
Computing Simulations over
Tree Automata

(Efficient Techniques for Reducing Tree Automata)

FIT BUT Technical Report Series

Parosh A. Abdulla, Ahmed Bouajjani,
Lukáš Hoĺık, Lisa Kaati, and

Tomáš Vojnar

Technical Report No. FIT-TR-2007-001
Faculty of Information Technology, Brno University of Technology

Last modified: May 8, 2008

Computing Simulations over Tree Automata
(Efficient Techniques for Reducing Tree Automata)

Parosh A. Abdulla1, Ahmed Bouajjani2, Lukáš Holı́k3, Lisa Kaati1, and Tomáš Vojnar3

1 University of Uppsala, Sweden, email: {parosh,lisa.kaati}@it.uu.se
2 LIAFA, University Paris 7, France, email: abou@liafa.jussieu.fr

3 FIT, Brno University of Technology, Czech Rep., email: {holik,vojnar}@fit.vutbr.cz

Abstract. We address the problem of computing simulation relations over tree
automata. In particular, we consider downward and upward simulations on tree
automata, which are, loosely speaking, analogous to forward and backward rela-
tions over word automata. We provide simple and efficient algorithms for com-
puting these relations based on a reduction to the problem of computing simu-
lations on labelled transition systems. Furthermore, we show that downward and
upward relations can be combined to get relations compatible with the tree lan-
guage equivalence, which can subsequently be used for an efficient size reduction
of nondeterministic tree automata. This is of a very high interest, for instance, for
symbolic verification methods such as regular model checking, which use tree
automata to represent infinite sets of reachable configurations. We provide ex-
perimental results showing the efficiency of our algorithms on examples of tree
automata taken from regular model checking computations.

1 Introduction

Tree automata are widely used for modelling and reasoning about various kinds of struc-
tured objects such as syntactical trees, structured documents, configurations of complex
systems, algebraic term representations of data or computations, etc. (see [8]). For in-
stance, in the framework of regular model checking, tree automata are used to represent
and manipulate sets of configurations of infinite-state systems such as parameterized
networks of processes with a tree-like topology, or programs with dynamic linked data-
structures [6, 2, 4, 5].

In the above context, checking language equivalence and reducing automata wrt.
the language equivalence is a fundamental issue, and performing these operations effi-
ciently is crucial for all practical applications of tree automata. Computing a minimal
canonical tree automaton is, of course, possible, but it requires determinisation, which
may lead to an exponential blow-up in the size of the automaton. Therefore, even if
the resulting automaton can be small, we may not be able to compute it in practice due
to the very expensive determinisation step, which is, indeed, a major bottleneck when
using canonical tree automata.

A reasonable and pragmatic approach is to consider a notion of equivalence that
is stronger than language equivalence, but which can be checked efficiently, using
a polynomial algorithm. Here, a natural trade-off between the strength of the consid-
ered equivalence and the cost of its computation arises. In the case of word automata,

1

an equivalence which is widely considered as a good trade-off in this sense is simulation
equivalence. It can be checked in polynomial time, and efficient algorithms have been
designed for this purpose (see, e.g., [9, 13]). These algorithms make the computation of
simulation equivalence quite affordable even in comparison with the one of bisimula-
tion, which is cheaper [12], but which is also stronger, and therefore leads in general to
less significant reductions in the sizes of the automata.

In this work, we study notions of entailment and equivalence between tree automata,
which are suitable in the sense discussed above, and we also provide efficient algorithms
for their computation.

We start by considering a basic notion of tree simulation, called downward simula-
tion, corresponding to a natural extension of the usual notion of simulation defined on
or-structures to and-or structures. This relation can be shown to be compatible with the
tree language equivalence.

The second notion of simulation that we consider, called upward simulation, cor-
responds intuitively to a generalisation of the notion of backward simulation to and-or
structures. The definition of an upward simulation is parametrised by a downward sim-
ulation: Roughly speaking, two states q and q′ are upward similar if whenever one of
them, say q, considered within some vector (q1, . . . ,qn) at position i, has an upward
transition to some state s, then q′ appears at position i of some vector (q′1, . . . ,q

′
n) that

has also an upward transition to a state s′, which is upward similar to s, and moreover,
for each position j 6= i, q j is downward similar to q′j.

Upward simulation is not compatible with the tree language equivalence. It is rather
compatible with the so-called context language equivalence, where a context of a state
q is a tree with a hole on the leaf level such that if we plug a tree in the tree language
of q into this hole, we obtain a tree recognised by the automaton. However, we show
an interesting fact that when we restrict ourselves to upward relations compatible with
the set of final states of automata, the downward and upward simulation equivalences
can be combined in such a way that they give rise to a new equivalence relation which
is compatible with the tree language equivalence. This combination is not trivial. It
is based on the idea that two states q1 and q2 may have different tree languages and
different context languages, but for every t in the tree language of one of them, say q1,
and everyC in the context language of the other, here q2, the tree C[t] (where t is plugged
into C) is recognised by the automaton. The combined relation is coarser than (or, in
the worst case, as coarse as) the downward simulation and according to our practical
experiments, it usually leads to significantly better reductions of the automata.

In this way, we obtain two candidates for simulation-based equivalences for use in
automata reduction. Then, we consider the issue of designing efficient algorithms for
computing these relations. A deep examination of downward and upward simulation
equivalences shows that they can be computed using essentially the same algorithmic
pattern. Actually, we prove that, surprisingly, computing downward and upward tree
simulations can be reduced in each case to computing simulations on standard labelled
transition systems. These reductions provide a simple and elegant way of solving in
a uniform way the problem of computing tree simulations by reduction to computing
simulations in the word case. The best known algorithm for solving the latter problem,
published recently in [13], considers simulation relations defined on Kripke structures.

2

The use of this algorithm requires its adaptation to labelled transition systems. We pro-
vide such an adaptation and we provide also a proof for this algorithm which can be
seen as an alternative, more direct, proof of the algorithm of [13]. The combination
of our reductions with the labelled transition systems-based simulation algorithm leads
to efficient algorithms for our equivalence relations on tree automata, whose precise
complexities are also analysed in the paper.

We have implemented our algorithms and performed experiments on automata com-
puted in the context of regular tree model checking (corresponding to representations
of the set of reachable configurations of parametrised systems). The experiments show
that, indeed, the relations proposed in this paper provide significant reductions of these
automata and that they perform better than (existing) bisimulation-based reductions [10].

Related work. As far as we know, this is the first work which addresses the issue of
computing simulation relations for tree automata. The downward and upward simula-
tion relations considered in this work have been introduced first in [3] where they have
been used for proving soundness of some acceleration techniques used in the context
of regular tree model checking. However, the problem of computing these relations has
not been addressed in that paper. A form of combining downward and upward rela-
tions has also been defined in [3]. However, the combinations considered in that paper
require some restrictions which are computationally difficult to check and that are not
considered in this work. Bisimulations on tree automata have been considered in [1,
10]. The notion of a backward bisimulation used in [10] corresponds to what can be
called a downward bisimulation in our terminology.

Outline. The rest of the paper is organised as follows. In the next section, we give some
preliminaries on tree automata, labelled transition systems, and simulation relations.
Section 3 describes an algorithm for checking simulation on labelled transition systems.
In Section 4 resp. Section 5, we translate downward resp. upward simulation on tree
automata into corresponding simulations on labelled transition systems. Section 6 gives
methods for reducing tree automata based on equivalences derived form downward and
upward simulation. In Section 7, we report some experimental results. Finally, we give
conclusions and directions for future research in Section 8.

2 Preliminaries

In this section, we introduce some preliminaries on trees, tree automata, and labelled
transition systems (LTS). In particular, we recall two simulation relations defined on tree
automata in [3], and the classical (word) simulation relation defined on LTS. Finally,
we will describe an encoding which we use in our algorithms to describe pre-order
relations, e.g., simulation relations.

For an equivalence relation ≡ defined on a set Q, we call each equivalence class of
≡ a block, and use Q/≡ to denote the set of blocks in ≡.

Trees. A ranked alphabet Σ is a set of symbols together with a function Rank : Σ→N.
For f ∈ Σ, the value Rank(f) is said to be the rank of f . For any n ≥ 0, we denote by

3

Σn the set of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree
t over a ranked alphabet Σ is a partial mapping t : N∗→ Σ that satisfies the following
conditions:

– dom(t) is a finite, prefix-closed subset of N∗, and
– for each p ∈ dom(t), if Rank(t(p)) = n≥ 0, then {i | pi ∈ dom(t)}= {1, . . . ,n}.

Each sequence p ∈ dom(t) is called a node of t. For a node p, we define the ith child
of p to be the node pi, and we define the ith subtree of p to be the tree t ′ such that
t ′(p′) = t(pip′) for all p′ ∈N∗. A leaf of t is a node p which does not have any children,
i.e., there is no i ∈ N with pi ∈ dom(t). We denote by T (Σ) the set of all trees over the
alphabet Σ.

Tree Automata. A (finite, non-deterministic, bottom-up) tree automaton (TA) is a 4-
tuple A = (Q,Σ,∆,F) where Q is a finite set of states, F ⊆ Q is a set of final states, Σ
is a ranked alphabet, and ∆ is a set of transition rules. Each transition rule is a triple of
the form ((q1, . . . ,qn), f ,q) where q1, . . . ,qn,q ∈ Q, f ∈ Σ, and Rank(f) = n. We use

(q1, . . . ,qn)
f
−→ q to denote that ((q1, . . . ,qn), f ,q) ∈ ∆. In the special case where n = 0,

we speak about the so-called leaf rules, which we sometimes abbreviate as
f
−→ q. We

use Lhs(A) to denote the set of left-hand sides of rules, i.e., the set of tuples of the form

(q1, . . . ,qn) where (q1, . . . ,qn)
f
−→ q for some f and q. Finally, we denote by Rank(A)

the smallest n ∈ N such that n ≥ m for each m ∈ N where (q1, . . . ,qm) ∈ Lhs(A) for
some qi ∈ Q, 1≤ i≤ m.

A run of A over a tree t ∈ T (Σ) is a mapping π : dom(t)→ Q such that for each
node p ∈ dom(t) where q = π(p), we have that if qi = π(pi) for 1 ≤ i ≤ n, then ∆ has

a rule (q1, . . . ,qn)
t(p)
−→ q. We write t

π
=⇒ q to denote that π is a run of A over t such

that π(ε) = q. We use t =⇒ q to denote that t
π

=⇒ q for some run π. The language of
a state q ∈ Q is defined by L(q) = {t| t =⇒ q}, while the language of A is defined by
L(A) =

S

q∈F L(q).

Labelled Transition Systems. A (finite) labelled transition system (LTS) is a tuple
T = (S,L ,→) where S is a finite set of states, L is a finite set of labels, and → ⊆
S×L×S is a transition relation.

Given an LTS T = (S,L ,→), a label a ∈ L , and two states q,r ∈ S, we denote by
q

a
−→ r the fact that (q,a,r) ∈ →. We define the set of a-predecessors of a state r as

prea(r) = {q ∈ S | q
a
−→ r}. Given X ,Y ⊆ S, we denote prea(X) the set

S

s∈X prea(s),
we write q

a
−→ X iff q ∈ prea(X), and Y

a
−→ X iff Y ∩prea(X) 6= /0.

Simulations. For a tree automaton A = (Q,Σ,∆,F), a downward simulation D is a bi-

nary relation on Q such that if (q,r) ∈D and (q1, . . . ,qn)
f
−→ q, then there are r1, . . . ,rn

such that (r1, . . . ,rn)
f
−→ r and (qi,ri) ∈ D for each i such that 1 ≤ i ≤ n. It is easy to

show [3] that any downward simulation can be closed under reflexivity and transitivity.
Moreover, there is a unique maximal downward simulation over a given tree automaton,
which we denote as 4down in the sequel.

4

Given a TA A = (Q,Σ,∆,F) and a downward simulation D, an upward simulation U

induced by D is a binary relation on Q such that if (q,r)∈U and (q1, . . . ,qn)
f
−→ q′ with

qi = q, 1 ≤ i ≤ n, then there are r1, . . . ,rn,r′ such that (r1, . . . ,rn)
f
−→ r′ where ri = r,

(q′,r′) ∈U , and (q j,r j) ∈ D for each j such that 1≤ j 6= i≤ n. In [3], it is shown that
any upward simulation can be closed under reflexivity and transitivity. Moreover, there
is a unique maximal upward simulation with respect to a fixed downward simulation
over a given tree automaton, which we denote as 4up in the sequel.

Given an initial pre-order I ⊆ Q×Q, it can be shown that there are unique maxi-
mal downward as well as upward simulations included in I on the given TA, which we
denote 4I

x in the sequel, for x ∈ {down,up}. Further, we use ∼=x to denote the equiva-
lence relation 4x ∩4−1

x on Q for x ∈ {down,up}. Likewise, we define the equivalence
relations ∼=I

x for an initial pre-order I on Q and x ∈ {down,up}.
For an LTS T = (S,L ,→), a (word) simulation is a binary relation R on S such that

if (q,r) ∈ R and q
a
−→ q′, then there is an r′ with r

a
−→ r′ and (q′,r′) ∈ R. In a very

similar way as for simulations on trees, it can be shown that any given simulation on an
LTS can be closed under reflexivity and transitivity and that there is a unique maximal
simulation on the given LTS, which will we denote by 4. Moreover, given an initial
pre-order I ⊆ S×S, it can be shown that there is a unique maximal simulation included
in I on the given LTS, which we denote 4I in the sequel. We use ∼= to denote the
equivalence relation 4 ∩4−1 on S and consequently∼=I to denote 4I ∩ (4I)−1.

Encoding. Let S be a set. A partition-relation pair over S is a pair (P,Rel) where
(1) P ⊆ 2S is a partition of S (i.e., S = ∪B∈PB, and for all B,C ∈ P, if B 6= C, then
B∩C = /0), and (2) Rel ⊆ P×P. We say that a partition-relation pair (P,Rel) over S
induces (or defines) the relation δ =

S

(B,C)∈Rel B×C.
Let � be a pre-order defined on a set S, and let ≡ be the equivalence � ∩ �−1

defined by�. The pre-order� can be represented—which we will use in our algorithms
below—by a partition-relation pair (P,Rel) over S such that (B,C) ∈ Rel iff s1 � s2 for
all s1 ∈ B and s2 ∈ C. In this representation, if the partition P is as coarse as possible
(i.e., such that s1,s2 ∈ B iff s1 ≡ s2), then, intuitively, the elements of P are blocks of≡,
while Rel reflects the partial order on P corresponding to �.

3 Computing Simulations on Labelled Transition Systems

We now introduce an algorithm to compute the (unique) maximal simulation relation
4I on an LTS for a given initial pre-order I on states. Our algorithm is a re-formulation
of the algorithm proposed in [13] for computing simulations over Kripke structures.

3.1 An Algorithm for Computing Simulations on LTS

For the rest of this section, we assume that we are given an LTS T = (S,L ,→) and an
initial pre-order I⊆ S×S. We will use Algorithm 1 to compute the maximum simulation
4I⊆ S×S included in I. In the algorithm, we use the following notation. Given ρ⊆ S×S
and an element q ∈ S, we denote ρ(q) the set {r ∈ S | (q,r) ∈ ρ}.

5

The algorithm performs a number of iterations computing a sequence of relations,
each induced by a partition-relation pair (P,Rel). During each iteration, the states be-
longing to a block B′ ∈ P are those which are currently assumed as capable of simulat-
ing those from any B with (B,B′) ∈ Rel. The algorithm starts with an initial partition-
relation pair (Pinit ,Relinit) that induces the initial pre-order I on S. The partition-relation
pair is then gradually refined by splitting blocks of the partition P and by restricting
the relation Rel on P. When the algorithm terminates, the final partition-relation pair
(Psim,Relsim) induces the required pre-order 4I .

The refinement performed during the iterations consists of splitting the blocks in P
and then updating the relation Rel accordingly. For this purpose, the algorithm maintains
a set Removea(B) for each a∈L and B∈P. Such a set contains states that do not have an
a-transition going into states that are in B nor to states of any block B′ with (B,B′)∈Rel.
Clearly, the states in Removea(B) cannot simulate states that have an a-transition going
into

S

(B,B′)∈Rel B′. Therefore, for any Removea(B) 6= /0, we can split each block C ∈ P to
C∩Removea(B) and C \Removea(B). This is done using the function Split on line 6.

After performing the Split operation, we update the relation Rel and the Remove
sets. This is carried out in two steps. First, we compute an approximation of the next
values of Rel and Remove. More precisely, after a split, all Rel relations between the
original “parent” blocks of states are inherited to their “children” resulting from the
split (line 8)—the notation parentPprev(C) refers to the parent block from which C
arose within the split. On line 10, the remove sets are then inherited from parent blocks
to their children. To perform the second step, we observe that the inheritance of the
original relation Rel on parent blocks to the children blocks is not consistent with the
split we have just performed. Therefore, on line 14, we subsequently prune Rel such that
blocks C that have an a-transition going into B states cannot be considered as simulated
by blocks D which do not have an a-transition going into

S

(B,B′)∈Rel B′—notice that
due to the split that we have performed, the D blocks are now included in Remove. This
pruning can then cause a necessity of further refinements as the states that have some b-
transition into a D block (that was freshly found not to simulate C), but not to C nor any
block that is still viewed as capable of simulating C, have to stop simulating states that
can go into

S

(C,C′)∈Rel C
′. Therefore, such states are added into Removeb(C) on line 17.

3.2 Correctness and Complexity of the Algorithm

In the rest of the section, we assume that Algorithm 1 is applied on an LTS T = (S,L ,→)
with an initial partition-relation pair (Pinit ,Relinit). The correctness of the algorithm is
formalised in Theorem 1.

Theorem 1. Suppose that I is the pre-order induced by (Pinit ,Relinit). Then, Algo-
rithm 1 terminates and the final partition-relation pair (Psim,Relsim) computed by it
induces the simulation relation 4I , and, moreover, Psim = S/∼=I .

A similar correctness result is proved in [13] for the algorithm on Kripke structures,
using notions from the theory of abstract interpretation. In [?], we provide an alterna-
tive, more direct proof, which is, however, beyond the space limitations of this paper.
Therefore, we will only mention the key idea behind the termination argument. In par-
ticular, the key point is that if we take any block B from Pinit and any a ∈ L , if B or any

6

Algorithm 1: Computing simulations on states of an LTS
Input: An LTS T = (S,L,→), an initial partition-relation pair (Pinit ,Relinit) on S inducing

a pre-order I ⊆ S×S.
Data: A partition-relation pair (P,Rel) on S, and for each B ∈ P and a ∈ L , a set

Removea(B)⊆ S.
Output: The partition-relation pair (Psim,Relsim) inducing the maximal simulation on T

contained in I.

/* initialisation */
(P,Rel)← (Pinit ,Relinit);1

forall a ∈ L,B ∈ P do Removea(B)← S\prea(
S

Rel(B));2

/* computation */
while ∃a ∈ L. ∃B ∈ P. Removea(B) 6= /0 do3

Remove← Removea(B);Removea(B)← /0;4

Pprev← P;Bprev ← B;Relprev ← Rel;5

P← Split(P,Remove);6

forall C ∈ P do7

Rel(C)←{D ∈ P |D⊆
S

Relprev(parentPprev
(C))};8

forall b ∈ L do9

Removeb(C)← Removeb(parentPprev
(C))10

forall C ∈ P. C
a
−→ Bprev do11

forall D ∈ P. D⊆ Remove do12

if (C,D) ∈ Rel then13

Rel← Rel\{(C,D)};14

forall b ∈ L do15

forall r ∈ preb(D)\preb(
S

Rel(C)) do16

Removeb(C)← Removeb(C)∪{r}17

(Psim,Relsim)← (P,Rel);18

of its children B′, which arises by splitting, is repeatedly selected to be processed by
the while loop on line 3, then the Removea(B) (or Removea(B′)) sets can never contain
a single state s ∈ S at an iteration i of the while loop as well as on a later iteration j,
j > i. Therefore, as the number of possible partitions as well as the number of states is
finite, the algorithm must terminate.

The complexity of the algorithm is equal to that of the original algorithm from [13],
up to the new factor L that is not present in [13] (or, equivalently, |L |= 1 in [13]). The
complexity is stated in Theorem 2.

Theorem 2. Algorithm 1 has time complexity O(|L |.|Psim|.|S|+ |Psim|.| → |) and space
complexity O(|L |.|Psim|.|S|).

A proof of Theorem 2, based on a similar reasoning as in [13], can be found in [?]. Here,
let us just mention that the result expects the input LTS and the initial partition-relation
pair be encoded in suitable data structures. This fact is important for the complexity
analyses presented later on as they build on using Algorithm 1.

In particular, the input LTS is represented as a list of records about its states—we
call this representation as the state-list representation of the LTS. The record about each

7

state s∈ S contains a list of nonempty prea(s) sets4, each of them encoded as a list of its
members. The partition Pinit (and later any of its refinements) is encoded as a doubly-
linked list (DLL) of blocks. Each block is represented as a DLL of (pointers to) states of
the block. The relation Relinit (and later any of its refinements) is encoded as a Boolean
matrix Pinit×Pinit .

4 Computing Downward Simulation

In this section, we describe algorithms for computing downward simulation on tree
automata. Our approach consists of two parts: (1) we translate the maximal down-
ward simulation problem over tree automata into a corresponding maximal simulation
problem over LTSs (i.e., basically word automata), and (2) we compute the maximal
word simulation on the obtained LTS using Algorithm 1. Below, we describe how the
translation is carried out.

We translate the downward simulation problem on a TA A = (Q,Σ,∆,F) to the
simulation problem on a derived LTS A•. Each state and each left hand side of a rule in
A is represented by one state in A•, while each rule in A is simulated by a set of rules in
A•. Formally, we define A• = (Q•,Σ•,∆•) as follows:

– The set Q• contains a state q• for each state q ∈ Q, and it also contains a state
(q1, . . . ,qn)

• for each (q1, . . . ,qn) ∈ Lhs(A).
– The set Σ• contains each symbol a ∈ Σ and each index i ∈ {1,2, . . . ,n} where n is

the maximal rank of any symbol in Σ.

– For each transition rule (q1, . . . ,qn)
f
−→ q of A, the set ∆• contains both the transi-

tion q•
f
−→ (q1, . . . ,qn)

• and transitions (q1, . . . ,qn)
• i
−→ q•i for each i : 1≤ i≤ n.

– The sets Q•, Σ•, and ∆• do not contain any other elements.

The following theorem shows correctness of the translation.

Theorem 3. For all q,r ∈ Q, we have q• 4 r• iff q 4down r.

Due to Theorem 3, we can compute the simulation relation 4down on Q by con-
structing the LTS A• and running Algorithm 1 on it with the initial partition-relation
pair being simply (P•,Rel•) = ({Q•},{(Q•,Q•)})5.

4.1 Complexity of Computing the Downward Simulation

The complexity naturally consists of the price of compiling a given TA A = (Q,Σ,∆,F)
into its corresponding LTS A•, the price of building the initial partition-relation pair
(P•,Rel•), and the price of running Algorithm 1 on A• and (P•,Rel•).

We assume the automata not to have unreachable states and to have at most one
(final) state that is not used in the left-hand side of any transition rule—general automata

4 We use a list rather than an array having an entry for each a ∈ L in order to avoid a need to
iterate over alphabet symbols for which there is no transition.

5 We initially consider all states of the LTS A• equal, and hence they form a single class of P•,
which is related to itself in Rel•.

8

can be easily pre-processed to satisfy this requirement. Further, we assume the input
automaton A to be encoded as a list of states q ∈ Q and a list of the left-hand sides
l = (q1, ...,qn) ∈ Lhs(A). Each left-hand side l is encoded by an array of (pointers to)
the states q1, ..., qn, plus a list containing a pointer to the so-called f -list for each f ∈ Σ
such that there is an f transition from l in ∆. Each f -list is then a list of (pointers to)

all the states q ∈ Q such that l
f
−→ q. We call this representation the lhs-list automata

encoding. Then, the complexity of preparing the input for computing the downward
simulation on A via Algorithm 1 is given by the following lemma.

Lemma 1. For a TA A = (Q,Σ,∆,F), the LTS A• and the partition-relation pair (P•,Rel•)
can be derived in time and space O(Rank(A) · |Q|+ |∆|+(Rank(A)+ |Σ|) · |Lhs(A)|).

In order to instantiate the complexity of running Algorithm 1 for A• and (P•,Rel•),
we first introduce some auxiliary notions. First, we extend 4down to the set Lhs(A)
such that (q1, . . . ,qn) 4down (r1, . . . ,rn) iff qi 4down ri for each i : 1≤ i ≤ n. We notice
that Psim = Q•/∼=. From an easy generalisation of Theorem 3 to apply not only for
states from Q, but also the left-hand sides of transition rules from Lhs(A), i.e., from the
fact that ∀l1, l2 ∈ Lhs(A).l1 4down l2 ⇔ l•1 4 l•2 , we have that |Q•/∼=| = |Q/∼=down|+
|Lhs(A)/∼=down|.

Lemma 2. Given a tree automaton A = (Q,Σ,∆,F), Algorithm 1 computes the simu-
lation 4 on the LTS A• for the initial partition-relation pair (P•,Rel•) with the time
complexity O((|Σ|+ Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |∆| · |Lhs(A)/∼=down|) and
the space complexity O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|).

The complexity of computing the downward simulation for a tree automaton A via
the LTS A• can now be obtained by simply adding the complexities of computing A•

and (P•,Rel•) and of running Algorithm 1 on them.

Theorem 4. Given a tree automaton A, the downward simulation on A can be com-
puted in time O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |∆| · |Lhs(A)/∼=down|) and
space O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |∆|). 6

Moreover, under the standard assumption that the maximal rank and size of the
alphabet are constants, we get the time complexity O(|∆| · |Lhs(A)/∼=down|) and the
space complexity O(|Lhs(A)| · |Lhs(A)/∼=down|+ |∆|).

5 Computing Upward Simulation

In a similar manner to the downward simulation, we translate the upward simulation
problem on a tree automaton A = (Q,Σ,∆,F) to the simulation problem on an LTS A�.
To define the translation from the upward simulation, we first make the following defini-
tion. An environment is a tuple of the form ((q1, . . . ,qi−1,�,qi+1, . . . ,qn), f ,q) obtained

6 Note that in the special case of Rank(A) = 1 (corresponding to a word automaton viewed as
a tree automaton), we have |Lhs(A)|= |Q|, which leads to the same complexity as Algorithm 1
has when applied directly on word automata.

9

by removing a state qi, 1 ≤ i ≤ n, from the ith position of the left hand side of a rule
((q1, . . . ,qi−1,qi,qi+1, . . . ,qn), f ,q), and by replacing it by a special symbol � 6∈ Q

(called a hole below). Like for transition rules, we write (q1, . . . ,�, . . . ,qn)
f
−→ q pro-

vided ((q1, . . . ,qi−1,qi,qi+1, . . . ,qn), f ,q) ∈ ∆ for some qi ∈ Q. Sometimes, we also

write the environment as (q1, . . . ,�i, . . . ,qn)
f
−→ q to emphasise that the hole is at po-

sition i. We denote the set of all environments of A by Env(A).
The derivation of A� differs from A• in two aspects: (1) we encode environments

(rather than left-hand sides of rules) as states in A�, and (2) we use a non-trivial ini-
tial partition on the states of A�, taking into account the downward simulation on Q.
Formally, we define A� = (Q�,Σ�,∆�) as follows:

– The set Q� contains a state q� for each state q ∈ Q, and it also contains a state

((q1, . . . ,�i, . . . ,qn)
f
−→ q)� for each environment (q1, . . . ,�i, . . . ,qn)

f
−→ q.

– The set Σ� contains each symbol a ∈ Σ and also a special symbol λ 6∈ Σ.

– For each transition rule (q1, . . . ,qn)
f
−→ q of A, the set ∆� contains both the transi-

tions q�i
λ
−→ ((q1, . . . ,�i, . . . ,qn)

f
−→ q)� for each i ∈ {1, ...,n} and the transition

((q1, . . . ,�i, . . . ,qn)
f
−→ q)�

f
−→ q�.

– The sets Q�, Σ�, and ∆� do not contain any other elements.

We define I to be the smallest binary relation on Q� containing all pairs of states of the
automaton A, i.e., all pairs (q�1 ,q�2) for each q1,q2 ∈ Q, as well as all pairs of environ-

ments (((q1, . . . ,�i, . . . ,qn)
f
−→ q)�,((r1, . . . ,�i, . . . ,rn)

f
−→ r)�) such that (q j,r j)∈D

for each j : 1≤ j 6= i≤ n.
The following theorem shows correctness of the translation.

Theorem 5. For all q,r ∈ Q, we have q 4up r iff q� 4I r�.

The relation I is clearly a pre-order and so the relation ι = I∩ I−1 is an equivalence.
Due to Theorem 5, we can compute the simulation relation 4up on Q by constructing the
LTS A� and running Algorithm 1 on it with the initial partition-relation pair (P�,Rel�)
inducing I, i.e., P� = Q�/ι and Rel� = {(B,C) ∈ P�×P� | B×C⊆ I}.

5.1 Complexity of Computing the Upward Simulation

Once the downward simulation 4down on a given TA A = (Q,Σ,∆,F) is computed, the
complexity of computing the simulation 4up naturally consists of the price of compiling
A into its corresponding LTS A�, the price of building the initial partition-relation pair
(P�,Rel�), and the price of running Algorithm 1 on A� and (P�,Rel�).

We assume the automaton A to be encoded in the same way as in the case of com-
puting the downward simulation. Compared to preparing the input for computing the
downward simulation, the main obstacle in the case of the upward simulation is the need
to compute the partition P�e of the set of environments Env(A) wrt. I, which is a subset
of the partition P� (formally, P�e = P� ∩ 2Env(A)). If the computation of P�e is done
naively (i.e., based on comparing each environment with every other environment), it
can introduce a factor of |Env(A)|2 into the overall complexity of the procedure. This

10

would dominate the complexity of computing the simulation on A� where, as we will
see, |Env(A)| is only multiplied by |Env(A)/∼=up|.

Fortunately, this complexity blowup can be to a large degree avoided by exploit-
ing the partition Lhs(A)/∼=down computed within deriving the downward simulation as
shown in detail in [?]. Here, we give just the basic ideas.

For each 1 ≤ i ≤ Rank(A), we define an i-weakened version Di of the downward
simulation on left-hand sides of A such that ((q1, . . . ,qn),(r1, . . . ,rm)) ∈ Di ⇐⇒ n =
m ≥ i∧ (∀1 ≤ j ≤ n. j 6= i =⇒ q j 4down r j). Clearly, each Di is a pre-order, and we
can define the equivalence relations ≈i = Di∩D−1

i . Now, a crucial observation is that
there exists a simple correspondence between P�e and Lhs(A)/≈i. Namely, we have
that L ∈ Lhs(A)/≈i iff for each f ∈ Σ, there is a block EL, f ∈ P�e such that EL, f =

{(q1, . . . ,�i, . . . ,qn)
f
−→ q | ∃qi,q∈Q. (q1, ...,qi, ...,qn)∈ L ∧ (q1, ...,qi, ...,qn)

f
−→ q}.

The idea of computing P�e is now to first compute blocks of Lhs(A)/≈i and then to
derive from them the P�e blocks. The key advantage here is that the computation of the
≈i-blocks can be done on blocks of Lhs(A)/∼=down instead of directly on elements of
Lhs(A). This is because, for each i, blocks of Lhs(A)/∼=down are sub-blocks of blocks of
Lhs(A)/≈i. Moreover, for any blocks K,L of Lhs(A)/∼=down, the test of K×L⊆Di can
simply be done by testing whether (k, l) ∈ Di for any two representatives k ∈ K, l ∈ L.
Therefore, all ≈i-blocks can be computed in time proportional to |Lhs(A)/∼=down|

2.
From each block L ∈ Lhs(A)/≈i, one block EL, f of P�e is generated for each symbol

f ∈ Σ. The EL, f blocks are obtained in such a way that for each left-hand side l ∈ L, we
generate all the environments which arise by replacing the ith state of l by 2, adding f ,

and adding a right-hand side state q ∈ Q which together with l form a transition l
f
−→ q

of A. This can be done efficiently using the lhs-list encoding of A. An additional factor
|∆| · log |Env(A)| is, however, introduced due to a need of not having duplicates among
the computed environments, which could result from transitions that differ just in the
states that are replaced by � when constructing an environment. The factor log |Env(A)|
comes from testing a set membership over the computed environments to check whether
we have already computed them before or not.

Moreover, it can be shown that Rel� can be computed in time |P�|2. The complexity
of constructing A� and (P�,Rel�) is then summarised in the below lemma.

Lemma 3. Given a tree automaton A = (Q,Σ,∆,F), the downward simulation 4down

on A, and the partition Lhs(A)/∼=down, the LTS A� and the partition-relation pair
(P�,Rel�) can be derived in time O(|Σ| · |Q|+Rank(A) ·(|Lhs(A)|+ |Lhs(A)/∼=down|

2)+
Rank(A)2 · |∆| · log |Env(A)|+ |P�|2) and in space O(|Σ| · |Q|+ |Env(A)|+ Rank(A) ·
|Lhs(A)|+ |Lhs(A)/∼=down|

2 + |P�|2).

In order to instantiate the complexity of running Algorithm 1 for A� and (P�,Rel�),
we again first introduce some auxiliary notions. Namely, we extend 4up to the set

Env(A) such that (q1, . . . ,�i, . . . ,qn)
f
−→ q 4up (r1, . . . ,� j, . . . ,rm)

f
−→ r⇐⇒ m = n∧

i = j∧q 4up r∧ (∀k ∈ {1, ...,n}. k 6= i =⇒ qk 4down rk). We notice that Psim = Q�/∼=I .
From an easy generalisation of Theorem 5 to apply not only for states from Q, but also
environments from Env(A), i.e., from the fact that ∀e1,e2 ∈ Env(A). e1 4up e2 ⇐⇒
e�1 4I e�2 , we have that |Q�/∼=I |= |Q/∼=up|+ |Lhs(A)/∼=up|.

11

Lemma 4. Given a tree automaton A = (Q,Σ,∆,F), the upward simulation 4up on A
can be computed by running Algorithm 1 on the LTS A� and the partition-relation pair
(P�,Rel�) in time O(Rank(A) · |∆| · |Env(A)/∼=up|+ |Σ| · |Env(A)| · |Env(A)/∼=up|) and
space O(|Σ| · |Env(A)| · |Env(A)/∼=up|).

The complexity of computing upward simulation on a TA A can now be obtained
by simply adding the price of computing downward simulation, the price of computing
A� and (P�,Rel�), and the price of running Algorithm 1 on A� and (P�,Rel�).

Theorem 6. Given a tree automaton A = (Q,Σ,∆,F), let Tdown(A) and Sdown(A) denote
the time and space complexity of computing the downward simulation 4down on A. Then,
the upward simulation 4up on A can be computed in time

O((|Σ| · |Env(A)|+Rank(A) · |∆|) · |Env(A)/∼=up|+Rank(A)2 · |∆| · log |Env(A)|+Tdown(A))

and in space O(|Σ| · |Env(A)| · |Env(A)/∼=up|+Sdown(A)).7

Finally, from the standard assumption that the maximal rank and the alphabet size are
constants and from observing that |Env(A)| ≤Rank(A) · |∆| ≤Rank(A) · |Σ| · |Q|Rank(A)+1,
we get the time complexity O(|∆| · (|Env(A)/∼=up|+ log |Q|)+Tdown(A)) and the space
complexity O(|Env(A)| · |Env(A)/∼=up|+Sdown(A)).

6 Reducing Tree Automata

In this section, we describe how to reduce tree automata while preserving the language
of the automaton. The idea is to identify suitable equivalence relations on states of
tree automata, and then collapse the sets of states which form equivalence classes. We
will consider two reduction methods: one which uses downward simulation, and one
which is defined in terms of both downward and upward simulation. The choice of
the equivalence relation is a trade-off between the amount of reduction achieved and
the cost of computing the relation. The second mentioned equivalence is heavier to
compute as it requires that both downward and upward simulation are computed and
then suitably composed. However, it is at least as coarse as—and often significantly
coarser than—the downward simulation equivalence, and hence can give much better
reductions as witnessed even in our experiments.

Consider a tree automaton A = (Q,Σ,∆,F) and an equivalence relation≡ on Q. The
abstract tree automaton derived from A and≡ is A〈≡〉= (Q〈≡〉,Σ,∆〈≡〉,F〈≡〉) where:

– Q〈≡〉 is the set of blocks in ≡. In other words, we collapse all states which belong
to the same block into one abstract state.

– (B1, . . . ,Bn)
f
−→ B iff (q1, . . . ,qn)

f
−→ q for some q1 ∈ B1, . . . ,qn ∈ Bn,q ∈ B. This

is, there is a transition in the abstract automaton iff there is a transition between
states in the corresponding blocks.

– F〈≡〉 contains a block B iff B∩F 6= /0. Intuitively, a block is accepting if it contains
at least one state which is accepting.

7 Note that in the special case of Rank(A) = 1 (corresponding to a word automaton viewed as
a tree automaton), we have |Env(A)| ≤ |Σ| · |Q|, which leads to almost the same complexity (up
to the logarithmic component) as Algorithm 1 has when applied directly on word automata.

12

6.1 Downward Simulation Equivalence

Given a tree automaton A = (Q,Σ,∆,F), we consider the abstract automaton A〈∼=down〉
constructed by collapsing states of A which are equivalent with respect to ∼=down. We
show that the two automata accept the same language, i.e., L(A) = L(A〈∼=down〉). Ob-
serve that the inclusion L(A) ⊆ L(A〈∼=down〉) is straightforward. We can prove the in-
clusion in the other direction as follows. Using a simple induction on trees, one can
show that downward simulation implies language inclusion. In other words, for states
q,r ∈Q, if q 4down r, then L(q)⊆ L(r). This implies that for any B∈Q〈∼=down〉, it is the
case that L(B)⊆ L(r) for any r ∈ B. Now suppose that t ∈ L(A〈∼=down〉). It follows that
t ∈ L(B) for some B ∈ F〈∼=down〉. Since B ∈ F〈∼=down〉, there is some r ∈ B with r ∈ F .
It follows that t ∈ L(r), and hence t ∈ L(A). This gives the following Theorem.

Theorem 7. L(A) = L(A〈∼=down〉) for each tree automaton A.

In fact, A〈∼=down〉 is the minimal automaton which is equivalent to A with respect to
downward simulation and which accepts the same language as A.

6.2 Composed Equivalence

Consider a tree automaton A = (Q,Σ,∆,F). Let IF be a partitioning of Q such that
(q,r) ∈ IF iff q ∈ F =⇒ r ∈ F . Consider a reflexive and transitive downward simula-
tion D, and a reflexive and transitive upward simulation U induced by D. Assume that
U ⊆ IF . We will reduce A with respect to relations of the form ≡R which preserve lan-
guage equivalence, but which may be much coarser than downward simulations. Here,
each ≡R is an equivalence relation R∩R−1 defined by a pre-order R satisfying certain
properties. More precisely, we use D⊕U to denote the set of relations on Q such that
for each R ∈ (D⊕U), the relation R satisfies the following two properties: (i) R is tran-
sitive and (ii) D⊆ R⊆

(

D◦U−1
)

. For a state r ∈ Q and a set B⊆ Q of states, we write
(B,r) ∈ D to denote that there is a q ∈ B with (q,r) ∈ D. We define (B,r) ∈U analo-
gously. We will now consider the abstract automaton A〈≡R〉 where the states of A are
collapsed according to ≡R. We will relate the languages of A and A〈≡R〉.

To do that, we first define the notion of a context. Intuitively, a context is a tree
with “holes” instead of leaves. Formally, we consider a special symbol © 6∈ Σ with
rank 0. A context over Σ is a tree c over Σ∪ {©} such that for all leaves p ∈ c, we
have c(p) =©. For a context c with leaves p1, . . . , pn, and trees t1, . . . , tn, we define
c[t1, . . . , tn] to be the tree t, where

– dom(t) = dom(c)
S

{p1 · p′| p′ ∈ dom(ti)}
S

· · ·
S

{pn · p′| p′ ∈ dom(tn)},
– for each p = pi · p′, we have t(p) = ti(p′), and
– for each p ∈ dom(c)\{p1, . . . , pn}, we have t(p) = c(p).

In other words, c[t1, . . . , tn] is the result of appending the trees t1, . . . , tk to the holes of c.
We extend the notion of runs to contexts. Let c be a context with leaves p1, . . . , pn. A run
π of A on c from (q1, . . . ,qn) is defined in a similar manner to a run on a tree except
that for a leaf pi, we have π(pi) = qi, 1≤ i≤ n. In other words, each leaf labelled with
© is annotated by one qi. We use c [q1, . . . ,qn]

π
=⇒ q to denote that π is a run of A on

13

c from (q1, . . . ,qn) such that π(ε) = q. The notation c [q1, . . . ,qn] =⇒ q is explained in
a similar manner to runs on trees.

Using the notion of a context, we can relate runs of A with those of the abstract
automaton A〈≡R〉. More precisely, we can show that for blocks B1, . . . ,Bn,B ∈ Q〈≡R〉
and a context c, if c[B1, . . . ,Bn] =⇒ B, then there exist states r1, . . . ,rn,r ∈ Q such that
(B1,r1) ∈ D, . . . ,(Bn,rn) ∈ D,(B,r) ∈ U , and c[r1, . . . ,rn] =⇒ r. In other words, each
run in A〈≡R〉 can be simulated by a run in A which starts from larger states (with respect
to downward simulation) and which ends up at a larger state (with respect to upward
simulation). This leads to the following lemma.

Lemma 5. If t =⇒B, then t =⇒w for some w with (B,w)∈U. Moreover, if B∈F〈≡R〉,
then also w ∈ F.

In other words, each tree t which leads to a block B in A〈≡R〉 will also lead to a state
in A which is larger than (some state in) the block B with respect to upward simulation.
Moreover, if t can be accepted at B in A〈≡R〉 (meaning that B contains a final state of
A, i.e., B∩F 6= /0), then it can be accepted at w in A (i.e., w ∈ F) too.

Notice that Lemma 5 holds for any downward and upward simulations satisfying
the properties mentioned in the definition of ⊕. We now instantiate the lemma for the
maximal downward and upward simulation to obtain the main result. We take D and
U to be 4down and 4

IF
up, respectively, and we let 4comp be any relation from the set of

relations (4down ⊕4
IF
up). We let ∼=comp be the corresponding equivalence.

Theorem 8. L(A〈∼=comp〉) = L(A) for each tree automaton A.

Proof. The inclusion L(A〈∼=comp〉) ⊇ L(A) is trivial. Let t ∈ L(A〈∼=comp〉), i.e., t =⇒ B
for some block B where B∩F 6= /0. Lemma 5 implies that t =⇒ w such that w ∈ F . ut

Note that it is clearly the case that ∼=down ⊆ ∼=comp. Moreover, note that a relation
4comp∈ (4down ⊕4

IF
up) can be obtained, e.g., by a simple (random) pruning of the rela-

tion 4down ◦ (4IF
up)−1 based on iteratively removing links not being in 4down and at the

same time breaking transitivity of the so-far computed composed relation. Such a way
of computing 4comp does not guarantee that one obtains a relation of the greatest car-
dinality possible among relations from 4down ⊕4

IF
up, but, on the other hand, it is cheap

(in the worst case, cubic in the number of states). Moreover, our experiments show that
even this simple way of computing the composed relation can give us a relation ∼=comp

that is much coarser (and yields significantly better reductions) than∼=down.

Remark Our definition of a context coincides with the one of [7] where all leaves are
holes. On the other hand, a context in [8] and [2] is a tree with a single hole. Considering
single-hole contexts, one can define the language of contexts Lc(q) of a state q to be the
set of contexts on which there is an accepting run if the hole is replaced by q. Then, for
all states q and r, it is the case that q 4up r implies Lc(q)⊆ Lc(r).

7 Experiments with Reducing Tree Automata

We have implemented our algorithms in a prototype tool written in Java. We have run
the prototype on a number of tree automata that arise in the framework of tree regular

14

model checking. Tree regular model checking is the name of a family of techniques for
analysing infinite-state systems in which states are represented by trees, (infinite) sets
of states by finite tree automata, and transitions by tree transducers. Most of the algo-
rithms in the framework rely crucially on efficient automata reduction methods since the
size of the generated automata often explodes, making computations infeasible without
reduction. The (nondeterministic) tree automata that we have considered arose during
verification of the Percolate protocol, the Arbiter protocol, and the Leader election pro-
tocol [3].

Our experimental evaluation was carried out on an AMD Athlon 64 X2 2.19GHz
PC with 2.0 GB RAM. The time for minimising the tree automata varied from a few
seconds up to few minutes. Table 1 shows the number of states and rules of the various
considered tree automata before and after computing ∼=down, ∼=comp, and the backward
bisimulation from [10]. Backward bisimulation is the bisimulation counterpart of down-
ward simulation. The composed simulation equivalence ∼=comp was computed in the
simple way based on the random pruning of the relation 4down ◦ (4IF

up)−1 as mentioned
at the end of Section 6.2. As Table 1 shows, ∼=comp achieves the best reduction (often
reducing to less than one-third of the size of the original automaton). As expected, both
∼=down and∼=comp give better reductions than backward bisimulation in all test cases.

Protocol original ∼=down
∼=comp

backward
bisimulation

states rules states rules states rules states rules

percolate
10 72 7 45 7 45 10 72
20 578 17 392 14 346 20 578
28 862 13 272 13 272 15 341

arbiter
15 324 10 248 7 188 11 252
41 313 28 273 19 220 33 285

109 1248 67 1048 55 950 83 1116

leader
17 153 11 115 6 47 16 152
25 384 16 235 6 59 23 382
33 876 10 100 7 67 27 754

Table 1. Reduction of the number of states and rules using different reduction algorithms.

8 Conclusions and Future Work

We have presented methods for reducing tree automata under language equivalence. For
this purpose, we have considered two kinds of simulation relations on the states of tree
automata, namely downward and upward simulation. We give procedures for efficient
translation of both kinds of relations into simulations defined on labelled transition sys-
tems. Furthermore, we define a new, language-preserving equivalence on tree automata,
derived from compositions of downward and upward simulation, which (according to
our experiments) usually gives a much better reduction on the size of automata than
downward simulation.

15

There are several interesting directions for future work. First, we would like to im-
plement the proposed algorithms in a more efficient way, perhaps over automata en-
coded in a symbolic way using BDDs like in MONA [11], in order to be able to ex-
periment with bigger automata. Further, for instance, we can define upward and down-
ward bisimulation for tree automata in an analogous way to the case of simulation. It
is straightforward to show that the encoding we use in this paper can also be used to
translate bisimulation problems on tree automata into corresponding ones for LTSs. Al-
though reducing according to a bisimulation does not give the same reduction as for
a simulation, it is relevant since it generates more efficient algorithms. Also, we plan to
investigate coarser relations for better reductions of tree automata by refining the ideas
behind the definition of the composed relation introduced in Section 6. We believe that
it is possible to define a refinement scheme allowing one to define an increasing family
of such relations between downward simulation equivalence and tree language equiv-
alence. Finally, we plan to consider extending our reduction techniques to the class of
unranked trees which are used in applications such as reasoning about structured docu-
ments or about configurations of dynamic concurrent processes.

Acknowledgement. The work was supported by the ANR-06-SETI-001 French project
AVERISS, the Czech Grant Agency (projects 102/07/0322 and 102/05/H050), the Czech-
French Barrande project 2-06-27, and the Czech Ministry of Education by the project
MSM 0021630528 Security-Oriented Research in Information Technology.

References

1. P. Abdulla, J. Högberg, and L. Kaati. Bisimulation Minimization of Tree Automata. In Proc.
of CIAA’06, LNCS 4094. Springer, 2006.

2. P. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular Tree Model Checking. In Proc. of
CAV’02, LNCS 2404. Springer, 2002.

3. P. Abdulla, A. Legay, J. d’Orso, and A. Rezine. Tree Regular Model Checking: A Simulation-
based Approach. The Journal of Logic and Algebraic Programming, 69(1-2):93–121, 2006.

4. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model
Checking. In ENTCS 149(1):37–48. Elsevier, 2006.

5. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In SAS’06, LNCS 4134. Springer, 2006.

6. A. Bouajjani and T. Touili. Extrapolating Tree Transformations. In Proc. of CAV’02, LNCS
2404. Springer, 2002.

7. A. Bouajjani and T. Touili. Reachability Analysis of Process Rewrite Systems. In Proc. of
FSTTCS’03, LNCS 2914. Springer, 2003.

8. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 1997.

9. M. Henzinger, T. Henzinger, and P. Kopke. Computing simulations on finite and infinite
graphs. In Proc. of FOCS’95. IEEE, 1995.

10. J. Högberg, A. Maletti, and J. May. Backward and forward bisimulation minimisation of
tree automata. In Pre-proceedings of CIAA’07. Czech Technical University in Prague, Czech
Republic, 2007.

11. N. Klarlund and A. Møller. MONA Version 1.4 User Manual, 2001. BRICS, Department of
Computer Science, University of Aarhus, Denmark.

16

12. R. Paige and R. Tarjan. Three Partition Refinement Algorithms. SIAM Journal on Comput-
ing, 16:973–989, 1987.

13. F. Ranzato and F. Tapparo. A New Efficient Simulation Equivalence Algorithm. In Proc. of
LICS’07. IEEE CS, 2007.

17

A Proofs of the Theorems Presented in the Paper

A.1 Correctness of Computing Simulations on LTS (Algorithm 1)

Let us first introduce some notation. By an iteration, we will mean a single iteration
of the while loop of the algorithm. For an iteration, the block B chosen on line 3 (also
referd to as Bprev) will be denoted as the pivot of the iteration. An ancestor of a block C
is any block D which appears during the computation and for which C ⊆ D, and on the
contrary, C is a descendent of D. Moreover, if D is the immediate ancestor of C such
that C was created while splitting D, then D is the parent of C and C is a child of D.

Given an LTS T = (S,L ,→) and q,r ∈ S, we will denote by q −
a
9 r the fact that

¬(q
a
−→ r). Moreover, for any B,C ⊆ S, q−

a
9 C and B

a
−→C are defined analogously,

i.e. provided that q 6∈ prea(C) and B∩prea(C) = /0.

Lemma 6. On line 3 of Algorithm 1, the pair (P,Rel) is always a partition-relation
pair. The partition P can only be refined during the computation. Moreover, the relation
induced by the partition-relation pair (P,Rel) can only shrink during the computation.

Proof. The fact that (P,Rel) is a partition-relation pair can only be temporarily broken
by the Split operation on line 6 but after inheriting all Rel links of parent classes to
children classes on lines 7–10, it again holds. The other two claims of the lemma are
also immediate as the algorithm can only split the classes of P (but never unites them),
and it can only remove some elements from Rel. ut

Lemma 7. The following claims are invariants of the while loop of Algorithm 1:

∀B ∈ P. ∀a ∈ L . Removea(B)−
a
9

[

Rel(B) (1)

∀B ∈ P. B ∈ Rel(B) (2)

∀B,C ∈ P. (B,C) ∈ Rel =⇒
(

∀a ∈ L . ∀D ∈ P. B
a
−→ D =⇒ C ⊆ prea(

[

Rel(D))∪Removea(D)
)

(3)

Proof. After the initialization, all the invariants hold. It is not so difficult to see it as I
and therefore also Rel are transitive and reflexive.

– Invariant (1) can never be broken. After the initialization it holds. From there on, it
holds because only such a state r can be moved into the Removeb(C) which is not in
preb(

S

Rel(C)) (the test on line 16). Moreover, if r is once not in preb(
S

Rel(C)),
then it will no more be there (Lemma 6).

– Invariant (2) can never be broken as breaking reflexivity of Rel requires choosing
(C,D) on line 14 such that C = D. For any such a pair on line 14, it holds that
C

a
−→ B and D ⊆ Removea(B) where B is the pivot block. But, thanks to Invariant

(1), this is not possible for C = D.
– Invariant (3) can be temporarily broken on three places of the algorithm:

lines 6–10: Let C be a block of P on line 7 and let C′ ∈ Pprev be its parent. Then it
is easy to see that after finishing the for loop on line 7, it holds that

S

Rel(C) =
S

Relprev(C′) and for all a ∈ L , Removea(C) = Removea(C′). Thus after finish-
ing the for loop on line 7, invariant (3) can be broken only for those (B,C) pairs
such that it was broken even for their parents on line 6.

18

line 4: Assume that line 4 breaks the invariant and let B by the pivot of the it-
eration of the while loop. Then there are C,D ∈ P which break the invariant
such that (C,D) ∈ Rel, C

a
−→ B, D ⊆ prea(

S

Rel(B))∪Removea(B), and D *
prea(

S

Rel(B)). The Split operation on line 6 divides D into D1⊆ prea(
S

Rel(B))
and D2 ⊆ Remove. Then Rel and the Remove sets are inherited on lines 7–10.
Now only (C′,D2) pairs break the invariant where C′ is a child of C which leads
under a into a child of B. But exactly these pairs will be finally chosen on line
13 and the relation Rel will be cut on exactly these places.

line 16: The invariant can be broken on this line as there can be some states r such
that r

b
−→ D and thus before the update of Rel, r

b
−→

S

Rel(C), but after the

removal of D from Rel(C), it can happen that r−
b
9

S

Rel(C). But exactly these
r states are moved into Removeb(C), and so Invariant (3) holds after finishing
the for loop on line 13 again.

ut

Lemma 8. If all the Remove sets are empty, then the relation δ induced by the partition
relation pair (P,Rel) is a simulation on T included in I.

Proof. The initial partition-relation pair is required to be such that δ is initially included
in I. We have to show that δ is also a simulation on T . Let q ∈ B ∈ P, r ∈ C ∈ P, and
q δ r. Then, from the definition of δ, (B,C) ∈ Rel. Let q

a
−→ s ∈ D, thus B

a
−→ D.

Therefore, from Invariant (3) and from the fact that all the Remove sets are empty, we
get C ⊆ prea(

S

Rel(D)). This means that for all t ∈C there is u ∈ E ∈ Rel(D) such that
t

a
−→ u and s δ u because u ∈ E ∈ Rel(D) and s ∈ D. As r ∈C, the lemma holds. ut

Lemma 9. Let δ be the relation induced by the partition-relation pair (P,Rel), let 4I

be the maximal simulation on T included in I, and let 4I ⊆ δ. Then, if we are on line
3 of Algorithm 1 and there are states q,r ∈ S and blocks B,C,D ∈ P such that q 4I r,
q ∈C,r ∈ D and (B,C) ∈ Rel, then also (B,D) ∈ Rel.

Proof. Let us recall the relationship between a partition-relation pair (P,Rel) and its
induced relation δ which is: For any B,C ∈ P and q ∈ B,r ∈ C, it holds that q δ r iff
(B,C) ∈ Rel. Therefore, if δ⊆4I , then q 4I r implies (B,C) ∈ Rel.

We prove the lemma by induction on the number of iterations of the while loop. The
base case: After the initialization, the claim holds as Relinit is transitive (the relation I is
a pre-order). We prove the induction step by contradiction. Suppose the lemma might
get broken during the execution of the algorithm. Then, we can identify the first moment
when it is broken.

Let Mi be the moment (computation step) when we are on line 3 at the begining
of the i-th iteration and the lemma is broken for the first time. At that monent, we have
B,C,D∈P, q∈C, r ∈D, q 4I r, (B,C)∈Rel, 4I ⊆ δ, and (B,D) 6∈ Rel. From q 4I r and
4I ⊆ δ, we have (C,D) ∈ Rel. Because the induced relation is shrinking only (Lemma
6), we have that at each moment of the computation that precedes Mi, the relation 4I

was a subset of the induced relation, the ancestor C′ of C was over the ancestor B′ of
B (i.e. (B′,C′) ∈ Rel), and also the ancestor of D was over the ancestor of C wrt. the
current Rel. Because of this and because I (Relinit) is transitive and the lemma is broken

19

for the first time at Mi, we know that at each moment preceding Mi, the ancestor of D
was over the ancestor of B.

Let us choose the moment before Mi when (B,D) is going to be removed from Rel′

(the moment in the iteration i−1 preceding Mi, just before entering the for loop on line
11). The current partition P at that moment is the same as at Mi. The situation is such
that (B,C) ∈ Rel′, (C,D) ∈ Rel′, (B,D) ∈ Rel′, and we are going to remove (B,D) from
Rel′ on line 14. However, we will not touch (B,C) and (C,D) during this iteration as
these two pairs will be related at the moment Mi. This update (Rel′← Rel′ \{(B,D)}) is
caused by processing the Removea(E) set, where E ∈ Pprev is the pivot of the iteration
such that B

a
−→ E,D⊆ Removea(E) and C∩Removea(E) = /0 (we have split according

to Removea(E)).
At the beginning of the (i− 1)-th iteration, it still holds for the induced relation δ′

that 4I ⊆ δ′ (this moment precedes Mi). Let B′,C′,D′ ∈ Pprev be the ancestors of B,C,D
(therefore B ⊆ B′,C ⊆ C′,D ⊆ D′). We have that q ∈ C ⊆ C′, C ∩ Removea(E) = /0,
B′

a
−→ E, and (B′,D′) ∈ Rel′

prev
, and therefore, from Invariant (3), we have that C′ ⊆

prea(
S

Rel(E))∪Removea(E). This implies that C⊆ prea(
S

Rel(E)). Thus, q
a
−→ q′ ∈

F ∈ Rel′
prev

(E).

Therefore, as q 4I r, we have r
a
−→ r′ where q′ 4I r′ and because 4I ⊆ δ′, r′ ∈ G ∈

Rel′
prev

(F). Finally, because r ∈ D⊆ Removeb(E), from Invariant (1), we get (E,G) 6∈
Rel′

prev
. However, the states q′,r′, the blocks E,F,G ∈ Pprev, and the partition-relation

pair (Pprev,Rel′
prev

) (which is the current partition-relation pair on line 3 in the iteration
i−1 preceding Mi) now form a situation breaking the lemma, which is the same as the
situation at the moment Mi. This is not possible as Mi was supposed to be the first such
moment. ut

Lemma 10. Let δ be the relation induced by the partition-relation pair (P,Rel) and let
4I be the maximal simulation on T included in I. Then, 4I ⊆ δ.

Proof. By contradiction. We will show that breaking this lemma in a run of Algorithm 1
has to be preceded by breaking Lemma 9.

Let q ∈ B ∈ P, r ∈C ∈ P such that q 4I r. Let us choose the moment when (B,C)
is removed from Rel on line 14. This update of Rel is caused by processing the set
Removea(D) where D ∈ Pprev is the pivot of the concerned iteration of the while loop,
B

a
−→ D, and C ⊆ Removea(D). Let B′,C′ ∈ Pprev be the ancestors of B,C. From In-

variant (2), we have that (B′,B′) ∈ Relprev, and then B′
a
−→ D together with Invari-

ant (3) gives B′ ⊆ prea(
S

Relprev(D))∪Remove. Thus, as q 6∈ Remove, q
a
−→ q′ ∈ E ∈

Relprev(D). From q 4I r and from the fact that 4I is a subset of the current induced
relation (the lemma is going to be broken for the first time and it still holds), we have
r

a
−→ r′ ∈ F ∈Relprev(E). However, as r ∈Removea(D) and because of Invariant (1), we

have (D,F) 6∈ Relprev . Therefore, the states q′,r′ and the blocks D,E,F break Lemma 9
(at the beginning of the given iteration). ut

Lemma 11. Let 4I be the maximal simulation on T included in I. Then, at any point
in a run of Algorithm 1, any q,r ∈ S such that q ∼=I r are in the same block of P.

20

Proof. By contradiction. We will show that breaking this lemma in a run of Algorithm 1
has to be preceded by breaking Lemma 9.

After the initialization the lemma holds. Let us choose the first moment when it
is broken. At that moment, the states q,r are separated from each other by the Split
operation during processing of some pivot block B where, without loss of generality,
at the beginning of the concerned iteration of the while loop, r ∈ Removea(B) and q 6∈
Removea(B).

Let us now consider the moment just before entering the for loop on line 11 during
which r will be added into Removea(B′) where B′ is an ancestor of B. Let the partition-
relation pair that the algorithm is working with at that moment be (P′,Rel′) inducing a
relation δ, and let q,r ∈ C ∈ P′. There is an edge r

a
−→ D ∈ Rel′(B′) such that (B′,D)

will be removed from Rel′.
From r 4I q and 4I ⊆ δ (Lemma 10) and because r

a
−→ r′ ∈ D, there is an edge

q
a
−→ q′ ∈ E ∈ Rel(D), q′ 4I r′. Moreover, from Lemma 9 (whose claim holds also for

line 11 just before entering the for loop because lines 4–10 do not influence the induced
relation), (B,E) ∈ Rel(B′).

Thus there are edges such as q
a
−→ q′ ∈ E ∈ Rel′(B′) before entering the for loop on

line 11. Moreover, at least one such edge q
a
−→ q′′ ∈ E ′ ∈ Rel(B′) will remain also after

finishing the for loop because if all the (B′,X) relations such that q
a
−→ X disappeared

from Rel′, then q would move to Removea(B′), which will not happen. Because q 4I r
and 4I ⊆ δ, we have r

a
−→ r′′ ∈ F ∈ Rel′(E ′),q′′ 4I r′′. But at the end of the for loop

on line 11, (B′,F) 6∈ Rel′ as r will be added into Removea(B′) (Invariant (1)). Therefore
states q′′,r′′ and blocks B′,E ′,F break Lemma 9 at the beginning of the following iter-
ation of the while loop. ut

Lemma 12. Let B,B′ be two blocks appearing during a run of Algorithm 1 such that
B′ is an ancestor of B. Let Removea(B) and Removea(B′) be two Remove sets at the
(different) moments when B, resp. B′, is chosen as the pivot. Then, Removea(B) ∩
Removea(B′) = /0.

Proof. If q is in Removea(B) after the initialization, then q −
a
9

S

Relinit(B). If q is
added into Removea(B) later on, then q

a
−→

S

Rel(B) on line 13 in the while loop itera-
tion when q is added into Removea(B).8 Moreover, subsequently, after the update of Rel
on line 14, q−

a
9

S

Rel(B). From Lemma 6, if once q −
a
9

S

Rel(B), then it will never
happen that q

a
−→

S

Rel(B′) where B′ is a descendent of B. Thus, q
a
−→ (

S

Rel(B)) is
a neccesary condition which has to hold on line 13 for q to be added into Removea(B)

on line 17. However, if q is really added into Removea(B), then the condition q
a
−→

S

Rel(B) is broken on line 14 and will never hold for any descendent of B again. There-
fore, if q is once in Removea(B), then the neccesary condition q

a
−→

S

Rel(B) will never
hold and thus it can never happen that q is being added into any Removea(B′) where B′

is a descendent of B. Then, it cannot happen that B is chosen as a pivot, Removea(B) is
emptied, and then some of its descendents B′ is chosen as a pivot with a Removea(B′)
set such that Removea(B)∩Removea(B′) 6= /0 set. ut

8 Note that at that time, B is referred to via C in the algorithm.

21

Proof of Theorem 1

Proof. Due to Lemma 12, for any block B which can arise during the computation, B
can be chosen as a pivot only finitely many times as for any a ∈ L , all the Removea(B)
sets encountered on line 3 are disjoint. There are finitely many possible blocks and
hence the algorithm terminates.

Lemma 8 implies that the relation δ induced by the final partition-relation pair
(Psim,Relsim) is a simulation included in I. Lemma 10 implies that this simulation is
the maximal one. Finally, Lemma 11 implies that the resulting partition Psim equals
S/∼=I . ut

A.2 Complexity of Computing Simulations on LTS (Algorithm 1)

Data structures and important implementation details

We use resizable arrays (and matrices) which double (or quadruple) their size whenever
needed. The insertion operation over these structures takes amortised constant (linear)
time.

Each block B contains for each a∈L a list of (pointers on) states from Removea(B).
Each time when any set Removea(B) becomes nonempty, block B is moved to the be-
ginning of the list of blocks. Choosing the pivot block on the line 3 then means just
scanning the head of the list of blocks.

Each block contains, for each a ∈ L and a state q ∈ S, a counter RelCounta(q,B) =

|{r ∈ S | r ∈
S

Rela(B)∧q
a
−→ r}|. This counters enables us to perform the test on line

16 in O(1) time.
The Split(P,Remove) operation can be implemented as follows: Iterate through all

q ∈ Remove. If q ∈ B ∈ P, add q into a block Bchild (if Bchild does not exist yet, create it
and add it into P) and remove q from B. If B becomes empty, discard it.

At the initialization phase, we attach to each q ∈ S an array indexed by symbols
of a ∈ L of pointers to prea(q) lists. This way, we achieve constant time searching for
prea(q) lists (without the arrays, it would be O(|L |)).
Some auxiliary notions

For B⊆ S and a ∈ L , we denote by ina(B) the set {(r,a,q) ∈→ | q ∈ B}, and by in(B)

the set
S

a∈L ina(B). Note that |prea(B)| ≤ |ina(B)|. We also denote by
a
→ the set of all

a-edges of→.
We denote by Anc(B) the set of all ancestors of B, and if B′ is an ancestor of B, then

B is a descendent of B′.

Proof of Theorem 2

Proof.

Initial observations

The complexity analysis builds a lot upon Lemma 12 and Lemma 6 proved within the
proof of correctness of Algorithm 1. Using these lemmas, we can see that:

Observation 1. For any a∈L and B∈Psim, the sum of the cardinalities of the Removea(B′)
sets for all B′ ∈ Anc(B) that are chosen as the pivot is below |S|.

Observation 2. If a pair (C,D) once appears on line 15, then any pair (C′,D′) such that
C ∈ Anc(C′) and D ∈ Anc(D′) cannot appear on line 15 any more.

22

Most of the remaining complexity analysis then lies in a careful exploration of ma-
nipulations with the data structures used in the algorithm.

Space complexity

The arrays of pointers on the prea lists take O(|L | · |S|) space, the matrix encoding of
Rel takes O(|Psim|

2) space, and the Remove sets as well as the counters take O(|L | ·
|Psim| · |S|) space. Thus the overall asymptotic space complexity is O(|L | · |Psim| · |S|).

Time complexity

The initialization of the arrays of pointers to the prea lists takes O(|L | · |S|) time. The
RelCount counters are initialized by (1) setting all RelCount to 0, and then (2) for all
B ∈ P, for all q ∈ B, for all r ∈ prea(q), and for all C such that (C,B) ∈ Rel, increment-
ing RelCounta(r,C). This takes O(|Pinit | · |→|) time. The Remove sets are initialized
by iterating through all a ∈ L ,q ∈ S,B ∈ P, and if RelCounta(q,B) = 0, then adding
(appending) q to Removea(B). This takes O(|L | · |Pinit | · |S|) time. Thus the overall ini-
tialization can be done in time O(|Pinit | · |→|+ |L | · |Pinit| · |S|).

One single Split(P,Remove) operation takes O(|Remove|) time. From Observation
1, we have that for a fixed block B ∈ Psim and a ∈ L , the sum of cardinalities of all
Removea(B′) sets where B′ is an ancestor of B according to which a Split is being done
is below |S|. Therefore, for all symbols of L and all the blocks of Psim, the overall time
complexity of all Split operations is O(|L | · |Psim| · |S|).

The complexity analysis of lines 7–10 is based on the fact that it can happen at
most |Pinit | − |Psim| times that any block B is split. Moreover, the presented code can
be optimised by not having the lines 7–10 as a separate loop (this was chosen just for
clarity of the presentation), but the inheritance of Rel, Remove, and the counters can be
done within the Split function, and only for those blocks that were really split (not for
all the blocks every time).

Whenever a new blocks is generated by Split, we have to do the following: (1) For
each a ∈ L , copy the Removea set of the parent block and attach the copy to the child
block. As for all a ∈ L ,B ∈ P, Removea(B) ⊆ S, and a new block will be generated
at most |Pinit | − |Psim| times, the overall time of this copying is in O(|L | · |Psim| · |S|).
(2) Add a row and a column to the Rel matrix and copy the entries from those of the par-
ent. This operation takes O(|Psim|) time for one added block as the size of the rows and
columns of the Rel-matrix is bounded by |Psim|. Thus. for all newly generated blocks,
we achieve the overall time complexity of O(|Psim|

2). (3) Add and copy the RelCount
counters. For one newly generated block, this operation takes an O(|L | · |S|) time and
thus for all generated blocks, it gives time O(|L | · |Psim| · |S|).

Lines 13 and 14 are O(1)-time (Rel is a boolean matrix). Before we enter the for
loop on line 11 with B being the pivot, we compute a list RemoveLista(B) = {D ∈
P | D ⊆ Remove}. This is an O(|Remove|) operation and by almost the same argu-
ment as in the case of the overall time complexity of Split, we get also exactly the
same overall time complexity for computing all the RemoveLista(B) lists. On line 11,
for each q ∈ B, we find the prea(q) list (in O(1) time using the array of pointers
to the prea(q) lists), and we iterate through all elements of prea(q) and choose ev-
ery C,C

a
−→ {q}. This takes O(|ina(B)|) time. For any B ∈ Psim, let RLa(B) be the

23

set of blocks
S

B′∈Anc(B) RemoveLista(B′). Then the overall time complexity of lines
11–14 is at most O(∑a∈L ∑B∈Psim

|RLa(B)| · |ina(B)|). From the initial observations,
we can see that |RLa(B)| ≤ |Psim|, and thus we have the overall time complexity of
O(∑a∈L ∑B∈Psim

|Psim| · |ina(B)|) = O(∑a∈L |Psim| · |
a
→|) = O(|Psim| · |→|) for lines 11–

14.
For a single C,D pair appearing on line 14, we iterate through all q∈D and through

all nonempty lists prea(q), and for each r ∈ prea(q), we decrement RelCounta(r,C).
If RelCounta(r,C) = 0 after the decrement, we append r into the Removea(C) list. It
follows from the initial observations that if any pair of blocks (C,D) once appears on
line 14, then there will never appear any pair of their descendants on line 14. Thus, if we
fix a block C ∈ Psim and a state q, then it can happen at most once that q∈D and the pair
(C′,D) (where C′ is an ancestor of C) is being separated within Rel (i.e. removed from
Rel) on line 14. Thus, the contribution of the pair C,q to th etime complexity of lines
15–17 is O(∑a∈Σ |prea(q)|). Therefore, the contribution of the C,r pairs for all r ∈ S is
O(|→|), and hence the overall time complexity of lines 15–17 is O(|Psim| · |→|).

From the above analysis, it follows that the overall time complexity of the algorithm
is O(|Psim| · |→|+ |L | · |Psim| · |S|). ut

A.3 Correctness of Computing the Downward Simulation via LTS

Proof of Theorem 3

Proof.
(if) Suppose that q• 4 r•. This means that there is a simulation R• on Q• such that

(q•,r•) ∈ R•. We define D to be the smallest binary relation on Q such that (q′,r′) ∈ D
if (q′•,r′•) ∈ R•. Obviously, (q,r) ∈ D. We show that D is a downward simulation on Q
which immediately implies the result.

Suppose that (q′,r′) ∈ D and (q1, . . . ,qn)
f
−→ q′. Since (q′,r′) ∈ D we know that

(q′•,r′•) ∈ R•; and since (q1, . . . ,qn)
f
−→ q′ we know by definition of A• that q′•

f
−→

(q1, . . . ,qn)
•. Since R• is a simulation, there are r1, . . . ,rn ∈ Q with r′•

f
−→ (r1, . . . ,rn)

•

and ((q1, . . . ,qn)
•,(r1, . . . ,rn)

•)∈R•. Since r′•
f
−→ (r1, . . . ,rn)

• we have (r1, . . . ,rn)
f
−→

r′. Also, by definition of A• we know that ((q1, . . . ,qn)
• i
−→ q•i for each i : 1 ≤ i ≤ n.

We observe that ri is the only state such that (r1, . . . ,rn)
• i
−→ r•i , and hence it must be

the case that (q•i ,r
•
i) ∈ R•. This means that (qi,ri) ∈ D for each i : 1≤ i≤ n.

(only if) Suppose that q 4down r. This means that there is a simulation D on Q
such that (q,r) ∈ D. We define R• to be the smallest binary relation on Q• such that
(q′•,r′•) ∈ R• if (q′,r′) ∈ D•, and ((q•1, . . . ,q

•
n),(r

•
1 , . . . ,r

•
n)) ∈ R• if (qi,ri) ∈ D for each

i : 1 ≤ i ≤ n. Obviously, (q,r) ∈ R•. We show that R• is a simulation on Q• which
immediately implies the result. In the proof, we consider two sorts of states in A•;
namely those corresponding to states and those corresponding to left hand sides in A.

Suppose that (q′•,r′•) ∈ R• and q′•
f
−→ (q1, . . . ,qn)

•. Since (q′•,r′•) ∈ R•, we know

that (q′,r′) ∈ D, and since q′•
f
−→ (q1, . . . ,qn)

•, we know by definition of A• that

(q1, . . . ,qn)
f
−→ q′. Since D is a downward simulation, there are r1, . . . ,rn ∈ Q with

24

(r1, . . . ,rn)
f
−→ r′ and (qi,ri)∈D for each i : 1≤ i≤ n. Since (r1, . . . ,rn)

f
−→ r′, we have

r′•
f
−→ (r1, . . . ,rn)

•. By definition of R•, it follows that ((q•1, . . . ,q
•
n),(r

•
1 , . . . ,r

•
n)) ∈ R•.

Now, suppose that ((q•1, . . . ,q
•
n),(r

•
1 , . . . ,r

•
n)) ∈ R• and that (q1, . . . ,qn)

• i
−→ q•i . By

definition of A• we know that (r1, . . . ,rn)
• i
−→ r•i . Since ((q•1, . . . ,q

•
n),(r

•
1 , . . . ,r

•
n))∈ R•,

it follows by definition of R• that (qi,ri) ∈ D and hence also that (q•i ,r
•
i) ∈ R•. ut

A.4 Complexity of Computing the Downward Simulation via LTS

Proof of Lemma 1

Proof. The state-list encoding of the LTS A• can be obtained from the lhs-list encoding
of A by the following steps:

1. for all q ∈ Q, add q• into the state-list encoding of A• (and also add an additional
pointer from q to q•, which we will need later on), and

2. for each l = (q1, . . . ,qn) ∈ Lhs(A),
(a) add l• into the state-list encoding of A•,
(b) for each f ∈ Σ and each right-hand side r in the f -list of l, add r• into pref (l•),

i.e. add the r•
f
−→ l• edges, and

(c) for each 1≤ i≤ n, add l• into prei(q•i), i.e. add the l•
i
−→ q•i edges9.

In order to have a constant time access to the particular prea-lists for a ∈ Σ• in the
state-list encoding of A• being built by the above construction, we may temporarily
replace the state-lists by arrays. This means that we first construct, for each q• ∈ Q•

where q ∈ Q, a temporary array indexed by i ∈ Σ•,1≤ i ≤ Rank(A), of pointers to the
prei(q•) lists (initialized with null values), and, for each l• ∈ Q• where l ∈ Lhs(A), a
similar temporary array of pointers to the pref (l)-lists for f ∈ Σ. The time and space
needed for creating these temporary arrays is O(Rank(A) · |Q|+ |Σ| · |Lhs(A)|).

After creating the temporary arrays, we traverse the lhs-list representation of A in
time O(|Q|+ |∆|+Rank(A) · |Lhs(A)|) while building the state-list representation (with
arrays used instead of state-lists) of A• with each step done in constant time (due to the
use of the temporary arrays and the auxiliary pointers from q to q•). In the complexity,
|Q| corresponds to traversing the list of states, |∆| to traversing the transitions of A while
creating the f -labelled transitons of A• for f ∈ Σ, and Rank(A) · |Lhs(A)| to traversing
the left-hand sides while creating the i-labelled transitions of A• for 1 ≤ i ≤ Rank(A).
The remaining step is then to convert the auxiliary arrays into state-lists which can be
done with the same complexity as initialising the arrays (we do not traverse the contents
of the state-lists, we just leave out the state lists that are empty).

Thus, using suitable linked data structures, the creation of the state-list encoding of
A• is done in time O(Rank(A) · |Q|+ |∆|+(Rank(A)+ |Σ|) · |Lhs(A)|).

The space complexity corresponds to the size of the temporary arrays and the size
of the resulting LTS A•, which is O(|Q|+ |∆|+ Rank(A) · |Lhs(A)|)). Indeed, we need
space O(|Q|) to represent states, O(|∆|) to represent the f -labelled transitons of A• for

9 Here, we use the pointers from q to q• introduced at the beginning.

25

f ∈ Σ, and O(Rank(A) · |Lhs(A)|) to represent the i-labelled transitions of A• for 1 ≤
i≤ Rank(A). In total, we obtain the same formula as in the case of the time complexity,
i.e. O(Rank(A) · |Q|+ |∆|+(|Σ|+ |Rank(A)|) · |Lhs(A)|).

Finally, the creation of (P•,Rel•) is trivial, and its complexity is apparently covered
by the complexity of creating A•. ut

Proof of Lemma 2

Proof. We get the complexity of running Algorithm 1 on A• and (P•,Rel•) by instan-
tiating the parameters of A• in the formula of Theorem 2. More precisely, from the
construction of A•, it follows that (1) |Σ•| = |Σ|+ Rank(A), (2) |Q•| = |Q|+ |Lhs(A)|,
and (3) |∆•| ≤ |∆|+ Rank(A) · |Lhs(A)|. Then the running time of Algorithm 1 with
input A• and (P•,Rel•) is:

O((|Σ|+Rank(A)) · (|Q|+ |Lhs(A)|) · (|Q/∼=down|+ |Lhs(A)/∼=down|)

+((|∆|+Rank(A) ·Lhs(A)) · (|Q/∼=down|+ |Lhs(A)/∼=down|))).

Observe that |Lhs(A)| ≤ |∆| and that |Q| ≤ |Lhs(A)|+110. Therefore, the time com-
plexity amounts to

O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |∆| · |Lhs(A)/∼=down|)

and as the space complexity formula from Theorem 2 equals the first summand of the
time complexity formula, we are getting the space complexity

O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|). ut

A.5 Correctness of Computing the Upward Simulation via LTS

Proof of Theorem 5

Proof.
(if) Suppose that q� 4I r�. This means that there is a simulation R� ⊆ I on Q�

such that (q�,r�) ∈ R�. We define U to be the smallest binary relation on Q such that
(q′,r′) ∈ U if (q′�,r′�) ∈ R�. Obviously, (q,r) ∈ U . We show that U is an upward
simulation on Q induced by 4down, which immediately implies the result.

Suppose that (q′,r′) ∈ U and (q1, . . . ,qn)
f
−→ q′′, where qi = q′. Since (q′,r′) ∈

U , we know that (q′�,r′�) ∈ R�, and since (q1, . . . ,qn)
f
−→ q′′, we know by def-

inition of A� that q�i
λ
−→ ((q1, . . . ,�i, . . . ,qn)

f
−→ q′′)�. Since R� is a simulation,

there are r1, . . . ,ri−1,ri+1, . . . ,rn,r′′ ∈ Q with r′�
λ
−→ ((r1, . . . ,�i, . . . ,rn)

f
−→ r′′)� and

(((q1, . . . ,�i, . . . ,qn)
f
−→ q′′)�,((r1, . . . ,�i, . . . ,rn)

f
−→ r′′)�) ∈ R�. Since R� ⊆ I, we

know that (((q1, . . . ,�i, . . . ,qn)
f
−→ q′′)�,((r1, . . . ,�i, . . . ,rn)

f
−→ r′′)�) ∈ I and hence

(q j,r j)∈4down for each j such that 1≤ j 6= i≤ n. Since r′�
λ
−→ ((r1, . . . ,�i, . . . ,rn)

f
−→

10 Recall that we assume the automata not to have unreachable states and to have at most one
state that is not used in any left-hand side.

26

r′′)� we have (r1, . . . ,rn)
f
−→ r′′ where ri = r′. Also, by definition of A� we know that

the only transitions from ((q1, . . . ,�i, . . . ,qn)
f
−→ q′′)� resp. ((r1, . . . ,�i, . . . ,rn)

f
−→

r′′)� are ((q1, . . . ,�, . . . ,qn)
f
−→ q′′)�

f
−→ q′′� resp. ((r1, . . . ,�i, . . . ,rn)

f
−→ r′′)�

f
−→

r′′�. Consequently, it must be the case that (q′′�,r′′�) ∈ R�. This means that (q′′,r′′) ∈
U .

(only if) Assume that there is an upward simulation U on Q induced by 4down

such that (q,r) ∈ U . We define R� to be the smallest binary relation on Q� such that

(q′�,r′�)∈R� if (q′,r′)∈U , and (((q1, . . . ,�i, . . . ,qn)
f
−→ q′′)�,((r1, . . . ,�i, . . . ,rn)

f
−→

r′′)�) ∈ R� if (q′′,r′′) ∈U and q j 4down r j for each i such that 1≤ j 6= i≤ n. Obviously
R� ⊆ I and (q,r) ∈ R�. We show that R� is a simulation on Q� which immediately
implies the result. In the proof, we consider two sorts of states in A�; namely those
corresponding to states and those corresponding to environments.

Suppose now that (q′�,r′�) ∈ R� and q′�
λ
−→ ((q1, . . . ,�i, . . . ,qn)

f
−→ q′′)�. Since

(q′�,r′�) ∈ R�, we know that (q′,r′) ∈U ; and since q′�
λ
−→ ((q1, . . . ,�i, . . . ,qn)

f
−→

q′′)� we know by definition of A� that (q1, . . . ,qn)
f
−→ q′′ where q′ = qi. Since U is an

upward simulation induced by 4down, there are r1, . . . ,rn,r′′ ∈Q with (r1, . . . ,rn)
f
−→ r′′,

ri = r′, (p′′,r′′) ∈U and q j 4down r j for each j : 1 ≤ j 6= i ≤ n. Since (r1, . . . ,rn)
f
−→

r′′ we have r′�
λ
−→ ((r1, . . . ,�i, . . . ,rn)

f
−→ r′′)�. By definition of R� it follows that

(((q1, . . . ,�i, . . . ,qn)
f
−→ q′′)�,((r1, . . . ,�i, . . . ,rn)

f
−→ r′′)�).

Now, suppose that (((q1, . . . ,�i, . . . ,qn)
f
−→ q′′)�,((r1, . . . ,�i, . . . ,rn)

f
−→ r′′)�) ∈

R� and that (((q1, . . . ,�i, . . . ,qn)
f
−→ q′′)�

f
−→ q′′�. By definition of A�, we know

that (((r1, . . . ,�i, . . . ,rn)
f
−→ r′′)�

f
−→ r′′�. Moeover, since (((q1, . . . ,�i, . . . ,qn)

f
−→

q′′)�,((r1, . . . ,�i, . . . ,rn)
f
−→ r′′)�) ∈ R�, it follows by definition of R� that (q′′,r′′) ∈

U and hence also that (q′′�,r′′�) ∈ R�. ut

A.6 Complexity of Computing the Upward Simulation via LTS

Proof of Lemma 3

Proof. We assume to start with the lhs-list representation of A = (Q,Σ,∆,F). We need
to derive the LTS A� in the state-list format and the partition-relation pair (P�,Rel�).
Algorithm 2 is a simplified encoding of the procedure. We know that P� = {{q� |
q ∈Q}}∪P�e . Algorithm 2 computes P�e using the partition Lhs(A)/∼=down constructed
within the computation of the downward simulation on A. The state-list representation
of LTS A� is created within this computation without increasing the overall asymptotic
time complexity. The last step is then computing of Rel�.

We denote two sets of environments i-compatible iff all their elements have the
same symbol and the hole on the ith position.

Lines 1–3 At the first step (lines 1–3) we compute for each 1 ≤ i ≤ Rank(A) a bi-
nary relations Reli on blocks of Lhs(A)/∼=down such that the partition-relation pair

27

Algorithm 2: Upward Initialization
Input: A tree automaton A = (Q,Σ,∆,F) and a partition Lhs(A)/∼=down
Data: for each 1≤ i≤ Rank(A), a relation Reli ⊆ Lhs(A)/∼=down×Lhs(A)/∼=down
Output: The partition-relation pair (P�,Rel�) and the LTS A� = (Q�,Σ�,∆�)
forall K,L ∈ Lhs(A)/∼=down do1

forall 1≤ i≤ Rank(A) do2

if K×L⊆ Di then Reli← Reli ∪{(K,L)}3

Q�← {q� | q ∈Q};Σ�← Σ∪{λ};∆�← /0;4

forall 1≤ i≤ Rank(A) do5

foreach equivalence class {L1, . . . ,Lm} ∈ (Lhs(A)/∼=down)/(Reli ∩Rel−1
i) do6

merge L js into a new block of Lhs(A)/≈i, the block B =
S

1≤ j≤m L j;7

generate all maximal i-compatible sets E such that gen(E) = B, update A� within8

this procedure. Then add E into P�e ;

forall 1≤ i≤ Rank(A) and all i-compatible blocks E,E ′ ∈ P�e do9

if (gen(E),gen(E ′)) ∈ Reli then Rel�← Rel� ∪{(E,E ′)}10

(P�,Rel�)← (P�e ∪{{q
� | q ∈ Q}},Rel� ∪ ({q� | q ∈Q},{q� | q ∈Q}));11

(Lhs(A)/∼=down,Reli) induces Di. Here we exploit several properties of the structures
we work with in order to decrease computational complexity:

1. For blocks K,L of Lhs(A)/∼=down, the test on K×L ⊆ Di can be done simply by
testing any two representatives k ∈ K, l ∈ L on (k, l) ∈ Di. (it holds that K×L⊆ Di

or K×L∩Di = /0)
2. For any left-hand sides k, l, there are three possibilities with respect to membership

of (k, l) in Di:
(a) (k, l) ∈ Di for all i, i.e. k is simulated by l on all the positions ((k, l) ∈ ∼=down)
(b) (k, l) ∈ Di for just one i, i.e. k is simulated by l on all positions except the ith

one
(c) (k, l) 6∈ Di for all i, i.e. k is not simulated by l on more than one position.
From item 1. we see that analogical relationships holds for any K,L∈ Lhs(A)/∼=down

with respect the K×L⊆ Di inclusions.

From these properties follows that given two blocks K,L ∈ Lhs(A)/∼=down, the tests
K× L ⊆ Di can be done for all i in time O(Rank(A)) and, moreover, all the relations
Reli can be stored in one common matrix with cells containing three types of values:
all, one-i, none. This corresponds to the possibilities (a), (b), (c) from the above enu-
meration.

Therefore the line 3 can be done in constant time and thus the for loop on lines 1–3
can be finished in time O(Rank(A) · |Lhs(A)/∼=down|

2). Furthermore, encoding of all the
Reli relations takes only O(|Lhs(A)/∼=down|

2) space.

Lines 5–8 On lines 5–8 we construct partition P�e together with LTS A�. On line 6 we
need to list all equivalence classes of (Lhs(A)/∼=down)/(Reli∩Rel−1

i). With the above
matrix encoding of the Reli relations, this operation can be implemented in such a way
that it takes O(Rank(A) · |Lhs(A)/∼=down|

2) time overall.

28

Merging of the class {L1, . . . ,Lm} on line 7 can be done in linear time to the car-
dinality of

S

1≤ j≤Rank(A) L j and therefore the overall time of the merging is Rank(A) ·
O(|Lhs(A)|) (the class {L1, . . . ,Lm} can be encoded as a list of the L-blocks and each
L-block can be encoded as a list of states).

On line 8 we generate all the environments of E and update A�. We encode an
environment e as a quadruple consisting of a pointer to any of l ∈ gen(e), a symbol, a
position of hole and a pointer to its right hand side state. We remind that we use the lhs-
list encoding of A, i.e. each l is connected to a list indexed by symbols from Σ, where

the f -indexed element contains the list of states q ∈ Q such that l
f
−→ q. Thus for each

l ∈ B, we can effectively iterate through all rules of the form l
f
−→ q and for each of

them we: (1.) create a new environment; and (2.) update A� in the following way:
(1.) We create a representation of environment e consisting of a pointer on l, sym-

bol f , hole-index i and a pointer on q. A problem is that there can be more than one
l ∈ B such that l ∈ gen(E). Thus we can obtain the same environment more than once
while creating a block E from a block B. In order to avoid these duplicities, after having
created e, we test if e has or has not been created before. This can by done by test-
ing each newly created environment on membership in the set S of the so-far created
environments (and adding it there if the membership test returns false).

We attempt to create a new environment (and add it to the set S of already known
environments) Rank(A) · |∆| times. In the end (when S = Env(A)), we get |Env(A)|
different environments. We can assume that testing equality of two environments takes
O(Rank(A)) time and that we use a set representation with a logarithmic membership
test and addition. Thus, in total, the time O(Rank(A)2 · |∆| · log |Env(A)|) is spent by
testing membership of environments in S and by extending S by the environments not
yet there.

(2.) Having a representation of an environment e = (q1, . . . ,�i, . . . ,qn)
f
−→ q cre-

ated, if e 6∈ S (a representation of e was created for the first time), we add the state e�

into Q� and also a pointer on e� into pref (q). Then, regardless on the result of the e∈ S
thest, we add the pointer on q�i into preλ(e

�) (This requires finding the preλ(e
�) set

in the state-set representation of A�. We can use a similar searching structure as in the
case of solving duplicities and then the complexity of this searching will be covered the
complexity of solving duplicities.) As creating an e� state and adding an element into
a pre set are constant time, the overall complexity of these updates of A� is covered by
the complexity of the above creating of the elements of the E blocks.

Lines 9–10 On lines 9-10 we compute the main part of relation Rel�. We exploit
here the fact that for any i-compatible blocks E,E ′ ∈ P�e , (E,E ′) ∈ Rel� iff gen(E)×
gen(E ′) ⊆ Di and moreover that any (B,C) ∈ ≈i iff for any two L,K ∈ Lhs(A)/∼=down

such that K ⊆B,L⊆C, it holds that K ⊆ L∈Di. As K×L⊆Di means that (K,L)∈Reli,
we can implement the test on line 10 this way:

When creating block E on line 7, we connect it with a representative block repre(E) =
L j (any of L1 . . . ,Lm). Then the test on line 10 can be done in constant time via testing if
(repre(E),repre(E ′)) ∈ Reli, because we know that (repre(E),repre(E ′)) ∈ Reli ⇐⇒
(E,E ′) ∈ P�e . Therefore lines 9–10 can be done in time O(|P�e |

2).
Finishing construction of (P�,Rel�) on line 11 is already easy. ut

29

Proof of Lemma 4

Proof. We get the complexity of running Algorithm 1 on A� and (P�,Rel�) by in-
stantiating the parameters of A� in the formula of Theorem 2. More precisely, from
the construction of A�, it follows that (1) |Σ�| = |Σ|+ 1, (2) |Q�| = |Q|+ |Env(A)|,
and (3) |∆�| = Rank(A) · |∆|+ |Env(A)| ≤ 2 ·Rank(A) · |∆|. Then, the running time of
Algorithm 1 with the input A� and (P�,Rel�) is:

O(|Σ| · (|Q|+ |Env(A)|) · (|Q/∼=up|+ |Env(A)/∼=up|)

+Rank(A) · |∆| · (|Q/∼=up|+ |Env(A)/∼=up|)).

Observe that, as we suppose the automata not to have unreachable states, |Q| ≤ |Env(A)|.
Therefore, the time complexity amounts to

O(|Σ| · |Env(A)| · |Env(A)/∼=up|+Rank(A) · |∆| · |Env(A)/∼=up|)

and, as the space complexity in Theorem 2 equals the first summand of the time com-
plexity formula, we get the space complexity O(|Σ| · |Env(A)| · |Env(A)/∼=up|). ut

A.7 Reducing TA Using the Downward Simulation (Theorem 7)

In order to prove Theorem 7, we first show the following lemma.

Lemma 13. For all q and r, if q 4down r then L(q)⊆ L(r).

Proof. Suppose that q 4down r and t ∈ L(q). We show that t ∈ L(r) using induction
on the structure of t. The base case (where t is empty) is trivial. We consider the case
where t contains at least one node. We know that t

π
=⇒ q for some π. with π(ε) = q. Let

t(ε) = f . Furthermore, we know that there are q1, . . . ,qn such that (q1, . . . ,qn)
f
−→ q,

and π(i) = qi for each i : 1≤ i ≤ n. In other words, the run labels the root with q, and
labels the children of the root with q1, . . . ,qn respectively. This means that ti ∈ L(qi)
where ti is the ith subtree of t. Since q 4down r we know that there are r1, . . . ,rn such

that (r1, . . . ,rn)
f
−→ r and qi 4down ri for each i : 1≤ i≤ n. By the induction hypothesis,

it follows that ti ∈ L(ri), and hence t ∈ L(r). ut

Proof of Theorem 7

Proof. The inclusion L(A)⊆ L(A〈∼=down〉) is obvious. We show that A〈∼=down〉 ⊆ L(A).
First, we show that for any block B and r ∈ B it is the case that L(B) ⊆ L(r). Suppose
that t ∈ L(B). We show that t ∈ L(r) using induction on the structure of t. The base
case (where t is empty) is trivial. We consider the case where t has at least one node.
We know that t

π
=⇒ B for some π with π(ε) = B. Let t(ε) = f . Furthermore, we know

that there are blocks B1, . . . ,Bn such that (B1, . . . ,Bn)
f
−→ B, and π(i) = Bi for each

i : 1≤ i≤ n. In other words, the run labels the root with B, and labels the children of the
root with B1, . . . ,Bn respectively. This means that ti ∈ L(Bi) where ti is the ith subtree of

t. Since (B1, . . . ,Bn)
f
−→ B we know that there are q1 ∈ B1, . . . ,qn ∈ Bn,q ∈ B such that

(q1, . . . ,qn)
f
−→ q. By the induction hypothesis, we know that ti ∈ L(qi). Since q,r ∈ B

30

it follows that q ∼=down r and hence q 4down r. It follows that there are r1, . . . ,rn such

that (r1, . . . ,rn)
f
−→ r and qi 4down ri for each i : 1≤ i≤ n. By Lemma 13 it follows that

ti ∈ L(ri) for each i : 1≤ i≤ n, and hence t ∈ L(r).
Now suppose that t ∈ L(A〈∼=down〉). It follows that t ∈ L(B) for some B∈ F〈∼=down〉.

Since Since B ∈ F〈∼=down〉, there is some r ∈ B with r ∈ F . By the above property it
follows that t ∈ L(r), and hence This implies that t ∈ L(A). ut

A.8 Reducing TA Using the Upward Simulation (Lemma 5)

To prove Lemma 5, we need two auxiliary lemmas. We fix a reflexive and transitive
downward simulation D and a reflexive and transitive upward simulation U induced by
D included in IF . Further, let R ∈ (D⊕U) and ≡R be the equivalence relation defined
by R.

Lemma 14. If c[q1,q2, . . . ,qn] =⇒ q and (qi,ri) ∈U for some 1≤ i≤ n, then there are
states r1, . . . ,ri−1,ri+1, . . . ,rn,r such that (q j,r j)∈D for each j such that 1≤ j 6= i≤ n,
(q,r) ∈U, and c[r1, . . . ,rn] =⇒ r.

Proof. To simplify the notation, we assume (without loss of generality) that i = 1. We
use induction on the structure of c. The base case is trivial since the context c consists of
a single hole. For the induction step, we assume that c is not only a single hole. Suppose
that c[q1,q2, . . . ,qn]

π
=⇒ q for some run π and that (q1,r1) ∈ U . Let p1, . . . , p j be the

left-most leaves of c with a common parent. Let p be the parent of p1, . . . , p j. Notice
that q1 = π(p1), . . . ,q j = π(p j). Let q′ = π(p) and let c′ be the context c with the leaves
p1, . . . , p j deleted. In other words, dom(c′) = dom(c) \ {p1, . . . , p j}, c′(p′) = c(p′) if
p′ ∈ dom(c′) \ {p, p1, . . . , p j}, and c′(p) =©. Observe that c′[q′,q j+1, . . . ,qn] =⇒ q

and that (q1,q2, . . . ,q j)
f
−→ q′ for some f . By definition of the upward simulation

and the premise (q1,r1) ∈ U , it follows that there are r2, . . . ,rn,r′ such that (q2,r2) ∈

D, . . . ,(q j,r j) ∈ D,(q′,r′) ∈U , and (r1,r2, . . . ,r j)
f
−→ r′. Since c′ is smaller than c, we

can apply the induction hypothesis and conclude that there are r j+1, . . . ,rn,r such that
(q j+1,r j+1)∈D, . . . ,(qn,rn)∈D,(q,r)∈U , and c′[r′,r j+1, . . . ,rn] =⇒ r. The claim fol-
lows immediately. ut

Lemma 15. For blocks B1, . . . ,Bn,B ∈ Q〈≡R〉 and a context c, if c[B1, . . . ,Bn] =⇒ B,
then there exist states r1, . . . ,rn,r ∈Q such that (B1,r1)∈D, . . . ,(Bn,rn)∈D,(B,r)∈U,
and c[r1, . . . ,rn] =⇒ r. Moreover, if B ∈ F〈≡R〉, then also r ∈ F.

Proof. The claim is shown by induction on the structure of c. In the base case, the
context c consists of a single hole. We choose any q ∈ B∩F provided that B∩F 6= /0,
and any q ∈ B otherwise. The claim holds obviously by reflexivity of D and U .

For the induction step, we assume that c is not only a single hole. Suppose that
c[B1, . . . ,Bn]

π
=⇒ B for some run π. Let p1, . . . , p j be the left-most leaves of c with a

common parent. Let p be the parent of p1, . . . , p j. Notice that B1 = π(p1), . . . ,B j =
π(p j). Let B′ = π(p) and let c′ be the context c with the leaves p1, . . . , p j deleted. In
other words, dom(c′) = dom(c) \ {p1, . . . , p j}, c′(p′) = c(p′) provided p′ ∈ dom(c′) \
{p, p1, . . . , p j}, and c′(p) = ©. Observe that c′[B′,B j+1, . . . ,Bn] =⇒ B. Since c′ is

31

smaller than c, we can apply the induction hypothesis and conclude that there are
v,q′j+1, . . . ,q

′
n,q
′ such that (B′,v) ∈ D,(B j+1,q′j+1) ∈ D, . . . ,(Bn,q′n) ∈ D,(B,q′) ∈ U ,

c′[v,q′j+1, . . . ,q
′
n] =⇒ q′, and if B∩F 6= /0, then q′ ∈ F . It follows that there are u ∈

B′,q j+1 ∈ B j+1, . . . ,qn ∈ Bn,q ∈ B with (u,v) ∈ D,(q j+1,q′j+1) ∈ D, . . . ,(qn,q′n) ∈ D,
and (q,q′) ∈U . By definition of A〈≡R〉, there are states q1 ∈ B1, . . . ,q j ∈ B j, and z ∈ B′

such that (q1, . . . ,q j)
f
−→ z for some f . Since D ⊆ R and (u,v) ∈ D, we get (u,v) ∈ R.

Since u,z ∈ B′, it follows that u ≡R z and hence (z,u) ∈ R. From transitivity of R,
we get (z,v) ∈ R. From the definition of R, there is a state w such that (z,w) ∈ D
and (v,w) ∈ U . By the definition of downward simulation and premises (z,w) ∈ D

and (q1, . . . ,q j)
f
−→ z, there are states r1, . . . ,r j with (q1,r1) ∈ D, . . . ,(q j,r j) ∈ D, and

(r1, . . . ,r j)
f
−→ w. By Lemma 14 and premises (v,w) ∈U and c′[v,q′j+1, . . . ,q

′
n] =⇒ q′,

there are states r j+1, . . . ,rn, and r with (q′j+1,r j+1) ∈ D, . . . ,(q′n,rn) ∈ D,(q′,r) ∈ U ,
and c′[w,r j+1, . . . ,rn] =⇒ r. Finally, by transitivity of D and U , we get (q j+1,r j+1) ∈
D, . . . ,(qn,rn) ∈ D, (q,r) ∈U . Moreover, by definition of U and the fact that q′ ∈ F if
B∩F 6= /0, we get that r ∈ F if B ∈ F〈≡R〉. The claim thus holds. ut

Now we can give the proof of Lemma 5.

Proof of Lemma 5

Proof. Suppose that t
π

=⇒ B for some π. Let p1, . . . , pn be the leafs of t, and let π(pi) =
Bi for each i : 1 ≤ i ≤ n. Let c be the context we get from t by deleting the leaves
p1, . . . , pn. Observe that c[B1, . . . ,Bn]

π
=⇒ B. It follows from Lemma 15 that there exist

states r1, . . . ,rn,r∈Q and q1 ∈B1, . . . ,qn ∈Bn,q∈B such that (q1,r1)∈D, . . . ,(qn,rn)∈
D,(q,r) ∈U , c[r1, . . . ,rn] =⇒ r, and if B∩F 6= /0, then r ∈ F . By definition of A〈≡R〉,

it follows that there are q′1 ∈ B1, . . . ,q′n ∈ Bn and f1, . . . , fn such that
fi−→ q′i for each i

such that 1≤ i≤ n. We show by induction on i that for each i such that 1≤ i≤ n there
are states ui

1, . . . ,u
i
i,v

i
i+1, . . . ,v

i
n,w

i such that (q′1,u
i
1) ∈ D, . . . ,(q′i,u

i
i) ∈ D,(qi+1,vi

i+1) ∈

D, . . . ,(qn,vi
n)) ∈ D,(r,wi)) ∈ U , and c[ui

1, . . . ,u
i
i,v

i
i+1, . . . ,v

i
n] =⇒ wi. The base case

where i = 0 is trivial. We consider the induction step. Since D⊆ R and (qi+1,vi+1) ∈D,
we get (qi+1,vi+1) ∈ R. Since qi+1,q′i+1 ∈ Bi+1, we have that q′i+1 ≡R qi+1 and hence
(q′i+1,qi+1) ∈ R. By transitivity of R, it follows that (q′i+1,vi+1) ∈ R. By the defini-
tion of R, there is zi+1 such that (q′i+1,zi+1) ∈ D and (vi+1,zi+1) ∈U . By Lemma 14,
there are z1, . . . ,zi,zi+2, . . . ,zn,z such that (ui

1,z1) ∈ D, . . . ,(ui
i,zi) ∈ D,(vi

i+2,zi+2) ∈

D, . . . ,(vi
n,zn) ∈ D,(wi,z) ∈ U , and c[z1, . . . ,zn] =⇒ z. By transitivity of D and the

premises (q′j,u
i
j) and (ui

j,z j) ∈ D, we have (q′j,z j) ∈ D for each j : 1≤ j ≤ i. By tran-
sitivity of D and the premises (q j,vi

j) and (vi
j,z j) ∈ D, we have (q j,z j) ∈ D for each

j : i+2 ≤ j ≤ n. Define ui+1
j = z j for j : 1 ≤ j ≤ i+1; vi+1

j = z j for j : i+2≤ j ≤ n;

and wi+1 = z.
The induction proof above implies that c[un

1, . . . ,u
n
n] =⇒ wn. From the definition of

downward simulation and the premises
fi−→ q′i and (q′i,u

n
i) ∈ D, it follows that

fi−→ un
i

for each i : 1≤ i≤ n. It follows that t = c[f1, . . . , fn] =⇒ wn. By definition of U and the
fact that r ∈ F if B∩F 6= /0, it follows that ∀1≤ i≤ n. wi ∈ F provided that B ∈ F〈≡R〉.
Thus, in the claim of the lemma, it suffices to take w = wn. ut

32

