[P (E,F,
−→
B)] that recognize

tree encodings of SL graphs that imply atoms of the form P (E,F,
−→
B). Due to space

constraints, we cannot provide a full description of the TA construction (which we give
in App. C). Instead, we give an intuitive description only and illustrate it on two typical
examples (for now, we leave our running examples, TAs for which are given in App. D).

Tree automata. A (non-deterministic) tree automaton recognizing tree encodings of SL
graphs is a tuple A = (Q, q0, ∆) where Q is a set of states, q0 ∈ Q is the initial state,
and ∆ is a set of transition rules of the form q ↪→ a1(q1), . . . , an(qn) or q ↪→ a, where
n > 0, q, q1, . . . , qn ∈ Q, ai is an SL graph edge label (we assume them to be ordered

3 The combination of up and down arrows in the label corresponds to the need of going up and
then down in the resulting tree—whereas in the previous case, it suffices to go up only.

13

x

alias [z] alias [z]

alias [y]
s s

h h

ls ls

y alias [t]

alias [t]

skl2 f2

f1 f1

x
M : s

M : s h

M : s

M : s h

M : s h f M : s h f

y
s s

h h

f ff f

x

alias ↑[sh] alias ↑[sh]

alias [y]
s s

h h

f f

f f

(a) Tree encodings for the selected sub-
graphs in the bottom left part of Fig. 4.

(b) Tree encodings for graphs satisfying nlcl

y

M : f2

M : f2

M : f2 f1

M : f2

M : f2 f1

t
skl2 f2 f2

f1 f1 f1 f1

y

alias ↑↓[f2]

alias [t]

alias [t]

skl2 f2 f2

f1

f1

f1 f1

(c) Tree encodings for graphs satisfying skl2

Fig. 6. Tree encodings.

w.r.t. the ordering of fields as for tree encodings), and a is alias ↑[m], alias ↑↓[m], or
alias [V]. The set of trees L(A) recognized by A is defined as usual.

Definition of A[P (E,F,
−→
B)]. The tree automaton A[P (E,F,

−→
B)] is defined starting

from the inductive definition of P . If P does not call other predicates, the TA simply
recognizes the tree encodings of the SL graphs that are obtained by “concatenating”
a sequence of Gaifman graphs representing the matrix Σ(E,Xtl,

−→
B) and predicate

edges P (E,Xtl,
−→
B). In these sequences, occurrences of the Gaifman graphs repre-

senting the matrix and the predicate edges can be mixed in an arbitrary order and in
an arbitrary number. Intuitively, this corresponds to a partial unfolding of the predi-
cate P in which there appear concrete segments described by points-to edges as well as
(possibly multiple) segments described by predicate edges. Concatenating two Gaifman
graphs means that the node labeled by Xtl in the first graph is merged with the node
labeled by E in the other graph. This is illustrated on the following example.

q0 q3

q2

q1

f1

f1

P1(B)

P1(B)

alias [F]

alias ↑↓[f1]

alias [B]
f3

f2

f2f3

(1) q0 ↪→ f1(q0), f2(q1), f3(q2)
(2) q1 ↪→ alias ↑↓[f1]
(3) q2 ↪→ alias [B]
(4) q0 ↪→ f1(q3), f2(q3), f3(q2)
(5) q3 ↪→ alias [F]
(6) q0 ↪→ P1(B)(q0)
(7) q0 ↪→ P1(B)(q3)

Fig. 7. A[P1(E,F,B)]

Consider a predicate P1(E,F,B) that does not call
other predicates and that has the matrix Σ1 , E 7→
{(f1, Xtl), (f2, Xtl), (f3, B)}. The tree automaton A1

for P1(E,F,B) has transition rules given in Fig. 7. Rules
(1)–(3) recognize the tree encoding of the Gaifman graph
of Σ1, assuming the following total order on the fields:
f1 ≺F f2 ≺F f3. Rule (4) is used to distinguish the “last”
instance of this tree encoding, which ends in the node la-
beled by alias [F] accepted by Rule (5). Finally, Rules (6)
and (7) recognize predicate edges labeled by P1(B). As in
the previous case, we distinguish the predicate edge that
ends in the node labeled by alias [F].

Note that the TA given above exhibits the simple and
generic skeleton of TAs accepting tree encodings of list

14

segments defined in our SL fragment: The initial state q0
is used in a loop to traverse over an arbitrary number of
folded (Rule 6) and unfolded (Rule 1) occurrences of the
list segments, and the state q3 is used to recognize the end
of the backbone (Rule 5). The other states (here, q2) are
used to accept alias labels only. The same skeleton can be
observed in the TA recognizing tree encodings of singly
linked lists, which is given in Fig. 8.

q0 q1

ff

ls

ls

alias [F]

Fig. 8. A[ls(E,F)]When P calls other predicates, the automaton recog-
nizes tree encodings of concatenations of more general SL graphs, obtained from Gf [Σ]
by replacing predicate edges with unfoldings of these predicates. On the level of TAs,
this operation corresponds to a substitution of transitions labelled by predicates with
TAs for the nested predicates. During this substitution, alias [..] labels occurring in the
TA for the nested predicate need to be modified. Labels of the form alias ↑[m] and
alias ↑↓[m] are adjusted by prefixing m with the marking of the source state of the tran-
sition. On the contrary, labels of the form alias [V] are substituted by the marking of
Node(V) w.r.t. the higher-level matrix.

Let us consider a predicate P2(E,F) that calls P1 and that has the matrix Σ2 ,
∃Z.E 7→ {(g1, Xtl), (g2, Z)}∧ 	1+ P1[Z,E]. The TA A2 for P2(E,F) includes the
following transition rules:

(1′) qq0 ↪→ g1(qq0), g2(q0) (2′) qq0 ↪→ g1(qq1), g2(q0)

transition rules of A1, where (3′) qq1 ↪→ alias [F]

alias [F] is substituted by alias ↑[g1 g2], (4′) qq0 ↪→ P2(qq0)

alias [B] by alias ↑[g1], and (5′) qq0 ↪→ P2(qq1)

alias ↑↓[f1] is substituted by alias ↑↓[g1 g2 f1]

Rule (1′) and the ones imported (after renaming of the labels) from A1 describe trees
obtained from the tree encoding of Gf [Σ2] by replacing the edge looping in Z with
a tree recognized by A1. According to Gf [Σ2], the node marking of Z is g1 g2, and
so the label alias [F] shall be substituted by alias ↑[g1 g2], and the marking alias ↑↓[f1]
shall be substituted by alias ↑↓[g1 g2 f1].

The following result states the correctness of the tree automata construction.

Theorem 2. For any atom P (E,F,
−→
B) and any SL graph G, if the tree generated by

toTree(G,P (E,F,
−→
B)) is recognized by A[P (E,F,

−→
B)], then G⇒ P (E,F,

−→
B).

6 Completeness and Complexity

In general, there exist SL graphs that entail P (E,F,
−→
B) whose tree encodings are not

recognized by A[P (E,F,
−→
B)]. The models of these SL graphs are nested list segments

where inner pointer fields specified by the matrix of P are aliased. For example, the TA
for skl2 does not recognize tree encodings of SL graphs modeled by heaps where Xtl

and Z1 are interpreted to the same location.
The construction of TAs explained above can be easily extended to cover such SL

graphs (cf. App. C.2), but the size of the obtained automata may become exponential in
the size of P (defined as the number of symbols in the matrices of all Q with P ≺∗P Q)

15

as the construction considers all possible aliasing scenarios of targets of inner pointer
fields permitted by the predicate.

For the verification conditions that we have encountered in our experiments, the TAs
defined above are precise enough in the vast majority of the cases. In particular, note
that the TAs generated for the predicates for ls and dll (defined below) are precise.
We have, however, implemented even the above mentioned extension and realized that
it also provides acceptable performance.

In conclusion, the overall complexity of the semi-decision procedure (where aliases
between variables in the definition of a predicate are ignored) runs in polynomial time
modulo an oracle for deciding validity of a boolean formula (needed in normalization
procedure). The complete decision procedure is exponential in the size of the predicates,
and not of the formulas, which remains acceptable in practice.

7 Extensions

The procedures presented above can be extended to a larger fragment of SL that uses
more general inductively defined predicates. In particular, they can be extended to cover
finite nestings of singly or doubly linked lists. To describe doubly linked segments, we
extend the definition of a predicate from Eq. 1 to the following:

Rdl(E,F, P, S,
−→
B) , (E = S ∧ F = P ∧ emp) ∨(

E 6= S ∧ F 6= P ∧

∧ ∃Xtl. Σ(E,Xtl, P,
−→
B) ∗Rdl(Xtl, F, E, S,

−→
B)
) (7)

where Σ is an existentially-quantified matrix of the form:

Σ(E,Xtl, P,
−→
B) , ∃

−→
Z .E 7→ {ρ({Xtl, P} ∪

−→
V)} ∗Σ′ where

−→
V ⊆

−→
Z ∪
−→
B and

Σ′ ::= Q(Z,U,
−→
Y) | 	1+ Q[Z,

−→
Y] |	1+ Qdl [Z,

−→
Y] | Σ′ ∗Σ′

for Z ∈
−→
Z , U ∈

−→
Z ∪
−→
B ∪ {E,Xtl, P},

−→
Y ⊆

−→
B ∪ {E,Xtl, P},

	1+ Q[Z,
−→
Y] , ∃Z′. ΣQ(Z,Z′,

−→
Y) ∗Q(Z′, Z,

−→
Y) where ΣQ is the matrix of Q, or

	1+ Qdl [Z,
−→
Y] , ∃Z′, Zp. ΣQdl (Z,Z

′, Zp,
−→
Y) ∗Qdl(Z

′, Zp, Z, Z,
−→
Y)

where ΣQdl is the matrix of Qdl .

In Eq. 7, P corresponds to the predecessor of E and S corresponds to the successor of
F . For instance, to describe DLL segments between two locations E and F , one can
use the predicate

dll(E,F, P, S) , (E = S ∧ F = P ∧ emp) ∨(
E 6= S ∧ F 6= P ∧

∧ ∃Xtl. E 7→ {(next,Xtl), (prev, P)} ∗ dll(Xtl, F, E, S)
)
.

(8)

To describe a singly linked list of cyclic doubly linked lists, we may use the following
predicate:

nlcdl(E,F) , (E = F ∧ emp) ∨(
E 6= F ∧ ∃Xtl, Z. E 7→ {(s,Xtl), (h, Z)}∗ 	1+ dll(Z) ∗ nlcdl(Xtl, F)

)
16

where 	1+ dll(Z) is a macro for describing non-empty cyclic doubly linked lists
defined by

	1+ dll[Z] , ∃Z1, Z2. Z 7→ {(n,Z1), (p, Z2)} ∗ dll(Z1, Z2, Z, Z). (9)

[TODO: talk about how the graph is modified before the entailment check]
Representing SL Graphs as Trees. The splitJoin operation from Sec. 4 is ex-
tended with considering the following two more possible labellings: alias ↑2[α] and
alias ↑↓last[α]. If n is a join node in a graph and (m,n) is an edge not in its spanning
tree, then (m,n) is replaced by an edge (m,n′) with the same edge label, s.t. n′ is a
fresh copy of n labeled by (in addition to the labellings from Sec. 4)

– alias ↑2[M(n)] if m is reachable from n, m further reaches n in the spanning tree
of the graph and in the spanning tree there is exactly one node marked with M(n)
between m and n. Intuitively, this label is needed to handle inner nodes of doubly
linked lists, which have two incoming edges, one from their successor and one from
their predecessor.

– alias ↑↓last[M(n)] if there is a node p which is a predecessor of m, s.t. all predeces-
sors of of m that have a unique successor marked by M(n) are also predecessors
of p, and n is a successor of p s.t. n does not occur on a path from p to any of
its successors marked by M(n). Intuitively, the label is used for the copy of the
predecessor of the header of the list.

Translation of predicates to TAs. The extension of the procedure from Sec. 5 is trivial.
See App. E for more details. [TODO: talk about how pred2ta is modified]

[TODO: how do we handle the case when a marking is a parameter of an inductive
predicate edge?]

8 Implementation and Experimental Results

We implemented our decision procedure in a solver called SPEN (SeParation logic EN-
tailment). The tool takes as the input an entailment problem ϕ1 ⇒ ϕ2 (including the
definition of the predicates used) encoded in the SMTLIB2 format. For non-valid entail-
ments, SPEN prints the atom of ϕ2 which is not entailed by a sub-formula of ϕ1. The
tool is based on the MINISAT solver for deciding unsatisfiablity of boolean formulas
and the VATA library [15] as the tree automata backend.

We applied SPEN to entailment problems that use various recursive predicates. First,
we considered the benchmark provided in [16], which uses only the ls predicate. It
consists of three classes of entailment problems where the first two classes contain
problems generated randomly according to the rules specified in [16], whereas the last
class contains problems obtained from the verification conditions generated by the tool
SMALLFOOT [2]. In all experiments4, SPEN finished in less than 1 second with the
deviation of running times ±100 ms w.r.t. the ones reported for SELOGER [11], the

4 Our experiments were performed on an Intel Core 2 Duo 2.53 GHz processor with 4 GiB
DDR3 1067 MHz running a virtual machine with Fedora 20 (64-bit).

17

Table 1. Running SPEN on entailments between formulas and atoms.

ϕ2 nll nlcl skl3 dll

ϕ1 tc1 tc2 tc3 tc1 tc2 tc3 tc1 tc2 tc3 tc1 tc2 tc3

Time [ms] 344 335 319 318 316 317 334 349 326 358 324 322
Status vld vld inv vld vld inv vld vld inv vld vld inv
States/Trans. of A[ϕ2] 6/17 6/15 80/193 9/16
Nodes/Edges of T (Gf [ϕ1]) 7/7 7/7 6/7 10/9 7/7 6/6 7/7 8/8 6/6 7/7 7/7 5/5

most efficient tool for deciding entailments of SL formulas with singly linked lists we
are aware of (details are given in App. F).

The TA for ls is quite small, and so the above experiments did not evaluate much the
performance of our procedure for checking entailments between formulas and atoms.
For that, we further considered the experiments listed in Table 1 (among which, skl3
required the extension of our approach to a full decision procedure as discussed at
the end of Sec. 5). The full benchmark is available with our tool [8]. The entailment
problems are extracted from verification conditions of operations like adding or deleting
an element at the start, in the middle, or at the end of various kinds of list segments (see
App. F). Table 1 gives for each example the running time, the valid/invalid status, and
the size of the tree encoding and TA for ϕ1 and ϕ2, respectively. We find the resulting
times quite encouraging.

9 Related Work

Several decision procedures for fragments of SL have been introduced in the literature
[1,5,6,9,13,12,16,17,4].

Some of these works [1,5,6,16] consider a fragment of SL that uses only one predi-
cate describing singly linked lists, which is a much more restricted setting than what
is considered in this paper. In particular, Cook et al. [6] prove that the satisfiabil-
ity/entailment problem can be solved in polynomial time. Piskac et al. [17] show that
the boolean closure of this fragment can be translated to a decidable fragment of first-
order logic, and this way, they prove that the satisfiability/entailment problem can be
decided in NP/co-NP. Furthermore, they consider the problem of combining SL formu-
las with constraints on data using the Nelson-Oppen theory combination framework.
Adding constraints on data to SL formulas is considered also in Qiu et al. [18].

A fragment of SL covering overlaid nested lists was considered in our previous
work [9]. Compared with it, we currently do not consider overlaid lists, but we have
enlarged the set of inductively-defined predicates to allow for nesting of cyclic lists
and doubly linked lists (DLLs). We also provide a novel and more efficient TA-based
procedure for checking simple entailments.

Brotherston et al. [4] define a generic automated theorem prover relying on the no-
tion of cyclic proofs and instantiate it to prove entailments in a fragment of SL with
inductive definitions and disjunctions more general than what we consider here. How-
ever, they do not provide a fragment for which completeness is guaranteed. Iosif et
al. [13] also introduce a decidable fragment of SL that can describe more complex data

18

structures than those considered here, including, e.g., trees with parent pointers or trees
with linked leaves. However, [13] reduces the entailment problem to MSO on graphs
with a bounded tree width, resulting in a multiply-exponential complexity.

The recent work [12] considers a more restricted fragment than [13] (incompara-
ble with ours). The work proposes a more practical, purely TA-based decision proce-
dure, which reduces the entailment problem to language inclusion on TAs, establish-
ing EXPTIME-completeness of the considered fragment. Our decision procedure deals
with the boolean structure of SL formulas using SAT solvers, thus reducing the entail-
ment problem to the problem of entailment between a formula and an atom. Such sim-
pler entailments are then checked using a polynomial semi-decision procedure based on
the membership problem for TAs. The approach of [12] can deal with various forms of
trees and with entailment of structures with skeletons based on different selectors (e.g.,
DLLs viewed from the beginning and DLLs viewed from the end). On the other hand,
it currently cannot deal with structures of zero length and with some forms of structure
concatenation (such as concatenation of two DLL segments), which we can handle.

10 Conclusion

We proposed a novel (semi-)decision procedure for a fragment of SL with inductive
predicates describing various forms of lists (singly or doubly linked, nested, circular,
with skip links, etc.). The procedure is compositional in that it reduces the given en-
tailment query to a set of simpler queries between a formula and an atom. For solving
them, we proposed a novel reduction to testing membership of a tree derived from the
formula in the language of a TA derived from a predicate. We implemented the proce-
dure, and our experiments show that it has not only a favourable theoretical complexity,
but it also efficiently handles practical verification conditions.

In the future, we plan to investigate extensions of our approach to formulas with
a more general boolean structure or using more general inductive definitions. Concern-
ing the latter, we plan to investigate whether some ideas from [12] could be used to ex-
tend our decision procedure for entailments between formulas and atoms. From a prac-
tical point of view, apart from improving the implementation of our procedure, we plan
to integrate it into a complete program analysis framework.

References
1. J. Berdine, C. Calcagno, and P.W. O’Hearn. A Decidable Fragment of Separation Logic. In

Proc. of FSTTCS’04, LNCS 3328, Springer, 2005.
2. J. Berdine, C. Calcagno, and P.W. O’Hearn. Smallfoot: Modular Automatic Assertion Check-

ing with Separation Logic. In Proc. of FMCO’05, LNCS 4111, Springer, 2006.
3. J. Brotherston, C. Fuhs, N. Gorogiannis, and J.A.N. Pérez. A Decision Procedure for Satis-

fiability in Separation Logic with Inductive Predicates. To appear in Proc. of LICS’14.
4. J. Brotherston, N. Gorogiannis, and R.L. Petersen. A Generic Cyclic Theorem Prover. In

Proc. of APLAS’12, LNCS 7705, Springer, 2012.
5. C. Calcagno, H. Yang, P. O’Hearn. Computability and Complexity Results for a Spatial As-

sertion Language for Data Structures. In Proc. of FSTTCS’01, LNCS 2245, Springer, 2001.
6. B. Cook, C. Haase, J. Ouaknine, M.J. Parkinson, and J. Worrell. Tractable Reasoning in

a Fragment of Separation Logic. In Proc. of CONCUR’11, LNCS 6901, Springer, 2011.

19

7. C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. Compositional Entailment Checking
for a Fragment of Separation Logic. Technical Report FIT-TR-2014-01, FIT BUT, 2014.
http://www.fit.vutbr.cz/˜ilengal/pub/FIT-TR-2014-01.pdf.

8. C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. SPEN, 2014. http://www.liafa.
univ-paris-diderot.fr/spen.

9. C. Enea, V. Saveluc, and M. Sighireanu. Compositional Invariant Checking for Overlaid and
Nested Linked Lists. In Proc. of ESOP’13, LNCS 7792, Springer, 2013.

10. A. Gotsman, J. Berdine, and B. Cook. Precision and the Conjunction Rule in Concurrent
Separation Logic. Electronic Notes in Theoretical Computer Science, 276:171–190, 2011.

11. C. Haase, S. Ishtiaq, J. Ouaknine, and M.J. Parkinson. SeLoger: A Tool for Graph-based
Reasoning in Separation Logic. In Proc. of CAV’13, LNCS 8044, Springer, 2013.

12. R. Iosif, A. Rogalewicz, and T. Vojnar. Deciding Entailments in Inductive Separation Logic
with Tree Automata. Technical Report arXiv:1402.2127, 2014.

13. R. Iosif, A. Rogalewicz, and J. Šimáček. The Tree Width of Separation Logic with Recursive
Definitions. In Proc. of CADE-24, LNCS 7898, Springer, 2013.

14. S. Ishtiaq and P.W. O’Hearn. BI as an Assertion Language for Mutable Data Structures. In
Proc. of POPL’01, ACM, 2001.

15. O. Lengál, J. Šimáček, and T. Vojnar. VATA: A Library for Efficient Manipulation of Non-
deterministic Tree Automata. In Proc. of TACAS’12, LNCS 7214, Springer, 2012.

16. J.A.N. Pérez and A. Rybalchenko. Separation Logic + Superposition Calculus = Heap The-
orem Prover. In Proc. of PLDI’11, ACM, 2011.

17. R. Piskac, T. Wies, and D. Zufferey. Automating Separation Logic Using SMT. In Proc. of
CAV’13, LNCS 8044, Springer, 2013.

18. X. Qiu, P. Garg, A. Stefanescu, and P. Madhusudan. Natural Proofs for Structure, Data, and
Separation. In Proc. of PLDI’13, ACM, 2013.

19. J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of
LICS’02, IEEE, 2002.

20

http://www.fit.vutbr.cz/~ilengal/pub/FIT-TR-2014-01.pdf
http://www.liafa.univ-paris-diderot.fr/spen
http://www.liafa.univ-paris-diderot.fr/spen

A Semantics

The relation (S,H) |= ϕ is defined by the following (] denotes the disjoint union of
sets and S[X ← `] denotes the function S′ s.t. S′(X) = ` and S′(Y) = S(Y) for any
Y 6= X):

(S,H) |= E = F iff S(E) = S(F)

(S,H) |= E 6= F iff S(E) 6= S(F)

(S,H) |= ϕ ∧ ψ iff (S,H) |= ϕ and (S,H) |= ψ

(S,H) |= emp iff dom(H) = ∅
(S,H) |= E 7→ {ρ} iff dom(H) = {(S(E), fi) | (fi, Ei) ∈ {ρ}} and

for every (fi, Ei) ∈ {ρ}, H(S(E), fi) = S(Ei)

(S,H) |= Σ1 ∗Σ2 iff ∃H1, H2 s.t. ldom(H) = ldom(H1)] ldom(H2),
(S,H1) |= Σ1, and (S,H2) |= Σ2

(S,H) |= P (E,F,
−→
B) iff there exists k ∈ N s.t. (S,H) |= P k(E,F,

−→
B) and

ldom(H) ∩ ({S(F)} ∪ {S(B) | B ∈
−→
B}) = ∅

(S,H) |= P 0(E,F,
−→
B) iff (S,H) |= E = F ∧ emp

(S,H) |= P k+1(E,F,
−→
B) iff (S,H) |= E 6= {F} ∪

−→
B ∧ ∃Xtl. Σ(E,Xtl,

−→
B) ∗ P k(Xtl, F,

−→
B)

(S,H) |= ∃X.ϕ iff there exists ` ∈ Locs s.t. (S[X ← `], H) |= ϕ

B Algorithm toTree

LetG be an SL graph returned by select for the atom P (E,F,
−→
B). The post-condition

of select ensures that all nodes of G are reachable from the node Root labeled by E.
The tree encoding of G is computed by the procedure toTree(G,P (E,F,

−→
B)) below:

Input: G : an SL graph with all nodes reachable from the node Root labeled by E,
P (E,F,

−→
B) : an atom

Output: A labeled tree that encodes G
// compute the spanning tree
M← nodeMarking(G,P,E,≺F∗)
// split nodes of Vars

G′ ← splitJoinLabeled(G,M, E, {F} ∪
−→
B)

// split unlabeled join nodes
T ← splitJoin(G′,M)
// move labels from edges to src nodes
T ′ ← updateLabels(T)
return T ′

Fig. 9. Tree encoding of SL graphs by toTree()

C Construction of Tree Automata for Predicates

This appendix first describes the basic algorithm for construction of tree automata ac-
cepting unfoldings of the predicate where every (singly linked) list segment (both top-

21

level and nested) is non-empty. Later, the algorithm is extended for list segments which
might be empty and for doubly linked list segments.

C.1 Basic Algorithm for Non-Empty List Segments

Consider the definition of the matrix of the predicate P (E,F,
−→
B) as given in Section 2

repeated for the sake of convenience here:

P (E,F,
−→
B) , (E = F∧emp)∨

(
E 6= {F}∪

−→
B ∧∃Xtl. Σ(E,Xtl,

−→
B) ∗P (Xtl, F,

−→
B)
)

where Σ is of the form

Σ(E,Xtl,
−→
B) ,∃

−→
Z .E 7→ ρ(Xtl,

−→
Z ,
−→
B) ∗Σ′

Σ′ ::=Q(Z,U,
−→
Y) | 	1+ Q[Z,

−→
Y] | Σ′ ∗Σ′

for Z ∈
−→
Z , U ∈

−→
Z ∪
−→
B ∪ {E,Xtl},

−→
Y ⊆

−→
B ∪ {E,Xtl}, and

	1+ Q[Z,
−→
Y] ,∃Z ′. ΣQ(Z,Z ′,

−→
Y) ∗Q(Z ′, Z,

−→
Y) where ΣQ is the matrix of Q.

The construction of the automaton A[P] is described in the following. To ease its pre-
sentation, let us suppose that the matrix of P is of the formΣ(E,Xtl,

−→
B) , ∃

−→
Z .E 7→

{(f1, Z1), . . . , (fn, Zn)} ∗Σ′. W.l.o.g. we further assume that f1 ≺F . . . ≺F fn, i.e. f1
is the minimum field in F7→(P).

The construction uses the SL graph of the following formula which unfolds two
times the recursive definition of the predicate:

∃Xtl. Σ(E,Xtl,
−→
B) ∗Σ(Xtl, F,

−→
B). (10)

The unfolding is done two times in order to capture all the markings (including the ones
of nodes allocated inside the list segment) that may appear in tree encodings that shall
be recognized byA[P]. The graphG is obtained from the SL graph of (10) such that the
macro	1+ Q[Z,

−→
Y] is not expanded but translated into a predicate edge from Node(Z)

to Node(Z) labelled with Q(
−→
Y).

Then, we get the tree encoding T [G] of G and check that it is not equal to ⊥,
otherwise we abort the procedure. Notice that the variable Xtl is existentially quan-
tified in G, so T [G] does not use alias relation alias [Xtl] but only alias [U] with
U ∈ {E,F} ∪

−→
B . The nodes aliasing the one labeled by Xtl in G use the relations

alias ↑[f1] or alias ↑↓[f1] because the marking of Node(Xtl) is f1. Recall also that the
nodes of G labeled by parameters or existentially quantified variables are pushed di-
rectly in T [G]. So, we overload the notation Node(Z) to denote the node of T [G] ob-
tained from the node of G labeled by Z.

The construction starts with an empty automaton A[P]. It calls a procedure
buildTACall which adds states and transitions to A[P] to recognize tree encod-
ings of unfoldings of the atom P (E,F,

−→
B). This procedure is recursive, because it

is called for all atoms Q(U, V,
−→
W) inside the formula (10). The formal parameters of

22

q0

q(Node(Xtl))

q1

T1 T2

f1 f1

f1

f1

P (
−→
B) P (

−→
B)

P (
−→
B)

Fig. 10. General schema of A[P] built in buildTACall

buildTACall are: the predicate called, the mapping σ of its formal parameters to an
aliasing relation, the states q0 and q1 to be used for the source resp. the destination of
the construction, and the marking m0 of state q0. The initial values of these parameters
are, respectively, P , [E 7→ alias [E], F 7→ alias [F],

−−−−−−−−−→
B 7→ alias [B]], fresh states q0, q1,

and f1. The state q0 is marked as the root of A[P].
The procedure buildTACall has four steps, each step filling one of the parts of

the general schema of A[P] given in Fig. 10.

I. Import the tree encoding T [G]: This first step create the skeleton of A[P] by taking
T [G] and transforming it in the following way:

(a) For each node u of T [G], we create a unique state q(u) inA[P] except for the nodes
Node(E) and Node(F) for which are used the states q0 resp. q1.

(b) If the node u is labelled in T [G] with an aliasing relation r ∈ {alias [B] | B ∈
−→
B} ∪ {alias#[m] | # ∈ {↑, ↑↓},m a marking}, we add the transition

q(u) ↪→ r[σ ◦m0] (11)

where σ◦m0 substitutes a relation alias [B] by σ(B) for anyB ∈
−→
B , and a relation

alias#[m] by alias#[m0 �m].
(c) If there is a predicate edge from u to v labelled with Q(

−→
Y), we add the transition

q(u) ↪→ Q(
−→
Y [σ ◦m0])(q(v)). (12)

where σ ◦m0 replaces each variable in the tuple
−→
Y by:

– σ(Y), if Y is a parameter,
– a relation alias#[m0 �m] where m is the marking of Node(Y) and # is the

relation between Node(E) and Node(Y), if Y is an existential variables in (10).
(d) If u is the source of points-to edges e1, . . . , ek labelled with the fields h1, . . . , hk

respectively, assuming that h1 ≺F . . . ≺F hk, and entering nodes v1, . . . , vk, in this
order, we add the transition

q(u) ↪→h1(q(v1)), . . . , hk(q(vk)). (13)

23

Note that this rule also creates the transition

q0 ↪→f1(q(Node(Xtl))), f2(q(Z2)), . . . , fn(q(Zn)). (14)

corresponding to the black edge labeled by f1 in Fig. 10 between states q0 and
q(Node(Xtl)), and the black edge between q(Node(Xtl)) and q1.

(e) If the call to buildTACall is not nested, we add the transition

q1 ↪→ σ(F). (15)

Note that this skeleton is able to accept precisely two unfoldings of the predicate P
between E and F such that nested predicates are not unfolded. This skeleton is repre-
sented two triangles built with black edges in Fig. 10; each triangle corresponds to an
unfolding of the predicate definition encoded in T [G].

II. Accepting non empty list segments: Next, we makeA[P] accept an arbitrary number
of these unfoldings along the backbone field of the predicate. To do this, we take the
initial transition (14) insert into A[P] the following transitions (represented in green in
Fig. 10):

(a) a transition to accept exactly one unfolding:

q0 ↪→f1(q1), f2(q(Z2)), . . . , fn(q(Zn)). (16)

(b) a transition to inserting more unfoldings:

q(Node(Xtl)) ↪→f1(q(Node(Xtl))), f2(q(Z2)), . . . , fn(q(Zn)). (17)

III. Interleave with predicate edges: We add transitions (represented in red in Fig. 10)
allowing an arbitrary interleaving of folded and unfolded occurrences of the translated
predicate P :

q0 ↪→P (
−→
B [σ]])(q(Node(Xtl))) (18)

q(Node(Xtl)) ↪→P (
−→
B [σ])(q(Node(Xtl))) (19)

q(Node(Xtl)) ↪→P (
−→
B [σ])(q1). (20)

IV. Inserting tree automata of nested predicate edges: For each transition inserted in
A[P] of the form:

q(Node(R)) ↪→ Q(
−→
Y)(q(Node(S))), (21)

with Q 6= P , we call recursively the procedure builTACall to insert in A[P] the
automaton for the call of the predicate Q with the parameters (R,S,

−→
Y). The states

created by each call of builTACall are new. The procedure builTACall is called
with the process identifier Q,

– the mapping [E 7→ rR, F 7→ rS ,
−−−−−→
B 7→ rY], where for any Z ∈ {R,S} ∪

−→
Y :

• if Z ∈ {E,F}∪ ∈
−→
B then rZ is σ(Z),

• if Z ∈
−→
Z (set of existentially quantified variables in P) then rZ is alias ↑↓[mZ]

where mZ is the marking of Node(Z) in T [G],
– the states q(Node(R)) and q(Node(S)), and
– the marking m0 �mR, where mR is the marking of Node(R) in T [G].

24

x1 x2 x3 x4 x5 x6
f1 f1

f2

f3

f2

f1 f1

f3

f2

f1

a) The SL graph of a 3-level skip list

x1 x2

alias ↑↓[f3 f2]

x3

alias ↑↓[f3]

x4

alias ↑↓[f3]

x5

alias ↑↓[f3]

x6
f1

f1

f2

f3

f1 f2

f1

f3

f2 f1

b) The tree encoding of the graph in (a)

Fig. 11. Illustration of the issue with possibly empty nested list segments. The label of the node
accessible from x5 over f1 (labelled with alias ↑↓[f3]) reflects the fact that the second-level skip
list from the node x4 to the node x6 is empty.

C.2 Extension for Possibly Empty Nested List Segments

This extension creates tree automata that can accept such unfoldings of the predicate
where nested list segments may be empty. The difficulties this creates are shown in
Fig. 11. The label of the node accessible from x5 over f1 (labelled with alias ↑↓[f3])
reflects the fact that the second-level skip list from the node x4 to the node x6 is empty.
Therefore, when the automaton is traversing the segment between x4 and x6, it needs
to remember that if the second level list segment leaving x4 is empty, the label at the
end of the first level list segment leaving x4 is not alias ↑↓[f3f2] but alias ↑↓[f3]. Note
that the top-level list segment predicate is always non-empty; the case when it is empty
is dealt with during the normalization phase (see Section 3.2).

Suppose there are nested list segments R1, . . . , Rn in the matrix Σ(E,Xtl,
−→
B) of

the predicate P (E,F,
−→
B) (note that the predicate of some distinct Ri and Rj can be

the same, e.g. Ri = ls(S, T) and Rj = ls(U, V)). For every subset S of the set of
nested list segments, S ⊆ {R1, . . . , Rn}, we run the procedure in Section C.1 such
that we first modify Σ(E,Xtl,

−→
B) in such a way that all nested list segments not in

S are substituted by their ground case and obtain the automaton AS . We then obtain
the automatonA[P (E,F,

−→
B)] by uniting all the automata retrieved in the previous step

together and merging their initial states into one.
Formally, given the automata AS = (QS ,F , qS0 , ∆S) for all S ⊆ {R1, . . . , Rn}

(supposing the sets of states are pairwise disjoint) we create A[P (E,F,
−→
B)] =

25

(Q,F , q0, ∆) in the following way.

Q = {q0} ∪
⋃

S⊆{R1,...,Rn}

(
QS \

{
qS0
})

(22)

∆ =
⋃

S⊆{R1,...,Rn}

∆S
[
q0/q

S
0

]
(23)

where ∆S
[
q0/q

S
0

]
denotes the set of transitions ∆S where every occurrence of qS0 is

substituted with q0.

C.3 Extension for Doubly Linked Lists
For DLLs, the procedure is more complex. Recall the definition of a doubly linked
predicate:

P (E,F, P, S,
−→
B) , (E = S ∧ F = P ∧ emp)∨(

E 6= {S} ∪
−→
B ∧ F 6= {P} ∪

−→
B ∧ ∃Xtl. Σ(E,Xtl, P,

−→
B) ∗ P (Xtl, F, E, S,

−→
B)
)

First, we start with obtaining the SL formula use for the base of the algorithm. This
is done by unfolding the predicate P several times.

D Tree Automata for the Running Example

The automatonA[ls(E,F)] contains the following set of transition rules (with q0 being
the initial state):

q0 ↪→ f(q0) q0 ↪→ ls(q0)

q0 ↪→ f(q1) q0 ↪→ ls(q1)

q1 ↪→ alias [F]

The automatonA[nll(G,H,B)] contains the following set of transition rules (with qq0
being the initial state):

qq0 ↪→ s(qq0), h(q0) qq0 ↪→ s(qq1), h(q0)

qq1 ↪→ alias [H] qq0 ↪→ nll(B)(qq0)

transition rules of A[ls(E,B)] qq0 ↪→ nll(B)(qq1)

The automaton A[skl1(K,L)] contains the following set of transition rules (p0 is the
initial state):

p0 ↪→ f3(p⊥), f2(p⊥), f1(p0) p0 ↪→ skl1(p0)

p0 ↪→ f3(p⊥), f2(p⊥), f1(p1) p0 ↪→ skl1(p1)

p1 ↪→ alias [L] p⊥ ↪→ alias [NULL]

The automatonA[skl2(M,N)] contains the following set of transition rules (pp0 is the
initial state):

pp0 ↪→ f3(p⊥), f2(pp0), f1(p0) pp0 ↪→ skl2(pp0)

pp0 ↪→ f3(p⊥), f2(pp1), f1(p0) pp0 ↪→ skl2(pp1)

transition rules of A[skl1(K,L)], where pp1 ↪→ alias [N]

alias [L] is substituted by alias ↑↓[f2]

26

The automatonA[skl3(P,R)] contains the following set of transition rules (ppp0 is the
initial state):

ppp0 ↪→ f3(ppp0), f2(pp0), f1(p0) ppp0 ↪→ skl3(ppp0)

ppp0 ↪→ f3(ppp1), f2(pp0), f1(p0) ppp0 ↪→ skl3(ppp1)

transition rules of A[skl2(M,N)], where ppp1 ↪→ alias [R]

alias [N] is substituted by alias ↑↓[f3]
alias ↑↓[f2] is substituted by alias ↑↓[f3 f2]

The automaton A[nlcl(S, T)] contains the following set of transition rules (with qq0
being the initial state):

qq0 ↪→ s(qq0), h(q0) qq0 ↪→ s(qq1), h(q0)

qq1 ↪→ alias [T] qq0 ↪→ nlcl(qq0)

transition rules of A[ls(E,F)], where qq0 ↪→ nlcl(qq1)

alias [F] is substituted by alias ↑[s h]

E Extending the Tree Encoding to Deal with Doubly Linked Lists

The SL graphs of two formulas that entail dll(E,F, P, S) and nlcdl(E,F) from
Sec. 7 and their tree encodings are given in Fig. 12 and Fig. 13 respectively. To deal
with doubly linked lists, one has to modify the step of the procedure toTree that re-
moves join nodes which are not labeled by P or S in the case of dll and by F in
the case of nlcdl. These are the arguments that are not supposed to be allocated in
any model of the predicate. Basically, we need to consider the labels alias ↑2[α] and
alias ↑↓last[α] introduced in Sec. 7.

F Details of the Experiments

In this appendix, we give details of the experiments described in Sec. 85. First, we
considered the benchmark provided in [16], which uses only the ls predicate. It consists
of three classes of entailment problems called Spaguetti, Bolognesa, and Clones. The
first two classes contain 110 problems each (split into 11 groups) generated randomly
according to the rules specified in [16], whereas the last class contains 100 problems
(split into 10 groups) obtained from the verification conditions generated by the tool
SMALLFOOT [2]. For the first two benchmark suites, we observe a deviation of the
running times of ±100 ms w.r.t. the ones reported for SELOGER [11]6. The results are
listed in Table 2. We give the average time for running SPEN on the 10 problems of
each group.

In the following, we give the formulas for ϕ1 used in the experiments for checking
entailments between formulas and atoms. For all cases, entailments are valid for tc1
and tc2, and invalid for tc3.

5 Our experiments were performed on an Intel Core 2 Duo 2.53 GHz processor with 4 GiB
DDR3 1067 MHz running a virtual machine with Fedora 20 (64-bit).

6 The times reported for SELOGER in [11] have been obtained on an Intel Core TM i5-2467M
1.60 GHz processor with 4 GiB DDR3 1066 MHz under Windows 7 Home Premium (64-bit)

27

An SL graph which entails dll(E,F, P, S):

P E
M : n

M : n M : n M : n S
n n n n

p p pp

and its tree encoding:

alias [P] E

alias [E] alias ↑2[n] alias ↑2[n]

alias [S]
n n n n

p p pp

Fig. 12. Tree encodings for doubly linked lists.

Table 2. Running SPEN on the benchmarks from [16].
Bolognesa bo-10 bo-11 bo-12 bo-13 bo-14 bo-15 bo-16 bo-17 bo-18 bo-19 bo-20

Average time [ms] 352 386 385 394 483 562 424 510 503 516 522
Spaguetti sp-10 sp-11 sp-12 sp-13 sp-14 sp-15 sp-16 sp-17 sp-18 sp-19 sp-20

Average time [ms] 146 156 145 153 189 258 198 254 249 252 282
Clones cl-01 cl-02 cl-03 cl-04 cl-05 cl-06 cl-07 cl-08 cl-09 cl-10

Average time [ms] 316 314 335 336 321 334 351 374 407 436

– ϕ2 = nll(x, y, z)

tc1 , x 7→ {(s, u), (h, a)} ∗ u 7→ {(s, y), (h, b)} ∗ ls(a, z) ∗ ls(b, z)
tc2 , nll(x, u, z) ∗ u 7→ {(s, w), (h, a)} ∗ a 7→ {(f, b)} ∗ ls(b, z)∗

nll(w, y, z)

tc3 , nll(x, u, z) ∗ u 7→ {(s, w), (h, a)} ∗ a 7→ {(f, b)} ∗ b 7→ {(f, a)}∗
nll(w, y, z)

– ϕ2 = nlcl(x, y)

tc1 , x 7→ {(s, u), (h, a)} ∗ a 7→ {(f, b)} ∗ b 7→ {(f, a)}∗
u 7→ {(s, y), (h, c)} ∗ c 7→ {(f, d)} ∗ ls(d, c)

tc2 , nlcl(x, u) ∗ u 7→ {(s, v), (h, a)} ∗ a 7→ {(f, b)} ∗ ls(b, a)∗
nlcl(v, y)

tc3 , nlcl(x, u) ∗ u 7→ {(s, v), (h, a)} ∗ a 7→ {(f, y)} ∗ nlcl(v, y)

28

An SL graph which entails nlcdl(E,F):

E

M : s h

M : s hn

M : s hn

M : s
M : s

M : s h

M : s hn

F
s s

h h

n
n
n p

p

p

np pn

and its tree encoding:

E

alias ↑↓last[s hn]

alias ↑[s h]

alias ↑2[s hn]

alias ↑[s h]

alias ↑↓last[s hn]

alias ↑[s h] alias ↑[s h]

alias [F]
s s

h h

n
nn

p

p

p

n

p

p

n

Fig. 13. Tree encodings for lists of cyclic doubly linked lists.

29

– ϕ2 = skl3(x, y)

tc1 , x 7→ {(f1, z), (f2, z), (f3, z)} ∗ z 7→ {(f1, y), (f2, y), (f3, y)}
tc2 , skl3(x, z) ∗ z 7→ {(f3, w), (f2, z2)(f1, z1)} ∗ skl1(z1, z2)∗

skl2(z2, w) ∗ skl3(w, y)
tc3 , x 7→ {(f1, w), (f2, w), (f3, w)} ∗ w 7→ {(f1, z), (f2, w2), (f3, z)}∗

skl2(w2, z) ∗ skl3(z, y)

– ϕ2 = dll(x, y, z, v)

tc1 , x 7→ {(n, u), (p, z)} ∗ u 7→ {(n, y), (p, x)} ∗ y 7→ {(n, v), (p, u)}
tc2 , x 7→ {(n, u), (p, z)} ∗ dll(u,w, x, y) ∗ y 7→ {(n, v), (p, w)}
tc3 , x 7→ {(n, u), (p, z)} ∗ dll(u,w, x, y) ∗ y 7→ {(n, v)}

30

	Compositional Entailment Checking for a Fragment of Separation Logic

