
Mediating for Reduction
(On Minimizing Alternating Büchi Automata)I

Parosh Aziz Abdulla

Dept. Information Technology, Uppsala University, Box 337, 751 05 Uppsala, Sweden

Yu-Fang Chen

Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2,

Nankang, Taipei 115, Taiwan

Lukáš Hoĺık

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Božetěchova 2,

612 66 Brno, Czech Republic

Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Božetěchova 2,
612 66 Brno, Czech Republic

Abstract

We propose a new approach for minimizing alternating Büchi automata (ABA).
The approach is based on the mediated equivalence on states of an ABA, which
is the maximal equivalence contained in the mediated preorder. Two states p
and q are related by the mediated preorder if there is a mediator (mediating
state) which forward simulates p and backward simulates q. Under further
conditions, letting a computation on some word jump from q to p preserves the
language as the automaton can anyway already accept the word without jumps
by runs through the mediator. We further show how the mediated equivalence
can be computed efficiently. Finally, we show that, compared to the standard
forward simulation equivalence, the mediated equivalence can yield much larger
reductions when applied within the process of complementing Büchi automata
where ABA are used as an intermediate model.

Keywords: alternating Büchi automata, simulation, reduction, quotient

IThis is an extended version of the paper [1]. This work was supported by the Czech Science
Foundation (projects 13-37876P, 14-11384S), the EU/Czech IT4Innovations Centre of Excel-
lence project CZ.1.05/1.1.00/02.0070, the internal project of Brno University of Technology
FIT-S-14-2486, the National Science Council of Taiwan project no. NSC-102-2221-E-001-018,
and the Uppsala Programming for Multicore Architectures Research Center (UPMARC).

Email addresses: parosh@it.uu.se (Parosh Aziz Abdulla), yfc@iis.sinica.edu.tw
(Yu-Fang Chen), holik@fit.vutbr.cz (Lukáš Hoĺık), vojnar@fit.vutbr.cz (Tomáš Vojnar)

Preprint submitted to Elsevier March 5, 2014

1. Introduction

Alternating Büchi automata (ABA) are succinct state-machine representa-
tions of ω-regular languages (regular sets of infinite sequences). They are widely
used in the area of formal specification and verification of non-terminating sys-
tems. One of the most prominent examples of the use of ABA is the comple-
mentation of nondeterministic Büchi automata [2]. The complementation is an
essential step of the automata-theoretic approach to model checking when the
specification is given as a positive Büchi automaton [3] and also of learning-
based model checking for liveness properties [4]. ABA also play an important
role as an intermediate data structure for translating a linear temporal logic
(LTL) specification to a nondeterministic Büchi automaton (NBA) [5].

However, due to the compactness of ABA1, the algorithms that work on them
are usually of high complexity. For example, both the complementation and the
LTL translation algorithm transforms an intermediate ABA to an equivalent
NBA. The transformation is exponential in the size of the input ABA. Hence,
one may prefer to reduce the size of the ABA (with some faster algorithm)
before giving it to the exponential procedure.

In the study of Fritz and Wilke [6], simulation-based minimization is proven
as a very effective tool for reducing the size of ABA. However, they considered
only forward simulation relations. Inspired by previous work [7], we believe
that backward simulation can be used for reducing the size of ABA as well.
Unfortunately, as will be explained in Section 3, the quotient wrt. backward
simulation (i.e., the automaton that arises by collapsing backward simulation
equivalent states) may have different language.

In this paper, we develop an approach that uses backward simulation for
simplifying ABA indirectly. Instead of looking for a suitable fragment of back-
ward simulation that can be used to reduce the number of states of an ABA,
we combine backward and forward simulation to form an even coarser relation
called the mediated preorder that can be used for minimization. The efficiency of
minimizing ABA using the mediated preorder is evaluated on a large set of exper-
iments. In the experiments, we apply different simulation-based minimization
approaches to improve the LTL to Büchi automata translation algorithm and
complementation algorithm of nondeterministic Büchi automata. The experi-
mental results show that the minimization using mediated preorder outperforms
the minimization using forward simulation. For example, for 100 randomly gen-
erated automata of alphabet size 2, forward minimization on average reduced
ABA from 11.8 states and 39.8 transitions to 7 states and 26.9 transitions while
mediated minization reduced the numbers to 5.66 states and 20.49 transitions,
on average.

1ABA are exponentially more succinct than nondeterministic Büchi automata.

2

Outline. The next section contains basic definitions of trees and of alternating
Büchi automata. Section 3 presents notions of simulations on ABA and their
important properties. In Section 4, we define the notion of mediated equivalence
and prove that the quotient ABA wrt. the mediated equivalence has the same
language as the original ABA. Algorithms for computing the proposed relations
are given in Section 5. The experimental evaluation of the presented technique
for reducing size of ABA by computing the quotint wrt. mediated equivalence
is discussed in Section 6 and Section 7 concludes the paper.

2. Basic Definitions

Given a finite set X, we use X∗ to denote the set of all finite words over X
and Xω for the set of all infinite words over X. The empty word is denoted by
ε and X+ = X∗ \{ε}. The concatenation of a finite word u ∈ X∗ and a finite or
infinite word v ∈ X∗∪Xω is denoted by uv. For a word w ∈ X∗∪Xω, |w| is the
length of w (|w| =∞ if w ∈ Xω), wi is the ith letter of w and wi the ith prefix of
w (the word u with w = uv and |u| = i). Note that w0 = ε. The concatenation
of a finite word u and a set S ⊆ X∗ ∪Xω is defined as uS = {uv | v ∈ S}.

An alternating Büchi automaton is a tuple A = (Σ, Q, ι, δ, α) where Σ is
a finite alphabet, Q is a finite set of states, ι ∈ Q is an initial state, α ⊆ Q is

a set of accepting states, and δ : Q × Σ → 22
Q

is a total transition function.
A transition of A is of the form q

a−→ P where P ∈ δ(q, a).
A tree T over Q is a subset of Q+ that contains all nonempty prefixes of

each of its elements (i.e., T ∪{ε} is prefix-closed). Furthermore, we require that
T contains exactly one r ∈ Q, the root of T , denoted root(T). We call the
elements of Q+ paths. For a path πq, we use leaf (πq) to denote its last element
q. We define the set branches(T) ⊆ Q+ ∪ Qω such that π ∈ branches(T) iff T
contains all prefixes of π and π is not a proper prefix of any path in T . In other
words, a branch of T is either a maximal path of T , or it is a word from Qω

such that T contains all its nonempty prefixes. We use succT (π) = {r | πr ∈ T}
to denote the set of successors of a path π in T , and height(T) to denote the
length of the longest branch of T . A tree U over Q is a prefix of T iff U ⊆ T
and for every π ∈ U , succU (π) = succT (π) or succU (π) = ∅. The suffix of T
defined by a path πq is the tree T (πq) = {qψ | πqψ ∈ T}.

Given a word w ∈ Σω, a tree T over Q is a run of A on w, if for every
π ∈ T , leaf (π)

w|π|−−−→ succT (π) is a transition of A. Finite prefixes of T are
called partial runs of A on w. A run T of A on w is accepting iff every infinite
branch of T contains infinitely many accepting states. A word w is accepted
by A from a state q ∈ Q iff there exists an accepting run T of A on w with
root(T) = q. The language of a state q ∈ Q in A, denoted LA(q), is the set
of all words accepted by A from q. Then L(A) = LA(ι) is the language of A.
For simplicity of presentation, we assume in the rest of the paper that δ never
allows a transition of the form p

a−→ ∅. This means that no run can contain
a finite branch. Any automaton can be easily transformed into one without
such transitions by adding a new accepting state q with δ(q, a) = {{q}} for

every a ∈ Σ and replacing every transition p
a−→ ∅ by p

a−→ {q}.

3

We note that for technical reasons, we use a simpler definition of a tree and
a run of an alternating automaton than the usual one (e.g., [2]). A tree is usually
defined as a prefix-closed subset of N∗ and a run is then a map r that assigns
a state to every element (node) of a tree. This definition allows nodes with
more than one immediate successor labelled by the same state and successors
of a node are ordered. However, order as well as the number of occurrences of
a state as a successor of a parent state have no relevance for the semantics of
an ABA. From this point of view, it is more convenient to define runs simply as
unordered trees.

3. Simulation Relations

In this section, we give the definitions of forward and backward simulation
over ABA and discuss some of their properties. The notion of backward simu-
lation is inspired by a similar tree automata notion studied in [7, 8]—namely,
the upward simulation parametrised by a downward simulation (the connection
between tree automata and ABA follows from the fact that the runs of ABA
are in fact trees).

For the rest of the section, we fix an ABA A = (Σ, Q, ι, δ, α). We define
relations �α and �ι on Q s.t. q �α r iff q ∈ α =⇒ r ∈ α and q �ι r iff
q = ι =⇒ r = ι. For a binary relation � on a set X, the relation �∀∃ on
subsets of X is defined as Y �∀∃ Z iff ∀z ∈ Z. ∃y ∈ Y. y � z, i.e., iff the upward
closure of Z wrt. � is a subset of the upward closure of Y wrt. �.

Forward Simulation. A forward simulation on A is a relation �F ⊆ Q×Q such
that p �F r implies that (i) p �α r and (ii) for all p

a−→ P , there exists a r
a−→ R

such that P �∀∃F R.
For the basic properties of forward simulation, we rely on the work [9] by

Gurumurthy et al. In particular, (i) there exists a unique maximal forward
simulation �F on A called forward simulation preorder and it is reflexive and
transitive, (ii) for any q, r ∈ Q such that q �F r, it holds that LA(q) ⊆ LA(r),
and (iii) the quotient of A wrt. �F ∩ �−1F has the same language as A.

Backward Simulation. Let �F be a forward simulation on A. A backward sim-
ulation on A parametrised by �F is a relation �B ⊆ Q × Q such that p �B r
implies that (i) p �ι r, (ii) p �α r, and (iii) for all q

a−→ P ∪ {p}, p 6∈ P , there

exists a s
a−→ R ∪ {r}, r 6∈ R such that q �B s and P �∀∃F R. The lemma below

describes basic properties of backward simulation.

Lemma 3.1. For any reflexive and transitive forward simulation �F on A,
there exists a unique maximal backward simulation �B on A parametrised by
�F that is reflexive and transitive.

Proof. Union: Given two backward simulations �1
B and �2

B parametrised by
�F , we want to prove that �B = �1

B ∪ �2
B is also a backward simulation

parametrised by �F . Let p �B r for some p, r ∈ Q, then either p �1
B r or

p �2
B r. Assume without loss of generality that p �1

B r. Then, from the

4

definition of backward simulation, whenever p′
a−→ P ∪ {p}, p 6∈ P , then there is

a rule r′
a−→ R∪{r}, r 6∈ R, p′ �1

B r′, and P �∀∃F R. As �1
B ⊆ �B gives p′ �B r′,

�B fulfills the definition of backward simulation parametrised by �F .
Reflexive closure: It can be seen from the definition that the identity is

a backward simulation parametrised by �F for any forward simulation �F .
Therefore, from the closure under union, the union of the identity and any
backward simulation parametrised by �F is a backward simulation parametrised
by �F .

Transitive closure: Let �B be a backward simulation parametrised by �F
and let �TB be its transitive closure. Let p1 �TB pm and r1

a−→ P 1∪{p1}, p1 6∈ P 1.
We have that p1 �α pm since �B is a subset of �α and �α is transitive. From
p1 �TB pm, we have that there are states p1, . . . , pm such that p1 �B p2 �B
· · · �B pm. Therefore, there are also rules r2

a−→ P 2∪{p2}, . . . , rm a−→ Pm∪{pm}
with p2 6∈ P 2, . . . , pm 6∈ Pm, r1 �B · · · �B rm, and P 1 �∀∃F P 2 �∀∃F · · · �∀∃F Pm.
By definition of �TB , we have r1 �TB rm. By definition of �∀∃F and since �F is
transitive, �∀∃F is transitive. Hence we have P 1 �∀∃F Pm. Therefore, �TB fulfills
the definition of a backward simulation parametrised by �F .

By Lemma 3.1, for any reflexive and transitive forward simulation �F , there
is a unique maximal backward simulation parametrised by �F and it is a pre-
order. We call it the backward simulation preorder on A parametrised by �F .
Our backward simulation is an analogy of upward simulation for tree automata.
Similarly as upward simulation, backward simulation cannot be directly used for
computing the quotient (below we give an example of an automaton such that
its language differs from the language of its quotient wrt. backward simulation).
However, in Section 4.1, we show that backward simulation can be combined
with forward simulation into a mediated equivalence (in the same way as tree
automata upward simulation can be combined with downward simulation) such
that the quotient wrt. to this new relation preserves the language.

Example 1 (the language of the quotient wrt. backward simulation may dif-
fer). Let A = ({a, b}, {s0, s1, s2, s3, s4, s5, s6}, s0, δ, {s0, s1, s2, s3, s4, s5, s6}) be
an ABA where

s0
a−→ {s4}, s1

b−→ {s2, s5}, s2
b−→ {s2, s3}, s5

b−→ {s0},
s0

a−→ {s1}, s1
b−→ {s1, s3}, s3

a−→ {s0}, s6
a−→ {s0},

s0
b−→ {s0}, s4

b−→ {s4, s6}

are transitions of A. The maximal forward simulation relation �F in A is the
smallest preorder such that s3 ≡F s6 and s4 ≡F s2 �F s1 �F s5 �F s0. The
maximal backward simulation relation �B parametrised with �F is the smallest
preorder such that s1 ≡B s4 and s2 �B s5 ≡B s6 �B s3. If we collapse states
of A wrt. �B (i.e., the two sets of states {s1, s4}, {s5, s6} are collapsed), we
will get the ABA A′ = ({a, b}, {s0, {s1, s4}, s2, s3, {s5, s6}}, s0, δ, {s0, {s1, s4},

5

�F

T

p

�F U

r

(a) Lemma 3.2

πi

πi+1

succT (πi)

T 	i π

T

(b) The notation T 	i π

�∀∃F

T

p

π
T 	i π

U

r

ψ
U 	i ψ

�B

(c) Lemma 3.3

Figure 1: An illustration of the lemmas

s2, s3, {s5, s6}}) with transitions:

s0
a−→ {{s1, s4}}, {s1, s4}

b−→ {s2, {s5, s6}}, s2
b−→ {s2, s3}, {s5, s6}

b−→ {s0},
s0

b−→ {s0}, {s1, s4}
b−→ {{s1, s4}, s3}, s3

a−→ {s0},
{s1, s4}

b−→ {{s1, s4}, {s5, s6}}.

Note that A′ accepts the word abω, but A does not.

3.1. Runs and Simulations

We now formulate connections between simulations and runs of ABA that
are fundamental for our further reasoning. Let �F and �B be forward and
backward simulations on A, which are both reflexive and transitive. For every
x ∈ {B,F, α}, we extend the relation �x to Q+ ×Q+ such that for π, ψ ∈ Q+,
π �x ψ iff |π| = |ψ| and for all 1 ≤ i ≤ |π|, πi �x ψi. We say that ψ
forward simulates π, ψ backward simulates π, or ψ is more accepting than π
when π �F ψ, π �B ψ, or π �α ψ, respectively. This notation is further
extended to trees. For trees T,U over Q and for x ∈ {α, F}, we write T �x U
if branches(T) �∀∃x branches(U). Similarly, we say that U forward simulates
T , or U is more accepting than T when T �F U , or T �α U , respectively.
Note that �x is reflexive and transitive for all the variants of x ∈ {F,B, α}
defined over states, paths, or trees (this follows from the assumption that the
original relations �F and �B on states are reflexive and transitive). Moreover,
�B ⊆ �α, �B ⊆ �ι, and �F ⊆ �α.

6

Lemma 3.2. For any p, r ∈ Q with p �F r and a partial run T of A on w ∈ Σω

with the root p, there is a partial run U of A on w with the root r such that
T �F U .

Proof. We prove the lemma by induction on height(T). In the base case when
T = {p}, it is sufficient to take U = {r}. Suppose now that the lemma holds
for every word u and for every partial run V of A on u such that height(V) <

height(T). From p �F r, there is a transition r
w1−−→ R of A where succT (p) �∀∃F

R. Observe that T = {p} ∪
⋃
p′∈succT (p) pT (p′) where for each p′ ∈ succT (p),

T (p′) is a partial run of A with the root p′ on the word v such that w = w1v.
Notice that height(T (p′)) < height(T). The induction hypothesis now can be
applied to every triple p′ ∈ succT (p), r′ ∈ R, T (p′) with p′ �F r′. It gives us
a partial run Ur′ of A on v with root(Ur′) = r′ such that T (p′) �F Ur′ . The
run U with the required properties is then constructed by plugging the runs
Ur′ , r

′ ∈ R, to r, i.e., U = {r} ∪
⋃
r′∈R rUr′ .

We will need to inspect the connection between runs and backward simula-
tion in a relatively detailed way. For this, we introduce the following notation.
Given a tree T over Q, π ∈ T , and 1 ≤ i ≤ |π|, the set T 	i π is the union of
branches of suffix trees T (πiq), q ∈ succT (πi), with the branches of the suffix
tree T (πi+1) excluded. Formally, for 1 ≤ i < |π|, let Qi = succT (πi)\{πi+1} be
the set of all successors of πi in T without the successor continuing in π. Then
T 	i π =

⋃
q∈Qi branches(T (πiq)). For i = |π|, T 	i π = ∅.

Lemma 3.3. For any p, r ∈ Q with p �B r, a partial run T of A on w ∈ Σω

and π ∈ branches(T) with leaf (π) = p, there is a partial run U of A on w and
ψ ∈ branches(U) with leaf (ψ) = r such that π �B ψ, and for all 1 ≤ i ≤ |π|,
T 	i π �∀∃F U 	i ψ.

Proof. We will prove the lemma by induction on the length of π. In the base
case, when π = p and T = {p}, it is sufficient to take U = {r} and ψ = r.
Suppose now that π 6= p and that the lemma holds for every partial run T ′ of
A on w, states p′, r′ ∈ Q such that p′ �B r′, and every π′ ∈ branches(T ′) with
leaf (π′) = p′ and |π′| < |π|.

For the induction step, let π = π′p and let succT (π′) = P ∪ {p}, p 6∈ P .
By the definition of �B , there is a transition s

w|π′|−−−→ R ∪ {r}, r 6∈ R of A
such that leaf (π′) �B s and P �∀∃F R. Let T ′ = T \ {π} \

⋃
p′∈P π

′T (π′p′).
Then T ′ is a partial run of A on w and π′ ∈ branches(T ′), |π′| < |π|, and
therefore we can apply induction hypothesis to T ′, leaf (π′), s, and π′. This
gives us a partial run U ′ of A on w with ψ′ ∈ branches(U ′) such that leaf (ψ′) =
s, π′ �B ψ′ and for each 1 ≤ j ≤ |π′|, T ′ 	j π′ �∀∃F U ′ 	j ψ′. For every
p′ ∈ succT (π′), T (π′p′) is a partial run of A with the root p′ on the suffix
v of w such that w = uv, |u| = |π| − 1. We can apply Lemma 3.2 to the
triples r′ ∈ R, p′ ∈ P, T (π′p′) with p′ �F r′. This gives us for each r′ ∈ R
a run Ur′ of A on v with root(Ur′) = r′ such that there is some p′ ∈ P with
T (π′p′) �F Ur′ . Now we construct a run U and a path ψ with the required
properties by plugging r and runs Ur′ , r

′ ∈ R to the path ψ′ in U ′, i.e., ψ = ψ′r

7

and U = U ′ ∪ {ψ} ∪
⋃
r′∈R ψ

′Ur′ . (To see that U really satisfies the required
properties, observe the following: (i) As U 	|π′| ψ =

⋃
r′∈R branches(Ur′) and

T 	|π′| π =
⋃
p′∈P branches(T (π′p′)), and because for each r′ ∈ R, there is

p′ ∈ P with T (π′p′) �F Ur′ , we have that T 	|π′| π �∀∃F U 	|π′| ψ. (ii) For all

1 ≤ j < |π′|, T 	j π = T ′ 	j π′ �∀∃F U ′ 	j ψ′ = U 	j ψ.).

4. Quotient wrt. Mediated Equivalence

Here we discuss the possibility of an indirect use of backward simulation for
simplifying ABA via computing its quotient. We do not look for a suitable frag-
ment of backward simulation. Instead, we (1) combine backward and forward
simulation to form an equivalence that subsumes both backward and forward
simulation equivalence and (2) compute the quotient wrt. a certain fragment of
this equivalence, called mediated equivalence.

4.1. The Notion and Intuition of Mediated Equivalence

Collapsing states of an automaton wrt. some equivalence allows a run that
arrives to some state to jump to another equivalent state and continue from
there. Alternatively, this can be viewed as extending the source state of the
jump by the outgoing transitions of the target state2. The equivalence must
have the property that the language is not increased even when the jumps (or,
alternatively, transition extensions) are allowed. This is what we aim at when
introducing the mediated equivalence ≡M based on a so called mediated preorder
�M . The mediated preorder �M will be defined as a suitable transitive fragment
of �F ◦ �−1B in the following.

The intuition behind allowing a run to jump from a state r to a state q
such that q �F ◦ �−1B r is the existence of the so called mediator, i.e., a state
s such that q �F s �−1B r (cf. Fig. 2(a)). The state s can be reached in the
same way and in the same context3 as r, and, at the same time, the automaton
can continue from s in the same way as from q. Hence, intuitively, the newly
allowed run based on the jump from r to q does not add anything to the language
because it can anyway be realized through s without jumps.

Unfortunately, jumping cannot be allowed between all pairs of states from
�F ◦ �−1B . We will have to restrict ourselves only to its fragments �M that are
preorders and are also forward extensible, which means that if q1 �M q2 �F q3,
then q1 �M q3. The reason for this is that we were so far taking into account
only one isolated jump, however, nothing prevents another jump from occurring
in the context or below the marked occurrence of r. This is problematic since
the relations q �F s �−1B r are guaranteed only when no further jumps are
allowed. The forward extensibility is required to ensure the mechanism to work

2The first view is better when explaining the intuition whereas the other is easier to be
used in proofs.

3If a state s is a leaf of a partial run, then by a context of s we mean all the other leaves
of the partial run.

8

V

s

W

ι

U

q

T

r

ι

u

v

w

(a) The mediator

V ψ

ρ

s x

y

ι

W

φU

q

r

T π
π′

r

ι

r

u

v

w

(b) Potential problems

Figure 2: The basic intuition behind mediated equivalence

with arbitrary many jumps. We describe the potential problems when �M is
not forward extensible (see Figure 2(b) for the illustration).

Problem (i): The first problem will arise if there is a branch φ of U with
leaf (φ) = r. Here, apart from interconnecting T and U , r can use its new
transitions also at the end of πφ and connect another copy of U to the end
of πφ. Suppose that all leaves of T except r accept vvw and that all leaves
of U except r accept vw. Then this enables a new accepting run on the word
uvvw. In this case, the existence of the mediator s is not a guarantee that some
accepting run on uvvw was possible before adding transitions to r.

Problem (ii): Another problem may arise if there are two (or more) branches
in T ending by r. Here we use the two branches π and π′ in Figure 2(b) as an
example. To construct an accepting run on uvw from T , r has to use the
transitions of q at the end of π as well as at the end of π′ to connect U to T in
the both places. But the partial run V “covers” only one of the two occurrences
of r. There may be a leaf x of V different from s for which r is the only leaf
in T with r �F x. Therefore, x needs not accept vw as there is no guaranteed
relation between q and x. In this case V is not a prefix of an accepting run on
uvw and uvw need not be in L(A).

We will show how the two problems can be solved by requiring �M to be
a forward extensible preorder.

In the case of Problem (i), if y uses transitions of q to accept vw, then W

9

becomes a prefix of an accepting run on vvw and thus V becomes a prefix of
a new accepting run on uvvw. We know that r �F y. By forwards extensibility,
q � r �F y gives q � y, which implies that there is a mediator for q and
y. Observe that y used transitions of q just once. Therefore, by an analogous
argument by which we derived that A accepts uvw in the first case when r used
the new transitions only once, we can here derive that there is an accepting run
of A on uvvw which does not involve new transitions.

In the case of Problem (ii), if x uses the transitions of q to accept vw, V
becomes a prefix of a new accepting run on uvw. We know that r �F x and
thus by forward extensibility q � r �F x gives q � x, which means that there
is a mediator for q and x. Similarly as in the previous case, since x used the
transitions of q only once, we can derive that there exists an accepting run of
A on uvw that does not involve new transitions.

The argumentation from the two above paragraphs can be used inductively
for a run where r uses transitions of q arbitrarily many times.

Mediated Preorder and Equivalence. We now formally define mediated preorder
and equivalence. Let �F be a reflexive and transitive forward simulation on A,
and �B a reflexive and transitive backward simulation on A parametrised by
�F . A preorder �M ⊆ �F ◦ �−1B such that for all q, r, s ∈ Q, q �M r �F s
implies q �M s, is a mediated preorder induced by �F and �B . The relation
≡M = �M ∩ �−1M is then a mediated equivalence induced by �F and �B .

Lemma 4.1. [8] There is a unique maximal mediated preorder �M induced by
�F and �B.

Ambiguity. To make the mediated equivalence applicable, we must pose one
more requirement. Namely, we require that the transitions of the given ABA
are not �F -ambiguous, meaning that no two states on the right hand side of
a transition are forward equivalent. Intuitively, allowing such transitions goes
against the spirit of the backward simulation. For a mediator p to backward
simulate a state r wrt. rules ρ1 : p′

a−→ P ∪{p}, p 6∈ P , and ρ2 : r′
a−→ R∪{r}, r 6∈

R, it must be the case that each state x in the context P of p within ρ1 is less
restrictive (i.e., forward bigger) than some state y in the context R of r within
ρ2. The state r itself is not taken into account when looking for y because we
aim at extending its behaviour by collapsing (and it could then become less
restrictive than the appropriate x). In the case of �F -ambiguity, the spirit of
this restriction is in a sense broken since the forward behaviour of r may still be
taken into account when checking that the context of p is less restrictive than
that of r. This is because the behaviour of r appears in R as the behaviour
of some other forward equivalent state r′′ too. Consequently, r and r′′ may
back up each other in a circular way when checking the restrictiveness of the
contexts within the construction of the backward simulation. Both of them can
then seem extensible, but once their behaviour gets extended, the restriction
of their context based on their own original behaviour is lost, which may then
increase the language (an example of such a scenario is given below). However,
in Section 5, we show that �F -ambiguity can be efficiently removed.

10

Example 2 (mediated minimization cannot be used on an ambiguous ABA).
Consider the following ABA A = ({a, b}, {s0, s1, s2, s3, s4}, s0, δ, {s4}) where

s0
a−→ {s1, s2, s3}, s3

b−→ {s4},
s1

b−→ {s4}, s3
a−→ {s1, s2, s3},

s2
b−→ {s4}, s4

a−→ {s4}

are transitions of A. The maximal forward simulation relation �F in A is
the smallest preorder such that s1 ≡F s2 �F s3 �F s0. From s1 ≡F s2 and
the transition s0

a−→ {s1, s2, s3} we can find that A is �F -ambiguous. The
maximal backward simulation relation �B parametrised with �F is the smallest
equivalence where s1 ≡B s2 ≡B s3, and the mediated preorder �M is the smallest
preorder where s0 �M s1 ≡M s2 ≡M s3.

If we collapse states wrt. ≡M = �M ∩ �−1M (i.e., merge the three states s1,
s2, and s3), we will get the ABA A′ = ({a, b}, {s0, {s1, s2, s3}, s4}, s0, δ, {s4})
where

s0
a−→ {{s1, s2, s3}}, {s1, s2, s3}

b−→ {s4},
{s1, s2, s3}

b−→ {s4}, {s1, s2, s3}
a−→ {{s1, s2, s3}},

s4
a−→ {s4}.

are transitions of A′. Note that A′ accepts the word aabaω, but A does not.

4.2. Quotient wrt. Mediated Equivalence Has the Same Language

In this section, we give a formal proof that under the assumption that A
is �F -unambiguous, the language of quotient wrt. mediated equivalence is the
same as the language of A.

Quotient Automata versus Extended Automata. As already mentioned, comput-
ing a quotient can be seen as a simpler operation of adding transitions and ac-
cepting states which simplifies the forthcoming reasoning. Let A = (Σ, Q, ι, δ, α)
be an ABA and let ≡ be an equivalence on Q such that ≡ = � ∩ �−1 for some
preorder �. We will use A/≡ to denote the quotient of A wrt. ≡ that arises by
merging ≡-equivalent states of A, and A+

� will stand for the automaton extended
according to �, that is created as follows: for every two states q, r of A with
q � r, (i) add all outgoing transitions of q to r, (ii) if q ≡ r and q is final, make
r final.

Formally, the automata A/≡ and A+
� are defined as follows. Let Q/≡ denote

the partitioning ofQ wrt.≡, and let [q] denote the equivalence class of≡ contain-
ing q. Then A/≡ = (Σ, Q/≡, [ι], δ/≡, {[q] | q ∈ α}) and A+

� = (Σ, Q, ι, δ+�, α
+
�)

where α+
� = {p | ∃q ∈ α. q ≡ p} and, for each a ∈ Σ, q ∈ Q, δ/≡([q], a) =⋃

p∈[q]{{[p′] | p′ ∈ P} | P ∈ δ(p, a)} and δ+�(q, a) =
⋃
p∈Q∧p�q δ(p, a).

The following lemma implies that if adding transitions and accepting states
according to � preserves the language, then the quotient wrt. ≡ has the same
language too.

Lemma 4.2. L(A/≡) ⊆ L(A+
�).

11

root(T) root(U)

T U

π

ext(π)

leaf (π)

ψ

leaf (ψ)

�α

�F /�M

�B

�M

Figure 3: U strongly/weakly covers T wrt. ext

Proof. Let A+
≡ = (Σ, Q, ι, δ+≡, α

+
≡) be the automaton extended according to ≡.

Observe that states q and r with q ≡ r are forward simulation equivalent in
A+
≡. (q and r are in A+

≡ either both accepting or both nonaccepting, and for all
a ∈ Σ, δ+≡(q, a) = δ+≡(r, a)). Gurumurthy et al. [9] prove that the quotient wrt.
forward simulation has the same language as the original automaton. Therefore,
L(A/≡) = L(A+

≡). It is also easy to see that L(A+
≡) ⊆ L(A+

�), as A+
� has

a richer transition function than A+
≡ and α+

� = α+
≡. Thus, L(A/≡) = L(A+

≡) ⊆
L(A+

�).

We now give the proof that extending automata according to the mediated
preorder preserves the language. For the rest of the section, we fix an ABA A =
(Σ, Q, ι, δ, α), a reflexive and transitive forward simulation �F on A such that
A is �F -unambiguous, and a reflexive and transitive backward simulation �B
on A parametrised by �F . Let �M be the maximal mediated preorder induced
by �F and �B , and let A+ = (Σ, Q, ι, δ+, α+) be the automaton extended
according to �M (we omit the subscript �M for the ease of notation). Let
≡M = �M ∩ �−1M .

We want to prove that L(A+) = L(A). The nontrivial part is showing that
L(A+) ⊆ L(A)—the converse is obvious. To prove L(A+) ⊆ L(A), we need to
show that, for every accepting run of A+ on a word w, there is an accepting run
of A on w. We first prove Lemma 4.3, which shows how partial runs of A with
an increased power of their leaves (wrt. �M) can be built incrementally from
other runs of A, bridging the gap between A and A+. Then we prove Lemma 4.6
saying that for every partial run on a word w of A+, there is a partial run of
A on w that is more accepting (recall that partial runs are finite). By carrying
this result over to infinite runs we get the proof that the automaton extended
according to �M , and thus also the quotient wrt. ≡M , have the same language
as the original.

Extension Function and Covering. Consider a partial run T of A on a word w,
we choose for each leaf p of T an �M -smaller state p′. Suppose that we allow
p to make one step using the transitions of p′ or to become accepting if p′ is

12

accepting and p′ ≡M p. (Thus, we give the leaves of T a part of the power they
would have in A+). We will show that there exists a partial run U of A on w
such that (1) it is more accepting than T , and (2) the leaves of U can mimic the
next step of the leaves of T even if the leaves of T use their extended power.

The above is formalised in Lemma 4.3 using the following notation. For
a partial run T of A on w, we define ext as an extension function that assigns
to every branch π of T a state ext(π) such that ext(π) �M leaf (π).

Let U be a partial run of A on w. For two branches π ∈ branches(T) and
ψ ∈ branches(U), we say that ψ strongly covers π wrt. ext , denoted π �ext ψ,
iff π �α ψ and ext(π) �F leaf (ψ). Similarly, we say that ψ weakly covers π
wrt. ext , denoted π �w-ext ψ, iff π �α ψ and ext(π) �M leaf (ψ). We ex-
tend the concept of covering to partial runs as follows. We write T �ext U (U
strongly covers T wrt. ext) iff branches(T) �∀∃ext branches(U) and root(T) �B
root(U). Likewise, we write T �w-ext U (U weakly covers T wrt. ext) iff
branches(T) �∀∃w-ext branches(U) and root(T) �B root(U). See Figure 3 for
an illustration. Note that we have �ext ⊆ �w-ext for branches as well for partial
runs because �F ⊆ �M—the strong covering implies the weak one.

Lemma 4.3. For any partial run T of A on a word w with an extension function
ext, there is a partial run U of A on w with T �ext U .

Proving Lemma 4.3 is the most intricate part of the proof of Theorem 1. We
now introduce the concepts used within the proof, prove auxiliary Lemma 4.5,
and subsequently present the proof of Lemma 4.3 itself.

Observe that root(T) �B root(T), and every branch of T weakly covers itself,
which means that T �w-ext T . Within the proof of Lemma 4.3, we will show
how to reach U by a chain of partial runs derived from T . The partial runs
within the chain will all weakly cover T . Runs further from T will in some sense
cover T more strongly than the runs closer to T and the last partial run of the
chain will cover T strongly. In the following paragraph, we formulate what it
means that a partial run weakly covering T covers T more strongly than another
partial run.

The Relation of Covering T More Strongly. To define the relation of covering
T more strongly on partial runs that weakly cover T , we concentrate on those
branches of a partial run that cause that the partial run does not cover T
strongly. Let V be a partial run of A on w with T �w-ext V . We call a branch
ψ ∈ branches(V) strict weakly covering if there is no π ∈ branches(T) with
π �ext ψ (there are only some π ∈ branches(T) with π �w-ext ψ). Let swT (V)
denote the tree which is the subset of V containing all prefixes of strict weakly
covering branches of V wrt. T . Note that T �ext V iff V contains no strict
weakly covering branches, which is equivalent to swT (V) = ∅. Given a partial
run W of A on w, we will define which of V and W cover T more strongly by
comparing swT (V) and swT (W). For this, we need the following definitions.

Given a finite tree X over Q and τ ∈ Q+, we define the tree decomposition
of X according to τ as the sequence of (finite) sets of paths 〈τ,X〉 = X 	1

τ,X 	2 τ, . . . , X 	|τ | τ . We also let 〈ε,X〉 = branches(X) (it is a sequence

13

of length 1). A substantial property of tree decompositions is that under the
condition that τ 6∈ branches(X), 〈τ,X〉 = ∅ . . . ∅ implies that X = ∅. Notice
that if τ ∈ branches(X), 〈τ,X〉 = ∅ . . . ∅ does not imply X = ∅ as τ could be
the only branch of X. This is important as for a partial run Y and τ ′ ∈ Y , if
τ ′ 6∈ branches(Y), the implications 〈τ ′, swT (Y)〉 = ∅ . . . ∅ =⇒ swT (Y) = ∅ =⇒
T �ext Y hold. However, the first implication does not hold if τ ′ ∈ branches(Y).

Let τV ∈ V ∪{ε} and τW ∈W ∪{ε} be such that τV 6∈ branches(swT (V)) and
τW 6∈ branches(swT (W)). We say that W covers T more strongly than V wrt.
τV and τW , denoted V ≺TτV ,τW W , iff root(V) �B root(W) and 〈τV , swT (V)〉 @
〈τW , swT (W)〉 where @ is a binary relation on finite sequences of sets of paths
defined as follows:

For two sets of paths P and P ′, we use P ≺∀∃F P ′ to denote that P �∀∃F P ′

but not P ′ �∀∃F P . In other words, the upward closure of P ′ wrt. �F is a proper
subset of the upward closure of P wrt. �F . Then, for two finite sequences
S, S′ ∈ (2Q

+

)+ of sets of paths, S @ S′ iff there is some k ∈ N, k ≤ min{|S|, |S′|},
such that Sk ≺∀∃F S′k and for all 1 ≤ j < k, Sj �∀∃F S′j .

Given c ∈ N, we say that a sequence S of sets of paths is c-bounded if |S| ≤ c
and also the length of every path in every Si, 1 ≤ i ≤ |S| is at most c. Lemma 4.4
below shows that every maximal increasing chain of c-bounded sequences related
by @ eventually arrives to ∅ . . . ∅. This will allow us to show that every maximal
sequence of partial runs that cover T more and more strongly must terminate
by a partial run that covers T strongly.

Lemma 4.4. Given a constant c, every maximal increasing chain of c-bounded
sequences related by @ eventually terminates by ∅ . . . ∅.

Proof. First, observe that for every sequence S of sets of paths with S 6= ∅ . . . ∅,
it holds that S @ ∅ . . . ∅. This is easy to see since ∅ �∀∃F ∅ and X ≺∀∃F ∅ for any

nonempty X ∈ 2Q
+

. Therefore, to prove the lemma, it is sufficient to show that
@ does not allow infinite increasing chains of c-bounded sequences.

Let S = S(1) @ S(2) @ S(3) @ · · · be such a chain of c-bounded sequences.
We will show that S must be finite. Observe that the domain of possible c-
bounded S(i)s is finite since there are only finitely many paths whose length is
bounded by c (Q is finite). Therefore, if S is an infinite chain, there has to be i
and j with i < j such that S(i) = S(j). We will argue that this is not possible
by showing that @ is irreflexive and transitive, which means that it does not
allow loops (if there was a loop X @ · · · @ X, then by transitivity, X @ X
which contradicts irreflexifity).

Irreflexivity of @ may be shown as follows. Let S @ S for some c-bounded
sequence S. By the definition of @, there is k ∈ N such that Si �∀∃F Si for all
i ∈ N smaller than k, and Sk ≺∀∃F Sk. However, this is clearly not possible since
since the upward closure of Sk wrt. �F would have to be a proper subset of
itself.

Transitivity of @ can be shown as follows. Let S, S′, S′′ be three c-bounded
sequences with S @ S′ @ S′′. By the definition of @, there is k ∈ N such that
Si �∀∃F S′i for all i ∈ N smaller than k, and Sk ≺∀∃F S′k; and there is k′ ∈ N

14

such that S′i �∀∃F S′′i for all i ∈ N smaller than k′, and S′k′ ≺∀∃F S′′k′ . Let
l = min{k, k′}. By transitivity of �∀∃F , we have that Si �∀∃F S′′i for all i ∈ N
smaller than l. Then, for the lth position, we have that Sl ≺∀∃F S′l ≺∀∃F S′′l
or Sl �∀∃F S′l ≺∀∃F S′′l or Sl ≺∀∃F S′l �∀∃F S′′l . All these three possibilities give
Sl ≺∀∃F S′′l , and thus S @ S′′.

The last ingredient we need for the proof of Lemma 4.3 is to show that for
every maximal sequence of partial runs that cover T more and more strongly, the
underlying @-related sequence is also maximal. Particularly, we need to show
that for any partial run weakly (but not strongly) covering T , we are always
able to construct a partial run covering T more strongly. This is stated by the
following lemma.

Lemma 4.5. Given a partial run V of A on w s.t. T �w-ext V , T 6�ext V , and
τV ∈ V ∪ {ε} with τV 6∈ branches(swT (V)), we can construct a partial run W
of A on w with T �w-ext W and a path τW ∈ W with τW 6∈ branches(swT (W))
such that V ≺TτV ,τW W .

Proof. The proof relies on Lemma 3.3 and the definition of �M . We first choose
a suitable branch π of swT (V) as follows. Let 1 ≤ k ≤ |τV | be some index
such that swT (V) 	k τV is nonempty. If τV = ε, then k = 1. We choose
some π′ ∈ swT (V) 	k τV which is minimal wrt. �F , meaning that there is no
π′′ ∈ swT (V)	k τV different from π′ such that π′′ �F π′. We put π = τkV π

′. We
note that this is the place where we use the �F -unambiguity assumption. If A
was �F -ambiguous, there need not be a k such that swT (V) 	k τV contains a
minimal element wrt. �F .

As T �w-ext V , there is σ ∈ branches(T) with σ �w-ext π. ¿From ext(σ) �M
leaf (π), there is a mediator s with ext(σ) �F s �B leaf (π). We can apply
Lemma 3.3 to V , π, leaf (π) and s, which gives us a partial run W and ψ ∈
branches(W) with leaf (ψ) = s such that π �B ψ, and for all 1 ≤ i ≤ |π|,
V 	i π �∀∃F W 	i ψ. Let τW = ψ. The proof will be concluded by showing
that (i) T �w-ext W , (ii) τW 6∈ branches(swT (W)), and (iii) 〈τV , swT (V)〉 @
〈τW , swT (W)〉, which implies V ≺TτV ,τW W .

(i) To show that T �w-ext W , we proceed as follows. Observe that for
every φ ∈ branches(W) \ {ψ} there is a branch φ′ ∈ branches(V) \ {π} such
that leaf (φ′) �F leaf (φ) and φ′ �α φ. This holds because for all 1 ≤ i ≤
|π|, V 	i π �∀∃F W 	i ψ and because π �B ψ (To be more detailed, for every
φ ∈ branches(W) \ {ψ}, φ = ψiρ for some i and ρ ∈ W 	i ψ. There must be
ρ′ ∈ V 	i π with ρ′ �F ρ. As π �B φ, πi �B φi which implies πi �α φi.
Similarly, ρ′ �F ρ implies ρ′ �α ρ and also leaf (ρ′) �F leaf (ρ). Therefore,
we can construct the branch φ′ = πiρ′ ∈ branches(V) \ {π} with πiρ′ �α
ψiρ = φ and leaf (πiρ′) �F leaf (ψiρ)). We also know that since T �w-ext V ,
branches(T) �∀∃w-ext branches(V). Thus, by the definition of �w-ext , we have
that for every φ ∈ branches(W) \ {ψ}, there are φ′ ∈ branches(V) and φ′′ ∈
branches(T) with φ′′ �α φ′ �α φ and ext(φ′′) �M leaf (φ′) �F leaf (φ). This
by transitivity of α and the definition of �M gives φ′′ �α φ and ext(φ′′) �M
leaf (φ), which means φ′′ �w-ext φ. To see that also ψ is weakly covering, observe

15

that since σ �w-ext π, we have σ �α π �B ψ and ext(σ) �F s = leaf (ψ),
which by �B ⊆ �α and transitivity of �α gives even σ �ext ψ (immediately
implying σ �w-ext ψ). Finally, from root(T) �B root(V) (implied by T �w-ext

V), π �B ψ, and transitivity of �B , root(T) �B root(W). We have shown
that T �w-ext W .

(ii) Showing that ψ 6∈ branches(swT (W)) is easy. In the above paragraph
we have just shown that σ �ext ψ, thus ψ is not a strict weakly covering branch.

(iii) To show that 〈τV , swT (V)〉 @ 〈ψ, swT (W)〉, we will argue that (a) for
all 1 ≤ i < k, it holds that swT (V)	i τV �∀∃F swT (W)	i ψ and that (b)
swT (V)	k τV ≺∀∃F swT (W)	k ψ. Notice first that for any partial run X of A
and τ ∈ X with τ 6∈ branches(swT (X)), for all 1 ≤ j ≤ |τ |, swT (X) 	j τ ⊆
X 	j τ . Recall that τkV = πk, that swT (V)	k τV is nonempty, and that for all
1 ≤ i < |π|, V 	i π �∀∃F W 	i ψ.

We first show that for all 1 ≤ i < |π|, swT (V)	i π �∀∃F swT (W)	i ψ.
For every φ ∈ swT (W) 	i ψ, there is at least one φ′ ∈ V 	i π with φ′ �F φ
(because V 	i π �∀∃F W 	i ψ and swT (W)	i ψ ⊆ W 	i ψ). We will show
by contradiction that φ′ ∈ swT (V) 	i π which will imply swT (V)	i π �∀∃F
swT (W)	i ψ. Suppose that φ′ 6∈ swT (V) 	i π. Then the branch πiφ′ of V
is not strict weakly covering, and as T �w-ext V , we have that there is some
φ′′ ∈ branches(T) with φ′′ �ext π

iφ′. As π �B ψ, we have that πi �α ψi.
As φ′ �F φ, we have that φ′ �α φ and leaf (φ′) �F leaf (φ). This together
with φ′′ �ext π

iφ′ gives that φ′′ �α πiφ′ �α ψiφ and ext(φ′′) �F leaf (πiφ′) �F
leaf (ψiφ). By transitivity of �α and �F and by the definition of �ext , we obtain
φ′′ �ext ψ

iφ. This contradicts with the fact that ψiφ is strict weakly covering
(as φ ∈ swT (W)	i ψ) and therefore it must be the case that φ′ ∈ swT (V)	i π.

(a) The fact that for all 1 ≤ i < k, swT (V)	i τV �∀∃F swT (W)	i ψ
is implied by the result of the previous paragraph, because τkV = πk (thus
swT (V)	i τV = swT (V)	i π).

(b) It remains to show that swT (V)	k τV ≺∀∃F swT (W)	k ψ. By the def-
initions of 	k, π and τV , it holds that swT (V)	k τV ⊃ swT (V)	k π. (To
see this, recall that π is strict weakly covering, but τV is not. Therefore,
swT (V)	k π = swT (V)	k τV \branches(swT (V)(πk+1))). Since ⊃ implies �∀∃F ,
we have that swT (V)	k τV �∀∃F swT (V)	k π. Moreover, as π′ 6∈ swT (V)	k π
and π′ is a minimal element of swT (V)	k τV , we have that swT (V)	k π �∀∃F
swT (V)	k τV cannot hold (there is no π′′ ∈ swT (V)	k π with π′′ �F π′), and
therefore we have swT (V)	k τV ≺∀∃F swT (V)	k π. Finally, swT (V)	k τV ≺∀∃F
swT (V)	k π �∀∃F swT (W)	k ψ gives swT (V)	k τV ≺∀∃F swT (W)	k ψ. This
completes the part (iii) of the proof and we can conclude that V ≺TτV ,ψ W .

With Lemma 4.5 in hand, we are finally ready to prove Lemma 4.3.

Proof of Lemma 4.3. If T �ext T , we are done as in the statement of the lemma,
we can take T to be U . So, suppose that T �ext T . Observe that root(T) �B
root(T), and every branch of T weakly covers itself, which means that T �w-ext

T . We construct a run U strongly covering T as follows. Starting from T and
ε, we can construct a chain T ≺Tε,τ1 T1 ≺

T
τ1,τ2 T2 ≺

T
τ2,τ3 T3 . . . of partial runs

16

that more and more strongly cover T by successively applying Lemma 4.5 for
each i, τi ∈ Ti, τi 6∈ branches(swT (Ti)), and T �w-ext Ti. Observe that by
the definition of stronger covering, we have that 〈ε, swT (T)〉 @ 〈τ1, swT (T1)〉 @
〈τ2, swT (T2)〉 @ 〈τ3, swT (T3)〉

Notice now that for each i, since T �w-ext Ti, height(Ti) ≤ height(T). There-
fore, since length of τi is bounded by height(T), the length of 〈τi, swT (Ti)〉 is
bounded by height(T) too. As lengths of all paths in the sets within 〈τi, swT (Ti)〉
are obviously bounded by height(T) as well, 〈τi, swT (Ti)〉 is a height(T)-bounded
sequence. Therefore, by Lemma 4.4, the chain must eventually arrive to its last
Tk and τk with 〈τk, swT (Tk)〉 = ∅ . . . ∅. As 〈τk, swT (Tk)〉 = ∅ . . . ∅, swT (Tk) has
to be empty, which implies that T �ext Tk. We can put U = Tk and Lemma 4.3
is proven.

We use Lemma 4.3 to prove Lemma 4.6. Informally, it says that even despite
the poorer transition relation and smaller set of accepting states, A can answer
to any partial run of A+ by a more accepting partial run. To express this
formally, we need to define the following weaker version �α+⇒α of the relation
of being more accepting that takes into account α+ on the left and α on the
right. This is, for states q and r, q �α+⇒α r iff q ∈ α+ =⇒ r ∈ α. For two paths
π, ψ ∈ Q+, π �α+⇒α ψ iff |π| = |ψ| and for all 1 ≤ i ≤ |π|, πi ∈ α+ =⇒ ψi ∈ α.
Last, for finite trees T and U over Q, we use T �α+⇒α U to denote that
branches(T) �∀∃α+⇒α branches(U).

Lemma 4.6. For any partial run T of A+ on w ∈ Σω, there exists a partial
run U of A on w such that root(T) �B root(U) and T �α+⇒α U .

Proof. We will prove the lemma by induction on the structure of T , using
Lemma 4.3 within the induction step. To make the induction argument pass, we
will prove a stronger variant of the lemma. Particularly, we will replace the re-
lation �α+⇒α within the statement of the lemma by its stronger variant �Mα+⇒α
which is defined as follows. Given paths π and ψ, π �Mα+⇒α ψ iff π �α+⇒α ψ and
leaf (π) �M leaf (ψ). For two partial runs V and W , we use V �Mα+⇒α W to de-
note that branches(V) (�Mα+⇒α)∀∃ branches(W). Apparently, �Mα+⇒α ⊆ �α+⇒α
for paths as well as for partial runs.

A stronger variant of Lemma 4.6: For any partial run T of A+ on w ∈ Σω, there
exists a partial run U of A on w such that root(T) �B root(U) and T �Mα+⇒α U .

It is obvious that the above statement implies the statement of the lemma.
We will prove it by induction to the structure of T . In the base case, T = {q}
for some q ∈ Q. If q 6∈ α+, we can put U = {q} (�M and �B are reflexive).
If q ∈ α+, then by the definition of α+, there is p ∈ α such that p ≡M q.
This means that q �M p and p �M q. By the definition of �M , there exists
a mediator s with p �F s �B q. As �F ⊆ �α, s ∈ α. Again by the definition
of �M , q �M p �F s �B q gives us q �M s �B q and we can put U = {s}.

Suppose now that T is not only a root and that the stronger variant of the
lemma holds for every partial run of A+ on w that is a proper subset of T .

17

We choose some π ∈ T such that succT (π) 6= ∅ and for every p ∈ succT (π),
succT (πp) = ∅. Notice that since T is a finite tree, such π always exists. Denote
P = succT (π) and q = leaf (π). Let T ′ = T \ {πp | p ∈ P}. T ′ is a partial
run of A+ on w which is a proper subset of T , therefore we can apply the
induction hypothesis on it. This gives us a partial run V of A on w such that
root(T ′) �B root(V) and T ′ �Mα+⇒α V .

Let BadV ⊆ branches(V) be the set such that ψ ∈ BadV iff there is no
φ ∈ branches(T) such that φ �Mα+⇒α ψ, and let GoodV = branches(V) \ BadV .
Intuitively, BadV contains the problematic branches because of which T �Mα+⇒α
V does not hold. If BadV is empty, then the relation holds and we can conclude
the proof. We continue assuming that BadV 6= ∅.

By the definition of δ+ and because q
w|π|−−−→ P is a transition of A+, there

must be some s ∈ Q, s �M q where s
w|π|−−−→ P is a transition of δ. We define

an extension function extV such that extV (φ) = s for every φ ∈ BadV and
extV (ψ) = leaf (ψ) for every ψ ∈ GoodV . To see that extV conforms to the
definition of extension function, one has to show that for every branch φ ∈ BadV ,
s �M leaf (φ). We know that T ′ �Mα+⇒α V but not T �Mα+⇒α V . Therefore,
there is some branch φ′ ∈ T ′ with φ′ �Mα+⇒α φ such that φ′ 6∈ branches(T) (if φ′

was a branch of T , φ would not be in BadV). Notice that π is the only branch
of T ′ which is not a branch of T , which means that it must be the case that
φ′ = π. Therefore, since s �M q �M leaf (φ), we have that s �M leaf (φ) holds.

By applying Lemma 4.3 to V and extV , we get a partial run W of A on w
with V �extV W . Now, for each ψ ∈ branches(W), there is φ ∈ branches(V)
with φ �extV ψ. As T ′ �Mα+⇒α V , ρ �Mα+⇒α φ for some ρ ∈ branches(T ′). There
are two cases of how ρ and ψ may be related, depending on φ:

1. If φ ∈ GoodV , then ext(φ) = leaf (φ). In this case, by the definitions of
�Mα+⇒α and �extV , we have ρ �α+⇒α φ �α ψ and leaf (ρ) �M leaf (φ) �F
leaf (ψ), which gives ρ �α+⇒α ψ and leaf (ρ) �M leaf (ψ) (since �M is
forward extensible), meaning that ρ �Mα+⇒α ψ.

2. To analyse the case when φ ∈ BadV , recall that π is the only branch of T ′

which is not a branch of T , and therefore π is also the only branch of T ′

with π �Mα+⇒α φ. Therefore, ρ = π. According to the definition of extV ,
extV (φ) = s. Since φ �extV ψ, we have π �Mα+⇒α φ �α ψ which gives
π �α+⇒α ψ. However, since (contrary to the previous case) extv(φ) 6=
leaf (φ), we cannot guarantee any further relation between leaf (φ) and
leaf (ψ), and we cannot derive that leaf (π) �M leaf (ψ) and π �Mα+⇒α ψ
need not hold.

We define the set BadW ⊆ branches(W) such as ψ ∈ BadW iff there is no ρ ∈ T
with ρ �Mα+⇒α ψ and we let GoodW = branches(W) \ BadV . This is, BadW
contains the branches because of which T �Mα+⇒α W does not hold. Note that
if ψ ∈ BadV , then all the φ ∈ branches(V) with φ �extV ψ are as in the case
(2) above, i.e., π is the only branch of T ′ with π �Mα+⇒α φ. By the definition
of �extV , s = extV (φ) �F leaf (ψ). Therefore, by the definition of �F and
since s

w|π|−−−→ P , there must be some transition leaf (ψ)
w|π|−−−→ Rψ of A where

18

P �∀∃F Rψ. We extend W by firing these transitions for every ψ ∈ BadW , in
which way we obtain a run X = W ∪ {ψRψ | ψ ∈ BadW } of A on w.

Let us use NewX = {ψRψ | ψ ∈ BadW } to denote the branches of X that
arose by firing the transitions. Observe that branches(X) = GoodW ∪ NewX .
Recall that for all ψ ∈ BadW , π �α+⇒α ψ and that for every ψ ∈ NewX , there
is some p ∈ P such that p �F leaf (ψ). We will define an extension function
extX of X as follows:

1. If ψ ∈ GoodW , extX(ψ) = leaf (ψ).

2. If ψ ∈ NewX and there is p ∈ P with p �F leaf (ψ) and p �α+⇒α leaf (ψ),
we let extX(ψ) = leaf (ψ).

3. If ψ ∈ NewX and there is no p ∈ P with p �F leaf (ψ) and p �α+⇒α
leaf (ψ), we proceed as follows. By the definition of NewX , there is some
p′ ∈ P such that p′ �F leaf (ψ). Since �F ⊆ �α, p′ �F leaf (ψ), and
not p′ �α+⇒α leaf (ψ), it must be the case that p′ 6∈ α, leaf (ψ) 6∈ α, and
p′ ∈ α+. This by the definition of α+ means that there is some v ∈ α with
p′ ≡M v. We put extX(ψ) = v.

We apply Lemma 4.3 to X and extX , which gives us a partial run U of A
on w with X �extX U . We will check that U satisfies the statement of the
stronger variant of the lemma. We will first prove that T �Mα+⇒α U . For each
τ ∈ branches(U), there is ψ ∈ branches(X) with ψ �extX τ . We will derive
that there is some ρ ∈ branches(T) with ρ �Mα+⇒α τ . The argument depends on
properties of ψ. Particularly, we have the following three cases.

1. If ψ ∈ GoodW , then there is some ρ ∈ T with ρ �Mα+⇒α ψ. Recall that
extX(ψ) = leaf (ψ) in this case. Thus, by the definitions of �Mα+⇒α and
�extX , we have ρ �α+⇒α ψ �α τ and leaf (ρ) �M leaf (ψ) �F leaf (τ),
which gives ρ �α+⇒α τ and leaf (ρ) �M leaf (τ), i.e., ρ �Mα+⇒α τ .

2. If ψ ∈ NewX and there is some p ∈ P with p �F leaf (ψ) and p �α+⇒α
leaf (ψ), then by the definition of extX , extX(ψ) = leaf (ψ). Recall that
as ψ|ψ|−1 ∈ BadW , π �α+⇒α ψ|ψ|−1. Therefore, also πp �α+⇒α ψ. By
the definition of �extX , we have that ψ �α τ and leaf (ψ) �F leaf (τ).
Finally, πp �α+⇒α ψ �α τ and p �F leaf (ψ) �F leaf (τ) together imply
that πp �Mα+⇒α τ .

3. If ψ ∈ NewX and there is no p ∈ P with p �F leaf (ψ) and p �α+⇒α
leaf (ψ), then by the definition of extX , there are p′ ∈ P with p′ �F leaf (ψ)
and v ∈ α with v ≡M p′ such that extX(ψ) = v. By ψ �extX τ , we
have ψ �α τ and v �F leaf (τ). Thus, since �M is forward extensible,
p′ ≡M v �F leaf (τ) gives p′ �M leaf (ψ). As �F ⊆ �α, we have that
leaf (τ) ∈ α and thus p′ �α+⇒α leaf (τ). As ψ|ψ|−1 ∈ BadW , we have
that π �α+⇒α ψ|ψ|−1. Together with ψ �α τ , this gives πp′ �α+⇒α τ .
Therefore, πp′ �Mα+⇒α τ .

19

Since the above three cases cover all possible variants of ψ and thus all
branches of U , we have proven that T �Mα+⇒α U . Finally, it is easy to show
that root(T) �B root(U) since �B is transitive and we know that root(T) =
root(T ′) �B root(V) �B root(W) = root(X) �B root(U). We have verified that
the constructed partial run U satisfies the statement of the stronger variant of
the lemma, which concludes the proof.

With Lemma 4.6 in hand, we can prove that for each accepting run of A+ on
a word w, there is an accepting run of A on w. This requires to carry Lemma 4.6
from finite partial runs to full infinite runs.

Lemma 4.7. A run T of A with root(T) = ι is accepting if and only if for
every π ∈ T , there exists a constant kπ ∈ N such that every ψ with πψ ∈ T and
|ψ| ≥ k contains an accepting state.

Proof. (if) For every π ∈ branches(T), there is an infinite sequence of k0, k1 . . .
such that:

• k0 = 0 and

• for all i ∈ N, ki = ki−1 + kπn where n = ki−1 + 1.

For all i ∈ N, every segment of π between ki−1 + 1 and ki contains an accepting
state, therefore π contains infinitely many accepting states.

(only if) By contradiction. Suppose that there is π ∈ T for which there
is no kπ. We will show that in this case, there must be ψ ∈ Qω such that
πψ ∈ branches(T) and ψ does not contain an accepting state (which contradicts
the assumption that T is accepting).

We will give a procedure which returns ψi for each i ∈ N (based on the
knowledge of ψi−1). For each i ∈ N0, we will keep the invariant that for πψi,
kπψi does not exist and that ψi does not contain an accepting state. Since
ψ0 = ε, the invariant holds for i = 0.

Let the invariant hold for i−1, i ∈ N, and suppose that we have already con-
structed ψi−1. Denote P the subset of succT (πψi−1) containing nonaccepting
states. P must be nonempty, because if all the states from succT (πψi−1) were
accepting, kπψi−1 would equal 1, violating the invariant for i − 1. Then, there
must be a state q ∈ P such that kπψi−1q does not exist, since otherwise we could
put kπψi−1 = max{kπψi−1p | p ∈ P}+ 1, which would also violate the invariant
for i − 1. We choose q as the continuation and put ψi = ψi−1q. Observe that
this choice satisfied the invariant for i.

We have shown that for every i ∈ N, we can construct the ith prefix ψi

of ψ that does not contain an accepting state. Therefore, the whole infinite
path ψ does not contain an accepting state, and the branch πψ of T does not
contain infinitely many accepting states. This contradicts the assumption that
T is accepting.

Lemma 4.8. For every accepting run T of A+ a word w ∈ Σω, there exists an
accepting run U of A on w.

20

Proof. For a tree X over Q, let X(i) = {π ∈ X | |π| ≤ i} be the ith prefix of
X (X(0) = ∅). ¿From Lemma 4.6, for each i ∈ N, there is a partial run Ui of
A on w such that T (i) �α+⇒α Ui and root(T (i)) �B root(Ui). As �B ⊆ �ι,
root(Ui) = ι. Note that for all π ∈ branches(Ui), |π| equals i, because only
paths of the same length can be related by �α+⇒α. Denote U∞ = {U1, U2, . . .}.
U∞ is an infinite set that for each k ∈ N contains a partial run Uk of A with all
the branches of the length k. We will use U∞ to construct the infinite accepting
run U .

Observe that for any infinite set V∞ of partial runs of A and for any i ∈ N,
there has to be at least one partial run W of A such that for infinitely many
V ∈ V∞, W = V (i). The reason is that for any i ∈ N, there is obviously only
finitely many of possible partial runs of the height i that A can generate.

We prove the existence of U by giving a procedure, which for every k ∈ N
gives the kth prefix U(k) of U .

• Let U∞0 = U∞ and let U(0) = ∅.

• For every k ∈ N, U(k) is derived from U(k−1) as follows. Let U∞k ⊆ U∞ be
defined as the set such that for all i ∈ N, Ui ∈ U∞k iff U(k−1) = Ui(k−1).
In other words, U∞k is the subset of U∞ of the partial runs with the ith
prefix equal to U(k − 1). Then, U(k) = Un(k) for some n ≥ k such that
Un ∈ U∞k and there is infinitely many m ∈ N such that Um ∈ U∞k and
Un(k) = Um(k). In other words, U(k) is a tree that appears as the kth
prefix of infinitely many partial runs in U∞k .

To see that this construction is well defined, observe that:

• U∞0 is infinite, and

• for all k ∈ N, if U∞k−1 is infinite, then U(k−1) is defined and U∞k is infinite.

Thus, U(k) is well defined for every k ∈ N and U is a run of A.
It remains prove that U is accepting. We will show that for every π ∈ U ,

there is kπ ∈ N such that every ψ with πψ ∈ T and |ψ| ≥ k contains an accepting
state. By Lemma 4.7, it will follow that U is accepting.

Let us choose arbitrary π ∈ U . Let n = |π|. By Lemma 4.7, for every π′ ∈
branches(Tn), there is kπ′ ∈ N such that every ψ′ with π′ψ′ ∈ T and |ψ′| ≥ kπ′
contains an accepting state. Let k = max{kπ′ | π′ ∈ branches(T (n))}. By the
construction of U , T (n+ k) �α+⇒α U(n+ k). This implies that for every π′′ ∈
branches(U(n)), every ψ′′ with π′′ψ′′ ∈ T and |ψ′′| ≥ k contains an accepting
state. As π in branches(U(n)), we can put kπ = k and we are done.

Theorem 1. L(A+) = L(A).

Proof. The inclusion L(A) ⊆ L(A+) is obvious as L(A+) has richer both tran-
sition function and the set of accepting states. The inclusion L(A+) ⊆ L(A)
follows immediately from Lemma 4.8.

Corollary 1. Quotienting with mediated equivalence preserves the language.

21

5. Computing the Relations

In this section, we describe algorithms for computing forward and backward
simulation for ABA, and mediated preorder. For forward simulation, we use an
algorithm from [10], for backward simulation, we present an algorithm based
on a translation to an LTS simulation problem similar to the one from [7] for
computing upward simulations over tree automata. The mediated preorder
is then computed by a simple procedure that we also sketch below. For the
mediated preorder to be useful for simplification via computing the quotient,
we also need to remove ambiguity before we start computing the backward
simulation. This can be done by a simple procedure presented in this section
too. For the rest of the section, we fix an ABA A = (Σ, Q, ι, δ, α).

Forward Simulation. The algorithm for computing the maximal forward simu-
lation �F on A can be found in Fritz and Wilke’s work [10] (it is called direct
simulation in their paper). They reduce the problem of computing the maxi-
mal forward simulation to a simulation game. Although Fritz and Wilke use
a slightly different definition of ABA, we can easily translate an ABA with n
states and m transitions to their notion of ABA with O(n + m) states and
O(nm) transitions, and then use their algorithm to compute �F . The time
complexity of the above procedure is O(nm2).

Removing Ambiguity. As we have argued in Section 4.1, A needs to be �F -
unambiguous for mediated minimisation. Here, we describe how to modify A to
make it �F -unambiguous. The modification neither changes the language of A
nor the forward simulation relation �F , therefore we do not need to recompute
the forward simulation again for the modified automaton.

The procedure for removing ambiguity is simple. For every transition p
a−→ P

with P = {p1, . . . , pk} and for each i ∈ {1, . . . , k}, we check if there exists some
i < j ≤ k such that pj �F pi. If there is one, remove pi from P . The time
complexity of this procedure is obviously in O(n2m).

We note that an alternative way is to work with the quotient wrt. forward
simulation equivalence. This approach also does not change forward simulation
(two states of the quotient are related by forward simulation iff they are related
by �∀∃F in the original ABA) and hence it does not have to be recomputed.

Mediated Preorder. Here we explain how to compute the mediated preorder �M
of A from �F and �B . It is proved in [7] that �M equals the maximal relation
R ⊆�F ◦ �−1B satisfying x R y �F z =⇒ x (�F ◦ �−1B) z. Based on the result,
we can obtain the mediated preorder by the following procedure. Initially, let
�M = �F ◦ �−1B . For all (p, q) ∈ �M , if there exists some (q, r) ∈ �F such
that (p, r) /∈ �F ◦ �−1B , remove (p, q) from �M . A näıve implementation of this
simple procedure has time complexity O(n3).

5.1. Computing Backward Simulation

Our algorithm for computing backward simulation is inspired by the al-
gorithms for computing tree automata simulations from [7]—we translate the

22

Figure 4: An example of the reduction from an ABA transition to LTS transitions

problem of computing the maximal backward simulation on A to a problem of
computing the maximal simulation on a labelled transition system.

Computing Simulation on Labeled Transition Systems. Let T = (S,L,→) be
a finite labeled transition system (LTS), where S is a finite set of states, L is
a finite set of labels, and → ⊆ S × L× S is a transition relation. A simulation
on T is a binary relation �L on S such that if q �L r and (q, a, q′) ∈ →, then
there is an r′ with (r, a, r′) ∈ → and q′ �L r′.

An instance of the problem of computing the maximal LTS simulation is
given by an LTS T = (S,L,→) and an initial preorder I ⊆ S × S. The task is
to find the unique maximal simulation on T included in I. An algorithm for
computing the maximal simulation �I on the LTS T included in I with time
complexity O(|L| · |S|2 + |S| · |→|) and space complexity O(|L| · |S|2) can be
found in [7].

Computing Backward Simulation via a Reduction to LTS. We now describe the
reduction of the problem of computing the maximal backward simulation on A
to the problem of computing a simulation on an LTS. In order to simplify the
explanation of the reduction, we first define the notion of an environment, which
is a tuple of the form (p, a, P \ {p′}) obtained by removing a state p′ ∈ P from

the transition p
a−→ P of A. Intuitively, an environment records the neighbours

of the removed state p′ in the transition p
a−→ P . We denote the set of all

environments of A by Env(A). Formally, we define the LTS A� = (Σ, Q�,∆�)
as follows:

• Q� = {q� | q ∈ Q} ∪ {(p, a, P)� | (p, a, P) ∈ Env(A)}.

• ∆� = {(p, a, P \ {p′})� a−→ p�, p′
� a−→ (p, a, P \ {p′})� | P ∈ δ(p, a), p′ ∈

P}.

An example of the reduction is given in Figure 4. The goal of this reduction
is to obtain a simulation relation on A� with the following property: p� is
simulated by q� in A� iff p �B q in A. However, the maximal simulation on
A� is not sufficient to achieve this goal. Some essential conditions for backward
simulation (e.g., p �B q =⇒ p �α q) are missing in A�. This can be fixed by
defining a proper initial preorder I.

Formally, we let I = {(q�1 , q
�
2) | q1 �ι q2∧q1 �α q2}∪{((p, a, P)�, (r, a,R)�) |

P �∀∃F R}. Observe that I is a preorder. Recall that according to the definition

23

of the backward simulation, p �B r implies that (1) p �ι r, (2) p �α r, and (3)

for all transitions q
a−→ P∪{p}, p 6∈ P , there exists a transition s

a−→ R∪{r}, r 6∈ R
such that q �B s and P �∀∃F R. The set {(q�1 , q

�
2) | q1 �ι q2 ∧ q1 �α q2} en-

codes conditions (1) and (2) required by the backward simulation, while the set
{((p, a, P)�, (r, a,R)�) | P �∀∃F R} encodes condition (3). A simulation relation
�I can be computed using the aforementioned procedure with LTS A� and the
initial preorder I. The following theorem shows the correctness of our approach
to computing backward simulation.

Theorem 2. For all q, r ∈ Q, we have q �B r iff q� �I r�.

Proof. (if) We define� to be a binary relation onQ such that p � r iff p� �I r�.
We show that � is a backward simulation on Q which immediately implies the
result.

Suppose that p � r and p′
a−→ {p} ∪ P where p 6∈ P is a transition of A.

Since p � r, we know that p� �I r�; and since p′
a−→ {p} ∪ P is a transition

of A, we know by definition of A� that p�
a−→ (p′, a, P)� and (p′, a, P)�

a−→ p′�

are transitions in A�. Since �I is a simulation, we can find two transitions
r�

a−→ (r′, a, R)� and (r′, a, R)�
a−→ r′� in A� with (p′, a, P)� �I (r′, a, R)�

and p′� �I r′�. ¿From p′� �I r′�, (p′, a, P)� �I (r′, a, R)�, and the definition
of the initial preorder I, we have p′ � r′ and P �∀∃F R. It follows that � is in
fact a backward simulation parametrised by �F .

(only if) Define �� as a binary relation on Q� such that p� �� r� iff
p �B r and (p, a, P)� �� (r, a,R)� iff P �∀∃F R and p �B r. By definition,
��⊆ I. We show that �� is a simulation on Q� which immediately implies
the result. In the proof, we consider two sorts of states in A�; namely those
corresponding to states and those corresponding to “environments”.

Suppose that p� �� r� and the transition p�
a−→ (p′, a, P)� is in A�. Since

p� �� r�, we know that p �B r. From the transition p�
a−→ (p′, a, P)� and by

definition of A�, p′
a−→ P ∪ {p} is a transition in A. Since p �B r, there exists

a transition r′
a−→ R ∪ {r} in A such that p′ �B r′ and P �∀∃F R. It follows

that there exists a transition r�
a−→ (r′, a, R)� in A� such that (p′, a, P)� ��

(r′, a, R)�.

Suppose that (p, a, P)� �� (r, a,R)� and the transition (p, a, P)�
a−→ p� is

in A�. Since (p, a, P)� �� (r, a,R)�, we know that P �∀∃F R and p �B r. By

definition of A�, the transition (r, a,R)�
a−→ r� is in A�. Since p �B r, we

have p� �� r�. Together we have there exists a transition (r, a,R)�
a−→ r� in

A� such that p� �� r�. It follows that �� is a simulation on Q�.

5.2. Complexity of Computing Backward Simulation

The complexity comes from three parts of the procedure: (1) compiling
A into its corresponding LTS A�, (2) computing the initial preorder I, and
running the algorithm from [7] for computing the LTS simulation relation.

Let now n and m be the number of states and transitions in A, respectively.
The LTS A� has at most nm+n states and 2nm transitions. It follows that

24

Part (3) has both time complexity and space complexity O(|Σ|n2m2). As we
will show, among the three parts, Part (3) has the highest time and space
complexity and therefore computing backward simulation also has time and
space complexity O(|Σ|n2m2). Under our definition of ABA, every state has
at least one outgoing transition for each symbol in Σ. It follows that m ≥
|Σ|n. Therefore, we can also say that the procedure for computing the maximal
backward simulation has time and space complexity O(nm3).

Initial Preorder for Computing Backward Simulation. Let us recall that the
preorder I is the union of two components: {(q�1 , q

�
2) | q1 �ι q2 ∧ q1 �α q2}

and {((p, a, P)�, (r, a,R)�) | ∀rj ∈ R∃pi ∈ P : pi �F rj}. It is trivial that
the first set can be computed by an algorithm with time complexity O(n2).
However, a näıve algorithm (pairwise comparison of all different environments
in Env(A)) for computing the second set has time complexity O(n4m2). Here,
we will describe a more efficient algorithm, which allows the computation of I
in time O(n2m2) and space O(n).

The main idea of the algorithm is the following. For each pair of transitions
of A, it computes all the pairs of environments that arise from them (by deleting
a right-hand side state) and adds them to I at once, reusing a lot of information
that a näıve algorithm would compute repeatedly for each pair of environments.
For a fixed pair of transitions, this procedure has time complexity O(n2) and
space complexity O(n). Because A has at most m2 different pairs of transitions
and the O(n) memory needed for the data structures for one pair of transitions
can be reused for the other pairs, the second component of I can be computed
in time O(n2m2) and space O(n).

We now explain how to efficiently compute all pairs of environments that
arise from a given pair of transitions and that are related by I. Let us fix
transitions p

a−→ P and r
a−→ R. We will maintain a function β : R→ {T, F}∪P

such that:

β(r′) =

 T if at least two states in P are forward smaller than r′.
F if no state in P is forward smaller than r′.
p′ if p′ is the only state in P such that p′ �F r′.

The function β can be computed by lines 1-4 of Algorithm 1 in time O(n2) and
space O(n). Let us consider a pair of states ((p, a, P \ {p′})�, (r, a,R \ {r′})�)
in A�. This pair can be added to I if and only if the following two conditions
hold:

1. ∀r̂ ∈ (R \ {r′}).β(r̂) 6= F .

2. ∀r̂ ∈ (R \ {r′}).β(r̂) 6= p′.

The algorithm first pre-processes p
a−→ P and r

a−→ R, computing certain infor-
mation that will allow us to check the two conditions in constant time for every
pair of environments arising from the two transitions.

The pre-processing needed for efficient checking of Condition (1) is the fol-
lowing. We define r̂ ∈ R as the KeyState if r̂ is the only one state in R such

25

Algorithm 1: Add Pairs of States to I

Input: Two transitions p
a−→ P and r

a−→ R in A.
/* Computing function β */

forall r′ ∈ R do β(r′) := F ;1

forall p′ ∈ P, r′ ∈ R do2

if p′ �F r′ then3

if β(r′) = F then β(r′) := p′;4

else β(r′) := T ;5

/* Preprocessing for Condition (1) (computing KeyState) */

forall r′ ∈ R do if β(r′) = F then6

if there is no KeyState then Let r′ be the KeyState;7

else Terminate the algorithm;8

/* Preprocessing for Condition (2) (computing function γ) */

forall p′ ∈ P do γ(p′) := F ;9

forall r′ ∈ R do if β(r′) /∈ {T, F} then10

if γ(β(r′)) = F then γ(β(r′)) := r′;11

else γ(β(r′)) := T ;12

/* main loop */

forall p′ ∈ P, r′ ∈ R do13

if there is no KeyState or r′ is the KeyState then14

if γ(p′) ∈ {F, r′} then add ((p, a, P \ {p′})�, (r, a,R \ {r′})�) to I15

that β(r̂) = F . Given the function β, the KeyState can be found efficiently
(with time complexity O(n) and space complexity O(1)) by scanning through
R and

• if there exist two distinct states r1, r2 ∈ R such that β(r1) = β(r2) = F ,
the algorithm terminates immediately because it follows that none of the
pairs of environments generated from the given pair of transitions satisfies
the requirement of I;

• if there exists only one state such that β maps it to F , let it be the
KeyState.

Then we have that Condition (1) is satisfied if there is no KeyState or r′ is the
KeyState.

For efficient checking of Condition (2), we maintain a function γ : P →
{T, F} ∪R such that

γ(p′) =

 F if β−1(p′) = ∅
r′ if β−1(p′) = {r′}
T otherwise.

The function γ can be found in time O(n2) and space O(n) by scanning once
through β for each element of P . With the function γ, Condition (2) can easily

26

be verified by checking if γ(p′) ∈ {F, r′}, which means that for all the states r̂ in
R\{r′}, there is some state p̂ different from p′ such that p̂ �F r̂. In Algorithm 1,
we first find out the KeyState if there is one and compute the function γ from β.
Then in the main loop, for each pair of states ((p, a, P \{p′})�, (r, a,R\{r′})�),
we check if it belongs to I by verifying the Conditions (1) and (2). Since it is easy
to see that Algorithm 1 has time complexity O(n2) and space complexity O(n)
(not taking into account the space needed for I itself), we can conclude that the
initial preorder I can be computed in time O(n2m2) and space O(m2) (encoding
of I). This leads to the following theorem that summarises the complexity of
computing the backward simulation.

Theorem 3. Maximal backward simulation parametrised by a given transitive
and reflexive forward simulation can be computed with both time and space com-
plexity O(|Σ|n2m2) ⊆ O(nm3).

6. Experimental Results

In this section, we evaluate the performance of ABA mediated minimisa-
tion by applying it to (1) the algorithm proposed by Gastin and Oddoux [5]
for translating linear temporal logic (LTL) formulae to nondeterministic Büchi
automata (NBA) and (2) the algorithm proposed by Vardi and Kupferman [2]
for complementing NBA.

6.1. Translating LTL Formulae to Nondeterministic Büchi Automata

In the algorithm of [5] for translating LTL formulae to NBA, ABA are used
as an intermediate representation. To be more specific, the translation consists
of three steps: (1) an LTL formula is translated to an equivalent very weak ABA
with co-Büchi acceptance conditions, (2) the ABA is subsequently translated to
an equivalent generalised nondeterministic Büchi automaton (GBA), and then
(3) the GBA is translated to an equivalent NBA. The resulting NBA is typically
used as a formal specification against which some system is verified by model
checking, and thus its size is crucial for the efficiency of the verification process.
Below, we provide experimental evidence that our algorithm for reducing the size
of ABA can be useful for reducing the size of NBA produced by the translation
algorithm and hence for the efficiency of the entire verification process.

Our experiments were carried out as follows. Three sets of 200 random LTL
formulae (with 1, 2, and 3 atomic propositions, respectively) were generated
by the GOAL [11] tool and then used as inputs of the translation experiments.
For each input LTL formula, we (1) translated it to a very weak ABA with
co-Büchi acceptance conditions, (2) processed the ABA using one of the op-
tions mentioned below, and (3) translated it back to an equivalent NBA. In
the translation, we considered the following three options: (1) Original: we
kept the ABA as it was. (2) Mediated: we minimised the ABA with mediated

27

Table 1: Combining minimisation with LTL to Büchi translation

|AP | ABA NBA
Time (ms)

St. Tr. St. Tr.
Original

1
4.39 6.94 4.18 9.13 9.1

Mediated 3.81 6.3 3.94 8.26 42.9
Forward 4.26 6.52 3.94 7.75 31.5

Original
2

6.5 13.29 8.21 44.99 27.21
Mediated 5.09 11.52 6.76 26.63 101.4
Forward 6.16 12.19 7.11 29.54 67.6

Original
3

18.86 49.49 33 359.3 129.91
Mediated 12.34 42.4 22.9 159.8 12339.34
Forward 17.78 45.49 26.7 188.5 5814.78

equivalence. (3) Forward: we minimised the ABA with forward equivalence4.
The results are given in Table 1.

In Table 1, the columns “ABA” and “NBA” give the average numbers of
states and transitions of the intermediate ABA and the resulting NBA. The
column “Time(ms)” is the average execution time of the translation in millisec-
onds. From the table, we can see that minimisation by mediated equivalence
can result in smallest final NBA, with the cost of additional execution time.
However, in most of the cases, the execution time of the translation takes a very
small portion of the entire verification task only.

6.2. Complementing Nondeterministic Büchi Automata

In the algorithm [2] for complementing NBA, ABA are again used as an
intermediate model. To be more specific, the complementation algorithm has
two steps: (1) it translates an NBA to an ABA that recognises its complement
language, and (2) it translates the ABA back to an equivalent NBA. The second
step is an exponential procedure (exponential in the size of the ABA), hence
reducing the size of the ABA before the second step usually pays off.

We have performed the following experiments. Three sets of 100 random
NBA (of |Σ| = 2, 4, and 8, respectively) were generated by the GOAL [11] tool
and then used as inputs of the complementation experiments. For each input
NBA, we first translated it to an ABA that recognised its complement language.
The ABA was (1) processed according to one of the options (Original, Mediated,
or Forward) described above and then (2) translated back to an equivalent NBA
using an exponential procedure5. The results are given in Table 2 and Table 3.
Table 2 is an overall comparison between the three different options and Table 3
is a more detailed comparison between Mediated and Forward minimisation.

4We kept the ABA very weak by not merging a bigger state with a smaller state according
to the partial order defined in the very weak ABA.

5For the option “Original”, we also used the optimisation suggested in [2] that only takes

28

Table 2: Combining minimisation with complementation

|Σ| NBA Complemented-NBA
Time (ms)

Timeout
St. Tr. St. Tr. (10 min)

Original
2 2.5 3.3

13.7 52.34 4236 0
Mediated 6.73 32.89 3029 0
Forward 9.47 54.91 9548 0

Original
4 3.3 6.0

46.98 350.98 12926.87 5
Mediated 24.42 420.18 1426.84 6
Forward 25.7 310.17 917.76 8

Original
8 4.7 11.9

141.3 1809.29 40634.5 22
Mediated 75.85 2735.3 10267.6 23
Forward 94.12 2957.2 18099.2 26

Table 3: Comparison: Mediated vs. Forward. We only compare the cases that both approaches
finished within the timeout period.

|Σ| ABA Minimised-ABA Complemented-NBA
St. Tr. St. Tr. St. Tr.

2 11.8 39.8 7 26.9 9.47 54.91
Forward 4 20.3 146.7 10.55 93.43 25.7 310.17

8 36.4 517.4 15.245 275.73 94.12 2957.51
2 11.8 39.8 5.66 20.49 6.73 33.89

Mediated 4 20.3 146.7 8.46 72.56 20.38 235.93
8 36.4 517.4 13.59 238 70.54 2429.97

In Table 2, the columns “NBA” and “Complemented-NBA” give the average
numbers of states and transitions of the input NBA and the complemented
NBA. The column “Time(ms)” is the average execution time in milliseconds.
“Timeout” is the number of cases that could not be finished within the timeout
period (10 min). Note that in the table, the cases that could not be finished
within the timeout period are excluded from the average number. From the
table, we can see that minimisation by mediated equivalence can effectively
speed up the complementation and also reduce the size of the complemented
NBA.

In Table 3, we compare the performance between Mediated and For-
ward minimisation in detail. The columns “ABA”, “Minimised-ABA”, and
“Complemented-NBA” give the average numbers of states and transitions of the
ABA before minimisation, the ABA after minimisation, and the complemented
BA. From the table, we observe that mediated minimisation consistently results
in a better reduction than forward minimisation6.

a consistent subset.
6The experimental results given here are different from the preliminary version of the

29

Some Notes on the Limitations of ABA Minimisation

We also tested mediated minimisation on complementing the hand-optimised
Büchi automata in the Büchi store [12]. However, the result is not positive. The
main reason is that the simulation-preorder on those hand-optimised automata
is extremely sparse. Notice that all simulation equivalent states are already
merged on these optimised automata. As a consequence, there is only a very
limited space for further state/transition reduction in the produced ABA.

7. Conclusion and Future Work

We have introduced a novel notion of backward simulation for alternating au-
tomata. Inspired by our previous work simulation reduction for tree automata,
we combined forward and backward simulation to form a coarser relation called
mediated preorder and showed that the quotient wrt. mediated equivalence has
the same language as the original ABA. Moreover, we developed an efficient al-
gorithm for computing backward simulation and mediated equivalence. Experi-
mental results show that the mediated reduction of ABA noticeably outperforms
the reduction based on forward simulation.

In the future, we would like to extend the mediated equivalence by build-
ing it on top of even coarser forward simulation relations, e.g., delayed or fair
forward simulation relations [6]. Also, we would like to study the possibility
of using mediated preorder to remove redundant transitions (similar to the ap-
proaches described in [13]). We believe that the extensions described above can
considerably improve the performance of mediated reduction.

References

[1] P. A. Abdulla, Y.-F. Chen, L. Hoĺık, T. Vojnar, Mediating for Reduction
(on Minimizing Alternating Büchi Automata), in: Proc. of FSTTCS’09,
Vol. 4 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009,
pp. 1–12.

[2] O. Kupferman, M. Y. Vardi, Weak alternating automata are not that weak,
ACM Transactions on Computational Logic 2 (3) (2001) 408–429.

[3] M. Y. Vardi, Automata-Theoretic Model Checking Revisited, in: Proc. of
VMCAI’07, Vol. 4349 of LNCS, Springer, 2007, pp. 137–150.

paper [1] for two reasons. First, we re-ran the experiments on a different machine with
a different set of random examples. Second, in Table 3, we compare only cases for which both
approaches finished within the timeout period. If only one of them finished in the timeout
period while the other did not, we dropped that case. This excluded some cases when one of
the approaches finished with a huge final automaton while the other did not produce anything
within the timeout period. The data presented in [1] was heavily dominated by such cases.

30

[4] A. Farzan, Y.-F. Chen, E. M. Clarke, Y.-K. Tsay, B.-Y. Wang, Extending
Automated Compositional Verification to the Full Class of Omega-Regular
Languages, in: Proc. of TACAS’08, Vol. 4963 of LNCS, Springer, 2008, pp.
2–17.

[5] P. Gastin, D. Oddoux, Fast LTL to Büchi Automata Translation, in: Proc.
of CAV’01, Vol. 2102 of LNCS, Springer, 2001, pp. 53–65.

[6] C. Fritz, T. Wilke, Simulation relations for alternating Büchi automata,
Theoretical Computer Science 338 (1-3) (2005) 275–314.

[7] P. A. Abdulla, A. Bouajjani, L. Hoĺık, L. Kaati, T. Vojnar, Computing
Simulations over Tree Automata: Efficient Techniques for Reducing Tree
Automata, in: Proc. of TACAS’08, Vol. 4963 of LNCS, Springer, 2008, pp.
93–108.

[8] P. A. Abdulla, L. Hoĺık, L. Kaati, T. Vojnar, A Uniform (Bi-)Simulation-
Based Framework for Reducing Tree Automata, Electronic Notes in Theo-
retical Computer Science 251 (2009) 27–48.

[9] S. Gurumurthy, O. Kupferman, F. Somenzi, M. Y. Vardi, On Complement-
ing Nondeterministic Büchi Automata, in: Proc. of CHARME’03, Vol. 2860
of LNCS, Springer, 2003, pp. 96–110.

[10] C. Fritz, T. Wilke, State Space Reductions for Alternating Büchi Au-
tomata, in: Proc. of FSTTCS’02, Springer, London, UK, 2002, pp. 157–168.

[11] Y.-K. Tsay, Y.-F. Chen, M.-H. Tsai, K.-N. Wu, W.-C. Chan, GOAL: A
Graphical Tool for Manipulating Büchi Automata and Temporal Formulae,
in: Proc. of TACAS’07, Vol. 4424 of LNCS, Springer, 2007, pp. 466–471.

[12] Y.-K. Tsay, M.-H. Tsai, J.-S. Chang, Y.-W. Chang, C.-S. Liu, Buchi Store:
an open repository of ω-automata, STTT 15 (2) (2013) 109–123.

[13] F. Somenzi, R. Bloem, Efficient Büchi Automata from LTL Formulae, in:
Proc. of CAV’00, Vol. 1855 of LNCS, Springer, 2000, pp. 248–263.

31

