
Mediating for Reduction
(On Minimizing Alternating Büchi Automata)

FIT BUT Technical Report Series

Parosh A. Abdulla, Yu-Fang Chen,
Lukáš Hoĺık, and Tomáš Vojnar

Technical Report No. FIT-TR-2009-02

Faculty of Information Technology, Brno University of Technology

Last modified: July 30, 2009

Mediating for Reduction
(On Minimizing Alternating B üchi Automata) ⋆

Parosh A. Abdulla1, Yu-Fang Chen1, Lukáš Holı́k2, Tomáš Vojnar2

1 University of Uppsala, Sweden
e-mail:{parosh,yu-fang.chen}@it.uu.se

2 FIT, Brno University of Technology, Czech Republic
e-mail:{holik,vojnar}@fit.vutbr.cz

Abstract. We propose a new approach for minimizing alternating Büchiau-
tomata (ABA). The approach is based on the so calledmediated equivalenceon
states of ABA, which is the maximal equivalence contained inthe so calledmedi-
ated preorder. Two statesp andq can be related by the mediated preorder if there
is amediator(mediating state) which forward simulatesp and backward simu-
latesq. Under some further conditions, letting a computation on some word jump
from q to p (due to they get collapsed) preserves the language as the automaton
can anyway already accept the word without jumps by runs through the media-
tor. We further show how the mediated equivalence can be computed efficiently.
Finally, we show that, compared to the standard forward simulation equivalence,
the mediated equivalence can yield much more significant reductions when ap-
plied within the process of complementing Büchi automata where ABA are used
as an intermediate model.

1 Introduction

Alternating Büchi automata (ABA) are succinct state-machine representations ofω-
regular languages (regular sets of infinite sequences). They are widely used in the area
of formal specification and verification of non-terminatingsystems. One of the most
prominent examples of the use of ABA is the complementation of nondeterministic
Büchi automata [8]. It is an essential step of the automata-theoretic approach to model
checking when the specification is given as a positive Büchiautomaton [11] and also
learning based model checking for liveness properties [3].The other important usage of
ABA is as the intermediate data structure for translating a linear temporal logic (LTL)
specification to an automaton [6].

However, because of the compactness of ABA1, usually the algorithms that work
on them are of high complexity. For example, both the complementation and the LTL
translation algorithms transform an intermediate ABA to anequivalent NBA. The trans-
formation is exponential in the size of the input ABA. Hence,one may prefer to reduce

⋆ The work was supported by the Czech Grant Agency (projects 102/07/0322 and 102/09/H042)
and the Czech Ministry of Education, Youth, and Sports by theproject MSM 0021630528
Security-Oriented Research in Information Technology.

1 ABA’s are exponentially more succinct than the nondeterministic ones.

1

the size of the ABA (with some relatively cheaper algorithm)before giving it to the
exponential procedure.

In the study of Fritz and Wilke, simulation-based minimization is proven as a very
effective tool for reducing the size of ABA [5]. However, they considered onlyforward
simulation relations. Inspired by some previous works [1],we believe thatbackward
simulation can be used for reducing the size of ABA as well. Unfortunately, as will
be explained in Section 3, quotienting wrt.backwardsimulation (i.e., simplify the au-
tomaton by collapsing backward simulation equivalent states) does not preserve the
language.

In this paper, we develop an approach that uses backward simulation for simplify-
ing ABA indirectly. Instead of looking for a suitable fragment of backward simulation
that can be used to reduce the number of states of an ABA, we combine backward and
forward simulation to form a even coarser relation calledmediated preorderthat can
be used for minimization. The performance of minimizing ABAwith mediated pre-
order is evaluated on a large set of experiments. In the experiments, we apply different
simulation-based minimization approaches to improve the complementation algorithm
of nondeterministic Büchi automata. The experimental results show that the minimiza-
tion using mediated preorder significantly outperforms theminimization using forward
simulation. To be more specific, in average, mediated minimization results in a 30%
better reduction in the number of states and 50% better reduction in the number of
transitions than forward minimization on the intermediateABA. Moreover, in the com-
plemented nondeterministic Büchi automata, mediated minimization results in a 100%
better reduction in the number of states and 300% better reduction in the number of
transitions than forward minimization.

2 Basic Definitions

Given a finite setX, we useX∗ to denote the set of all finite words overX andXω for the
set of all infinite words overX. The empty word is denotedε andX+ = X∗ \ {ε}. The
concatenation of a finite wordu∈X∗ and a finite or infinite wordv∈X∗∪Xω is denoted
by uv. For a wordw∈ X∗∪Xω, |w| is the length ofw (|w| = ∞ if w∈ Xω), wi is theith
letter ofw andwi the ith prefix ofw (the wordu with w = uv and|u| = i). w0 = ε. The
concatenation of a finite wordu and a setS⊆ X∗∪Xω is defined asuS= {uv | v∈ S}.

An alternating B̈uchi automatonis a tupleA = (Σ,Q, ι,δ,α) whereΣ is a finite
alphabet,Q is a finite set of states,ι ∈ Q is an initial state,α ⊆ Q is a set of accepting
states, andδ : Q×Σ→ 22Q

is a total transition function. Atransitionof A is of the form
p

a
−→ P whereP∈ δ(q,a).

A tree T over Qis a subset ofQ+ that contains all nonempty prefixes of each one
of its elements (i.e.,T ∪{ε} is prefix-closed). Furthermore, we require thatT contains
exactly oner ∈Q, theroot of T, denotedroot(T). We call the elements ofQ+ paths. For
a pathπq, we useleaf(πq) to denote its last elementq. Define the setbranches(T) ⊆
Q+ ∪Qω such thatπ ∈ branches(T) iff T contains all prefixes ofπ and π is not a
proper prefix of any path inT. In other words, abranch of T is either a maximal path
of T, or it is a word fromQω such thatT contains all its nonempty prefixes. We use
succT(π) = {r | πr ∈ T} to denote the set of successors of a pathπ in T, andheight(T)

2

to denote the length of the longest branch ofT. The treeU overQ is aprefix of T iff
U ⊆ T and for everyπ ∈ U , succU(π) = succT(π) or succU(π) = /0. The suffix of T
defined by a pathπq is the treeT(πq) = {qψ | πqψ ∈ T}.

Given a wordw ∈ Σω, a treeT over Q is a run of A on w, if for every π ∈ T,
leaf(π)

w|π|−−→ succT(π) is a transition ofA . Finite prefixes ofT are calledpartial runs
on w. A run T of A overw is acceptingiff every infinite branch ofT contains infinitely
many accepting states. A wordw is acceptedby A from a stateq ∈ Q iff there exists
an accepting runT of A overw with root(T) = q. Thelanguage of a state q∈ Q inA ,
denotedLA(q), is the set of all words accepted byA from q. ThenL(A) = LA(ι) is the
language ofA . For simplicity of presentation, we assume in the rest of thepaper thatδ
never allows a transition of the formp

a
−→ /0. This means that no run can contain a finite

branch. Any automaton can be easily transformed into one without such transitions by
adding a new accepting stateq with δ(q,a) = {{q}} for everya∈ Σ and replacing every
transitionp

a
−→ /0 by p

a
−→ {q}.

3 Simulation Relations

In this section, we give the definitions of forward and backward simulation over ABA
and discuss some of their properties. For the rest of the section, we fix an ABAA =
(Σ,Q, ι,δ,α). We define the two relations�α and�ι on Q such thatq �α r iff q ∈
α =⇒ r ∈ α andq �ι r iff q = ι =⇒ r = ι. For a binary relation� on a setX, the
relation�∀∃ on subsets ofX is defined asY �∀∃ Z iff ∀z∈ Z. ∃y∈Y. y� z. In fact this
means that the upward closure ofZ wrt. � is a subset of the upward closure ofY wrt.
�.

Forward Simulation.A forward simulationonA is a relation�F ⊆ Q×Q such that
p �F r implies that (i)p �α r and (ii) for all p

a
−→ P, there exists ar

a
−→ R such that

P�∀∃
F R.
For the basic properties of forward simulation, we rely on the work [7] by Guru-

murthy et al. In particular, (i) there exists a unique maximal forward simulation�F on
A which is reflexive and transitive, (ii) for anyq, r ∈ Q such thatq�F r, it holds that
LA(q) ⊆ LA(r), and (iii) quotienting wrt.�F ∩ �−1

F preserves the language ofA .

Backward Simulation.Let �F be a forward simulation onA . A backward simulation
on A parameterized by�F is a relation�B ⊆ Q×Q such thatp �B r implies that
(i) p�ι r, (ii) p�α r, and (iii) for allq

a
−→P∪{p}, p 6∈P, there exists as

a
−→R∪{r}, r 6∈R

such thatq�B sandP�∀∃
F R. The below lemma describes some properties of backward

simulation.

Lemma 1. For any reflexive and transitive forward simulation�F onA , there exists
a unique maximal backward simulation�B onA parameterized by�F that is reflexive
and transitive.

Backward simulation itself cannot be used for quotienting.In Appendix F.1, we
give an example of an automaton, where quotienting using backward simulation does

3

�F

T

p

�F U

r

(a) Lemma 2

πi

πi+1

succT (πi)

T ⊖i π

T

(b) The notationT ⊖i π

�∀∃
F

T

p

π
T ⊖i π

U

r

ψ
U ⊖i ψ

�B

(c) Lemma 3

Fig. 1. Illustration of the lemmas

not preserve language. However, in Section 4.1, we show how backward simulation can
be used to define a new relation for reducing ABA.

Let�F and�B be forward and backward simulations onA , which are both reflexive
and transitive. For everyx∈ {B,F,α}, we extend the relation�x to Q+×Q+ such that
for π,ψ∈Q+, π�x ψ iff |π|= |ψ| and for all 1≤ i ≤ |π|, πi �x ψi . We say thatψ forward
simulatesπ, ψ backward simulatesπ, orψ is more accepting thanπ whenπ�F ψ, π �B

ψ, orπ �α ψ, respectively. This notation is further extended to trees.For treesT,U over
Q and forx ∈ {α,F}, we write,T �x U if branches(T) �∀∃

x branches(U). Similarly,
we say thatU forward simulatesT, or U is more accepting thanT when T �F U ,
or T �α U , respectively. Note that�x is reflexive and transitive for all the variants
of x ∈ {F,B,α} defined over states, paths, or trees (this follows from the assumption
that the original relations�F and�B on states are reflexive and transitive). Moreover,
�B ⊆�α, �B ⊆�ι, and�F ⊆�α.

The following two lemmas formulate properties of the simulation relations that we
will use in the rest of the paper.

Lemma 2. For any p, r ∈ Q with p�F r and a partial run T ofA on w∈ Σω with the
root p, there is a partial run U ofA on w with the root r such that T�F U.

For a treeT overQ, π ∈ T, and 1≤ i ≤ |π|, the setT⊖i π is the union of branches of
suffix treesT(πiq),q∈ succT(πi), with the branches of the suffix treeT(πi+1) excluded.
Formally, letQi = succT(πi)\ {πi+1} be the set of all successors ofπi in T without the
successor continuing inπ . ThenT ⊖i π =

S

q∈Qi branches(T(πiq)).

Lemma 3. For any p, r ∈ Q with p�B r, a partial run T ofA on w∈ Σω and π ∈
branches(T) with leaf(π) = p, there is a partial run U ofA on w andψ ∈ branches(U)
with leaf(ψ) = r such thatπ �B ψ, and for all1≤ i ≤ |π|, T⊖i π �∀∃

F U ⊖i ψ.

4

4 Mediated Equivalence and Quotienting

Here we discuss the possibility of an indirect use of backward simulation for simplify-
ing ABA via quotienting. We do not look for a suitable fragment of backward simulation
only. Instead, we (1) combine backward and forward simulation to form an equivalence
that subsumes both backward and forward simulation equivalence and (2) take a cer-
tain fragment of this equivalence, calledmediated equivalence, that can be used for
quotienting.

4.1 The Notion and Intuition of Mediated Equivalence

Collapsing states of an automaton wrt. some equivalence allows a run that arrives to
some state tojump to another equivalent state and continue from there. Alternatively,
this can be viewed asextendingthe source state of the jump by the outgoing transitions
of the target state2. The equivalence must have the property that the language isnot
increased even when the jumps (or, alternatively, transition extensions) are allowed.
This is what we aim at when introducing themediated equivalence≡M based on a so
calledmediated preorder�M. The mediated preorder�M will in particular be defined
as a suitable transitive fragment of�F ◦ �−1

B in the following.
The intuition behind allowing a run to jump from a stater to a stateq such thatq�F

◦ �−1
B r is the existence of the so calledmediator, i.e., a state s such thatq�F s�−1

B r
(see Figure 2(a)). The states can be reached in the same way and in the same context3

asr, and, at the same time, the automaton can continue froms in the same way as from
q. Hence, intuitively, the newly allowed run based on the jumpfrom r to q does not add
anything to the language because it can anyway be realized throughswithout jumps.

Unfortunately, the relation�F ◦ �−1
B cannot be directly used as it is not transitive,

and taking its symmetric closure would thus not yield an equivalence. We thus have to
take some of itstransitive fragments. This is natural as if the automaton can safely jump
from q1 to q2 and fromq2 to q3, it should be able to safely jump fromq1 to q3 too.

This is, however, still not enough. Not all of the transitivefragment of�F ◦ �−1
B

can be used for quotienting. We can only take a fragment�M that isforward extensible,
meaning that ifq1 �M q2 �F q3, thenq1 �M q3. The intuitive meaning of this require-
ment is the following. When a run jumps fromr to q, it may be the case thatr is again
reached later on or it appears in the context of itself (cf. Figure 2(b)). Ifr is reached
in the continuation of the run fromq, the mediated preorder assures that there is some
statey in the run continuing from the mediators that forward simulatesr. Similarly, if
the context ofr contains another occurrence ofr, there is some statey in the context of
s that forward simulatesr. However, this forward simulation is in general guaranteed
to hold only when no further jumps are allowed. In order to guarantee a possibility of
further simulation, we require that if the computation is allowed to jump fromr to q, it
is allowed to jump fromy to q too.

2 The first view is better when explaining the intuition whereas the other is easier to be used in
proofs.

3 If a states is a leaf of a partial run, then by acontextof s we mean all the other leaves of the
partial run.

5

V

s

W

ι

U

q

r

T

r

u

v

w

(a) The Mediator

V

s y

y

ι

W

U

q

r

T

r r

u

v

w

(b) Potential Problems

Fig. 2.Basic Intuition Behind Mediated Equivalence

Finally, to make the mediated equivalence applicable, we must pose one more re-
quirement. Namely, we require that the transitions of the given ABA are not�F -
ambiguous, meaning that no two states on the right hand side of a transition are forward
equivalent. Intuitively, allowing such transitions goes against the spirit of the back-
ward simulation. For a mediatorp to backward simulate a stater wrt. rulesρ1 : p′

a
−→

P∪{p}, p 6∈ P, andρ2 : r ′
a
−→ R∪{r}, r 6∈ R, it must be the case that each statex in the

contextP of p within ρ1 is less restrictive (i.e., forward bigger) than some statey in the
contextR of r within ρ2. The stater itself is not taken into account when looking fory
because we aim at extending its behaviour by collapsing (andit could then become less
restrictive than the appropriatex). In the case of�F -ambiguity, the spirit of this restric-
tion is in a sense broken since the forward behaviour ofr may still be taken into account
when checking that the context ofp is less restrictive than that ofr. This is because the
behaviour ofr appears inR as the behaviour of some other stater ′′ too. Consequently,
r andr ′′ may back up each other in a circular way when checking the restrictiveness of
the contexts within the construction of the backward simulation. Both of them can then
seem extensible, but once their behaviour gets extended, the restriction of their context
based on their own original behaviour is lost, which may thenincrease the language (an
example of such a scenario is given in Appendix F.2). However, in Section 5, we show
that�F -ambiguity can be efficiently removed.

Mediated Preorder and Equivalence.Let�F be a reflexive and transitive forward sim-
ulation onA , and�B a reflexive and transitive backward simulation onA parameterized
by �F . A preorder�M ⊆ �F ◦ �−1

B such that for allq, r,s∈ Q, q �M r �F s implies
q�M s, is amediated preorderinduced by�F and�B. The relation≡M = �M ∩ �−1

M
is then amediated equivalenceinduced by�F and�B.

6

Lemma 4. [2] There is a unique maximal mediated preorder�M induced by�F and
�B.

4.2 Extending Automata According to Mediated Preorder Preserves Language

Quotient Automata versus Extended Automata.We first show that quotienting can
be seen as a simpler operation of adding transitions and accepting states. LetA =
(Σ,Q, ι,δ,α) be an ABA and let≡ be an equivalence onQ such that≡ = � ∩�−1

for some preorder�. Let the automatonA/≡ be the quotient ofA wrt. ≡ that arises
by merging≡-equivalent states ofA , and letA+ be the automaton extended according
to �, that is created as follows: for every two statesq, r of A with q � r, (i) add all
outgoing transitions ofq to r, (ii) if q≡ r andq is final, maker final.

The automataA/≡ andA+ are formally defined as follows. LetQ/≡ denote the
quotient ofQ wrt. ≡, and let[q] denote the equivalence class of≡ containingq. Then
A/≡ = (Σ,Q/≡, [ι],δ/≡,{[q] | q ∈ α}) andA+ = (Σ,Q,δ+, ι,α+), whereα+ = {p |
∃q ∈ α. q ≡ p} and, for eacha ∈ Σ, q ∈ Q, δ/≡([q],a) =

S

p∈[q]{{[p
′] | p′ ∈ P} |

P∈ δ(p,a)} andδ+(q,a) =
S

p∈Q∧p�qδ(p,a). It is not difficult to show thatL(A/≡)⊆
L(A+) (see Lemma 8 in the appendix). Hence, if adding transitions and accepting states
according to� preserves the language, then quotienting according to≡ preserves the
language too.

Language Preservation by Mediated Equivalence.We now give a sketch of the proof
that extending automata according to the mediated preorderpreserves the language.
The full proofs can be found in Appendix D. For the rest of the section, we fix an
ABA A= (Σ,Q, ι,δ,α), a reflexive and transitive forward simulation�F onA such that
A is �F -unambiguous, and a reflexive and transitive backward simulation�B on A

parameterized by�F . Let�M be a mediated preorder induced by�F and�B, and let
A

+ be the automaton extended according to�M. Let≡M = �M ∩�−1
M .

We want to prove thatL(A+) =L(A). The nontrivial part is showing thatL(A+)⊆
L(A)—the converse is obvious. To proveL(A+) ⊆ L(A), we need to show that, for
every accepting run ofA+ on a wordw, there is an accepting run ofA on w. We
proceed as follows. We first prove Lemma 5, which shows how partial runs ofA with
an increased power of their leaves (wrt.�F) can be built incrementally from other runs
of A , bridging the gap betweenA andA+. Then we prove Lemma 7 saying that, for
every partial run on a wordw of A+, there is a partial run ofA on w that is more
accepting (recall that partial runs are finite). By carry this result over to infinite runs we
get the proof of Theorem 1.

Consider a partial runT of A on a wordw, we choose for each leafp of T an�M-
smaller statep′. Suppose that we allowp to make one step using the transitions ofp′

or to become accepting ifp′ is accepting andp′ ≡M p. (Thus, we give the leaves ofT a
part of the power they would have inA+). We will show that there exists a partial runU
of A on w such that (1) it is more accepting thanT, and (2) the leaves ofU can mimic
the next step of the leaves ofT even if the leaves ofT use their extended power.

The above is formalized in Lemma 5 using the following notation. For a partial run
T of A onw, we defineextas anextension functionthat assigns to every branchπ of T
a stateext(π) such thatext(π) �M leaf(π).

7

Let U be a partial run ofA on w. For two branchesψ ∈ branches(T) and π ∈
branches(U), we say thatψ strongly coversπ wrt. ext, denotedπ �ext ψ, iff π �α ψ and
ext(π) �F leaf(ψ). Similarly, we say thatψ weakly coversπ wrt. ext, denotedπ �w-ext

ψ, iff π �α ψ and ext(π) �M leaf(ψ). We extend the concept of covering to partial
runs as follows. We writeT �extU (U strongly covers Twrt. ext) iff branches(T) �∀∃

ext
branches(U) androot(T)�B root(U). Likewise, we writeT �w-extU (U weakly covers
T wrt. ext) iff branches(T) �∀∃

w-ext branches(U) androot(T) �B root(U). Note that we
have�ext ⊆ �w-ext for branches as well for partial runs because�F ⊆ �M. So, the
strong covering implies the weak one.

Lemma 5. For any partial run T ofA on a word w with an extension function ext, there
is a partial run U ofA on w with T�extU.

Proving Lemma 5 is the most intricate part of the proof of Theorem 1. We introduce
the concepts used within the proof of Lemma 5 and provide an overview of the proof.

If T �extT, we are done as in the statement of the lemma, we can takeT to beU . So,
suppose thatT �ext T. Observe thatroot(T)�B root(T), and every branch ofT weakly
covers itself, which means thatT �w-ext T. We will show how to reachU by a chain of
partial runs derived fromT. The partial runs within the chain will all weakly coverT.
Runs further fromT will in some sense coverT more strongly than the runs closer to
T. The last partial run of the chain will coverT strongly. To do this, we need a suitable
measure that, for a partial runV of A on w with T �w-ext V, tells us how stronglyV
coversT.

To define the measure, we concentrate on branches ofV that cause thatV does
not coverT strongly. These are branchesψ ∈ branches(V) for which there is noπ ∈
branches(T) with π �ext ψ (there are only someπ ∈ branches(T) with π �w-ext ψ).
We call themstrict weakly covering branches. Let swT(V) denote the tree which is the
subset ofV containing prefixes of strict weakly covering branches ofV wrt. T. Note
thatT �extV iff V contains no strict weakly covering branches, which is equivalent to
swT(V) = /0. For a partial runW of A on w, we will define which ofV andW cover
T more strongly by comparingswT(V) andswT(W). For this, we need the following
definitions.

Given a treeX overQ andτ ∈ X, we define thetree decompositionof X according
to τ as the sequence of sets of paths〈τ,X〉 = X ⊖1 τ,X ⊖2 τ, . . . ,X ⊖|τ| τ. We also let
〈ε,X〉 = branches(X), which is a sequence of length 1. Notice that under the condition
thatτ 6∈ branches(X), 〈τ,X〉 = /0 . . . /0 implies thatX = /04.

Let τV ∈V ∪{ε} andτW ∈W∪{ε} be such thatτV 6∈ branches(swT(V)) andτW 6∈
branches(swT(W)). We say thatW covers T more stronglythanV wrt. τV and τW,
denotedV ≺T

τV ,τW
W, iff root(V)�B root(W) and〈τV ,swT(V)〉⊏ 〈τW,swT(W)〉, where

⊏ is a binary relation on sequences of sets of paths defined as follows.
For two sets of pathsP andP′, we useP ≺∀∃

F P′ to denote thatP �∀∃
F P′ but not

P′ �∀∃
F P. In other words, the upward closure ofP′ wrt. �F is a proper subset of the

4 Note that ifτ∈branches(X), 〈τ,X〉= /0 . . . /0 does not implyX = /0 asτ could be the only branch
of X. This is important as for a partial runY andτ′ ∈Y, if τ′ 6∈ branches(Y), the implications
〈τ′,swT(Y)〉 = /0 . . . /0 =⇒ swT(Y) = /0 =⇒ T �ext Y hold. However, the first implication
does not hold ifτ′ ∈ branches(Y).

8

upward closure ofP wrt.�F . Then, forS,S′ ∈ (2Q)∗, S⊏ S′ iff there is somek∈ N,k≤
min{|S|, |S′|}, such thatSk ≺

∀∃
F S′k and for all 1≤ j < k, Sj �

∀∃
F S′j . It is not hard to show

that the relation⊏ is a partial order. Observe that⊏ does not allow infinite increasing
chains of sequences where the length of the sequences is bounded by some constant.
Moreover,S⊏ /0 . . . /0 for every sequenceS 6= /0 . . . /0.

Lemma 6. Given a partial run V ofA on w s.t. T�w-extV, T 6�extV, andτV ∈V∪{ε}
with τV 6∈ branches(swT(V)), we can construct a partial run W ofA on w with T�w-ext

W and a pathτW ∈W withτW 6∈ branches(swT(W)) such that V≺T
τV ,τW

W.

Proof (Sketch).The proof of Lemma 6 relies on Lemma 3 and the definition of�M.
We first choose a suitable branchπ of swT(V) as follows. Let 1≤ k ≤ |τV | be some
index such thatswT(V)⊖k τV is nonempty. IfτV = ε, thenk = 1. We choose someπ′ ∈
swT(V)⊖k τV which is minimal wrt.�F , meaning that there is noπ′′ ∈ swT(V)⊖k τV

different fromπ′ such thatπ′′ �F π′. We putπ = τk
Vπ′. We note that this is the place

where we use the�F -unambiguity assumption. IfA was�F -ambiguous, there need not
be ak such thatswT(V)⊖k τV contains a minimal element wrt.�F .

Fromext(π) �M leaf(π), there is a mediatorswith ext(π) �F s�B leaf(π). We ap-
ply Lemma 3 toV, π, leaf(π) ands, which give us a partial runW andψ ∈ branches(W)
with leaf(ψ) = s such thatπ �B ψ, and for all 1≤ i ≤ |π|, V ⊖i π �∀∃

F W⊖i ψ. Let
τW = ψ. The proof can be concluded by showing the following: (i)T �w-extW, (ii) τW 6∈
branches(swT(W)), and (iii)〈τV ,swT(V)〉⊏ 〈τW,swT(W)〉, which impliesV ≺T

τV ,τW
W.
⊓⊔

Now we construct a runU strongly coveringT as follows. Starting fromT and
ε, we can construct a chainT ≺T

ε,τ1
T1 ≺T

τ1,τ2
T2 ≺T

τ2,τ3
T3 . . . by successively apply-

ing Lemma 6. For eachi, τi ∈ Ti , τi 6∈ branches(swT(Ti)), andT �w-ext Ti . Observe
that by the definition of stronger covering, we have that〈ε,swT(T)〉 ⊏ 〈τ1,swT(T1)〉 ⊏

〈τ2,swT(T2)〉 ⊏ 〈τ3,swT(T3)〉 . . . Notice that, for eachi, asT �w-ext Ti , height(Ti) =
height(T). Therefore the length ofτi as well as the length of〈τi ,swT(Ti)〉 are bounded
by height(T).

Recall that (i) the relation⊏ is a partial order, (ii) that⊏ does not allow infinite
increasing chains of sequences where the length of the sequences is bounded by some
constant, and (iii) thatS⊏ /0 . . . /0 for every sequenceS 6= /0 . . . /0. This means that after a
finite number of steps, this chain must arrive to its lastTk andτk with 〈τk,swT(Tk)〉 =
/0 . . . /0. This means thatswT(Tk) = /0, which implies thatT �ext Tk. We can putU = Tk

and Lemma 5 is proven.
Now we can use Lemma 5 to prove Lemma 7. It relates partial runsof A+ with

partial runs ofA by the relation�α+⇒α defined as follows. For two statesq and r,
q�α+⇒α p iff q∈ α+ =⇒ p∈ α. For two pathsπ,ψ ∈ Q+, π �α+⇒α ψ iff |π| = |ψ|
and for all 1≤ i ≤ |π|, πi ∈ α+ =⇒ ψi ∈ α. Finally, for finite treesT andU overQ, we
useT �α+⇒α U to denote thatbranches(T) �∀∃

α+⇒α branches(U).

Lemma 7. For any partial run T ofA+ on w∈ Σω, there exists a partial run U ofA
on w such that root(T) �B root(U) and T�α+⇒α U.

The proof of Lemma 7 is done by induction on the structure ofT, where the in-
duction step employs Lemma 5 (which bridges the gap betweenA

+ andA by showing

9

that there is a partial run ofA strongly coveringT even when the power of its leaves
is extended by transitions of some�M-smaller states). With Lemma 7 in hand, we can
prove that for each accepting run ofA+ on a wordw, there is an accepting run ofA
onw. This requires to carry Lemma 7 from finite partial runs to full infinite runs5. This
results in Theorem 1, which together with the fact thatL(A/≡)⊆ L(A+) immediately
gives Corollary 1.

Theorem 1. L(A+) = L(A).

Corollary 1. Quotienting with mediated equivalence preserves the language.

5 Algorithm for Computing Mediated Preorder

In this section, we describe an algorithm for computing mediated preorder on an ABA
A = (Σ,Q, ι,δ,α). We first explain how to compute the maximal forward simulation�F

and backward simulation�B ofA . Both�F and�B will be used as the input parameters
for computing the mediated preorder�M. In the rest of the section, we will fixA as the
input ABA, usen for the number of states inA , and usem for the number of transitions
in A .

5.1 Forward Simulation

The algorithm for computing maximal forward simulation�F on A can be found in
Fritz and Wilke’s work [4] (it is called direct simulation intheir paper). They reduce
the problem of computing maximal forward simulation to a simulation game. Although
Fritz and Wilke use a slightly different definition of ABA, itis easy to translateA to
an ABA under their definition withO(n+m) states andO(nm) transitions and then use
their algorithm to compute�F . The time complexity of the above procedure isO(nm2).

5.2 Removing Ambiguity

As shown in Section 4.1,A needs to be�F -unambiguous for mediated minimization.
Here we describe how to modifyA to make it not�F -ambiguous. The modification
does not change the the language ofA and also the forward simulation relation�F ,
therefore we do not need to recompute forward simulation again for the modified au-
tomaton.

Here we describe the ambiguity removal procedure. For everytransitionp
a
−→P with

P= {p1, . . . , pk} and for eachi ∈ {1, . . . ,k}, we check if there exists somei < j ≤ k such
that p j �F pi . If there is one, removepi from P. This procedure has time complexity
O(n2m).

5 For an accepting runT of A+ on a wordw, Lemma 7 gives us for everyk∈ N and a prefix of
T of the heightk a partial run ofU of the same height that is more accepting. From the infinite
set of partial runs ofA obtained this way, we can construct an accepting run ofA on w. The
details may be found in Appendix D.3.

10

Fig. 3. An example of the reduction from an ABA transition to LTS transitions

5.3 Backward Simulation

We now show how to translate the problem of computing maximalbackward simulation
to a problem of computing maximal simulation on a labeled transition system.

Computing Simulation on Labeled Transition Systems.Let T = (S,L,→) be a finite
labeled transition system (LTS), whereS is a finite set of states,L is a finite set of
labels, and→⊆S×L×Sis a transition relation. AsimulationonT is a binary relation
�L onSsuch that ifq�L r and(q,a,q′) ∈→, then there is anr ′ with (r,a, r ′) ∈→ and
q′ �L r ′.

Here we describe the problem of computing the maximal simulation on an LTS.
Given an LTST = (S,L,→) and aninitial preorderI ⊆ S×S, the task is to find out the
unique maximal simulation onT included inI . An algorithm for computing maximal
simulation�I on the LTST included inI with time complexityO(|L|.|S|2 + |S|.|→|)
and space complexityO(|L|.|S|2) can be found in [1].

Computing Backward Simulation via a Reduction to LTS.The problem of computing
the maximal backward simulation onA can be reduced to the problem of computing
simulation on an LTS. In order to simplify the explanation ofthe reduction, we first
make the following definition. Anenvironmentis a tuple of the form(p,a,P\ {p′})
obtained by removing a statep′ ∈ P from the transitionp

a
−→ P of A . Intuitively, an

environment records the neighbors of the removed statep′ in the transitionp
a
−→ P.

We denote the set of all environments ofA by Env(A). Formally, we define the LTS
A⊙ = (Q⊙,Σ,∆⊙) as follows:

– Q⊙ = {q⊙ | q∈ Q}∪{(p,a,P)⊙ | (p,a,P) ∈ Env(A)}.
– ∆⊙ = {(p,a,P\ {p′})⊙

a
−→ p⊙, p′⊙

a
−→ (p,a,P\ {p′})⊙ | P∈ δ(p,a), p′ ∈ P}.

An example of the reduction is given in Figure 3. The goal of this reduction is to
obtain a simulation relation onA⊙ with the following property:p⊙ is simulated byq⊙ in
A⊙ iff p�B q in A . However, the maximal simulation onA⊙ is not sufficient to achieve
this goal. Some essential conditions for backward simulation (e.g.,p�B q =⇒ p�α q)
are missing inA⊙. This can be fixed by defining a proper initial preorderI .

Formally, we defineI = {(q⊙1 ,q⊙2) | q1 �ι q2∧q1 �α q2}∪{((p,a,P)⊙,(r,a,R)⊙) |
P �∀∃

F R}. Observe thatI is a preorder. Recall that according to the definition of the
backward simulation,p�B r implies that (1)p�ι r, (2) p�α r, and (3) for all transi-
tionsq

a
−→P∪{p}, p 6∈P, there exists a transitions

a
−→R∪{r}, r 6∈Rsuch thatq�B sand

11

P �∀∃
F R. The set{(q⊙1 ,q⊙2) | q1 �ι q2∧q1 �α q2} encodes the conditions (1) and (2)

required by the backward simulation, while the set{((p,a,P)⊙,(r,a,R)⊙) | P �∀∃
F R}

encodes the condition (3). A simulation relation�I can be computed using the afore-
mentioned procedure with LTSA⊙ and theinitial preorderI . The following theorems
shows the correctness and complexity of computing backwardsimulation.

Theorem 2. For all q, r ∈ Q, we have q�B r iff q⊙ �I r⊙.

Theorem 3. Backward simulation can be computed with both time and spacecomplex-
ity O(nm3).

The complexity comes from three parts of the procedure: (1) compilingA into its
corresponding LTSA⊙, (2) computing the initial preorderI , and (3) running the algo-
rithm for computing the LTS simulation relation. The LTSA⊙ has at mostnm+n states
and 2nmtransitions. It follows that Part (3) has time complexityO(|Σ|n2m2) and space
complexityO(|Σ|n2m2). In Appendix E, we show that among the three parts, Part (3)
has the highest time6 and space complexity and therefore computing backward simu-
lation also has time complexityO(|Σ|n2m2) and space complexityO(|Σ|n2m2). Under
our definition of ABA, every state has at least one outgoing transition for each symbol
in Σ. It follows thatm≥ |Σ|n. Therefore, we can also say that the procedure for comput-
ing maximal backward simulation has time complexityO(nm3) and space complexity
O(nm3).

5.4 Mediated Preorder

Here we explain how to compute the mediated preorder�M of A from �F and�B.
It is proved in [1] that�M equals the maximal relationR⊆�F ◦ �−1

B satisfyingx R
y�F z =⇒ x (�F ◦ �−1

B) z. Based on the result, we can obtain the mediated preorder
by the following procedure. Initially, let�M = �F ◦ �−1

B . For all (p,q) ∈ �M, if there
exists some(q, r) ∈ �F such that(p, r) /∈ �F ◦ �−1

B , remove(p,q) from �M. A naive
implementation of this simple procedure has time complexity O(n3).

6 Experimental Results

In this section, we evaluate the performance of mediated minimization by applying it to
accelerate the algorithm proposed by Vardi and Kupferman [8] for complementing non-
deterministic Büchi automata (NBA). In this algorithm, ABA’s are used as intermediate
notion for the complementation. To be more specific, the complementation algorithm
has two steps: (1) it translates an NBA to an ABA that recognizes its complement lan-
guage, and (2) it translates the ABA back to an equivalent NBA. The second step is an
exponential procedure (exponential in the size of the ABA),hence reducing the size of
the ABA before the second step usually pays off.

The experimentation is carried out as follows. Three sets of100 random NBA’s (of
|Σ| = 2,4, and 8, respectively) are generated by the GOAL [10] tooland then used as

6 In Appendix A, we give an efficient algorithm for computingI . It has time complexityO(n2m2)
and space complexityO(n2m2).

12

Table 1.Combining minimization with complementation.

|Σ| NBA Complemented-NBA
Time (ms)

Timeout
St. Tr. St. Tr. (10 min)

Original
2 2.5 3.3

8.89 34.8 5088.1 11
Mediated 6.68 34.02 524.7 0
Forward 9.45 55.25 5443.7 1

Original
4 3.3 6.0

39.2 349.7 9249.6 19
Mediated 20.42 235.5 1985.4 6
Forward 26.88 325.6 1900.6 7

Original
8 4.7 11.9

59.3 1096.2 23512.5 48
Mediated 57.63 1738.3 12930.6 21
Forward 81.23 2349.2 22734.2 24

Table 2.Comparison:Mediatedvs.Forward

|Σ| Minimized-ABA Complemented-NBA
St. Tr. St. Tr.

Average 2 33.54% 51.62% 63.3% 235.56%
Difference 4 36.24% 51.44% 89.9% 298.99%

8 27.94% 40.88% 152.3% 412.7%

inputs of the complementation experiments. We compare results of experiments per-
formed according to the following different options: (1)Original: keep the ABA as
what it is, (2)Mediated:minimizing the ABA with mediated equivalence, and (3)For-
ward: minimizing the ABA with forward equivalence.

For each input NBA, we first translate it to an ABA that recognizes its complement
language. The ABA is (1) processed according to one of the options described above
and then (2) translated back to an equivalent NBA using an exponential procedure. The
results are given in Table 1 and Table 2. Table 1 is an overall comparison between the
three different options and Table 2 is a more detailed comparison betweenMediated
andForward minimization.

In Table 1, the columns “NBA” and “Complemented-NBA” are theaverage statisti-
cal data of the input NBA and the complemented NBA. The column“Time(ms)” is the
average execution time in milliseconds. “Timeout” is the number of cases that cannot
finish within the timeout period (10 min). Note that in the table, the cases that cannot
finish within the timeout period are excluded from the average number. From this ta-
ble, we can see that minimization by mediated equivalence can effectively speed up the
complementation and also reduce the size of the complemented NBA’s.

In Table 2, we compare the performance betweenMediatedand Forward mini-
mization in detail. The columns “Minimized-ABA” and “Complemented-NBA” are the
average difference in the sizes of the ABA after minimization and the complemented
BA. From the table, we observe that mediated minimization results in a much better
reduction than forward minimization.

13

7 Conclusion and Future Work

We combined forward and backward simulation to form a coarser relation called me-
diated preorder and showed that quotienting wrt. mediated equivalence preserves the
language of ABA. Moreover, we developed an efficient algorithm for computing medi-
ated equivalence. Experimental results show that the mediated reduction of ABA sig-
nificantly outperforms the reduction based on forward simulation.

In the future, we would like to extend the mediated equivalence by building it on top
of even coarser forward simulation relations, e.g.,delayedor fair forward simulation
relations [5]. Also, we would like to study the possibility of using mediated preorder
to remove redundant transitions (similar to the approachesdescribed in [9]). We be-
lieve that the extensions described above can significantlyimprove the performance of
mediated reduction.

References

1. P. Abdulla, A. Bouajjani, L. Holı́k, L. Kaati, and T. Vojnar. Computing Simulations over
Tree Automata: Efficient Techniques for Reducing Tree Automata. InProc. of TACAS’08,
LNCS 4963. Springer, 2008.

2. P. Abdulla, L. Holı́k, L. Kaati, and T. Vojnar. A uniform (bi-)simulation-based framework
for reducing tree automata. InProc. of MEMICS’08, 2008.

3. A. Farzan, Y.-F. Chen, E. Clarke, Y.-K. Tsay, and B.-Y. Wang. Extending automated com-
positional verification to the full class of omega-regular languages. InProc. of TACAS’08,
LNCS 4963. Springer, 2008.

4. C. Fritz and T. Wilke. State space reductions for alternating Büchi automata: Quotienting by
simulation equivalences. InProc. of FSTTCS’02, LNCS 2556. Springer, 2002.

5. C. Fritz and T. Wilke. Simulation relations for alternating Büchi automata.Theoretical
Computer Science, 338(1-3), 2005.

6. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translations. InProc. of CAV’01,
LNCS 2102. Springer, 2001.

7. S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Vardi. On complementing nondetermin-
istic Büchi automata. InProc. of CHARME’03, LNCS 2860. Springer, 2003.

8. O. Kupferman and M. Vardi. Weak alternating automata are not that weak.ACM Transac-
tions on Computational Logic, 2(3), 2001.

9. F. Somenzi and R. Bloem. Efficient Büchi automata from LTLformulae. InProc. of CAV’00,
LNCS 1855. Springer, 2000.

10. Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, and W.-C. Chan. GOAL: A graphical tool for
manipulating Büchi automata and temporal formulae. InProc. of TACAS’07, LNCS 4424.
Springer, 2007.

11. M. Vardi. Automata-theoretic model checking revisited. In Proc. of VMCAI’07, LNCS 4349.
Springer, 2007.

14

A Initial Preorder for Computing Backward Simulation

As mentioned in the main text, we need to compute a properinitial preorder I for the re-
duction from the problem of backward simulation on an ABAA =(Σ,Q, ι,δ,α) to prob-
lem of simulation on the LTSA⊙ = (Q⊙,Σ,∆⊙). The preorderI is the union of two sets:
{(q⊙1 ,q⊙2) | q1 �ι q2 ∧ q1 �α q2} and {((p,a,P)⊙,(r,a,R)⊙) | ∀r j ∈ R.∃pi ∈ P.pi �F

r j}. Let n andm be the number of states and transitions inA , respectively. It is triv-
ial that the first set can be computed by an algorithm with timecomplexity O(n2).
However, a naive algorithm (via a pairwise comparison of alldifferent environments in
env(A)) for computing the second set has time complexityO(n4m2). Here we will de-
scribe a more efficient algorithm, which allows the computation of I to have both time
and space complexityO(n2m2).

The main idea of the algorithm is the following. For each pairof two given transi-
tions, it examines all pairs of related environments at onceand adds pairs of states in
A⊙ to I when needed. This action has both time and space complexityO(n2). Because
A has at mostm2 different pairs of transitions, the second set ofI can be computed by
the new algorithm with both time and space complexityO(n2m2).

In the rest of this section, we will explain how to efficientlycompute all pairs of
environments that should be added toI at once from two given transitions. For each pair
of transitionsp

a
−→ P andr

a
−→ R, we maintain a mapping functionβ : R→ {T,F}∪P

such that

β(r ′) =

T if there exsit more than two states inP that are forward smaller thanr ′.
F if there exsits no state inP that is forward smaller thanr ′.
p′ if p′ is the only state inP such thatp′ �F r ′.

The mapping functionβ can be computed by Algorithm 1 with both time and space
complexityO(n2).

Algorithm 1 : Generate a Mapping Function For Two Transitions

Input : Two transitionsp
a
−→ P andr

a
−→ R in A.

Output : A mapping functionβ : P→ R∪{T,F}.
/* initialization */
forall r ′ ∈ Rdo β(r ′) := F ;
forall p′ ∈ P, r ′ ∈ R do

if p′ �F r ′ then
if β(r ′) = F then β(r ′) := p′;
else β(r ′) := T;

Let us consider a pair of states((p,a,P\ {p′})⊙,(r,a,R\ {r ′})⊙) in A
⊙. This pair

can be added toI if and only if the following two conditions hold:

1. ∀r̂ ∈ (R\ {r ′}).β(r̂) 6= F .
2. ∀r̂ ∈ (R\ {r ′}).β(r̂) 6= p′.

15

With some preprocessing, both conditions can be efficientlychecked in constant
time. Although the preprocessing has time complexity and space complexityO(n), it
has to be done only at the beginning of the algorithm and can then be reused to check
all pairs of environments generated from the given pair of transitions.

We need the following preprocessing for condition 1. We define p̂∈Pas theKeyState
if p̂ is the only one state inP such thatβ(p̂) = F. Given a mapping functionβ, the
KeyState can be found efficiently (with time complexityO(n) and space complexity
O(1)) by scanning throughR and

– if there exist two statesr1, r2 ∈ Rsuch thatβ(r1) = β(r2) = F , the algorithm termi-
nates immediately because it follows that none of the pairs of environments gener-
ated from the given pair of transitions satisfies the requirement ofI .

– if there exists only one state such thatβ maps it toF, let it be theKeyState.

Then we have condition 1 is satisfied if (1) there is noKeyState or (2) r ′ is the
KeyState.

The preprocessing for condition 2 is the following. We maintain a mapping function
γ : P→ {T,F}∪R (similar to the reverse function ofβ) such that

γ(p′) =

T if |{r̂ | r̂ ∈ R∧β(r̂) = p′}| > 1
F if |{r̂ | r̂ ∈ R∧β(r̂) = p′}| = 0
r ′ if |{r̂ | r̂ ∈ R∧β(r̂) = p′}| = 1∧β(r ′) = p′.

The mapping functionγ can be found with both time complexityO(n) and space com-
plexity O(n2) by scanning throughβ. With the functionγ, condition 2 can be easily
verified by checking ifγ(p′) ∈ {F, r ′}, which means that for all the states ˆr in R\ {r ′},
p′ is not the only state such thatp′ �F r̂ .

Algorithm 2 : Add Pairs of States to I

Input : Transitionsp
a
−→ P, r

a
−→ R in A and the corresponding mapping functionβ.

/* Preprocessing for condition 1 */
forall r ′ ∈ Rdo if β(r ′) = F then

if there is noKeyState then Let r ′ be theKeyState;
elseTerminate the algorithm;

/* Preprocessing for condition 2 */
forall p′ ∈ P do γ(p′) := F ;
forall r ′ ∈ Rdo if β(r ′) /∈ {T,F} then

if γ(β(r ′)) = F then γ(β(r ′)) := r ′;
else γ(β(r ′)) := T;

/* main loop */
forall p′ ∈ P, r ′ ∈ R do

if there is noKeyState or r ′ is theKeyState then
if γ(p′) ∈ {F, r ′} then add((p,a,P\{p′})⊙,(r,a,R\{r ′})⊙) to I

In Algorithm 2, we first find out theKeyState if there is one and compute the func-
tion γ from β. Then in the main loop, for each pair of states((p,a,P\ {p′})⊙,(r,a,R\

16

V
ψ

ρ

s x

y

ι

W

U

q

φ
r

T
π π′

r r

u

v

w

Fig. 4. Potential Problems When�M Is Not Forward Extensible

{r ′})⊙), we check if it can be included toI by verifying the two conditions that we
mentioned before. Now it is easy to see that the Algorithm 2 has both time and space
complexityO(n2). It follows that the initial preorderI can be computed with both time
and space complexityO(n2m2).

B Potential Problems When�M Is Not Forward Extensible

Here we describe in detail the potential problems when�M is not forward extensible
(see Figure 4 for the illustrations).

Problem (i):The first problem will arise if there is a branchφ of U with leaf(φ) = r.
Here, apart from interconnectingT andU , r can use its new transitions also at the end
of πφ and connect another copy ofU to the end ofπφ. Suppose that all leaves ofT
exceptr acceptvvwand that all leaves ofU exceptr acceptvw. Then this enables a new
accepting run on the worduvvw. In this case, the existence of the mediators is not a
guarantee that some accepting run onuvvwwas possible before adding transitions tor.

Problem (ii): Another problem may arise if there are two (or more) branchesin
T ending byr. Here we use the two branchesπ andπ′ in Figure 4 as an example. To
construct an accepting run onuvwfrom T, r has to use the transitions ofq at the end ofπ
as well as at the end ofπ′ to connectU to T in the both places. But partial runV “covers”
only one of the two occurrences ofr. There may be a leafx of V different froms for
which r is the only leaf inT with r �F x. Therefore,x needs not to acceptvwas there is
no guaranteed relation betweenq andx in which caseV is not a prefix of an accepting
run onuvwanduvwneed not be inL(A). Note that a very similar situation can arise
while attempting to quotient using pure backward simulation equivalence which is the
main reason why it cannot be used.

The solution of the both problems is to allowr to use the transitions ofq only if
q� r, whereq� r means that (a) there is a mediator forq andr and (b) for any statet,
r �F t impliesq� t. We will show how the assumption ofq� r helps to solve Problem
(i) and (ii).

In the case of Problem (i), ify uses transitions ofq to acceptvw, thenW becomes
a prefix of an accepting run onvvw and thusV becomes a prefix of a new accepting

17

run onuvvw. We know thatr �F y. Thus, according to the definition of�, q� r �F y
givesq � y, which implies that there is a mediator forq andy. Observe thaty used
transitions ofq just once. Therefore, by an analogical argument by which we derived
thatA acceptsuvw in the first case whenr used the new transitions only once, we can
here derive that there is an accepting run ofA on uvvwwhich does not involve new
transitions.

In the case of Problem (ii), ifx uses the transitions ofq to acceptvw, V becomes a
prefix of a new accepting run onuvw. We know thatr �F x and thusq� r �F x gives
q� x, which means that there is a mediator forq andx. Similarly as in the previous case,
asx used the transitions ofq only once, we can derive that there exists an accepting run
of A onuvwthat does not involve new transitions.

The argumentation from the two above paragraphs can be used inductively for a run
wherer uses transitions ofq arbitrarily many times.

C Basic Properties of Simulation Relations

Here we give the proofs lemmas from Section 3.

Proof (Lemma 2).We prove the lemma by induction onheight(T). In the base case
whenT = {p}, it is sufficient to takeU = {r}. Suppose now that the lemma holds for ev-
ery wordu and for every partial runV ofA onu such thatheight(V) < height(T). From

p�F r, there is a transitionr
w1−→ Rof A where such thatsuccT(p) �∀∃

F R. Observe that
T = {p}∪

S

p′∈succT(p) pT(p′), where for eachp′ ∈ succT(p), T(p′) is a partial run ofA
with the rootp′ on the wordv such thatw= w1v. Notice thatheight(T(p′)) < height(T).
The induction hypothesis now can be applied to every triplep′ ∈ succT(p), r ′ ∈R,T(p′)
with p′ �F r ′. It gives us a partial runUr ′ of A on v with root(Ur ′) = r ′, such that
T(p′) �F Ur ′ . The runU with the required properties is then constructed by plugging
the runsUr ′ , r

′ ∈ R, to r, i.e.,U = {r}∪
S

r ′∈RrUr ′ . ⊓⊔

Proof (Lemma 3).By induction on the length ofπ. In the base case, whenπ = p and
T = {p}, it is sufficient to takeU = {r} andψ = r. Suppose now thatπ 6= p and that
the lemma holds for every partial runT ′ of A onw, statesp′, r ′ ∈ Q such thatp′ �B r ′,
and everyπ′ ∈ branches(T ′) with leaf(π′) = p′ and|π′| < |π|.

For the induction step, letπ = π′p and letsuccT(π′) = P∪{p}, p 6∈ P. By the def-
inition of �B, there is a transitions

w|π|−−→ R∪{r}, r 6∈ R of A such thatleaf(π′) �B s
andP �∀∃

F R. Let T ′ = T \ {π} \
S

p′∈P π′T(π′p′). ThenT ′ is a partial run ofA on w
andπ′ ∈ branches(T ′), |π′| < |π|, and therefore we can apply induction hypothesis to
T ′, leaf(π′), s, andπ′. This gives us a partial runU ′ of A onw with ψ′ ∈ branches(U ′)
such thatleaf(ψ′) = s, π′ �B ψ′ and for each 1≤ j ≤ |π′|, T ′⊖ j π′ �∀∃

F U ′⊖ j ψ′. For ev-
ery p′ ∈ succT(π′), T(π′p′) is a partial run ofA with the rootp′ on the suffixv of w such
thatw = uv, |u| = |π|−1. We can apply Lemma 2 to the triplesr ′ ∈ R, p′ ∈ P,T(π′p′)
with p′ �F r ′. This gives us for eachr ′ ∈ R a runUr ′ of A on v with root(Ur ′) = r ′

such that there is somep′ ∈ P with T(π′p′) �F Ur ′ . Now we construct a runU and
a pathψ with the required properties by pluggingr and runsUr ′ , r

′ ∈ R to the path
ψ′ in U ′, i.e., ψ = ψ′r andU = U ′∪{ψ}∪

S

r ′∈Rψ′Ur ′ . (To see thatU really satisfies

18

the required properties, observe the following: (i) AsU ⊖|π′| ψ =
S

r ′∈Rbranches(Ur ′)
andT ⊖|π′| π =

S

p′∈Pbranches(T(π′p′)), and because for eachr ′ ∈ R, there isp′ ∈ P
with T(π′p′) �F Ur ′ , we have thatT ⊖|π′| π �∀∃

F U ⊖|π′| ψ. (ii) For all 1 ≤ j < |π′|,
T ⊖ j π = T ′⊖ j π′ �∀∃

F U ′⊖ j ψ′ = U ⊖ j ψ.). ⊓⊔

D Mediated Equivalence Can Be Used for Quotienting

We give full proofs of lemmas in Section 4.1 leading to Theorem 1 and Corollary 1.

D.1 Quotienting versus Extending

Lemma 8. L(A/≡) ⊆ L(A+).

Proof. LetA+
≡ = (Σ,Q, ι,δ+

≡,α+
≡) be the automaton extended according to≡. Observe

that statesq andr with q≡ r are forward simulation equivalent inA+
≡ . (qandr are inA+

≡

either both accepting or both nonaccepting, and for alla∈Σ, δ+
≡(q,a) = δ+

≡(r,a)). Guru-
murthy et al. in [7] prove that quotienting with respect to forward simulation preserves
language. Therefore,L(A/≡) = L(A+

≡). It is also easy to see thatL(A+
≡)⊆ L(A+), as

A
+ has a richer transition function thanA+

≡ andα+ = α+
≡. Thus,L(A) ⊆ L(A+). ⊓⊔

D.2 Relating Partial runs of A+ andA

Proof (Lemma 6).The proof of Lemma 6 relies on Lemma 3 and the definition of�M.
We first choose a suitable branchπ of swT(V) as follows. Let 1≤ k ≤ |τV | be some
index such thatswT(V)⊖k τV is nonempty. IfτV = ε, thenk = 1. We choose someπ′ ∈
swT(V)⊖k τV which is minimal wrt.�F , meaning that there is noπ′′ ∈ swT(V)⊖k τV

different fromπ′ such thatπ′′ �F π′. We putπ = τk
Vπ′. We note that this is the place

where we use the�F -unambiguity assumption. IfA was�F -ambiguous, there need not
be ak such thatswT(V)⊖k τV contains a minimal element wrt.�F .

Fromext(π) �M leaf(π), there is a mediatorswith ext(π) �F s�B leaf(π). We ap-
ply Lemma 3 toV, π, leaf(π) ands, which give us a partial runW andψ ∈ branches(W)
with leaf(ψ) = ssuch thatπ �B ψ, and for all 1≤ i ≤ |π|, V ⊖i π �∀∃

F W⊖i ψ. Let τW =
ψ. The proof will be concluded by showing that (i)T �w-extW, (ii) τW 6∈branches(swT(W)),
and (iii) 〈τV ,swT(V)〉 ⊏ 〈τW,swT(W)〉, which impliesV ≺T

τV ,τW
W.

(i) To show thatT �w-ext W, we proceed as follows. Observe that for everyφ ∈
branches(W) \ {ψ} there is a branchφ′ ∈ branches(V) \ {π} such thatleaf(π) �F

leaf(ψ) andπ �α ψ. This holds because for all 1≤ i ≤ |π|, V ⊖i π �∀∃
F W⊖i ψ and

becauseπ �B ψ (to be more detailed, for everyφ ∈ branches(W) \ {ψ}, φ = ψiρ for
somei andρ ∈W⊖i ψ. There must beρ′ ∈V ⊖i π with ρ′ �F ρ. As π �B φ, πi �B φi

which impliesπi �α φi . Similarly,ρ′ �F ρ impliesρ′ �α ρ and alsoleaf(ρ′)�F leaf(ρ).
Therefore, we can construct the branchπiρ′ ∈ branches(V)\{π} with πiρ′ �α ψiρ = φ
and leaf(πiρ′) �F leaf(ψiρ)). We also know thatT �w-ext V, so branches(T) �∀∃

w-ext
branches(V). Thus, by the definition of�w-ext, we have that for everyφ∈branches(W)\
{ψ}, there areφ′ ∈branches(V) andφ′′ ∈branches(T) with φ′′ �α φ′ �α φ andext(φ′′)�M

leaf(φ′) �F leaf(φ). This by transitivity ofα and the definition of�M givesφ′′ �α φ

19

andext(φ′′) �M leaf(φ), which meansφ′′ �w-ext φ. As T �w-ext V, there must also be
a ρ ∈ branches(T) with ρ �w-ext π, and thus we haveρ �α π �B ψ andext(ρ) �F s=
leaf(ψ), which by�B ⊆�α and transitivity of�α givesρ�ext ψ. As�ext⊆�w-ext, this
impliesρ �w-ext ψ. Finally, fromroot(T) �B root(V) (implied byT �w-ext V), π �B ψ,
and transitivity of�B, root(T) �B root(W). This overall gives thatT �w-extW.

(ii) Showing thatψ 6∈ branches(swT(W)) is easy. In the above paragraph we have
just shown thatρ�ext ψ for someρ∈ branches(T), thisψ is not a strict weakly covering
branch.

(iii) To show that〈τV ,swT(V)〉 ⊏ 〈ψ,swT(W)〉, we will proceed as follows: Will
show that (a) for all 1≤ i < k, we haveswT(V)⊖i τV �∀∃

F swT(W)⊖i ψ and that (b)
swT(V)⊖k τV ≺∀∃

F swT(W)⊖k ψ. Notice first that for any partial runX of A andτ ∈ X
with τ 6∈ branches(swT(X)), for all 1 ≤ j ≤ |τ|, swT(X)⊖ j τ ⊆ X ⊖ j τ. Recall that
τk
V = πk, thatswT(V)⊖k τV is nonempty, and that for all 1≤ i < |π|,V ⊖i π�∀∃

F W⊖i ψ.
We first show that for all 1≤ i < |π|, swT(V)⊖i π �∀∃

F swT(W)⊖i ψ. For every
φ ∈ swT(W)⊖i ψ, there is at least oneφ′ ∈ V ⊖i π with φ′ �F φ (becauseV ⊖i π �∀∃

F
W⊖i ψ andswT(W)⊖i ψ⊆W⊖i ψ). We will show by contradiction thatφ′ ∈ swT(V)⊖i

π which will imply swT(V)⊖i π �∀∃
F swT(W)⊖i ψ. Suppose thatφ′ 6∈ swT(V)⊖i π.

Then the branchπiφ′ of V is not strict weakly covering, and asT �w-extV, we have that
there is someφ′′ ∈ branches(T) with φ′′ �ext πiφ′. Asπ �B ψ, we have thatπi �α ψi . As
φ′ �F φ, we have thatφ′ �α φ andleaf(φ′) �F leaf(φ). This together withφ′′ �ext πiφ′
gives thatφ′′ �α πiφ′ �α ψiφ andext(φ′′)�F leaf(πiφ′)�F leaf(ψiφ). By transitivity of
�α and�F and by the definition of�ext, we obtainφ′′ �ext ψiφ. This contradicts with
the fact thatψiφ is strict weakly covering (asφ ∈ swT(W)⊖i ψ) and therefore it must
be the case thatφ′ ∈ swT(V)⊖i π.

(a) The fact that for all 1≤ i < k, swT(V)⊖i τV �∀∃
F swT(W)⊖i ψ is implied by the

result of the previous paragraph, becauseτk
V = πk (thusswT(V)⊖i τV = swT(V)⊖i π).

(b) It remains to show thatswT(V)⊖k τV ≺∀∃
F swT(W)⊖k ψ. By the definitions

of ⊖k, π andτV , it holds thatswT(V)⊖k π ⊂ swT(V)⊖k τV . (To see this, recall that
π is strict weakly covering, butτV is not. Therefore,swT(V)⊖k π = swT(V)⊖k τV \
branches(swT(V)(πk+1))). Thus,swT(V)⊖k τV �∀∃

F swT(W)⊖k ψ. Asπ′ 6∈ swT(V)⊖k π
and π′ is a minimal element ofswT(V)⊖k τV , swT(V)⊖k π �∀∃

F swT(V)⊖k τV can-
not hold (there is noπ′′ ∈ swT(V)⊖k π with π′′ �F π′). Therefore,swT(V)⊖k τV ≺∀∃

F
swT(V)⊖k π, which together withswT(V)⊖k π �∀∃

F swT(W)⊖k ψ gives (by transitivity
of �F) thatswT(V)⊖k τV ≺∀∃

F swT(W)⊖k ψ. This completes the part (iii) of the proof
and we can conclude thatV ≺T

τV ,ψ W. ⊓⊔

Proof (Lemma 7).The proof of Lemma 7 is done by induction to the structure ofT,
using Lemma 5 within the induction step. To make the induction argument pass, we will
prove a stronger variant of the lemma. Let us first define the relation�M

α+⇒α on paths
such that for two pathsπ andψ, π�M

α+⇒α ψ iff π�α+⇒α ψ andleaf(π)�M leaf(ψ). For
two partial runsV andW, we useV �M

α+⇒α W to denote thatbranches(V) (�M
α+⇒α)∀∃

branches(W). Apparently,�α+⇒α ⊆�M
α+⇒α for paths as well ans for partial runs.

A stronger variant of the lemma:For any partial runT ofA+ onw∈ Σω, there exists
a partial runU of A onw such thatroot(T) �B root(U) andT �M

α+⇒α U .

20

It is obvious that the above statement implies the statementof the lemma. We will
prove it by induction to the structure ofT. In the base case,T = {q} for someq∈ Q. If
q 6∈ α+, we can putU = {q} (�M and�B are reflexive). Ifq∈α+, then by the definition
of α+, there isp ∈ α such thatp ≡M q. This means thatq �M p and p �M q. By the
definition of �M, there exists a mediators with p �F s�B q. As �F ⊆ �α, s∈ α.
Again by the definition of�M, q�M p�F s�B q gives usq�M s�B q and we can put
U = {s}.

Suppose now thatT is not only a root and that the stronger variant of the lemma
holds for every partial run ofA+ on w that is a proper subset ofT. We choose some
π ∈ T such thatsuccT(π) 6= /0 and for everyp∈ succT(π), succT(πp) = /0. DenoteP =
succT(π) andq = leaf(π). Let T ′ = T \ {πp | p ∈ P}. T ′ is a partial run ofA+ on w
which is a proper subset ofT, so we can apply the induction hypothesis. This gives us
a partial runV of A onw such thatroot(T ′) �B root(V) andT ′ �M

α+⇒α V.
LetBadV ⊆ branches(V) be the set such thatψ∈BadV iff there is noφ∈branches(T)

such thatφ �M
α+⇒α ψ, and letGoodV = branches(V)\BadV . Intuitively, BadV contains

the problematic branches because of whichT �M
α+⇒α V does not hold.

By the definition ofδ+ and becauseq
w|π|
−−→ P is a transition ofA+, there must

be somes∈ Q,s�M q wheres
w|π|−−→ P is a transition ofδ. We define an extension

function extV such thatextV(φ) = s for every φ ∈ BadV and extV(ψ) = leaf(ψ) for
everyψ ∈ GoodV . By applying Lemma 5 toV andextV , we get a partial runW of A
on w with V �extV W. Now, for eachψ ∈ branches(W), there isφ ∈ branches(V) with
φ �extV ψ. As T ′ �M

α+⇒α V, ρ �M
α+⇒α φ for someρ ∈ branches(T ′). There are two cases

of howρ andψ may be related, depending onφ:

1. If φ ∈ GoodV, thenext(φ) = leaf(φ). In this case, by the definitions of�M
α+⇒α

and�extV , we haveρ �α+⇒α φ �α ψ and leaf(ρ) �M leaf(φ) �F leaf(ψ), which
givesρ �α+⇒α ψ andleaf(ρ) �M leaf(ψ) (by the definition of�M), meaning that
ρ �M

α+⇒α ψ.
2. To analyze the case whenφ ∈BadV , observe thatπ is the only branch ofT ′ which is

not a branch ofT. Therefore, it has to be the case thatπ is the only branch ofT ′ with
π �M

α+⇒α φ (If there was a another such a branchπ′ of T ′ with π′ �M
α+⇒α φ, then

φ ∈ GoodV asπ′ ∈ branches(T). There must be at leas one such a branch ofT ′ as
T ′ �M

α+⇒α V). Thusρ = π. According to the definition ofextV , extV(φ) = s. Together
with V �extV W, we haveπ �M

α+⇒α φ �α ψ which givesπ �α+⇒α ψ. However, we
cannot guarantee any further relation betweenleaf(φ) and leaf(ψ), and therefore
we cannot deriveleaf(π) �M leaf(ψ) andπ �M

α+⇒α ψ as in the previous case.

We define the setBadW ⊆ branches(W) such asψ ∈ BadW iff there is noρ ∈ T with
ρ �M

α+⇒α ψ and we letGoodW = branches(W) \BadV . Analogically asBadV , BadW

contains the branches because of whichT �M
α+⇒α W does not hold. Note that ifψ ∈

BadV , then all theφ ∈ branches(V) with φ �extV ψ are as in the case (2) above, i.e.,π
is the only branch ofT ′ with π �M

α+⇒α φ. By the definition of�extV , s = extV(φ) �F

leaf(ψ). Therefore, by the definition of�F , there must be some transitionleaf(ψ)
w|π|−−→

Rψ of A whereP�∀∃
F Rψ. We extendW by firing these transitions for everyψ ∈ BadW,

in which way we get a runX = W∪{ψRψ | ψ ∈ BadW} of A onw.

21

Let us useNewX = {ψRψ | ψ ∈ BadW} to denote the branches ofX that erased by
firing the transitions. Observe thatbranches(X) = GoodW ∪NewX . Recall that for all
ψ ∈ BadW, π �α+⇒α ψ and that for everyψ ∈ NewX , there is somep ∈ P such that
p�F leaf(ψ). We will define an extension functionextX of X as follows:

1. If ψ ∈ GoodW, extX(ψ) = leaf(ψ).
2. If ψ ∈ NewX and there isp∈ P with p �F leaf(ψ) and p�α+⇒α leaf(ψ), we let

extX(ψ) = leaf(ψ).
3. If ψ ∈ NewX and there is nop ∈ P with p �F leaf(ψ) and p �α+⇒α leaf(ψ),

we proceed as follwos. By the definition ofNewX , there is somep′ ∈ P such
that p′ �F leaf(ψ). Because of�F ⊆ �α, the fact thatp′ �F leaf(ψ) and not
p′ �α+⇒α leaf(ψ) implies thatp′, leaf(ψ) 6∈ α andp′ ∈ α+. This by the definition
of α+ means that there is somev∈ α with p′ ≡M v. We putextX(ψ) = v.

We apply Lemma 5 toX andextX , which gives us a partial runU of A on w with
X �extX U . We will check thatU satisfies the statement of the stronger variant of the
lemma. We will first prove that thatT �M

α+⇒α U . For eachτ ∈ branches(U), there is
ψ ∈ branches(X) with ψ �extX τ. We will derive that there is someρ ∈ branches(T)
with ρ �M

α+⇒α τ. The argument will depend on which of the above three typesψ is of:

1. If ψ ∈ GoodW, then there is someρ ∈ T with ρ �M
α+⇒α ψ. Recall thatextX(ψ) =

leaf(ψ) in this case. Thus, by the definitions of�M
α+⇒α and�extX , we haveρ�α+⇒α

ψ�α τ andleaf(ρ)�M leaf(ψ)�F leaf(τ), which givesρ�α+⇒α τ andleaf(ρ)�M

leaf(τ), i.e.,ρ �M
α+⇒α τ.

2. If ψ ∈ NewX and there is somep ∈ P with p �F leaf(ψ) and p �α+⇒α leaf(ψ),
then by the definition ofextX , extX(ψ) = leaf(ψ). Recall that asψ|ψ|−1 ∈ BadW,
π �α+⇒α ψ|ψ|−1. Therefore, alsoπp �α+⇒α ψ. By the definition of�extX , we
have thatψ �α τ and leaf(ψ) �F leaf(τ). Finally, πp �α+⇒α ψ �α τ and p �F

leaf(ψ) �F leaf(τ) together imply thatπp�M
α+⇒α τ.

3. If ψ ∈ NewX and there is nop∈ P with p�F leaf(ψ) andp�α+⇒α leaf(ψ), then
by the definition ofextX , extX(ψ) = v, wherev ∈ α and p′ ≡M v, p′ �F leaf(ψ)
for somep′ ∈ P. By ψ �extX τ, we haveψ �α τ andv �F leaf(τ). Thus, by the
definition of �M, p′ ≡M v �F leaf(τ) gives p′ �M leaf(ψ). As �F ⊆ �α, we
have thatleaf(τ) ∈ α and thusp′ �α+⇒α leaf(τ). As ψ|ψ|−1 ∈ BadW, we have
that π �α+⇒α ψ|ψ|−1. Together withψ �α τ, this givesπp′ �α+⇒α τ. Therefore,
πp′ �M

α+⇒α τ.

Thus, we have proven thatT �M
α+⇒α U . Finally, asV �extV W andX �extX U , we

haveroot(V) �B root(W) androot(X) �B root(U). Together withroot(X) = root(W)
androot(T)= root(T ′)�B root(V), we haveroot(T)�B root(V)�B root(X)�B root(U).
By transitivity of�B, root(T) �B root(U). We have verified thatU satisfies the state-
ment of the of the stronger variant of the lemma, which concludes the proof. ⊓⊔

D.3 Relating Accepting Runs ofA+ andA

Lemma 9. A run T ofA with root(T) = ι is accepting if and only if for everyπ ∈ T,
there exists a constant kπ ∈ N such that everyψ with πψ ∈ T and|ψ| ≥ k contains an
accepting state.

22

Proof. (if) For everyπ ∈ branches(T), there is an infinite sequence ofk0,k1 . . . such
that:

– k0 = 0 and
– for all i ∈ N, ki = ki−1 +kπn wheren = ki−1 +1.

For all i ∈ N, every segment ofπ betweenki−1 +1 andki contains and accepting state,
so,π contains infinitely many accepting states.

(only if) By contradiction. Suppose that there isπ ∈ T for which there is nokπ. We
will show that in this case, there must beψ ∈ Qω such thatπψ ∈ branches(T) andψ
does not contain an accepting state (which contradicts withthe assumption thatT is
accepting).

We will give a procedure which for eachi ∈ N returnsψi (based on the knowledge
of ψi−1). For eachi ∈ N0, we will keep the invariant that forπψi , there is nokπψi and
thatψi does not contain an accepting state. Asψ0 = ε, the invariant holds fori = 0.

Let the invariant hold fori−1, i ∈ N, and suppose that we have already constructed
ψi−1. There must be someq ∈ succT(πψi−1) such thatq 6∈ α, otherwiseπψi−1 = 1,
which contradicts the invariant fori −1. We putψi = ψi−1q. Observe that the invariant
is satisfied fori too. Therefore, we can construct theith prefix ψi of ψ that does not
contain an accepting state for everyi ∈ N. This proves that there is a branchπψ of T
whereψ does not contain an accepting state, which contradicts the assumption thatT
is accepting. ⊓⊔

Lemma 10. For every accepting run T ofA+ a word w∈ Σω, there exists an accepting
run U ofA on w.

Proof. For a treeX overQ, let X(i) = {π ∈ X | |π| ≤ i} be theith prefix ofX (X(0) =
/0). From Lemma 7, for eachi ∈ N, there is a partial runUi of A on w such that
T(i) �α+⇒α Ui and root(T(i)) �B root(Ui). As �B ⊆ �ι, root(Ui) = ι. Note that for
all π ∈ branches(Ui), |π| equalsi, because only paths of the same length can be related
by�α+⇒α. DenoteU∞ = {U1,U2, . . .}. U∞ is an infinite set that for eachk∈ N contains
a partial runUk of A with all the branches of the lengthk. We will useU∞ to construct
the infinite accepting runU .

Observe that for any infinite setV∞ of partial runs ofA and for anyi ∈ N, there has
to be at least one partial runW of A such that for infinitely manyV ∈ V∞, W = V(i).
The reason is that for anyi ∈ N, there is obviously only finitely many of possible partial
runs of the heighti thatA can generate.

We prove the existence ofU by giving a procedure, which for everyk∈ N gives the
kth prefixU(k) of U .

– Let U∞
0 = U∞ and letU(0) = /0.

– For everyk∈ N, U(k) is derived fromU(k−1) as follows. LetU∞
k ⊆U∞ be defined

as the set such that for alli ∈ N, Ui ∈ U∞
k iff U(k−1) = Ui(k−1). In other words,

U∞
k is the subset ofU∞ of the partial runs with theith prefix equal toU(k− 1).

Then,U(k) = Un(k) for somen≥ k such thatUn ∈ U∞
k and there is infinitely many

m∈ N such thatUm ∈ U∞
k andUn(k) = Um(k). I other words,U(k) is a tree that

appears as thekth prefix of infinitely many partial runs inU∞
k .

23

To see that this construction is well defined, observe that:

– U∞
0 is infinite, and

– for all k∈ N, if U∞
k−1 is infinite, thenU(k−1) is defined andU∞

k is infinite.

Thus,U(k) is well defined for everyk∈ N andU is a run ofA .
I remains to show thatU is accepting. We will show that for everyπ ∈ U , there

is kπ ∈ N such that everyψ with πψ ∈ T and|ψ| ≥ k contains an accepting state. By
Lemma 9, it will follow thatU is accepting.

Let us choose arbitraryπ∈U . Letn= |π|. By Lemma 9, for everyπ′ ∈branches(Tn),
there is there iskπ′ ∈ N such that everyψ′ with π′ψ′ ∈ T and |ψ′| ≥ kπ′ contains an
accepting state. Letk = max{kπ′ | π′ ∈ branches(T(n))}. By the construction ofU ,
T(n+k) �α+⇒α U(n+k). This implies that for everyπ′′ ∈ branches(U(n)), everyψ′′

with π′′ψ′′ ∈ T and|ψ′′| ≥ k contains an accepting state. Asπ in branches(U(n)), we
can putkπ = k and we are done. ⊓⊔

Proof (Theorem 1).The inclusionL(A)⊆ L(A+) is obvious asL(A+) has riches both
transition function and the set of accepting states. The inclusionL(A+)⊆L(A) follows
immediately from Lemma 10. ⊓⊔

E Correctness and Complexity of Computing�B

Proof (Theorem 2). (if)We define� to be a binary relation onQ such thatp � r iff
p⊙ �I r⊙. We show that� is a backward simulation onQ which immediately implies
the result.

Suppose thatp� r andp′
a
−→ {p}∪P wherep 6∈ P is a transition ofA . Sincep� r,

we know thatp⊙ �I r⊙; and sincep′
a
−→ {p} ∪P is a transition ofA , we know by

definition ofA⊙ thatp⊙
a
−→ (p′,a,P)⊙ and(p′,a,P)⊙

a
−→ p′⊙ are transitions inA⊙. Since

�I is a simulation, we can find two transitionsr⊙
a
−→ (r ′,a,R)⊙ and(r ′,a,R)⊙

a
−→ r ′⊙

in A⊙ with (p′,a,P)⊙ �L (r ′,a,R)⊙ and p′⊙ �L r ′⊙. From p′⊙ �I r ′⊙, (p′,a,P)⊙ �I

(r ′,a,R)⊙, and the definition of the initial preorderI , we havep′ � r ′ andP �∀∃
F R. It

follows that� is in fact a backward simulation.
(only if) Define�⊙ as a binary relation onQ⊙ such thatp⊙ �⊙ r⊙ iff p�B r and

(p,a,P)⊙ �⊙ (r,a,R)⊙ iff P�∀∃
F Randp�B r. By definition,�⊙⊆ I . We show that�⊙

is a simulation onQ⊙ which immediately implies the result. In the proof, we consider
two sorts of states inA⊙; namely those corresponding to states and those corresponding
to “environments”.

Suppose thatp⊙ �⊙ r⊙ and the transitionp⊙
a
−→ (p′,a,P)⊙ is in A⊙. Sincep⊙ �⊙

r⊙, we know thatp�B r. From the transitionp⊙
a
−→ (p′,a,P)⊙ and by definition ofA⊙,

p′
a
−→ P∪{p} is a transition inA . Sincep�B r, there exists a transitionr ′

a
−→ R∪{r} in

A such thatp′ �B r ′ andP�∀∃
F R. It follows that there exists a transitionr⊙

a
−→ (r ′,a,R)⊙

in A⊙ such that(p′,a,P)⊙ �⊙ (r ′,a,R)⊙.
Suppose that(p,a,P)⊙ �⊙ (r,a,R)⊙ and the transition(p,a,P)⊙

a
−→ p⊙ is in A⊙.

Since(p,a,P)⊙ �⊙ (r,a,R)⊙, we know thatP�∀∃
F R andp�B r. By definition ofA⊙,

the transition(r,a,R)⊙
a
−→ r⊙ is in A⊙. Sincep�B r, we havep⊙ �⊙ r⊙. Together we

24

have there exists a transition(r,a,R)⊙
a
−→ r⊙ in A⊙ such thatp⊙ �⊙ r⊙. It follows that

�⊙ is a simulation onQ⊙. ⊓⊔

Proof (Theorem 3).The complexity comes from three parts of the entire procedure: (1)
compilingA into its corresponding LTSA⊙, (2) computing the initial preorderI , and
(3) running the algorithm for computing the LTS simulation.The LTSA⊙ has at most
nm+n states and 2nmtransitions. It is trivial that Part (1) has both time and space com-
plexity O(nm). As we explained in Appendix A, Part(2) has time complexityO(n2m2)
and space complexityO(nm2). From the size of the LTS obtained from Part (1), Part
(3) has time complexityO(|Σ|n2m2) and space complexityO(|Σ|n2m2). It follows that
computing backward simulation has time complexityO(|Σ|n2m2) and space complexity
O(|Σ|n2m2). Under our definition of ABA, every state has at least one outgoing transi-
tion for each symbol inΣ. It follows thatm≥ |Σ|n. Therefore, we can also say that the
procedure for computing maximal backward simulation has time complexityO(nm3)
and space complexityO(nm3).

⊓⊔

F Counterexamples

F.1 Backward Simulation Cannot Be Used For Quotienting

Consider the following ABAA = ({a,b},{s0,s1,s2,s3,s4,s5,s6},s0,δ,{s0,s1,s2,s3,s4,

s5,s6}), wheres0
a
−→ {s4}, s0

a
−→ {s1}, s0

b
−→ {s0}, s1

b
−→ {s2,s5}, s1

b
−→ {s1,s3}, s2

b
−→

{s2,s3}, s3
a
−→ {s0}, s4

b
−→ {s4,s6}, s5

b
−→ {s0}, and s6

a
−→ {s0} are transitions ofA .

The maximal forward simulation relation�F in A is {(s0,s0), (s1,s0), (s1,s1), (s1,s5),
(s2,s0), (s2,s1), (s2,s2), (s2,s4), (s2,s5), (s3,s3), (s3,s6), (s4,s0), (s4,s1), (s4,s2), (s4,s4),
(s4,s5), (s5,s0), (s5,s5), (s6,s3), (s6,s6)}. The maximal backward simulation relation
�B parameterized with�F is{(s0,s0), (s1,s1), (s1,s4), (s2,s2), (s3,s3), (s4,s1), (s4,s4),
(s5,s2), (s5,s3), (s5,s5), (s5,s6), (s6,s2), (s6,s3), (s6,s5), (s6,s6)}.

If we collapse states wrt.�M (i.e., two sets of states{s1 ,s4}, {s5,s6} are collapsed),
we will get the following ABAA

′ = ({a,b},{s0,s1,s2,s3,s4},s0,δ,{s0,s1,s2,s3,s4}),

wheres0
a
−→ {s1}, s0

b
−→ {s0}, s1

b
−→ {s2,s4}, s1

b
−→ {s1,s4}, s1

b
−→ {s1,s3}, s2

b
−→ {s2,s3},

s3
a
−→ {s0}, s4

a
−→ {s0}, ands4

b
−→ {s0} are transitions ofA ′.

Note thatA ′ accepts the wordabω, butA does not.

F.2 Mediated Minimization Cannot Be Used On An�F -Ambiguous ABA

Consider the following ABAA = ({a,b},{s0,s1,s2,s3,s4},s0,δ,{s4}), wheres0
a
−→

{s1,s2,s3}, s1
b
−→ {s4}, s2

b
−→ {s4}, s3

b
−→ {s4}, s3

a
−→ {s1,s2,s3}, ands4

a
−→ {s4} are tran-

sitions ofA . The maximal forward simulation relation�F in A is {(s0,s0), (s0,s3),
(s1,s1), (s1,s2), (s1,s3), (s2,s1), (s2,s2), (s2,s3), (s3,s3), (s4,s4)}. Froms1 ≡F s2 and
the transitions0

a
−→ {s1,s2,s3} we can find thatA is �F -ambiguous. The maximal

backward simulation relation�B parameterized with�F is {(s0,s0), (s1,s1), (s1,s2),

25

(s1,s3), (s2,s1), (s2,s2), (s2,s3), (s3,s1), (s3,s2), (s3,s3), (s4,s4)} and the mediated pre-
order�M is {(s0,s0), (s0,s1), (s0,s2), (s0,s3), (s1,s1), (s1,s2), (s1,s3), (s2,s1), (s2,s2),
(s2,s3), (s3,s1), (s3,s2), (s3,s3), (s4,s4)}.

If we collapse states wrt.�M (i.e., merge the three statess1, s2, ands3), we will
get the following ABAA ′ = ({a,b},{s0,s1,s2},s0,δ,s2), wheres0

a
−→ {s1}, s1

a
−→ {s1},

s1
b
−→ {s2}, ands2

a
−→ {s2} are transitions ofA ′. Note thatA ′ accepts the wordaabaω,

butA does not.

26

