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Abstract. We propose a new approach for minimizing alternating Buaum
tomata (ABA). The approach is based on the so caltedliated equivalenaen
states of ABA, which is the maximal equivalence containeith@nso calleanedi-
ated preorder Two stategp andq can be related by the mediated preorder if there
is amediator(mediating state) which forward simulatpsand backward simu-
latesq. Under some further conditions, letting a computation aneavord jump
from g to p (due to they get collapsed) preserves the language as thaaton
can anyway already accept the word without jumps by runautittrahe media-
tor. We further show how the mediated equivalence can be atedpefficiently.
Finally, we show that, compared to the standard forward kitimn equivalence,
the mediated equivalence can yield much more significantatezhs when ap-
plied within the process of complementing Blichi automahere ABA are used
as an intermediate model.

1 Introduction

Alternating Blichi automata (ABA) are succinct state-niaelrepresentations ab-
regular languages (regular sets of infinite sequencesy. dirgewidely used in the area
of formal specification and verification of non-terminatisgstems. One of the most
prominent examples of the use of ABA is the complementatibnamdeterministic
Buchi automata [8]. It is an essential step of the autorttadaretic approach to model
checking when the specification is given as a positive Bacthomaton [11] and also
learning based model checking for liveness propertiesT}3. other important usage of
ABA is as the intermediate data structure for translatinipear temporal logic (LTL)
specification to an automaton [6].

However, because of the compactness of ABasually the algorithms that work
on them are of high complexity. For example, both the complatattion and the LTL
translation algorithms transform an intermediate ABA teegnivalent NBA. The trans-
formation is exponential in the size of the input ABA. Henaee may prefer to reduce
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1 ABA's are exponentially more succinct than the nondeteistimones.



the size of the ABA (with some relatively cheaper algorithvefore giving it to the
exponential procedure.

In the study of Fritz and Wilke, simulation-based minimiaatis proven as a very
effective tool for reducing the size of ABA [5]. However, theonsidered onljorward
simulation relations. Inspired by some previous works Yi4, believe thabackward
simulation can be used for reducing the size of ABA as wellfddmnately, as will
be explained in Section 3, quotienting wiackwardsimulation (i.e., simplify the au-
tomaton by collapsing backward simulation equivalenteslatioes not preserve the
language.

In this paper, we develop an approach that uses backwardatiorufor simplify-
ing ABA indirectly. Instead of looking for a suitable fragmteof backward simulation
that can be used to reduce the number of states of an ABA, weioerbackward and
forward simulation to form a even coarser relation calteediated preordethat can
be used for minimization. The performance of minimizing ABAth mediated pre-
orderis evaluated on a large set of experiments. In the expersneetapply different
simulation-based minimization approaches to improve tireglementation algorithm
of nondeterministic Buchi automata. The experimentallteshow that the minimiza-
tion using mediated preorder significantly outperformsrttieimization using forward
simulation. To be more specific, in average, mediated miation results in a 30%
better reduction in the number of states and 50% better tedum the number of
transitions than forward minimization on the intermedi&BA. Moreover, in the com-
plemented nondeterministic Blichi automata, mediatedmimation results in a 100%
better reduction in the number of states and 300% betterctieduin the number of
transitions than forward minimization.

2 Basic Definitions

Given a finite seX, we useX* to denote the set of all finite words ovérandX® for the
set of all infinite words oveK. The empty word is denotedandX™ = X*\ {€}. The
concatenation of a finite womle X* and a finite or infinite word € X* UX® is denoted
by uv. For a wordw € X* U X®, |w] is the length ofw (jw| = o if w e X®), w; is theith
letter ofw andw' theith prefix ofw (the wordu with w = uvand|u| = i). w° = ¢. The
concatenation of a finite woradland a seS C X* U X® is defined asiS= {uv| v e S}.

An alternating Bichi automatoris a tuple4 = (Z,Q,1,0,a) whereX is a finite
alphabetQ is a finite set of states,c Q is an initial statep C Q is a set of accepting
states,and: Qx z — 22% is a total transition function. Aransitionof 4 is of the form
p2 PwhereP € 5(q,a).

A tree T over Qis a subset 0Q™ that contains all nonempty prefixes of each one
of its elements (i.eT U{e} is prefix-closed). Furthermore, we require thatontains
exactly one € Q, theroot of T, denotedoot(T). We call the elements @ paths For
a pathrmg, we useleaf(tmg) to denote its last element Define the sebranche$T) C
Q" UQ® such thatrt € branchesT) iff T contains all prefixes oft and Tt is not a
proper prefix of any path ifi. In other words, d@ranch of Tis either a maximal path
of T, or it is a word fromQ® such thafT contains all its nonempty prefixes. We use
suce (1) = {r | Tr € T} to denote the set of successors of a peaith T, andheightT)



to denote the length of the longest branchTofThe treeU overQ is aprefix of Tiff
U C T and for everyrt € U, sucg (1) = suce (1) or sucg (1) = 0. Thesuffix of T
defined by a patg is the treeT (1) = {q@ | QY € T }.

Givevrv\ a wordw € 2%, a treeT overQ is arun of 4 on w, if for everyme T,
leaf(Tt) —% suce (1) is a transition of4. Finite prefixes ofT are calledpartial runs
onw ArunT of 4 overw is acceptingff every infinite branch ofl contains infinitely
many accepting states. A wovdis acceptedby 4 from a stateq € Q iff there exists
an accepting ruil of 4 overw with root(T) = g. Thelanguage of a state g Q in 4,
denoted’4(q), is the set of all words accepted Byfrom q. Then£(4) = L4(1) is the
language of4. For simplicity of presentation, we assume in the rest ofiduger thad
never allows a transition of the form- 0. This means that no run can contain a finite
branch. Any automaton can be easily transformed into ongowttsuch transitions by
adding a new accepting statevith 5(g,a) = {{q}} for everya € Z and replacing every

transitionp % 0 by p 2 {q}.

3 Simulation Relations

In this section, we give the definitions of forward and bacidnsimulation over ABA
and discuss some of their properties. For the rest of théoseate fix an ABA A2 =

(£,Q,1,0,0). We define the two relationsy and <, on Q such thatg <4 r iff g €

o0 — reaandq=,riff g=1 = r =1. For a binary relation< on a setX, the
relation<"3 on subsets oX is defined a¥ <3 Ziff Vze Z. Iy € Y. y < z In fact this
means that the upward closuredfivrt. < is a subset of the upward closureXofurt.

=.

Forward Simulation. A forward simulationon 4 is a relation<g C Q x Q such that
p <g r implies that (i) p <q r and (ii) for all p 2 P, there exists & = R such that
P<I"R

For the basic properties of forward simulation, we rely oa work [7] by Guru-
murthy et al. In particular, (i) there exists a uniqgue maxifoavard simulation<g on
A which is reflexive and transitive, (ii) for any,r € Q such thaty <g r, it holds that
L3(q) C L4(r), and (iii) quotienting wrt<g N j,;l preserves the language af

Backward Simulation.Let < be a forward simulation ol. A backward simulation

on 4 parameterized by is a relation<g C Q x Q such thatp <g r implies that

(i) p=.r, (i) p=qr,and (i) forallg 2 PU{p}, p& P, there exists a> RU{r},r R
such thaty <g sandP j,vﬁ R. The below lemma describes some properties of backward
simulation.

Lemma 1. For any reflexive and transitive forward simulatiotg on 4, there exists
a unigue maximal backward simulatiety on 4 parameterized by that is reflexive
and transitive.

Backward simulation itself cannot be used for quotientimgAppendix F.1, we
give an example of an automaton, where quotienting usingviba simulation does



(c) Lemma 3

Fig. 1. lllustration of the lemmas

not preserve language. However, in Section 4.1, we show laa¥iard simulation can
be used to define a new relation for reducing ABA.

Let <r and=<g be forward and backward simulations @nwhich are both reflexive
and transitive. For every< {B,F,a}, we extend the relatiofy to Q" x Q* such that
formy e QF, M=« Wiff |1 = |Y| and for all 1< i < |11, T4 <« Y;. We say thatp forward
simulatest, Y backward simulater, or ) is more accepting thamwhentt<g ), m<g
Y, ort=q Y, respectively. This notation is further extended to trées treesT ,U over
Q and forx € {a,F}, we write, T <4 U if branche$T) < branchegU). Similarly,
we say thalJ forward simulatesT, or U is more accepting tham whenT <g U,
or T =<4 U, respectively. Note thaky is reflexive and transitive for all the variants
of x € {F,B,a} defined over states, paths, or trees (this follows from tlseragtion
that the original relationsg and=<pg on states are reflexive and transitive). Moreover,
=B C =a, 28 C =i, and=f C =q.

The following two lemmas formulate properties of the sintiola relations that we
will use in the rest of the paper.

Lemma 2. For any pr € Q with p=f r and a partial run T 0f4 on we = with the
root p, there is a partial run U 02 on w with the root r such that Kg U.

For atreel overQ, e T, and 1< i < |1, the sefl &; 1tis the union of branches of
suffix treesT (11 q), q € suce (1t ), with the branches of the suffix tr@émi 1) excluded.
Formally, letQ' = suce (1) \ {151} be the set of all successorsmfin T without the
successor continuing im. ThenT & 1= Ugeg branchesT (11q)).

Lemma 3. For any pr € Q with p=<gr, a partial run T of 2 on we Z® and Tt e
branchesT ) with leaf(1t) = p, there is a partial run U of2 on w andy € branchegU)
with leaf(y) = r such thatt<g g, and forall1 <i < |mj, Tom=<F U S .



4 Mediated Equivalence and Quotienting

Here we discuss the possibility of an indirect use of backiveamnulation for simplify-
ing ABA via quotienting. We do not look for a suitable fragmefbackward simulation
only. Instead, we (1) combine backward and forward simaitettb form an equivalence
that subsumes both backward and forward simulation earical and (2) take a cer-
tain fragment of this equivalence, calledediated equivalengéhat can be used for
guotienting.

4.1 The Notion and Intuition of Mediated Equivalence

Collapsing states of an automaton wrt. some equivalenogall run that arrives to
some state tfjumpto another equivalent state and continue from there. Adtidrely,
this can be viewed asxtendinghe source state of the jump by the outgoing transitions
of the target stafe The equivalence must have the property that the languagetis
increased even when the jumps (or, alternatively, trarsiéixtensions) are allowed.
This is what we aim at when introducing theediated equivalencey based on a so
calledmediated preorder<)y. The mediated preordety will in particular be defined
as a suitable transitive fragmentsf o <5 in the following.
The intuition behind allowing a run to jump from a stat® a statey such that <¢
o jgl r is the existence of the so calletkdiator i.e., a state s such thgt<g sjgl r
(see Figure 2(a)). The stasean be reached in the same way and in the same céntext
asr, and, at the same time, the automaton can continue $riorthe same way as from
g. Hence, intuitively, the newly allowed run based on the juUnm r to q does not add
anything to the language because it can anyway be realizedghs without jumps.
Unfortunately, the relatiorsg o jgl cannot be directly used as it is not transitive,
and taking its symmetric closure would thus not yield an eajence. We thus have to
take some of itransitive fragmentsThis is natural as if the automaton can safely jump
from q; to g2 and fromq;y to qs, it should be able to safely jump froqy to gs too.
This is, however, still not enough. Not all of the transitivagment of<r o jgl
can be used for quotienting. We can only take a fragm@nthat isforward extensible
meaning that ifj1 <m g2 <f gz, theng; <u gs. The intuitive meaning of this require-
ment is the following. When a run jumps fronto g, it may be the case thatis again
reached later on or it appears in the context of itself (afjuke 2(b)). Ifr is reached
in the continuation of the run from, the mediated preorder assures that there is some
statey in the run continuing from the mediatetthat forward simulates. Similarly, if
the context of contains another occurrencergthere is some statein the context of
s that forward simulates. However, this forward simulation is in general guaranteed
to hold only when no further jumps are allowed. In order torgagee a possibility of
further simulation, we require that if the computation iewakd to jump fronr to q, it
is allowed to jump fromny to q too.

2 The first view is better when explaining the intuition whesdlae other is easier to be used in
proofs.

3 |f a statesis a leaf of a partial run, then byapntextof swe mean all the other leaves of the
partial run.
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Finally, to make the mediated equivalence applicable, wetrpase one more re-
quirement. Namely, we require that the transitions of theeigiABA are not=<g-
ambiguousmeaning that no two states on the right hand side of a tiansite forward
equivalent. Intuitively, allowing such transitions goagamst the spirit of the back—
ward simulation. For a medlatcprto backward simulate a statewrt. rulesp; : p’ LN
PU{p},p &P, andpy:r’ 4 RU {r},r € R, it must be the case that each staia the
contextP of p within p; is less restrictive (i.e., forward bigger) than some sydtethe
contextR of r within p,. The state itself is not taken into account when looking fpr
because we aim at extending its behaviour by collapsingifardild then become less
restrictive than the appropriatg In the case okg-ambiguity, the spirit of this restric-
tion is in a sense broken since the forward behavioumoéy still be taken into account
when checking that the context pfis less restrictive than that of This is because the
behaviour ofr appears irR as the behaviour of some other stete¢oo. Consequently,
r andr” may back up each other in a circular way when checking thecggeness of
the contexts within the construction of the backward sirtiota Both of them can then
seem extensible, but once their behaviour gets extendedesfriction of their context
based on their own original behaviour is lost, which may tinenease the language (an
example of such a scenario is given in Appendix F.2). Howeredection 5, we show
that <g-ambiguity can be efficiently removed.

Mediated Preorder and Equivalencket <r be a reflexive and transitive forward sim-
ulation on4, and=p a reflexive and transitive backward simulation@parameterized
by <g. A preorder=<y C <g o <B such that for allg,r,s € Q, g <m r <f simplies

g =wm s, is amediated preordeinduced by<r and=g. The relationr=m = <m N =Xy 1

is then amediated equivalendeduced by<r and=<g.



Lemma 4. [2] There is a unique maximal mediated preordey; induced by<r and
=B

4.2 Extending Automata According to Mediated Preorder Pregrves Language

Quotient Automata versus Extended Automate first show that quotienting can
be seen as a simpler operation of adding transitions andhticgestates. Letd =
(Z,Q,1,8,a) be an ABA and let= be an equivalence o@ such that= = <N <71
for some preorder. Let the automator/= be the quotient 0f2 wrt. = that arises
by merging=-equivalent states off, and let2™ be the automaton extended according
to =<, that is created as follows: for every two statps of 4 with g <r, (i) add all
outgoing transitions of to r, (i) if g=r andqis final, make final.

The automatad/= and 4" are formally defined as follows. L&/= denote the
quotient ofQ wrt. =, and let[g] denote the equivalence class=efcontainingg. Then
/== (2,Q/=,[1,3/={[d | g€ a}) andA" = (£,Q,8",1,a"), wherea™ = {p|
Jg € a. g=p} and, for eacha € Z, q € Q, 8/=([d],a) = Upcg{{[P]| P € P} |
P d(p,a)} andd™ (,a) = Upeqnp<qd(P;a). Itis not difficult to show that’ (/=) C
£(A4") (see Lemma 8 in the appendix). Hence, if adding transitiods&cepting states
according tox preserves the language, then quotienting according poeserves the
language too.

Language Preservation by Mediated Equivalen@ée now give a sketch of the proof
that extending automata according to the mediated preqmaserves the language.
The full proofs can be found in Appendix D. For the rest of tleet®n, we fix an
ABA A= (%,Q,1,0,0), areflexive and transitive forward simulatiefz on 4 such that
A is <g-unambiguous, and a reflexive and transitive backward sitiwnl <g on 4
parameterized byg. Let <y be a mediated preorder induced By and=<g, and let
A" be the automaton extended accordinggip. Let=y = <y N j&l.

We want to prove that (41) = £(4). The nontrivial part is showing that(2") C
L(A)—the converse is obvious. To provg 4") C £(4), we need to show that, for
every accepting run ofi* on a wordw, there is an accepting run o1 on w. We
proceed as follows. We first prove Lemma 5, which shows howigdatins of 2 with
an increased power of their leaves (W) can be built incrementally from other runs
of 4, bridging the gap betweeft and 2*. Then we prove Lemma 7 saying that, for
every partial run on a worgv of 4", there is a partial run of2 on w that is more
accepting (recall that partial runs are finite). By carrgtl@sult over to infinite runs we
get the proof of Theorem 1.

Consider a partial ruit of 4 on a wordw, we choose for each leafof T an=<y-
smaller statgy’. Suppose that we alloyw to make one step using the transitionspbf
or to become accepting [f is accepting ang’ =y p. (Thus, we give the leaves @fa
part of the power they would have ™). We will show that there exists a partial run
of 4 onw such that (1) it is more accepting th@inand (2) the leaves & can mimic
the next step of the leaves dfeven if the leaves of use their extended power.

The above is formalized in Lemma 5 using the following natatiFor a partial run
T of 4 onw, we defineextas anextension functiothat assigns to every branatof T
a stateext(1) such thaext(m) <y leaf ().



Let U be a partial run of2 on w. For two branches) € branche§T) andm e
branchegU ), we say thaty strongly coverstwrt. ext, denotedt <ex W, iff T=<q @ and
ext(r) < leaf(y). Similarly, we say thath weakly covergtwrt. ext denotedt <,,-ext
W, iff ™=y W andext(m) <y leaf(P). We extend the concept of covering to partial
runs as follows. We writd <extU (U strongly covers Twrt. ex)) iff branche$T) j\gt
branchegU ) androot(T) <g root(U). Likewise, we writeT =<,,.extU (U weakly covers
T wrt. ex)) iff branche$T) <72, branchegU) androot(T) <g root(U). Note that we
have <ext € =<w-ext for branches as well for partial runs because C <ym. So, the
strong covering implies the weak one.

Lemma 5. For any partial run T 0f4 on a word w with an extension function ext, there
is a partial run U of 42 on w with T<gxU.

Proving Lemma 5 is the most intricate part of the proof of Teeo 1. We introduce
the concepts used within the proof of Lemma 5 and provide amiew of the proof.

If T <ext T, We are done as in the statement of the lemma, we catékéeU . So,
suppose thal Zex T. Observe thaiot(T) <g root(T), and every branch of weakly
covers itself, which means th&t=,,-ex; T. We will show how to reack) by a chain of
partial runs derived fron. The partial runs within the chain will all weakly covér
Runs further fronil' will in some sense cover more strongly than the runs closer to
T. The last partial run of the chain will cové@rstrongly. To do this, we need a suitable
measure that, for a partial rdh of 2 onw with T <.extV, tells us how strongly
coversT.

To define the measure, we concentrate on branch&stbht cause that does
not coverT strongly. These are branchgisc branche$V) for which there is nat e
branche$T) with 1T <ex U (there are only soma € branches$T) with 1T <-ext W).
We call themstrict weakly covering brancheketswt (V) denote the tree which is the
subset oV containing prefixes of strict weakly covering branche&/ofirt. T. Note
thatT <exV iff V contains no strict weakly covering branches, which is eajeivt to
swt (V) = 0. For a partial runW of 4 onw, we will define which ofV andW cover
T more strongly by comparingvT (V) andswy (W). For this, we need the following
definitions.

Given a treeX overQ andt € X, we define theéree decompositionf X according
to T as the sequence of sets of pafosX) = X ©17,X©21,...,X Sy T. We also let
(€,X) = brancheéX), which is a sequence of length 1. Notice that under the cimmdit
thatt ¢ branche¢X), (1,X) = 0...0 implies thatX = 0*.

Letty € VU{e} andtw € WU {€} be such thaty ¢ branchegswr(V)) andtw ¢
brancheéswt (W)). We say thaWW covers T more stronglihanV wrt. Ty and tw,
denoted/ <J ., W, iff root(V) <g root(W) and(ty,swt (V)) C (tw,swr (W)), where
C is a binary relation on sequences of sets of paths definedlas$o

For two sets of path® andP’, we useP <7 P’ to denote thaP <77 P’ but not
P j,\? P. In other words, the upward closure Bf wrt. <g is a proper subset of the

4 Note that ift € branche$X), (1,X) =0...0does notimplyX = 0 ast could be the only branch
of X. This is important as for a partial rahandt’ €Y, if T ¢ branchegY), the implications
(U,swr(Y)) =0...0 = swy(Y) =0 = T =extY hold. However, the first implication
does not hold ift’ € branchegY).



upward closure oP wrt. <g. Then, forS S € (29)*, St S iff there is somek € N, k <
min{|S,|S|}, such tha <{* § and forall 1< j <k, §; <7 S, Itis not hard to show
that the relatior is a partial order. Observe thatdoes not allow infinite increasing
chains of sequences where the length of the sequences iddmbby some constant.
Moreover,SC 0...0 for every sequenc8+# 0...0.

Lemma 6. Given a partial runV off onw s.t. T<X.extV, T AextV, andty e VU{e}
with ty & branchegswt (V)), we can construct a partial run W &t on w with T=<,-ext
W and a pattty € W withty ¢ branchegswr (W)) such that V<! . W

Tv,Tw :

Proof (Sketch)The proof of Lemma 6 relies on Lemma 3 and the definition<gf.
We first choose a suitable branatof swt (V) as follows. Let 1< k < |ty| be some
index such thatwt (V) Sk Ty is nonempty. Ifty = €, thenk = 1. We choose son® €
swt (V) &k v Which is minimal wrt.<g, meaning that there is @’ € swt (V) Ok 1y
different from1 such that” < 1. We putmi= r\",n’. We note that this is the place
where we use th&g-unambiguity assumption. Hl was<g-ambiguous, there need not
be ak such thaswr (V) Sk Tv contains a minimal element wrkg.

Fromextm) <v leaf(m), there is a mediat@with ext(Tt) <¢ s> leaf(1). We ap-
ply Lemma 3 tdV, 1, leaf(1) ands, which give us a partial ru/ andy € branche$w)
with leaf(y) = s such thatrt <g @, and for all 1<i < |rj, Vi <7 WS, . Let
Tw = Y. The proof can be concluded by showing the followingT(iXw-ext W, (ii) Tw &
branchegswr (W)), and (iii) (tv, swr (V)) C (Tw,swt (W)), which impliesv <], . W.

O

Now we construct a rut) strongly coveringT as follows. Starting fronT and
€, We can construct a chaifi <{ Ti <{,, T2 <{,1, T3... by successively apply-
ing Lemma 6. For each ti € Tj, T; ¢ brancheéswt(T;)), andT <,.ext Ti. Observe
that by the definition of stronger covering, we have tfgagw (T)) = (T1,swt(T1)) C
(12,swt(T2)) C (t3,swT(T3))... Notice that, for each, asT =<.-ext Ti, heigh(T;) =
heigh{T). Therefore the length af as well as the length dft;,swr(Ti)) are bounded
by heigh{(T).

Recall that (i) the relationT is a partial order, (ii) that_ does not allow infinite
increasing chains of sequences where the length of the seggsiés bounded by some
constant, and (i) thaC 0. .. 0 for every sequenc®+ 0...0. This means that after a
finite number of steps, this chain must arrive to its lesandty with (Ti, swt(Tk)) =
0...0. This means thatwT (Tx) = 0, which implies thafl <ex Tx. We can put) = Ty
and Lemma 5 is proven.

Now we can use Lemma 5 to prove Lemma 7. It relates partial ofirig™ with
partial runs of4 by the relation<4+_,4 defined as follows. For two statesandr,
g=g+=q Piff gea™ = pea. For two pathsy P € QF, M=y q W iff |T] = |Y
and forall 1<i < |m|, s € a™ = j; € a. Finally, for finite trees” andU overQ, we

useT =<g+q U to denote thabranche¢T) <73 branchegU).

Lemma 7. For any partial run T of2™ on we X%, there exists a partial run U oft
on w such that rodfl) <groot(U) and T <4+ U.

The proof of Lemma 7 is done by induction on the structurd pfvhere the in-
duction step employs Lemma 5 (which bridges the gap betwieeand.2 by showing



that there is a partial run off strongly coveringl even when the power of its leaves
is extended by transitions of som&,-smaller states). With Lemma 7 in hand, we can
prove that for each accepting run @f" on a wordw, there is an accepting run of
onw. This requires to carry Lemma 7 from finite partial runs td findinite runs. This
results in Theorem 1, which together with the fact thafz/=) C £(2") immediately
gives Corollary 1.

Theorem 1. L(4") = L(A4).

Corollary 1. Quotienting with mediated equivalence preserves the laggu

5 Algorithm for Computing Mediated Preorder

In this section, we describe an algorithm for computing ragetl preorder on an ABA
4=(Z,Q,1,0,a). We first explain how to compute the maximal forward simwalatkg
and backward simulatiofg of 4. Both<f and=g will be used as the input parameters
for computing the mediated preordey;. In the rest of the section, we will fig as the
input ABA, usen for the number of states if, and usemfor the number of transitions
in 4.

5.1 Forward Simulation

The algorithm for computing maximal forward simulatiety on 4 can be found in
Fritz and Wilke’'s work [4] (it is called direct simulation itheir paper). They reduce
the problem of computing maximal forward simulation to agiation game. Although
Fritz and Wilke use a slightly different definition of ABA, i$ easy to translatél to
an ABA under their definition witlO(n-+ m) states an@®(nm) transitions and then use
their algorithm to computer . The time complexity of the above procedur©igin?).

5.2 Removing Ambiguity

As shown in Section 4.14 needs to be<g-unambiguous for mediated minimization.
Here we describe how to modifg to make it not<g-ambiguous. The modification
does not change the the languagesfnd also the forward simulation relatiofg,
therefore we do not need to recompute forward simulatiomnaiga the modified au-
tomaton.

Here we describe the ambiguity removal procedure. For dvangitionp 2, Pwith
P={p1,...,px}andforeache {1,...,k}, we checkif there exists some j <ksuch
thatp; < pi. If there is one, remove; from P. This procedure has time complexity
Oo(r?m).

5 For an accepting rul of 41 on a wordw, Lemma 7 gives us for evelye N and a prefix of
T of the heightk a partial run ofJ of the same height that is more accepting. From the infinite
set of partial runs of2 obtained this way, we can construct an accepting rud oh w. The
details may be found in Appendix D.3.
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A transition in A Transitions in A®
Y —— (p,a,{p2,p3})® -~

p = A{pi,p2,ps} = p5 —— (pa,{p,ps})® — p°
p:? — (p, a, {p1,p2})® -

Fig. 3. An example of the reduction from an ABA transition to LTS s#ions

5.3 Backward Simulation

We now show how to translate the problem of computing maxbaakward simulation
to a problem of computing maximal simulation on a labeleddition system.

Computing Simulation on Labeled Transition Systetst T = (S, £, —) be a finite
labeled transition system (LTS)hereS is a finite set of states( is a finite set of
labels, and— C Sx £ x Sis a transition relation. AimulationonT is a binary relation
=L onSsuch thatifq <, r and(q,a,d) € —, then there is an’ with (r,a,r') € — and
ql =L r.

Here we describe the problem of computing the maximal sitimrleon an LTS.
Given an LTST = (S, £,—) and aninitial preordell C Sx S the task is to find out the
unigue maximal simulation of included inl. An algorithm for computing maximal
simulation=<' on the LTST included inl with time complexityO(|£|.|S]? + |S.|—|)
and space complexi®(| £|.|S?) can be found in [1].

Computing Backward Simulation via a Reduction to LT®e problem of computing
the maximal backward simulation ofi can be reduced to the problem of computing
simulation on an LTS. In order to simplify the explanationtlé reduction, we first
make the following definition. Arenvironments a tuple of the formp,a,P\ {p'})
obtained by removing a statg € P from the transitionp 2, pof 4. Intuitively, an
environment records the neighbors of the removed gtata the transitionp = P.
We denote the set of all environments@fby EnV(A). Formally, we define the LTS
A® = (Q9, % A?) as follows:

- Q7={a”[gc QjU{(p.aP)”| (p.a,P) c EnVA)}.
- A% ={(p.a,P\{p})” = p*, " = (p.a,P\{p'})? | P€d(pa),p €P}.

An example of the reduction is given in Figure 3. The goal d@f tleduction is to
obtain a simulation relation of¥® with the following propertyp® is simulated byy® in
AYiff p=<gqin 4. However, the maximal simulation & is not sufficient to achieve
this goal. Some essential conditions for backward simutate.g..p < = p <q Q)
are missing imA®. This can be fixed by defining a proper initial preortler

Formally, we definé = {(q7,05) | o1 =i G2 A1 =a G2} U{((P,&,P)?, (r,a,R)?) |
P < R}. Observe that is a preorder. Recall that according to the definition of the
backward simulationp <g r implies that (1)p <, r, (2) p =<« r, and (3) for all transi-
tionsq = PU {p}, p &P, there exists a transitisr> RU {r},r £ Rsuchthag<gsand
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P <7 R The set{(d;,d5) | 91 =i G2 A 1 < 02} encodes the conditions (1) and (2)
required by the backward simulation, while the §étp,a,P)®, (r,a,R)®) | P <Z* R}
encodes the condition (3). A simulation relatisth can be computed using the afore-
mentioned procedure with LT&® and theinitial preorder. The following theorems
shows the correctness and complexity of computing backsiardlation.

Theorem 2. For all g,r € Q, we have ¢<g riff q® <' r®.

Theorem 3. Backward simulation can be computed with both time and spacglex-
ity O(nn¥).

The complexity comes from three parts of the procedure: ¢h)piling 4 into its
corresponding LTS\?, (2) computing the initial preordér and (3) running the algo-
rithm for computing the LTS simulation relation. The LRS has at moshmtn states
and lhmtransitions. It follows that Part (3) has time complexdy>|n’n?) and space
complexityO(|Z|n’m?). In Appendix E, we show that among the three parts, Part (3)
has the highest tinfeand space complexity and therefore computing backward-simu
lation also has time complexi®(|=|n?n?) and space complexit®(|Z|n’m?). Under
our definition of ABA, every state has at least one outgoiagsition for each symbol
in X. It follows thatm > |Z|n. Therefore, we can also say that the procedure for comput-
ing maximal backward simulation has time complex@gnn?) and space complexity
o(nm?).

5.4 Mediated Preorder

Here we explain how to compute the mediated preorgigrof 4 from <g and <.

It is proved in [1] that=u equals the maximal relatioR C=<f o jgl satisfyingx R
Y=gz = X(=Xfo jgl) z Based on the result, we can obtain the mediated preorder
by the following procedure. Initially, lekKy = <f o jgl. For all(p,q) € <w, if there
exists soméq,r) € <g such thatp,r) ¢ <f o jgl, remove(p,q) from <y. A naive
implementation of this simple procedure has time compyeRiin®).

6 Experimental Results

In this section, we evaluate the performance of mediateihmization by applying it to
accelerate the algorithm proposed by Vardi and Kupfermhiof&omplementing non-
deterministic Biichi automata (NBA). In this algorithm, AB are used as intermediate
notion for the complementation. To be more specific, the dempntation algorithm
has two steps: (1) it translates an NBA to an ABA that recogmils complement lan-
guage, and (2) it translates the ABA back to an equivalent NB#e second step is an
exponential procedure (exponential in the size of the AB&)ce reducing the size of
the ABA before the second step usually pays off.

The experimentation is carried out as follows. Three setd6frandom NBA's (of
|Z| = 2,4, and 8, respectively) are generated by the GOAL [10] amal then used as

6 In Appendix A, we give an efficient algorithm for computihdt has time complexitp(nn?)
and space complexit®(n’nv).
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Table 1. Combining minimization with complementation.

3] NBA |Complemented-NB, B‘I'ime (ms Timeout

St.| Tr. | St Tr. (10 min)
Original 8.89 34.8 5088.1 11
Mediated 2 |2.5| 3.3| 6.68 34.02 524.7 0
Forward 9.45 55.25 5443.7 1
Original 39.2 349.7 9249.6 19
Mediated 4 |3.3] 6.0|20.42 2355 1985.4 6
Forward 26.84 325.6 1900.6 7
Original 59.3 1096.2 23512.5| 48
Mediated 8 |4.7/11.957.63  1738.3 12930.6| 21
Forward 81.23 2349.2 227342 24

Table 2. ComparisonMediatedvs. Forward

Minimized-ABA|Complemented-NBA
St. Tr. St. Tr.
Average | 2 |33.549451.62%| 63.3%| 235.56%
Differenceg 4 |36.24% 51.44%]| 89.9%| 298.99%

8 (27.94% 40.88%152.3% 412.7%

inputs of the complementation experiments. We compardtsesfiexperiments per-
formed according to the following different options: (@yiginal: keep the ABA as
what it is, (2)Mediated:minimizing the ABA with mediated equivalence, and [y-
ward: minimizing the ABA with forward equivalence.

For each input NBA, we first translate it to an ABA that recagssiits complement
language. The ABA is (1) processed according to one of thempdescribed above
and then (2) translated back to an equivalent NBA using aomamptial procedure. The
results are given in Table 1 and Table 2. Table 1 is an ovevatiparison between the
three different options and Table 2 is a more detailed corspambetweerMediated
andForward minimization.

In Table 1, the columns “NBA” and “Complemented-NBA” are terage statisti-
cal data of the input NBA and the complemented NBA. The coltifiime(ms)” is the
average execution time in milliseconds. “Timeout” is thenter of cases that cannot
finish within the timeout period (10 min). Note that in theligtihe cases that cannot
finish within the timeout period are excluded from the averagmber. From this ta-
ble, we can see that minimization by mediated equivalenceffactively speed up the
complementation and also reduce the size of the complech&lBA's.

In Table 2, we compare the performance betwstadiatedand Forward mini-
mization in detail. The columns “Minimized-ABA’ and “Comgrnented-NBA" are the
average difference in the sizes of the ABA after minimizatmd the complemented
BA. From the table, we observe that mediated minimizaticults in a much better
reduction than forward minimization.
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7

Conclusion and Future Work

We combined forward and backward simulation to form a coanedation called me-
diated preorder and showed that quotienting wrt. mediatgrvalence preserves the
language of ABA. Moreover, we developed an efficient al¢nonifor computing medi-
ated equivalence. Experimental results show that the nestir@duction of ABA sig-
nificantly outperforms the reduction based on forward satiah.

In the future, we would like to extend the mediated equiveddny building it on top

of even coarser forward simulation relations, edglayedor fair forward simulation
relations [5]. Also, we would like to study the possibilit§ wsing mediated preorder
to remove redundant transitions (similar to the approadessribed in [9]). We be-
lieve that the extensions described above can significantlyove the performance of
mediated reduction.
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A Initial Preorder for Computing Backward Simulation

As mentioned in the main text, we need to compute a primjitéal preorder | for the re-
duction from the problem of backward simulation on an ABA= (Z,Q,1,d,a) to prob-
lem of simulation on the LTA® = (Q®,%,A%). The preordet is the union of two sets:
{(a7,05) | a1 <1 G2 A A1 <« G2} and {((p,a,P)”,(r,a,R)”) | ¥rj € R3pi € P.pi <¢
ri}. Letn andm be the number of states and transitionsdnrespectively. It is triv-
ial that the first set can be computed by an algorithm with tzomplexity O(n?).
However, a naive algorithm (via a pairwise comparison oflgferent environments in
enV(4)) for computing the second set has time complegity*n?). Here we will de-
scribe a more efficient algorithm, which allows the comgaotabf | to have both time
and space complexi(n’n?).

The main idea of the algorithm is the following. For each pditwo given transi-
tions, it examines all pairs of related environments at caro# adds pairs of states in
A® to | when needed. This action has both time and space compl@if). Because
4 has at most? different pairs of transitions, the second set ein be computed by
the new algorithm with both time and space complety?n?).

In the rest of this section, we will explain how to efficienttgmpute all pairs of
environments that should be added i once from two given transitions. For each pair
of transitionsp = P andr % R, we maintain a mapping functigh: R — {T,F}UP
such that

T if there exsit more than two statesfthat are forward smaller thah
B(r') = { F if there exsits no state iR that is forward smaller thari.
p' if p’is the only state ifP such thatpy <g r'.

The mapping functiof can be computed by Algorithm 1 with both time and space
complexityO(n?).

Algorithm 1: Generate a Mapping Function For Two Transitions

Input: Two transitionspg Pandr & Rin 4.
Output: A mapping functior3 : P — RU{T,F}.
[* initialization */
forall ' € Rdo B(r') :=F;
forall p’ e Pr’ € Rdo
if p’ <g r’ then
if B(r') =F then B(r') :=p’;
else B(r'):=T;

Let us consider a pair of staté&,a,P\ {p'})“, (r,a,R\ {r'})®) in 4“. This pair
can be added tbif and only if the following two conditions hold:

1. Vf € (R\{r'}).B(F) £ F.
2. Ve (R\{r'}).B(F) # p'.
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With some preprocessing, both conditions can be efficietticked in constant
time. Although the preprocessing has time complexity aratsgomplexityO(n), it
has to be done only at the beginning of the algorithm and cam tie reused to check
all pairs of environments generated from the given pairarfgitions.

We need the following preprocessing for condition 1. We dgfig P as thekey St at e
if pis the only one state i such thaf3(p) = F. Given a mapping functio, the
KeySt at e can be found efficiently (with time complexit(n) and space complexity
0O(1)) by scanning througR and

— if there exist two states;, r> € Rsuch tha(r1) = B(rz) = F, the algorithm termi-
nates immediately because it follows that none of the pdiesvaronments gener-
ated from the given pair of transitions satisfies the requénet ofl .

— if there exists only one state such tifaihaps it toF, let it be theKeySt at e.

Then we have condition 1 is satisfied if (1) there is KeyState or (2) r’ is the
KeySt at e.

The preprocessing for condition 2 is the following. We maint mapping function
y:P— {T,F} UR(similar to the reverse function @) such that

Tif {F|FeERAB(F)=p} >1
V(') =q F if |{f[F€eRAB()=p'}[=0
i if [{F|F e RAB(F) = P} = 1AB(r) = p.
The mapping functioly can be found with both time complexi@(n) and space com-
plexity O(n?) by scanning througB. With the functiony, condition 2 can be easily

verified by checking ify(p") € {F,r’}, which means that for all the statesn"R\ {r'},
p’ is not the only state such thpt <¢ 1.

Algorithm 2 : Add Pairs of States to |

Input: Transitionsp 2 p,r & Rin 4 and the corresponding mapping functign
/* Preprocessing for condition 1 */
forall r' € Rdo if B(r') = F then
if there is noKey St at e then Letr’ be theKey St at e;
elseTerminate the algorithm;
/* Preprocessing for condition 2 */
forall p’ e Pdo y(p/) :=F;
forall ' € Rdo if B(r') ¢ {T,F} then
if y(B(r')) = F then y(B(r")) :=T";
else y(B(r')) :=T,;
/* main loop */
forall P e Pr’ € Rdo
if there is noKeySt at e or r’ is theKey St at e then
if y(p') € {F,r'} thenadd((p,a,P\{p'})®,(r,a, R\ {r'})®) tol

In Algorithm 2, we first find out th&ey St at e if there is one and compute the func-
tion y from B. Then in the main loop, for each pair of statép,a,P\ {p'})®, (r,a,R\
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Fig. 4. Potential Problems Whery Is Not Forward Extensible

{r'})¥), we check if it can be included tbby verifying the two conditions that we
mentioned before. Now it is easy to see that the Algorithm 2Hbwth time and space
complexityO(n?). It follows that the initial preordelr can be computed with both time
and space complexi(n’n?).

B Potential Problems When=, Is Not Forward Extensible

Here we describe in detail the potential problems whgnis not forward extensible
(see Figure 4 for the illustrations).

Problem (i): The first problem will arise if there is a branghof U with leaf(q) =r.
Here, apart from interconnectifigandU, r can use its new transitions also at the end
of Tp and connect another copy of to the end ofrp. Suppose that all leaves of
exceptr accepwvwand that all leaves df exceptr acceptvw. Then this enables a new
accepting run on the wordvvw In this case, the existence of the mediatds not a
guarantee that some accepting ruruemwwas possible before adding transitions to

Problem (ii): Another problem may arise if there are two (or more) branghes
T ending byr. Here we use the two branchagsandt in Figure 4 as an example. To
construct an accepting run omwfrom T, r has to use the transitions@ét the end oft
as well as at the end of to connecU to T in the both places. But partial rvh“covers”
only one of the two occurrences nof There may be a leaf of V different froms for
whichr is the only leaf inT with r < x. Thereforex needs not to acceptvas there is
no guaranteed relation betwegmandx in which caseV is not a prefix of an accepting
run onuvwanduvwneed not be in.(4). Note that a very similar situation can arise
while attempting to quotient using pure backward simutagquivalence which is the
main reason why it cannot be used.

The solution of the both problems is to allowto use the transitions af only if
g =< r, whereq < r means that (a) there is a mediator pandr and (b) for any statg
r <r timpliesq <t. We will show how the assumption gf< r helps to solve Problem
(1) and (ii).

In the case of Problem (i), if uses transitions af to acceptw, thenW becomes
a prefix of an accepting run orwwand thusv becomes a prefix of a new accepting
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run onuvvw We know that < y. Thus, according to the definition ef, g <r <y
givesqg =y, which implies that there is a mediator fqrandy. Observe thay used
transitions ofg just once. Therefore, by an analogical argument by which aresed
that 4 acceptauvwin the first case whenused the new transitions only once, we can
here derive that there is an accepting rungobn uvwwwhich does not involve new
transitions.

In the case of Problem (ii), ¥ uses the transitions @fto accepwvw, V becomes a
prefix of a new accepting run anvw We know that <g x and thusg <r < x gives
g =X, which means that there is a mediatord@ndx. Similarly as in the previous case,
asx used the transitions @fonly once, we can derive that there exists an accepting run
of 4 onuvwthat does not involve new transitions.

The argumentation from the two above paragraphs can be ndectively for a run
wherer uses transitions af arbitrarily many times.

C Basic Properties of Simulation Relations

Here we give the proofs lemmas from Section 3.

Proof (Lemma 2)We prove the lemma by induction dreigh{T). In the base case
whenT = {p}, itis sufficient to také) = {r}. Suppose now that the lemma holds for ev-
ery wordu and for every partial rul of 4 onu such thateight{V) < heigh{T). From

p =<k r, there is a transition % R of 4 where such thatuce (p) <Z° R. Observe that

T ={p}UUpesuca (p) PT(P), where for eaclp’ € suce (p), T(p') is a partial run ofa
with the rootp’ on the wordr such thatv = wyv. Notice thaheigh{T (p')) < heigh{T).
The induction hypothesis now can be applied to every tiiplesuce (p),r’' € R, T(p')
with p’ <g r’. It gives us a partial rutd;, of 4 on v with root(Uy) = r’, such that
T(p') <r Up. The runU with the required properties is then constructed by pluggin
the rundJ,,,r' e R tor, i.e.,U = {r} UUyerrUy. O

Proof (Lemma 3)By induction on the length oft. In the base case, when= p and
T = {p}, it is sufficient to takdJ = {r} andy = r. Suppose now that # p and that
the lemma holds for every partial rdr of 4 onw, statesp/,r’ € Q such that’ <gr’,
and everyrt € branchesT’) with leaf(1') = p’ and|T7| < |7.

For the induction step, let= T[’p and letsuce (1) = PU{p}, p € P. By the def-
inition of <g, there is a transitios —% RU {r},r € Rof 4 such thateaf(’) <g s
andP <" R Let T/ =T\ {m} \UpepMT(17p). ThenT’ is a partial run ofq onw
andt € branche$T’), || < |m, and therefore we can apply induction hypothesis to
T', leaf(17), s, andT. This gives us a partial rud’ of 2 onw with |’ € branchegU’)
such thateaf(y/) =s, ¥ <g ¢/ and foreach X j < ||, T'©j W <" U’ o /. For ev-
eryp’ € suca (1), T(T'p') is a partial run of2 with the rootp’ on the suffixv of w such
thatw = uv, |u] = |1 — 1. We can apply Lemma 2 to the triplese R,p’ € P, T(1'p')
with p’ < r’. This gives us for eachi € R a runU,, of 4 on v with root(U,/) =’
such that there is somg € P with T(1'p’) <¢ Uy. Now we construct a rud) and
a pathy with the required properties by pluggimgand runsU,/,r’ € R to the path
Y inU’ e, p=y'randU =U'U{Y} UUprP'Up. (To see thaU really satisfies
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the required properties, observe the following: (i) B>y W = UpcrbranchegU; )
andT Oy t= UyepbranchesT (17p')), and because for eachc R, there isp’ € P
with T(p’) <¢ Uy, we have thafl Oy T={ U O Y. (i) For all 1< j < ||,
Tojn=To;n <PV oj¥ =Uojy.). O

D Mediated Equivalence Can Be Used for Quotienting

We give full proofs of lemmas in Section 4.1 leading to Theoteand Corollary 1.

D.1 Quotienting versus Extending
Lemma8. £L(4/=) C L(aT).

Proof. Let 2% = (Z,Q,1,0%,a%) be the automaton extended accordingztadObserve
that states| andr with g =r are forward simulation equivalentit. (qandr are in2%
either both accepting or both nonaccepting, and fa alk, 3* (q,a) = dX(r,a)). Guru-
murthy et al. in [7] prove that quotienting with respect toviard simulation preserves
language. Therefore,(A4/=) = £(42). Itis also easy to see tha{4+) C £(47), as

A% has a richer transition function thafi” anda™ =aZ. Thus,£(4) C £(4%). O

D.2 Relating Partial runs of 21 and 4

Proof (Lemma 6)The proof of Lemma 6 relies on Lemma 3 and the definitiorgf.
We first choose a suitable branatof swt (V) as follows. Let 1< k < |ty| be some
index such thagwr (V) ©x Tv is nonempty. Ifty = €, thenk = 1. We choose son® €
swt (V) &k v Which is minimal wrt.<g, meaning that there is @’ € swt (V) Ok 1y
different fromt’ such thatt’ <g 1. We putmt= r\",n’. We note that this is the place
where we use th&g-unambiguity assumption. Bl was<g-ambiguous, there need not
be ak such thaswr (V) Sk Tv contains a minimal element wrkg.

Fromex{(m) <m leaf(m), there is a mediatawith ext(T)) <g s =g leaf(m). We ap-
ply Lemma 3 td/, T, leaf(1t) ands, which give us a partial ru/ andy € brancheéW)
with leaf(y) = ssuch thatt<g g, and for all 1<i < |mi, Vo m<E WS . Lettw =
W. The proof will be concluded by showing thatTi)=w-extW, (ii) Tw & branchegswt (W)),
and (iii) (tv,swt (V)) T (Tw,swr (W)), which impliesV <[ W.

(i) To show thatT =,,.ext W, we proceed as follows. Observe that for every
branche$W) \ {W} there is a branchy € branche$V) \ {1t} such thatleaf(m) <
leaf() and 1t <4 Y. This holds because for all 4 i < |1, V &j m <" WS ¢ and
becausat <g  (to be more detailed, for evenyc brancheéw) \ {w}, o= y'p for
somei andp € W&; . There must b@’ € V & with o/ <g p. AsTt<g ¢, Tt <p ¢
which impliestt <4 ¢. Similarly,p’ < pimpliesp’ <q p and alsdeaf(p’) <r leaf(p).
Therefore, we can construct the bramép’ € branchegV) \ {1t} with T1p’ <4 W'p = @
andleaf(ip’) <¢ leaf(y'p)). We also know thall <.extV, sobranche¢T) <77,
branche$V). Thus, by the definition oK,,-ex;, we have that for everge branche$W)\
{y}, there arey € branche$V) andg’ € branche$T ) with ¢’ <4 ¢ <q andext(@’) <m
leaf(¢) <r leaf(g). This by transitivity ofa and the definition of<y givesq’ <4 ©
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andext(@’) <u leaf(@), which meansp’ <,.ext ®. As T =<u-extV, there must also be
ap € branche$T) with p <y-ext T, and thus we havp <y T=<g Y andextp) <f s=
leaf(y), which by=<g C <4 and transitivity of<y givesp <extW. AS <ext C <w-ext this
impliesp <u-ext Y. Finally, fromroot(T) <g root(V) (implied by T <-extV), T=<g U,
and transitivity of<g, root(T) <g root(W). This overall gives thal <,,extW.

(i) Showing thaty ¢ brancheéswt (W)) is easy. In the above paragraph we have
just shown thap <ex: W for somep € branchesT ), thisy is not a strict weakly covering
branch.

(iii) To show that(ty,swt(V)) C (P,swt(W)), we will proceed as follows: Will
show that (a) for all I< i < k, we haveswt (V) ©itv < swr (W) iy and that (b)
swr (V) Sty < swt (W) Sk . Notice first that for any partial ruX of 4 andt € X
with T ¢ branchegswr (X)), for all 1 < j < |t|, swt(X) &; T C X &; 1. Recall that
o =1, thatswr (V) ©k Ty is nonempty, and that for all & i < |1,V &j m<7 W S; .

We first show that for all K i < |11, swr(V)Si < swr (W) S y. For every
@< swr (W) iy, there is at least on@ € V o mwith ¢ <¢ @ (because/ o T <>
W o; Y andswt (W) 6  CW 6 g). We will show by contradiction thaf € swt (V) 5;
1t which will imply swt (V) S 1t <7 swr (W) S @. Suppose tha@ & swt(V) i Tt
Then the branchi ¢f of V is not strict weakly covering, and @s=<y.ex;V, we have that
there is som@’ € branche$T) with ¢’ <ex ' @. AsTt<g Y, we have thatt <, ('. As
@ <r @, we have thaty < @andleaf(¢) < leaf(¢). This together withy’ <ex 1@
gives thaty’ <4 M@ <4 W'oandextq’) < leaf('@) < leaf(y'g). By transitivity of
<« and=g and by the definition 0Key, we obtaing’ <ex W'@. This contradicts with
the fact thatl'@is strict weakly covering (ag € swt (W) ©; W) and therefore it must
be the case thaf € swr(V)SiTt

(a) The fact that for all K i < k, swr (V) i tv < swr (W) S @ is implied by the
result of the previous paragraph, becat@& K (thusswt (V) ©i tv = swr (V) ©i ).

(b) It remains to show thatwr (V) Sxty <E swrt (W) k. By the definitions
of &k, mandty, it holds thatswt (V) &1t C swr (V) &k tyv. (To see this, recall that
Ttis strict weakly covering, buty is not. Thereforeswt (V) okt = swt (V) Sk Tv \
branchegswr (V) (16+1))). Thusswt (V) ©k Ty < swt (W) S . ASTC & swr (V) Sk Tt
and 1t is a minimal element oéwr (V) Sk Ty, swr (V) Skt <E swr (V) Sk Ty can-
not hold (there is nat’ € swt (V) Sxtwith T’ <¢ ). Thereforeswr (V) Sty <£°
swt (V) Sk T, which together withwr (V) x <L swt (W) Sk Y gives (by transitivity
of <) thatswr (V) Ok v < swt (W) Ok . This completes the part (iii) of the proof
and we can conclude th‘dRTva W. O

Proof (Lemma 7)The proof of Lemma 7 is done by induction to the structurd pf
using Lemma 5 within the induction step. To make the inducéigument pass, we will
prove a stronger variant of the lemma. Let us first define tlstion 52(A+;>a on paths
such that for two pathgandy, njg"ga Wiff T=<4+oq Y andleaf(m) <u leaf(y). For
two partial runs/ andw, we usev <™, W to denote thabranche$v) (=M. )"
brancheéW). Apparently,<,+_q C 5%;»0( for paths as well ans for partial runs.

A stronger variant of the lemméor any partial ruim of 4T onw € =%, there exists

a partial rurlJ of 4 onw such thatoot(T) =<g root(U) andT <M. _U.

20



It is obvious that the above statement implies the statewfethie lemma. We will
prove it by induction to the structure f. In the base casd&, = {q} for someq € Q. If
g¢at, we can putl = {q} (<m and=g are reflexive). Ifj € a*, then by the definition
of a™, there isp € a such thatp =y g. This means thaq <y p andp =m ¢. By the
definition of <y, there exists a mediatarwith p < s>g g. As < C <q, SE€ Q.
Again by the definition o<y, g <m p =r S=p g gives ugy <m S>=p g and we can put
U ={s}.

Suppose now thaf is not only a root and that the stronger variant of the lemma
holds for every partial run off* onw that is a proper subset df. We choose some
mie T such thasuca (1) # 0 and for everyp € suce (1), suce (Tip) = 0. DenoteP =
suca (1) andq = leaf(m). Let T' =T\ {mp | p € P}. T is a partial run of2™ onw
which is a proper subset df, so we can apply the induction hypothesis. This gives us
a partial rurv of 4 onw such thatoot(T’) <g root(V) andT’ <M, _ V.

LetBad, C branche$V) be the set such thate Bad iff there is nop< branches§T)
such thatp <q+;$a Y, and letGood, = branche$V) \ Bad,. Intuitively, Bad, contains

the problematic branches because of WITCH(ﬁ;m V does not hold.

By the definition ofd* and becausq . P is a transition of4*, there must
be somes € Q,s <u g wheres Y, p is a transition ofs. We define an extension
function ext; such thatext, (¢) = s for every @ € Bad, and ext, () = leaf(y) for
every € Good,. By applying Lemma 5 t&/ andexi,, we get a partial rufV of 4
onw with V <ex, W Now, for each) € branche$W), there isp € branche$V) with
@ =<exty Y. AsT' < a+:>a V,p <M+;$a ©for somep € branche$T’). There are two cases
of how p andy may be related, depending gn

1. If @ € Good,, thenext(¢) = leaf(g). In this case, by the definitions ejg"ga
and=<exy,, We havep <y+.q ¢ =q Y andleaf(p) <m leaf(g) < leaf(P), which
givesp =<q+=q W andleaf(p) <m leaf(P) (by the definition of<u), meaning that
P =g W

2. To analyze the case where Bad,, observe thatris the only branch of " which is
nota branch of . Therefore, it has to be the case titad the only branch of” with
THGHG o (If there was a another such a branghof T/ with 1@ <q+;$u @, then
@ € Good, asT € branche$T). There must be at leas one such a branch'ds

T <!\x/l+:>0r V). Thusp=T1L According to the definition aéxt,, ext, (@) = s. Together

with V <exi, W, we havert <a+;&a @ =q Y which givesnt<,+_.4 Y. However, we
cannot guarantee any further relation betwksi(¢) andleaf(y), and therefore
we cannot derivéeaf(m) <y leaf() andmt<Y, . as in the previous case.

We define the seBady C branche$W) such asp € Bady iff there is nop € T with

p <a+:>0r ¥ and we letGoody = branche$éW) \ Bad,. Analogically asBad,, Bady

contains the branches because of WhTC53A+;»a W does not hold. Note that if) €

Bady,, then all thep € brancheéV) with @ <ey, P are as in the case (2) above, ie.,

is the only branch o’ with "*!\fgq ¢. By the definition of<ex,, S = exi/( )

leaf(y). Therefore, by the definition ofg, there must be some transititeaf(Q) — ‘T“

Rq, of 2 whereP < Ry,. We extendWV by firing these transitions for evedy € Bady,

in which way we get aruX =WU{yRy | ¢ € Bady} of 4 onw.
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Let us useNewk = {YRy | P € Bady} to denote the branches Kfthat erased by
firing the transitions. Observe thhtanche$X) = Goody U Newk. Recall that for all
Y € Bady, T=<4+—q W and that for everyp € New, there is some € P such that
p <¢ leaf(y). We will define an extension functiaxi of X as follows:

1. If Y € Goody, exix (P) = leaf(y).
2. If Y € Newk and there i € P with p <g leaf(Q) andp <4+ leaf(d), we let

extx () = leaf(W).

3. If Y € Newk and there is ng € P with p <¢ leaf(y) and p <4+ leaf(y),
we proceed as follwos. By the definition dfevy, there is somegy’ € P such
that p’ < leaf(Y). Because of<g C =q, the fact thatp’ < leaf(y) and not
P =g+=q leaf(P) implies thatp', leaf() ¢ o andp’ € a*. This by the definition
of a* means that there is some a with p’ =y v. We putextk ({J) = v.

We apply Lemma 5 t&X andexik, which gives us a partial rud of 4 onw with
X <exe U. We will check thatU satisfies the statement of the stronger variant of the
lemma. We will first prove that thal fg"@a U. For eacht € branchegU), there is
Y € branche$X) with P <ex, T. We will derive that there is somg € branches$T)

with p jygq 1. The argument will depend on which of the above three typisof:

1. If Yy € Goody, then there is somp € T with p jg"gq W. Recall thatexi (@) =
leaf() in this case. Thus, by the definitionsgzﬂéa and=exy , We havep <q+_q
Y <q Tandleaf(p) =m leaf(p) <¢ leaf(t), which givep <4+_ Tandleaf(p) <m
leaf(t), i.e.p <M _ T

2. If Y € Newk and there is some € P with p < leaf(y) and p <4+ leaf(y),
then by the definition oéxty, ext () = leaf(). Recall that asp¥I~1 ¢ Bady,
T =<qimg WYL Therefore, alsatp <yiq W. By the definition of<exy, we
have thatp <y T andleaf(y) < leaf(t). Finally, Ttp <g+oq W <a T andp <
leaf(w) <F leaf(t) together imply thattp fgﬁga T.

3. If Y € Newk and there is n@ € P with p <g leaf() andp <4+ leaf(y), then
by the definition ofexik, extx(Y) = v, wherev e a and p’ =u v, p’ <r leaf(y)
for somep’ € P. By Y <exy T, We havey <4 T andv < leaf(t). Thus, by the
definition of <y, P’ =m v =<F leaf(t) gives p’ <u leaf(P). As <r C =<4, we
have thatleaf(t) € a and thusp’ <4 leaf(t). As ¢¥-1 € Bady, we have
that T <o P¥I~1. Together with( <4 T, this givestp’ <44 T. Therefore,
mp =gl T
Thus, we have proven tha’tj%:&q U. Finally, asV <ex, W andX <eyx, U, we

haveroot(V) <g root(W) androot(X) <g root(U). Together withroot(X) = root(W)
androot(T) = root(T’) <g root(V), we haveoot(T) <groot(V) <groot(X) <groot(U).
By transitivity of <g, root(T) <g root(U ). We have verified thatl satisfies the state-
ment of the of the stronger variant of the lemma, which cotetthe proof. O

D.3 Relating Accepting Runs of2™ and 4

Lemma9. A run T of4 with root(T) = 1 is accepting if and only if for everge T,
there exists a constant ke N such that everyp with ip € T and|y| > k contains an
accepting state.
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Proof. (if) For everym € branche$T), there is an infinite sequence kf,k; ... such
that:

— ko=0and
— foralli e N, ki = ki_1 + kpn wheren=kj_1 + 1.

For alli € N, every segment aft betweerk;_; + 1 andk; contains and accepting state,
so0,Ttcontains infinitely many accepting states.

(only if) By contradiction. Suppose that thereig T for which there is ndk;. We
will show that in this case, there must thec Q% such thatrp € branche$T) andy
does not contain an accepting state (which contradicts thghassumption thak is
accepting).

We will give a procedure which for eadke N returnsy' (based on the knowledge
of Y'~1). For eachi € N°, we will keep the invariant that fom}', there is ndc,,; and
thaty' does not contain an accepting state.yfs= ¢, the invariant holds for = 0.

Let the invariant hold for — 1,i € N, and suppose that we have already constructed
W1, There must be someg < suce (' —1) such thatg ¢ a, otherwisery'~* = 1,
which contradicts the invariant for- 1. We puty’ = ¢/ —1q. Observe that the invariant
is satisfied fori too. Therefore, we can construct thh prefix §' of  that does not
contain an accepting state for every N. This proves that there is a branatp of T
where does not contain an accepting state, which contradictsstienaption thai
is accepting. a

Lemma 10. For every acceptingrun T ofi™ a word we =%, there exists an accepting
run U of 4 on w.

Proof. For a treeX overQ, let X (i) = {mte X | |1} < i} be theith prefix of X (X(0) =
0). From Lemma 7, for eache N, there is a partial rutJ; of 42 on w such that
T(i) <g+=q Ui androot(T (i)) <g root(U;). As =g C =, root(U;) = 1. Note that for
all me branchegU;), || equald, because only paths of the same length can be related
by <q+—q- DenoteU” = {U1,Uz,...}. U” is an infinite set that for eadhe N contains
a partial runUy of 4 with all the branches of the lengkh We will useU” to construct
the infinite accepting rub.

Observe that for any infinite s&t of partial runs of2 and for anyi € N, there has
to be at least one partial rdN of 4 such that for infinitely many € V=, W =V (i).
The reason is that for anye N, there is obviously only finitely many of possible partial
runs of the heighitthat4 can generate.

We prove the existence of by giving a procedure, which for evekyge N gives the
kth prefixU (k) of U.

— LetU3 =U” and letU (0) = 0.
— Foreveryk e N, U (k) is derived fromlJ (k— 1) as follows. LefUy € U* be defined
as the set such that for ale N, U; € Uy iff U(k— 1) = U;(k—1). In other words,
x is the subset oU” of the partial runs with théth prefix equal tdJ (k— 1).
Then,U (k) = Un(k) for somen > k such that), € Uy and there is infinitely many
m e N such thalUy € U andUn(K) = Um(k). | other wordsU (K) is a tree that
appears as thigh prefix of infinitely many partial runs iy
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To see that this construction is well defined, observe that:

— Ug is infinite, and
— forallk e N, if Uy is infinite, thenU (k— 1) is defined andJy’ is infinite.

Thus,U (K) is well defined for everk € N andU is a run of4.

| remains to show that) is accepting. We will show that for evenye U, there
is kr € N such that everyp with Tip € T and|y| > k contains an accepting state. By
Lemma 9, it will follow thatU is accepting.

Letus choose arbitrange U. Letn = |11]. By Lemma 9, for everyt € branches§T,),
there is there i%y € N such that everyy’ with Wy’ € T and || > ky contains an
accepting state. Lét = max{ky | ' € branche$§T(n))}. By the construction ob,
T(n+k) Zg+=q U(n+Kk). This implies that for everyt’ € branchegU (n)), everyy”
with 'y” € T and|y”| > k contains an accepting state. Asn branchegU (n)), we
can putk; = k and we are done. O

Proof (Theorem 1)The inclusionZ(A2) C £(4") is obvious a< (A4 ") has riches both
transition function and the set of accepting states. THagmn £(47) C £(.2) follows
immediately from Lemma 10. a

E Correctness and Complexity of Computing=p

Proof (Theorem 2). (if\We define< to be a binary relation o® such thatp < r iff
p® <! r®. We show thak is a backward simulation o® which immediately implies
the result.

Suppose thap < r andp’ 3 {p}UP wherep ¢ P is a transition of4. Sincep <,
we know thatp® =<' r®; and sincep’ & {p} UP is a transition of4, we know by
definition of A” thatp® 2 (p/,a,P)® and(p',a,P)® 2 p'® are transitions il\®. Since
<!"is a simulation, we can find two transitions 2 (r’,a,R)® and(r’,a,R)® & r’®
in AY with (p',a,P)® < (r',a,R)® and p'® < r'®. Fromp'® <' r'®, (p',a,P)® <!
(r',a,R)®, and the definition of the initial preordérwe havep’ <r’ andP <" R. It
follows that= is in fact a backward simulation.

(only if) Define=, as a binary relation o®® such thatp® < r® iff p<gr and
(p,a,P)® < (r,a,R)¥ iff P <" Randp <gr. By definition,<, C |. We show that,
is a simulation orQ® which immediately implies the result. In the proof, we caiesi
two sorts of states iA”; namely those corresponding to states and those correisigpond
to “environments”.

Suppose thap® <. r® and the transitiop® 2 (p/,a,P)® is in A”. Sincep® =,
r®, we know thatp <g r. From the transitiop® 2 (p,a,P)® and by definition oA”,
p' 2 PU{p} is a transition in4. Sincep <g I, there exists a transitiat = RU{r} in
4 such thap’ <g 1’ andP <7 R. It follows that there exists a transitiofi = (r’,a, R)®
in A such tha(p’,a,P)® <. (r',;a,R)".

Suppose thatp,a,P)® <. (r,a,R)® and the transitior{p,a,P)® % p® is in A®.
Since(p,a,P)® < (r,a,R)®, we know thatP <¥* Randp =g r. By definition of A®,
the transition(r,a, R)® 2, r%isin A®. Sincep <g r, we havep® <., r®. Together we
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have there exists a transitigna, R)® = r® in A® such thatp® <, r. It follows that
= is a simulation orQ®. O

Proof (Theorem 3)The complexity comes from three parts of the entire prooedd)
compiling 4 into its corresponding LT®, (2) computing the initial preorder and
(3) running the algorithm for computing the LTS simulatidine LTSA® has at most
nm+n states and@mtransitions. It is trivial that Part (1) has both time andapaom-
plexity O(nm). As we explained in Appendix A, Part(2) has time comple@y??n?)
and space complexit®(nn?). From the size of the LTS obtained from Part (1), Part
(3) has time complexit®(|Z|n’n?) and space complexit®(||n?n?). It follows that
computing backward simulation has time complexyZ |n’m?) and space complexity
O(|=|n?n?). Under our definition of ABA, every state has at least one oiig transi-
tion for each symbol irZ. It follows thatm > |Z|n. Therefore, we can also say that the
procedure for computing maximal backward simulation haeetcomplexityO(nn?)
and space complexi@(nn?).

O

F Counterexamples

F.1 Backward Simulation Cannot Be Used For Quotienting

Consider the following ABAZ = ({a, b}, {s0,S1,%, S3, 4,5, S}, 50, 8, {0, 1, 2, S3, 4,

a a b b b b
S5,%}), wheresg = {u1}, 0 = {s1}, 0 — {%0}, s1 = {®, S5}, 51 — {s1,.%8}, 2 —
(2.}, 8> {0}, 01 2 {15}, S > {0}, andss > {so} are transitions of4.
The maximal forward simulation relatiofe in 4 is {(s,%), (S1,%), (S1,51), (S1,S5),

(82,%0), (82,51), (S2,2), (S2,%4), (S2,S5), (83,8), (S3,%6), (S4,%0), (S4,51), (S4,%2), (4, %),
(4,%5), (S5,%), (S5,55), (S6,%3), (S6,56) }- The maximal backward simulation relation
=g parameterized Witk r is { (S0, %), (S1,51), (S1,%4), (92,%2), (83,%3), (S4,51), (S4,S4),
(S5,52), (S5,%8), (S5,%5), (S5,%6), (S6,%2), (S6,8), (S6,S5), (S6,%6) }-

If we collapse states wriy (i.e., two sets of statels; ,s1}, {Ss5, s} are collapsed),

we will get the following ABA 2’ = ({a,b}, {s0,51,%,%3,%},%,9, {0, 51,2, 3,4} ),
a b b b b b
wheres) = {s1}, 0 — {0}, 51 — {2, %}, 51 — {s1, 9}, 1 — {81, 88}, 2 — {2, S8}
s> {so}, 1> {0}, andsy b, {so} are transitions of2’.
Note thatZ’ accepts the wordb®, but 2 does not.

F.2 Mediated Minimization Cannot Be Used On An=<g-Ambiguous ABA

Consider the following ABA4 = ({a,b},{s0,51,%,3,%},%,0,{x1}), wheres LN
(s} 512 {3} 2 2 {4}, 82 {4}, 8> {S1,5, %}, andsy & {4} are tran-
sitions of 4. The maximal forward simulation relatiofg in 4 is {(S,%), (S0,%),
(s1,81), (S1,%2), (S1,88), (%2,51), (2,%2), (92,3), (83,%3), (S4,%4)}. Froms; =F s, and
the transitionsy N {s1,%,53} we can find that4 is <g-ambiguous. The maximal
backward simulation relatiorg parameterized with<r is {(S,%), (S1,51), (S1,%2),
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(s1,88), (S2,81), (S2,%2), (2, %3), (S8, 51), (S8,%2), (Ss,S8), (S4,%4) } and the mediated pre-
order=w is {(S,%). (S0,51), (S0,%2), (S0,8), (S1,51), (S1,%2), (S1,%), (S2,51), (S2,2),

(S2,%3), (S3,81), (S3,%2), (83,3), (S4,%4) }-
If we collapse states wrsy (i.e., merge the three stateg s, andsg), we will

get the following ABAA' = ({a,b}, {s0,51,%},%,8,5), wheress = {s1}, s1 > {s1},
s> {s2}, ands; 2 {s,} are transitions of2’. Note that4’ accepts the wordaba®,
but 4 does not.
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