
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–27
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Boosted Decision Trees for Behaviour Mining of
Concurrent Programs

R. Avros2, V. Dudka1, B. Křena1, Z. Letko1, H. Pluháčková1,
S. Ur1, T. Vojnar1, Z. Volkovich2

1 IT4Innovations Centre of Excellence, FIT, Brno University of Technology, Brno, CZ
2 Ort Braude College of Engineering, Software Engineering Department, Karmiel, IL

SUMMARY

Testing of concurrent programs is difficult since the scheduling non-determinism requires one to test a huge
number of different thread interleavings. Moreover, repeated test executions that are performed in the same
environment will typically examine similar interleavings only. One possible way how to deal with this
problem is to use the noise injection approach, which influences the scheduling by injecting various kinds
of noise (delays, context switches, etc.) into the common thread behaviour. However, for noise injection
to be efficient, one has to choose suitable noise injection heuristics from among the many existing ones as
well as to suitably choose values of their various parameters, which is not easy. In this paper, we propose
a novel way how to deal with the problem of choosing suitable noise injection heuristics and suitable values
of their parameters (as well as suitable values of parameters of the programs being tested themselves).
Here, by suitable, we mean such settings that maximize chances of meeting a given testing goal (such
as, e.g., maximizing coverage of rare behaviours and thus maximizing chances to find rarely occurring
concurrency-related bugs). Our approach is, in particular, based on using data mining in the context of
noise-based testing to get more insight about the importance of the different heuristics in a particular testing
context as well as to improve fully automated noise-based testing (in combination with both random as well
as genetically optimized noise setting).

Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Automated testing, concurrent programs, noise injection, data mining, AdaBoost, genetic
algorithms.

1. INTRODUCTION

Testing of concurrent programs is known to be rather difficult since concurrently running threads
can be executed in many different interleavings out of which only a small fraction can contain
errors. A single execution of available tests used in traditional unit and integration testing usually
exercises a limited subset of all possible interleavings only and hence can easily miss possibly
present concurrency-related errors. Moreover, repeated executions of the same tests in the same
environment usually exercise similar interleavings [3, 8], and so they will not help much to reveal
errors hiding in rare interleavings.

One of the main approaches that have been proposed to cope with the above problem is noise
injection [8, 13]. This approach is based on disturbing thread scheduling (e.g., by injecting,
removing, or modifying delays, forcing context switches, or halting selected threads) with the aim of
increasing the number of interleavings witnessed within repeated executions of a given concurrent
program. Noise injection can drive the execution of a program into scenarios that are legal but

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2

less probable under common scheduling conditions, which can increase the chance of spotting
concurrency-related errors that often hide in rare behaviours.∗

However, as we have shown in our previous works, e.g., [35, 21, 23, 13], the efficiency of noise
injection highly depends on the type of the generated noise, on the strength of the noise (which
are both determined using some noise seeding heuristics), as well as on the program locations
and instants of program executions where some noise is injected (which is determined using noise
placement heuristics). Many different noise seeding and noise placement heuristics have been
proposed and experimentally evaluated. Unfortunately, choosing the right heuristics for the given
context is not easy. Therefore, random selection of noise seeding and noise placement heuristics
as well as random setting of their parameters is often used. As an improvement on this practice,
applications of single-objective as well as multiple-objective genetic algorithms have been proposed
in [23, 21] to optimize the noise setting for a given context.

In this paper, based on our preliminary work [1], we propose a novel approach to choose suitable
noise seeding and noise placement heuristics as well as suitable values of their parameters (and
possibly also values of parameters of the tested programs themselves). The aim is to maximize
chances of meeting a given testing goal (such as, e.g., maximizing coverage of rare behaviours
and thus maximizing chances to find rarely occurring concurrency-related bugs). Our approach is,
in particular, based on using data mining, applied on a sample of test runs of a given concurrent
program, to derive classifiers capable of distinguishing which test and noise settings are suitable
and which unsuitable for the given testing goal. To be more precise, we use decision trees and the
AdaBoost machine learning algorithm, which is a well-known technique for building high-quality
classifiers.

We show how AdaBoost can be applied to gain new knowledge about efficient noise-based testing
of a given concurrent program with a given testing goal (or even more generally for a class of
programs and/or testing goals). Subsequently, we show how the results obtained by data mining
can be used to fully automatically improve testing based on randomly set up noise injection. This
is achieved by either filtering out unsuitable randomly chosen settings or by narrowing down the
random generation to suitable ranges of noise and/or test case parameters. Moreover, we also show
that the obtained results can be used to guide and consequently speed up an automated search-based
process of finding suitable values of test and noise parameters. For that purpose, we combine the
process of mining of suitable settings of noise-based testing with a subsequent genetic optimization
restricted to the values considered as suitable by data mining.

In order to show that the proposed approach can indeed be useful, we apply it for optimizing
the process of noise-based testing for two particular testing goals on a set of several benchmark
programs. Namely, we consider the testing goals of reproducing known errors and covering rare
interleavings which are likely to hide so far unknown bugs. Our experimental results confirm that
the proposed approach can discover useful knowledge about the influence and suitable values of test
and noise parameters, which we show in two ways: (1) We manually analyse information hidden in
the classifiers, compare it with our long-term experience from the field, and use knowledge found as
important across multiple case studies to derive some new recommendations for noise-based testing.
(2) We show that the obtained classifiers can be used—in a fully automated way—to significantly
improve efficiency of noise-based testing using a random selection of test and noise parameters as
well as to be successfully combined with finding suitable noise settings by genetic optimization.

Plan of the paper. The rest of the paper is structured as follows. Section 2 provides a brief
introduction to the techniques that our approach builds on—in particular, noise injection,
concurrency coverage metrics, the AdaBoost machine learning algorithm, and genetic algorithms.
Section 3 presents our proposal to use data mining in noise-based testing of concurrent programs,
and Section 4 provides results of experiments with the proposed approach. Section 5 summarizes
the related work. Finally, Section 6 concludes the paper.

∗Noise injection is, of course, not much appropriate when studying real-time or performance aspects of a program, which
can be influenced by noise injection.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 3

2. PRELIMINARIES

In this section, we introduce the basics of several areas that are important for a proper understanding
of the rest of the paper—namely: (1) noise injection for testing concurrent software and its various
parameters whose suitable values we search through the new approach proposed in this paper,
(2) concurrency coverage metrics that are used to steer and evaluate noise-based testing, (3) the
AdaBoost approach to machine learning that is at the heart of our approach to finding suitable values
of noise parameters, and (4) genetic algorithms that were used for finding suitable noise settings in
our previous work.

2.1. Noise Injection

As we have already said, noise injection disturbs the common scheduling of concurrently executing
threads in order to allow for testing less common (but legal) schedules. In Figure 1, we illustrate
two of the possible effects that noise injection can have. Figure 1(a) illustrates a scenario in which
the usual order in which two threads execute some events is swapped by noise injection (e.g., by
an inserted delay). This can uncover a bug that happens only if the events happen in the swapped
order. Note that if the swapped order can happen with noise injection, then the programmer did
not exclude it using any synchronization means, and it can happen even without noise injection.
If there was some synchronization in place, noise injection could not overcome it. This is, no new
behaviour is introduced; just without noise injection, the probability of the events happening in the
swapped order may be very low. Figure 1(b) then shows a situation where noise injection prolongs
the time spend by a thread in a critical section, which can lead to another thread executing its critical
section in parallel with the first one, possibly causing some concurrency error. As before, if such
an error happens, it is a real error since the programmer did not prevent the situation by using any
synchronization means, which noise injection would not be able to overcome. Thus, the situation
can happen even without noise injection, though perhaps with a much lower probability.

Figure 1. Two examples of the effect of noise injection: (a) reordering of the common order of two events
in a concurrent program execution and (b) prolongation of the time spent by a thread in a critical section,

leading to an overlapped execution of two critical sections.

We now provide some more technical details on noise injection. A thorough discussion of the
technique can be found, e.g., in [13]. Noise injection heavily depends on two kinds of heuristics—
namely, noise seeding heuristics and noise placement heuristics. The noise seeding heuristics
determine the type and strength of the generated noise whereas the noise placement heuristics
determine at what instants of program executions the noise gets injected.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4

In the experiments conducted in this work with concurrent Java programs, we consider six basic
and two additional noise seeding heuristics that are all commonly used in noise-based testing. It is
assumed that one always uses one of the basic heuristics, which can but need not be combined with
one or both of the additional heuristics.

The basic noise seeding heuristics are: yield, sleep, wait, busyWait, synchYield, and mixed. The
yield and sleep heuristics inject calls of the yield() and sleep() methods, respectively. In the
case of the wait heuristic, the concerned threads must first obtain a special shared monitor, then
call the wait() method, and finally release the monitor. The synchYield heuristic combines the
yield heuristic with obtaining the monitor as in the case of the wait heuristic. The busyWait heuristic
inserts a busy-waiting loop that is executed for some time. Finally, the mixed heuristic randomly
chooses one of the five other basic heuristics at each noise injection location.

The additional noise seeding heuristics are: haltOneThread and timeoutTamper. The
haltOneThread technique occasionally stops one thread until any other thread cannot run. The
timeoutTamper heuristic randomly reduces the time-outs used when calling sleep() in the tested
program (to test that programmers do not try to synchronize their threads by explicitly delaying
some events).

All the above mentioned seeding techniques are parameterised by the so-called strength of noise.
In the case of the sleep and wait heuristics, the strength gives the time to wait. In the case of the
yield heuristic, the strength says how many times the yield() method should be called.

The noise placement heuristics are: the random heuristic, the sharedVarNoise heuristic, and the
coverage-based heuristic. The random heuristic injects noise with some probability before every
concurrency-related event in the program execution. The sharedVarNoise heuristic allows one to
focus noise primarily at accesses to shared variables. There are two versions of this heuristic:
sharedVarNoise-all which targets all accesses to shared variables and sharedVarNoise-one which
targets accesses to a single randomly chosen shared variable in each test execution. Moreover,
for both of these heuristics, one can decide whether the noise should be inserted solely when
accessing shared variables or also at synchronisation operations such as locking (the so-called
nonVariableNoise heuristic).

The coverage-based heuristic is based on collecting information about pairs of subsequent
accesses to a shared variable from different threads and on inserting noise before further executions
of the program instruction by which the given variable was accessed first (or before acquiring the
shared lock that guards the given access provided there is such a lock). This is motivated by trying
to reverse the ordering in which threads access variables.

As we have mentioned already above, the noise placement heuristics inject noise at the
selected points of program executions with some probability. This probability is determined by
the noise frequency parameter. The values of this parameter range from never inserting a noise
to always inserting it. Additionally, the coverage-based heuristic can be extended by another
heuristic (denoted as the coverage-based-frequency heuristic that monitors the frequency with which
a program location is visited during testing and injects noise at the given program location with
a probability adjusted according to this frequency—the more often a program location is executed
the lower probability is used.

2.2. Concurrency Coverage Metrics

Coverage metrics play a crucial role in testing as they allow one to estimate how well a program
has been tested and thus to control the testing process. However, coverage metrics successfully
used for testing of sequential programs (like statement coverage) are not sufficient for testing
of concurrent programs because they do not reflect concurrency-related aspects of executions. In
particular, they do not reflect in any way how many interleavings or—even more importantly—how
many interleavings that are important from some point of view (e.g., detection of some kind of error)
have been witnessed.

Various kinds of concurrency coverage metrics have been proposed in the literature, cf., e.g.,
[2, 34]. In this work, we, in particular, use the GoldiLockSC∗ coverage metric proposed in [34].
We chose this metric due to our positive experience with its behaviour obtained in our previous

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 5

experiments. This metric does usually not suffer from shoulders, it does not immediately jump
to almost full coverage, it does not keep increasing forever, and it uses an advanced mechanism
to distinguish interleavings from the point of view of the involved synchronization. The metric
measures how many internal states the GoldiLock data race detector with the fast short circuit
checks [10] would reach for distinct threads when monitoring the given program. This detector
is one of the most advanced data race detectors which combines the use of lock sets with computing
the happens-before relation. The control of the checker can thus distinguish in a quite involved way
different classes of interleavings seen so far.

2.3. The AdaBoost Machine Learning Algorithm

The core idea of our approach is to apply AdaBoost in noise-based testing to derive classifiers
capable of distinguishing suitable and unsuitable settings of noise parameters as well as parameters
of the programs under test (and consequently to facilitate searching for suitable test and noise
settings). The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [17, 18, 19], is
a widespread machine learning technique based on improving (“boosting”) the strength of multiple
weak classifiers. This is achieved by weighting outputs of the weak classifiers and combining them
into a single strong classifier. A weak classifier is any classifier that behaves better than random
guessing (i.e., its error degree is less than 0.5 in the binary classification case).

AdaBoost works in iterations. In each iteration, the method aims at producing a new weak
classifier in order to improve the precision of the so far constructed strong classifier. To construct the
new classifier, objects in the training set are assigned weights. Initially, the weights are distributed
uniformly. In each iteration, weights of wrongly classified objects are enlarged, which is then used
in the next round to derive and add a new weak classifier focusing on the hard examples in the
training set, hence improving the precision of the strong classifier.

In the binary classification case, the input of AdaBoost is a set X = {(x1, y1), . . . , (xn, yn)}
where each xi is an object from some space X of objects that we might want to classify as having or
not having some property of interest, and each label yi belongs to the set Y = {1,−1}, which says
whether xi does or does not have the property of interest. The input set X is then commonly split to
two subsets—the training set T and the validation set V . The training set is used to get a classifier
while the validation set is used for evaluating the precision of the obtained classifier.

The final strong classifier is obtained in the form

F (x) = sign

(
T∑

i=1

wiri(x)

)
where x ∈ X , T is the number of boosting iterations, ri is the weak classifier produced at the i-th
iteration of the algorithm (producing decisions from the set Y), and wi is a non-negative weight
expressing confidence in the i-th weak classifier.

Subsequently, precision of the obtained classifier should be evaluated on the validation set V . For
that, one can use the notions of accuracy and sensitivity, based on the following quantities [31]:

• The number TP of true positives which is the number of correctly classified positive
examples, i.e., those objects x where (x, 1) ∈ V and F (x) = 1.

• The number FP of false positives which is the number of wrongly classified negative
examples, i.e., those objects x where (x,−1) ∈ V but F (x) = 1.

• The number TN of true negatives which is the number of correctly classified negative
examples, i.e., those objects x where (x,−1) ∈ V and F (x) = −1.

• The number FN of false negatives which is the number of wrongly classified negative
examples, i.e., those objects x where (x, 1) ∈ V but F (x) = −1.

Accuracy then gives the probability of a successful classification and can be computed as the fraction
of the number of correctly classified items and the total number of items, i.e.:

accuracy =
TP + TN

TP + FP + TN + FN

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6

On the other hand, sensitivity (also called as the true positive rate or TPR) expresses the fraction
of correctly classified positive results and can be computed as the number of the items that
were correctly classified positively divided by the sum of the correctly positively and incorrectly
negatively classified items (see, e.g., [57]):

sensitivity =
TP

TP + FN

Moreover, in order to avoid over-fitting and to increase confidence in the obtained results, the
process of choosing the training and validation set and of learning and validating the classifier
can be repeated several times, allowing one to judge the average values and standard deviation of
accuracy and sensitivity. If the obtained classifier is not validated successfully, one can repeat the
AdaBoost algorithm with more boosting iterations and/or a larger input set X .

2.4. Genetic Algorithms

Next, we present a brief introduction to genetic algorithms whose application for finding suitable
values of test and noise parameters was proposed in [21, 23]. In this work, we compare the efficiency
of these approaches with our approach based on data mining. Moreover, we also show that the
approaches based on genetic algorithms and our approach based on data mining can be very well
combined, leading in many cases to further improved efficiency.

Genetic algorithms [62] are metaheuristic search techniques which try to find the best solution by
sampling the space of possible (candidate) solutions, usually denoted as individuals in this context.
A finite set of individuals is called a population. Each individual is given by a set of properties of
the solution it represents—denoted as genes in the genome of the individual. Individuals (or , more
precisely, their genomes) are usually encoded as vectors. In the context of noise-based testing of
concurrent programs, an individual encodes a concrete combination of the noise seeding and noise
placement heuristics to be used, the concrete values of the different parameters with which these
heuristics are to be applied, as well as values of the various parameters of the program under test
(provided that the program—or, more precisely, its tests—are parameterized).

Genetic algorithms start with an initial population and evaluate all its members using a fitness
function. Based on this evaluation, some of the individuals are chosen by selection operators to
become parents of new individuals called children. The new individuals are usually obtained by
crossing pairs of selected parents followed by a mutation. This process, called breeding, proceeds
until the new child population is completed. New generations are gradually created till a sufficiently
good solution is found or some maximum number of generations is reached.

Selection operators. From the current population, parents for breeding can be chosen
using different techniques. For instance, the fitness-proportionate selection selects individuals
proportionally to their fitness—individuals with a higher fitness have a higher probability to be
selected for breeding than individuals with a lower fitness [40]. The tournament selection is based
on a tournament—a specific number of individuals is randomly selected from the current population
and the one with the highest fitness is taken for breeding [40].

Crossover. When two parents are selected for breeding, a crossover takes place—two new
individuals are created by a recombination of the genomes of the parents (i.e., by exchanging
parts of the vectors encoding them). The most common crossover techniques are one-point, two-
point, and uniform crossover [40]. When the one-point crossover is applied, the crossing occurs at
one place only. A position c of the crossing is chosen between 1 and the length of the genome l.
New individuals are obtained by exchanging gens of parents from the position c to the end of their
genomes. For a two-point crossover, two positions of crossing c1 and c2 are chosen, both between 1
and l, and new individuals are obtained by exchanging gens of the parents just between the positions
c1 and c2. The uniform crossover technique goes through the whole genomes and exchanges a pair
of corresponding gens with some predefined probability.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 7

Mutation. Mutation is applied on a single individual—each gen from the individual’s genome is
replaced by any value permissible for this gen with some predefined probability.

Single-Objective Genetic Algorithm (SOGA). In single-objective optimization [21], the set of
candidate solutions needs to be totally ordered according to the values of the fitness function.
However, SOGA can be used to solve multi-objective problems, such as the problem of finding
optimal test and noise parameters considered in this work, too. The traditional approach to solve
such problems using SOGA is to bundle all objectives into a single scalar fitness function using
a weighted sum of objectives. For instance, for three objectives, one can use a fitness function of the
form:

fitness = w1 ∗
metric1

metricmax
1

+ w2 ∗
metric2

metricmax
2

+ w3 ∗
metric3

metricmax
3

.

Here, the objectives are measured using metrics metrici with maximum values metricmax
i for

i ∈ {1, 2, 3}. The efficiency of this approach heavily depends on the selected weights, which are
sometimes not easy to determine.

Multi-Objective Genetic Algorithms (MOGA). Multi-objective optimization [22, 23] treats
objectives separately and compares candidate solutions using the Pareto dominance relation:
A solution is Pareto-dominant with respect to another solution if it improves on the other solution
in all considered objectives. A multi-objective genetic algorithm searches for non-dominated
individuals, i.e., individuals that are better than the others in at least one objective while being
worse in other objectives. Such individuals are called Pareto-optimal, and they represent the best
available trade-offs among the considered objectives (with none of the Pareto-optimal solutions
being clearly better than the others). There usually exists a set of such individuals which form
the Pareto-optimal front. There exist several algorithms for multi-objective optimization that use
different ways of evaluating the individuals, but all of them exploit the non-dominated sorting. In
this paper, we, in particular, consider the Non-Dominated Sorting Genetic Algorithm II (NSGA-
II) [6], which provided us with the best results in our previous work [22, 23].

3. CLASSIFICATION-BASED DATA MINING IN NOISE-BASED TESTING

In this section, we describe our proposal of using a particular kind of AdaBoost classifiers for
discovering which test and noise parameters and which of their values are the most influential for
a given program under test and a given testing goal (or, even in general, across different programs
under test and/or testing goals). We first describe the concrete kind of AdaBoost classifiers that we
propose to be used in noise-based testing, and we provide a generic approach for deriving such
classifiers. We then concretise the method for two concrete testing goals common in practice—
namely, for finding rare behaviours in which so far unknown bugs may reside and for reproducing
known errors. Subsequently, we discuss how the derived AdaBoost classifiers can be used to draw
some conclusions about which test and noise configurations are the most influential in the given
setting. Finally, we discuss three ways of using the derived classifiers in fully automated testing.

3.1. Combining Data Mining Based on AdaBoost with Noise-based Testing

For our application of data mining with the aim of finding suitable settings of noise-based testing
of concurrent programs, we propose using data mining based on binary classification. Methods that
have been used for binary classification in the literature include decision trees, Bayesian networks,
support vector machines, or neural networks [57]. In this work, we, in particular, choose decision
trees. This is motivated by the fact that one can easily understand and further exploit information
hidden in decision trees obtained by machine learning, which we leverage in the following.

Decision trees, such as those shown in Fig. 2, can be viewed as hierarchically structured decision
diagrams whose nodes are labelled by Boolean conditions on the items to be classified and whose

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8

Figure 2. Examples of decision trees.

leaves represent classification results (in our case, +1 is used to denote a positive result, while −1
denotes a negative result). The decision process starts in the root node by evaluating the condition
associated with the root on the item to be classified. According to the evaluation of the condition,
a corresponding branch is followed into a child node. This descent, driven by the evaluation of
the conditions assigned to the encountered nodes, continues until reaching a leaf node, and hence
a decision. Decision trees are usually employed as a predictive model constructed via a decision tree
learning procedure, which uses a training set of classified items.

In order to reduce the natural tendency of decision trees to be unstable (meaning that a minor
data oscillation can lead to a large difference in the classification), we combine them with using
the AdaBoost approach described in Section 2.3. Decision trees, with the classification result being
1 or −1, are used as the weak classifiers. The resulting strong classifier then consists of a set of
weighted decision trees that are all applied on the item to be classified, their classification results
are weighted by the appropriate weights, summarized, and the sign of the result provides the final
decision.

In order to be able to apply AdaBoost in noise-based testing, one has to first define some testing
goal expressible as a binary test property that can be evaluated over test results such that both
positive and negative answers are obtained. The test property will typically be based on some non-
binary test quantity such as the number of discovered error occurrences, number of covered tasks of
some metric, testing time, or a (weighted) combination of such quantities. The binary test property
can then be obtained by taking the median value of the test quantities obtained throughout the test
runs and by classifying test and noise settings to those that lead (or do not lead) to results above the
median.

Example 3.1
So, a binary test property can, e.g., look like coverage > C ∧ time < T where coverage measures
coverage under the chosen coverage metric, C is the median coverage obtained in the so far
performed test runs, test measures the time of executing a test, and T is the median testing time
in the so far performed runs.

The requirement of having both positive and negative results can be a problem in some cases,
notably in the case of discovering rare errors where getting positive results is—naturally—very
rare. In such a case, one has to use a property that approximates the target test property (e.g., by
replacing the discovery of rare errors by discovering any rare program behaviours even when they do
not contain an error) and provides both positive and negative answers sufficiently often. Of course,
once some testing goal is satisfied (e.g., once testing aimed at rare behaviours manages to find
some error), another testing goal can become more urgent—e.g., that of repeatedly reproducing the
same error for debugging purposes or finding other similar errors. The training process is then to be
repeated, possibly using the newly available test results found by previously conducted test runs.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 9

Further, note that, in the context of testing concurrent programs, the test property will typically
not be defined over results of particular test runs but rather on results of multiple test runs performed
under the same test and noise setting. The reason is the need of minimizing the influence of
scheduling nondeterminism. The results obtained in several test runs can be summarised by taking,
e.g., the median or cumulative value of the considered test quantity.

Once the test property representing the chosen testing goal is defined, a number of test and
noise configurations is to be generated at random. Several test runs are to be performed for each
of these configurations, and the test property is to be evaluated on each of the series of the test
runs performed with the same test and noise configuration. For each of the considered test and
noise configurations, a couple (x, y) is formed where x is a vector recording the test and noise
configuration used and y ∈ {1,−1} is the result of evaluating the test property. This way, we obtain
the set X = {(x1, y1), . . . , (xn, yn)} to be used as the input of AdaBoost as described in Section 2.3.

Example 3.2
An example of a couple, which can appear in the set X if we consider three noise parameters, e.g.,
noise frequency, strength of noise, and type of noise, can be ((839, 28, 1),−1). It says that for the
values 839, 28, and 1 of the noise frequency, strength of noise, and type of noise, respectively, the
test property evaluated negatively.

In Section 3.2, we illustrate and further concretise the above ideas by proposing concrete test
properties and ways of evaluating them for two testing goals common in practice: namely, finding
rare behaviours and repeatedly reproducing known errors.

Once the set X is obtained, the AdaBoost algorithm can be applied and the result validated as
described in Section 2.3. A successfully validated classifier can subsequently be analysed to get
some insight which test and noise parameters are influential for testing the given program and which
of their values are promising for meeting the defined testing goal. Such knowledge can then in turn
be used by testers when thinking of how to optimize the testing process. We propose a way how
such an analysis can be done in Section 3.3, and we experiment with it in Section 4.4. Moreover,
the obtained classifier can also be used to fully automatically improve performance of noise-based
testing: we propose three approaches how this can be done (two of these approaches based on
filtering randomly generated test and noise settings and one based on a combination with genetic
optimization) in Section 3.4. Experiments with these approaches are then described in Section 4.5.

3.2. Finding Rare Behaviours and Reproducing Known Errors

We now concentrate on two concrete testing goals: namely, (1) repeatedly finding known errors,
which is useful for debugging purposes, and (2) finding rare behaviours, which is useful for finding
bugs missed by common testing runs. For these two different goals, we propose concrete test
properties and a way of evaluating them that turned out as suitable in our experiments for deriving
input sets for AdaBoost such that AdaBoost in turn produces appropriately trained classifiers for the
given testing goals.

In the case of trying to repeatedly reproduce a known error, the test property of interest is simply
the error manifestation property that indicates whether an error manifested during the performed
test executions or not. When deriving the input set X for AdaBoost that should in turn produce
a classifier suitable for reproducing the given error, we generate a number of random test and noise
configurations, perform several test runs with each of the configurations†, and compute the number
of test runs in which the error has been found. Then, we compute the median value of the number of
runs in which an occurrence of the given error has been found for the different considered test and
noise configurations. Configurations that reached a number of error occurrences above the median
are marked as positive whereas the remaining ones are marked as negative. This will give us the set
X that will be split into a testing set and a validation set. The testing set will be used as the input
for AdaBoost, which will then produce an appropriately trained classifier for the error manifestation
property.

†In our experiments, we, in particular, use five runs.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10

Example 3.3
For an example of getting an input set for AdaBoost according to the above description,
see Table I. In particular, we consider five combinations of values of three noise parameters,
namely, noise frequency, strength of noise, and type of noise. Assume that when we perform five
testing runs with each of the settings, we get the number of error manifestations shown in the
fourth column of the table—with the median number of error manifestations being 0. Then the
classification results will be those given by the fifth column of the table. This gives us the set
X = {((839, 28, 1), 1), ((114, 36, 5),−1), ((724, 48, 4),−1), ((895, 12, 0), 1), ((234, 8, 4),−1)} that
will be split into a training and validation set for AdaBoost.

Table I. An example of constructing an input for AdaBoost for the error manifestation property.

noise frequency strength of noise type of noise number of classification
error manifestations result

839 28 1 2 1
114 36 5 0 -1
724 48 4 0 -1
895 12 0 5 1
234 8 4 0 -1

Once a classifier is derived, its precision and stability are tested on the validation set. In particular,
we let the generated configurations be classified by the derived classifier as suitable or unsuitable
for reproduction of the known errors, and, subsequently, we check correctness of the classification
through repeated test runs under these configurations. The concrete numbers of test runs considered
to get the training and validation sets in our experiments are provided in Sections 4.3 and 4.5.

Next, we consider the case of finding test and noise configurations suitable for testing rare
behaviours in which so far unknown bugs might reside. In order to achieve this goal, we use
classification according to a rare events property that indicates whether a test execution covers at
least one rare coverage task of a suitable coverage metric—in our experiments, the GoldiLockSC∗

metric [10] is used for this purpose. To distinguish rare coverage tasks, we collect the tasks that were
covered in at least one of the performed test runs (i.e., both from the training and validation sets),
and, for each such coverage task, we count the frequency of its occurrence in all of the considered
runs. We define the rare tasks as those that occurred in less than 20 % of the test executions.

Furthermore, when learning the classifier, we want to avoid the scenario where we find some
test and noise configurations that are capable of finding some behaviours that are rare in normal
test runs, but they lead to discovering the same behaviours in each noised test run again and again.
This is, we ideally want to keep finding different rare behaviours in each test run. To stress this
goal, we focus on the cumulative number of covered rare tasks, not only on coverage in individual
executions. In our experiments, we, in particular, use cumulation from five test runs. This is, we
randomly generate a number of test and noise configurations. With each of them, we execute five
test runs, and we cumulate (i.e., unite) the sets of covered rare tasks.

Subsequently, as we consider the time needed for testing to be also important, we take the
sizes of the cumulated sets of covered rare tasks and divide them by the time needed to perform
the considered five test executions. We take as positive the test and noise configurations whose
cumulated number of covered rare tasks divided by the needed test time is above the median value
of this combined test quantity. We then derive the AdaBoost classifier and test its precision and
stability. The concrete numbers of test runs considered to get the training and validation sets in our
experiments are again provided in Sections 4.3 and 4.5.

Example 3.4
Table II gives an example of obtaining an input set for AdaBoost for the rare behaviours property
according to the above description. Namely, we consider three combinations of three noise

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 11

parameters (noise frequency, strength of noise, and type of noise as before). To shorten the example,
we assume that three testing runs were performed with each of these configurations only. Further, we
assume that the rare tasks that were covered in the testing runs are as shown in the fourth column.
The fifth column gives the time we assume to be consumed for the testing runs. The sixth column
then gives the corresponding cumulative coverage of rare tasks divided by the total consumed time.
Finally, the last column gives the appropriate classification result (due to the median coverage being
3/7). The value from the last column is to be used together with the values in the first three columns
to derive the input set for AdaBoost: X = {((83, 28, 1),−1), ((451, 44, 3), 1), ((729, 32, 3),−1)}.

Table II. An example of constructing an input for AdaBoost for the rare behaviours property.

noise noise noise covered rare testing cumulative classification
freq. strength type tasks time coverage per time result

83 28 1 run 1: {a, c, d} 3 (|{a, c, d}| = 3)/7 -1
run 2: {a, d} 2
run 3: {c, d} 2

451 44 3 run 1: {a, d} 2 (|{a, c, d, e}| = 4)/5 1
run 2: {c, e} 2
run 3: {d, e} 1

729 32 3 run 1: {c, e} 3 (|{c, e}| = 2)/8 -1
run 2: {c} 2
run 3: {e} 3

3.3. Analysing Information Hidden in Classifiers

In order to be able to easily analyse information hidden in the classifiers generated by AdaBoost,
we have decided to restrict the height of the basic decision trees used as weak classifiers to one.
Moreover, our experiments showed us that increasing the height of the weak classifiers does not
lead to significantly better classification results.

A decision tree of height one consists of a root labelled by a condition concerning the value of
a single test or noise parameter and two leaves that correspond to the cases when the condition is or
is not satisfied and that are labelled as leading to either positive or negative classification. AdaBoost
provides us with a set of such trees, each with an assigned weight. For better understanding which
parameters are important for testing, we convert this set of trees into a set of rules such that we get
a single rule for each test or noise parameter that appears in at least one decision tree. The rules
consist of a condition and a weight. In particular, the conditions have the form of a conjunction of
interval constraints, and the weights are real numbers from the range between zero and one.

The rules are obtained as follows. First, decision trees with negative or zero weights are omitted
because they correspond to weak classifiers with the weighted error greater or equals to 0.5. Next,
the remaining decision trees are grouped according to the parameter about whose value they speak.
To illustrate the above, assume that AdaBoost gives us, e.g., the ten decision trees with positive
weights that are shown in Fig. 3. For each obtained group of the trees, a single rule is produced
by taking the disjunction of the interval constraints associated with the grouped decision trees‡.
Intuitively, taking the disjunction corresponds to the fact that each of the intervals was found to be
relevant for the given testing goal. The weight of the rule is computed by summarising the weights
of the trees from the concerned group and normalising the result by dividing it by the sum of the
weights of all trees from all groups. This is, if all decision trees with positive weights created

‡In particular, the interval constraint of the tree is taken as is when the true branch of the decision tree leads to the +1
leaf. Otherwise, its complement must be taken.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12

Figure 3. An example of several decision trees with conditions over parameters x1, x3, x6, x7 and x10 created
by the AdaBoost algorithm.

by AdaBoost are w1, . . . , wm, and the concerned group G consists of n ≤ m trees with weights
wi1 , . . . , win where ∀1 ≤ j ≤ n : 1 ≤ ij ≤ m, then the weight of the rule created from G will be

computed as the fraction
∑n

j=1 wij∑m
k=1 wk

.
In our example, we focus on the importance of the different parameters. We start with parameter

x1. For this parameter, when we take the disjunction of the interval constraints associated with
the trees corresponding to x1 (i.e., the first three trees in Fig. 3), we obtain the condition x1 ≤
239.5 ∨ x1 ≤ 131.5 ∨ x1 > 497.5, which can be simplified to x1 ≤ 239.5 ∨ x1 > 497.5. The weight
of this rule is given by the sum of the three concerned trees divided by the sum of the weights of
all the trees in the figure, which gives the (rounded) weight wx1

= 0.398. If we process the other
parameters in the same way, we get the following weights: wx3

= 0.574, wx6
= 0.017, wx7

= 0.007,
wx10 = 0.004. Note that the weights of the parameters satisfy the constraint

∑
i wxi = 1. Clearly,

parameters x3 and x1 appear to have the highest importance in the given setting; parameters x6, x7,
and x10 appear to have at least some significance; while parameters such as x2 are of no importance
(since they did not even appear in any of the decision trees with positive weights).

From the rules obtained as described above, we can easily identify the parameters that most
affect testing of the given program with the given testing goal. For that, we can simply take the
parameters that are associated with the rules with the highest weights. In case we want to derive
more general results—spanning over multiple testing goals and/or multiple tested programs, we can
do that by looking for parameters (or values) that appear among the most influential ones among
all (or most) of the considered test cases. Alternatively, one can also unite the training sets obtained
for the different testing goals and/or programs under test, and then apply AdaBoost to the combined
training set. In our example, the parameter which most affects the testing process is the parameter
x3 that has the highest weight.

Moreover, we can also see which concrete values of the different parameters are the most
influential. In particular, assume that the condition of the rule derived for some parameter was
created from a set I = {I1, ..., In} of interval constraints where the decision trees that were
associated with these intervals had weights w1, ..., wn. We identify all maximum subsets J =
{Ii1 , ..., Iim} ⊆ I of intervals with non-empty intersections (i.e., such that ∩j∈{1,...,m}Iij 6= ∅)
and assign each such set a weight wJ given by the sum of the weights of its elements, i.e.,
wJ =

∑
j∈{1,...,m} wij . Intuitively, the weights of all the decision trees whose interval constraints

overlap contribute to the weight of their overlapping part. The most influential values of the given
parameter are then given by the sets J with the highest weights—namely, by the union ∪J ∩I∈J I
of the intersections of the intervals I belonging to the subsets J with the highest weights wJ .

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 13

Figure 4. Division of values of parameter x1 to intervals associated with the decision trees from Fig. 3.

I1 I2 I3 I4

0
.0

0
.1

0
.2

0
.3

0
.4

Figure 5. Histogram of weights of values of parameter x1 derived from the decision trees in Fig. 3.

Thus, in the example, we have a look at the most influential values of some of the parameters from
Fig. 3. In particular, we concentrate on parameter x1. The parameter is associated with three decision
trees and hence three interval constraints, which are illustrated in Fig. 4. From the illustration, we
see that there are two maximum subsets of the interval constraints with non-empty intersections,
namely, J1 = {x1 ≤ 239.5, x1 ≤ 131.5} and J2 = {x1 > 497.5}. The corresponding intersections
are x1 ≤ 131.5 and x1 > 497.5 with the (rounded) weights wJ1

= 0.441 and wJ2
= 0.005. Clearly,

values of x1 less than or equal to 131.5 are the most influential. In case one would like to have
a finer look at the influence of the different values, one can take all subsets of the set of intervals
associated with the given parameter, compute the corresponding intersections of the constraints and
their weights (as in the case of the maximum subsets), and obtain a histogram of the weights—such
as the one shown in Fig. 5 for the parameter x1.

3.4. Using AdaBoost in Fully Automated Testing

We now present several approaches of using AdaBoost for fully automated noise-based testing.
First, we describe two ways of combining AdaBoost with random generation of test and noise
parameters. Second, we show how it can be combined with genetic algorithms for finding the most
suitable values of test and noise parameters.

3.4.1. AdaBoost-Improved Random Testing In practice, noise-based testing is often used with
randomly generated test and noise configurations. The simplest way of using AdaBoost to improve
on this practice is the following. When performing repeated test runs of a given program to meet
a given testing goal, one can run the program with randomly generated test and noise configurations,
but use only those randomly generated configurations that get classified as suitable by an AdaBoost
classifier derived for the given program and testing goal as described in Subsection 3.2. This idea,
considered already in our preliminary work [1], is rather simple, but it can provide quite nice results
as we illustrate through our experiments presented in Subsection 4.5.

While the above approach can provide useful results, we now propose yet another way of
combining AdaBoost with random generation of test and noise configurations, which was not
considered in [1]. This approach is motivated by our observation that, in many of the case
studies that we conducted and which we report later on, some test and noise parameters were

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14

significantly more important than others, even though the latter parameters were still influential.
In such cases, however, the above proposed use of AdaBoost can include among useful test and
noise configurations even some of those configurations where the less important parameters are set
in a rather unsuitable way, which is tolerated due to the much higher weight of the more important
parameters.

To improve on the above situation, we propose to build on the method for determining the most
suitable values of each parameter, which is described at the end of Section 3.3. We then derive
the test and noise configurations to be used by independently choosing the value of each of the
parameters at random but from the most suitable range of its values only. For instance, assume that
we have test and noise parameters x1, x2, and x3, and the approach of Section 3.3 tells us that their
most influential values are from intervals I1, I2, and I3, respectively. Then, every time we need a test
and noise configuration for a repeated test run, we generate it as a three-tuple whose first item is
randomly chosen from the interval I1, the second item is randomly chosen from I2, and the third
one is randomly chosen from I3. Our experiments presented in Section 4.5 show that this approach
can indeed provide significantly better results than the first mentioned approach.

3.4.2. Combination of Genetic Algorithms and AdaBoost Finally, we also propose a combination
of using AdaBoost and the genetic algorithms that we considered for finding suitable test and noise
configurations in our previous works [21, 23]. This approach is motivated as follows. Our previous
works showed that genetic algorithms can achieve very good results in finding suitable test and
noise configurations, especially when trying to increase the achieved concurrency coverage, but
they need to execute a huge number of test runs to get these configurations. The reason of this
is that the genetic algorithms start with random initial configurations in the first generations and
slowly create configurations with better results in the next generations. Our idea is to accelerate
this process by restricting the range of possible values of the different test and noise parameters
in which the genetic algorithms will search. In particular, we restrict the range of the parameters
to the most influential values found through AdaBoost and the approach described at the end of
Section 3.3. Thus, essentially, we use AdaBoost to get coarse knowledge on the suitable values
of the test and noise parameters, and then we refine this knowledge using genetic algorithms. Our
experiments presented below confirm that this approach can often significantly outperform all the
other mentioned approaches.

4. EXPERIMENTAL EVALUATION

In this section, we describe the experiments that we conducted to evaluate the approaches proposed
above. We first provide a brief description of the benchmark programs that we used in our
experiments. Next, we briefly characterize the accuracy and sensitivity of the AdaBoost classifiers
that we were able to obtain for our case studies and testing goals. Subsequently, we analyse the
knowledge hidden in the classifiers that we obtained, compare it with our experience obtained in
other ways, and derive several new insights about the importance of the different test and noise
parameters. Finally, we proceed to experiments illustrating that AdaBoost combined with genetic
algorithms can also be quite successfully used in fully automated noise-based testing.

4.1. Case Studies

For our experimental evaluation, we used the following multi-threaded programs. The first five
of them contain known concurrency-related errors, and so they are suitable for experiments with
reproduction of known bugs for debugging purposes. The remaining programs do not contain any
known errors, and so they are added to the first five case studies within our experiments targeted at
increasing coverage of rare behaviours§.

§The case studies we present in this paper do not include large programs due to we need to perform a rather large number
of experiments with different test and noise settings: Already with the use cases we consider, the experiments presented

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 15

Airlines. The size of the test case is 0.3 kLOC, 8 classes. It is a small test case containing an
atomicity violation error. It simulates an airline reservation system with three parameters X , Y ,
and Z: The system creates a flight whose capacity is Z (number of available seats). Then, X seller
threads are executed, and they are periodically trying to get a seat on the flight. The parameter Y
controls how many iterations of an idle loop are done (and hence how much time is spent) between
two successive attempts to book a ticket.

Animator. The size of the test case is 1.5 kLOC, 31 classes. It is a program containing a data
race and an atomicity violation. Animator is our short name for the XTANGO animation program
[52] which is a general-purpose system for algorithm animation that allows programmers to create
colorful, real-time, 2 & 1/2 dimensional, smooth animations of their algorithms and programs. The
focus of the system is on ease of use—programmers using this system need not be graphics experts
to develop their own animations.

Crawler. The size of this test case is 1.2 kLOC, 19 classes. The test case includes an atomicity
violation. The program is taken from an IBM repository. It represents a skeleton of an IBM crawler
product with a test environment simulating real usage of the system. Namely, the system creates
a given number of threads waiting for a connection. If a connection is established, a worker thread
serves it. Afterwards, when a given global time limit occurs, a shutdown sequence is initiated. This
means that the working threads are not accepting new tasks, and, after finishing the current task,
they die [32]. The bug present in the program manifests itself during the shutdown sequence but
very rarely (roughly 15 times per 10,000 runs).

Elevator. The size of this test case is 1.2 kLOC, 12 classes. The program contains a data race
and an atomicity violation. It implements a real-time discrete-event simulation. The application is
used as an example in a course on concurrent programming. Elevators are modeled as individual
threads that poll directives from a central control board. Communication through the control
board is synchronized through locks. The configuration used for our experiments simulates four
elevators [45]. This benchmark has one parameter which controls the number of threads used.

Rover. The size of the test case is 5.4 kLOC, 82 classes. Rover contains an atomicity violation
and a deadlock. The K9 Rover from NASA Ames is an experimental platform for autonomous
wheeled vehicles for exploration of a planetary surface such as Mars. The rover executive software
prototype monitors executions of actions and performs responses and cleanup when the execution
fails. In the configuration used in our experiments, eight threads are launched in the system [43].
This benchmark has one parameter which selects one of the available test scenarios.

Cache4j. The size of this test case is 1.7 kLOC, 66 classes. Cache4j does not contain any known
error. It is an LRU (Least Recently Used) lock-based cache implementation. The implementation is
based on two internal data structures, a tree and a hash-map. The tree manages the LRU while the
hash-map holds the data. The implementation is based on a single global lock [28].

HEDC. The size of the test case is 12.7 kLOC, 747 classes. The program does not contain
any known error. It represents an application kernel that implements a meta-crawler for searching
multiple Internet archives in parallel. In our benchmark configuration, four principal threads issue
random queries to two archives each. The individual queries are handled by a short random sleep
interval of 0-200 ms; this ensures that the principal threads work out of sync. The application
employs a library for concurrent programming by Doug Lea—in particular, the Pooled-Executor
pattern. The workload and memory access pattern of this application kernel are typical for Internet
server applications and similar to applications based on alternative mechanisms such as Java Servlets
[45, 48].

below took approximately 5,592 core hours, i.e., 233 core days. However, works such as [7] show that noise-based
testing can be successfully used even on programs with millions of lines of code and can find previously unknown errors
in complex industrial code.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16

MonteCarlo. The size of the test case is 1.4 kLOC, 22 classes. It does not contain any known
error. MonteCarlo is a financial simulation, using Monte Carlo techniques to price products derived
from the price of an underlying asset. The code generates multiple time series with the same mean
and fluctuation as a series of historical data. This benchmark has one parameter which controls the
number of threads used for the computation [51].

Raytracer. The size of the test case is 1.0 kLOC, 22 classes. It is without any known error. This
benchmark measures the performance of a 3D ray tracer. The rendered scene contains 64 spheres,
and it is rendered with a resolution of N ×N pixels. The outermost loop (over rows of pixels) has
been parallelised using a cyclic distribution for load balancing. This benchmark has one parameter
controlling the number of threads used for the computation [42, 51].

SOR. The size of the test case is 7.2 kLOC, 256 classes. The program does not contain any known
error. SOR (Successive Over-Relaxation over a 2D grid) synchronizes its threads using a barrier
rather than locks. It implements an iterative method for solving discretized Laplace equations on
a grid data structure. In particular, it performs multiple passes over a rectangular grid until the
values in the grid change less than a certain threshold, or a pre-defined number of iterations has
been reached. The new value of a grid point is computed using a stencil operation, which depends
only on the previous value of the point itself and its four neighbors in the grid. The program has two
parameters: the number of iterations and the number of threads [42, 45].

TSP. The size of this test case is 0.4 kLOC, 8 classes. It is without any known error. TSP
(Travelling Salesman Problem) is a travelling salesman application which computes the shortest
path for a salesperson to visit all cities in a given set exactly once, starting in one specific city.
The program is parallelized by distributing the search space over different processors. Because the
algorithm performs pruning, the amount of computation needed for each subspace is not known in
advance and varies between different parts of the search space. Therefore, dynamic load balancing
between the processors is needed. This benchmark has two parameters: the number of threads and
a given input file with a TSP instance [42, 46].

4.2. Considered Test and Noise Parameters

In Section 3.1, we said that our input set X for AdaBoost will consist of couples (x, y) where x is
a vector recording the test and noise configuration used and y ∈ {1,−1} is the result of evaluating
the considered test property. In our experiments, we—in particular—consider vectors x of test and
noise parameters consisting of 12 entries, i.e., x = (x1, x2, . . . , x12).

In our vectors of test and noise parameters, the parameter x1 ∈ {0, . . . , 1000} represents the noise
frequency, the parameter x2 ∈ {0, . . . , 100} is the strength of noise, the parameter x3 ∈ {0, . . . , 5}
selects one of the six available basic noise seeding heuristics. The parameters x4, x5 ∈ {0, 1} disable
or enable the additional noise seeding heuristics haltOneThread and timeoutTamper, respectively.

The parameter x6 ∈ {0, 1, 2} controls the way how the sharedVarNoise noise placement heuristic
behaves—namely, whether it is disabled (x6 = 0), it applies the sharedVarNoise-one strategy
injecting the noise at accesses to one randomly selected shared variable (x6 = 1), or it applies
the sharedVarNoise-all strategy inserting the noise at accesses to all shared variables (x6 = 2).
The parameter x7 ∈ {0, 1} disables or enables the nonVariableNoise heuristic. The parameters
x8, x9 ∈ {0, 1} disable or enable the coverage-based noise placement heuristic and the related
coverage-based-frequency heuristic, respectively.

Finally, we summarize the parameters used by the above test cases (on top of the parameters of
the noise injection technology itself) and explain in more detail their encoding in our experiments.
These parameters are encoded as the parameters x10 ∈ {1, . . . , 10} and x11, x12 ∈ {1, . . . , 100} in
the experiments. In particular, Animator, Cache4j, HEDC, and Crawler are not parametrised, and
hence x10, x11, x12 are not used with them. In the Airlines, Elevator, Montecarlo, and Raytracer
test cases, the x10 parameter controls the number of the threads used. In the Rover test case, the
x10 ∈ {1, . . . , 7} parameter selects one of the available test scenarios. The Sor and TSP test cases
have two test parameters. The x10 parameter is the number of iterations for Sor while it selects one

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 17

of the available test scenarios for TSP. The x11 parameter controls the number of the threads used
for both of these test cases. The Airlines test case uses the x11 and x12 parameters where the x11

controls how many cycles the test does and the x12 parameter indicates the flight capacity.
The total number of noise configurations that one can obtain from the above can be computed by

multiplying 1001 values of noise frequency, by 101 possible values of noise strength, the number
of the basic noise seeding heuristics, which is six, by two to reflect whether haltOneThread is or is
not used, two to reflect whether timeoutTamper is used, two to reflect whether the nonVariableNoise
heuristic is used, two to reflect whether the coverage-based noise placement is used, two to reflect
whether the covergage-based-frequency heuristic is used, and three to reflect the possible use
case scenarios of the sharedVarNoise heuristic. This gives a rough estimate of about 58.2 million
combinations of noise settings when we simplify the situation by ignoring the fact that some of the
settings do not make sense when used together (for instance, enabling coverage-based-frequency
heuristic has no effect when coverage-based heuristic is disabled). Of course, the state space of the
test and noise settings then further grows with the possible values of parameters of the test cases
and the testing environment [23].

4.3. Accuracy and Sensitivity of the Classifiers

We now present data about the accuracy and sensitivity of the AdaBoost classifiers that we derived
for the above test cases. For the first five of them that contain known concurrency errors, we have
considered both the testing goal of reproducing a known error as well as the goal of increasing
coverage of rare behaviours. For the remaining test cases, we have considered the latter goal only.

In our experiments, we used the implementation of AdaBoost available in the GML AdaBoost
Matlab Toolbox¶. We set it to use decision trees of height restricted to one and to use 10 boosting
phases. When deriving the classifiers, we proceeded as described in Section 3.2. When deriving
classifiers for the error manifestation property, we used 2000 random test and noise configurations.
For the rare events property, due to a higher time consumption of the experiments, we used
200 random test and noise configurations. To obtain data allowing us to derive the accuracy and
sensitivity of the derived classifiers, 100 different random divisions of the randomly generated
configurations to training and validation sets were considered.

Tables III and IV summarise the average accuracy and sensitivity of the derived AdaBoost
classifiers and their standard deviations. One can clearly see that both the average accuracy and
sensitivity are quite high for the error reproduction test goal—with the average values being 0.8837
and 0.9586, respectively. For the testing goal of finding rare behaviours, both of the statistics have
smaller values. However, the experiments presented in Section 4.5 show that the method works
nicely even in their case. Moreover, the standard deviation is very low in all cases, which indicates
that we always obtained results that provide meaningful information about our test runs.

4.4. Analysis of the Knowledge Hidden in the Obtained Classifiers

We now employ the approach described in Section 3.3 to interpret the knowledge hidden in
the classifiers that we inferred for our test cases. From these classifiers, using the approach of
Section 3.3, we derived the rules shown in Tables V and VI for the error manifestation property
and the rare behaviours property, respectively. For each test case, the tables contain a row whose
upper part contains the condition of the rule (in the form of an interval constraint), and the lower
part contains the appropriate weight from the interval (0, 1).

In order to interpret the obtained rules, we first focus on rules with the highest weights
(corresponding to parameters with the biggest influence). Then we look at the parameters which
are present in rules across the test cases (and hence seem to be important in general) and parameters
that are specific for particular test cases only. Next, we pinpoint parameters that do not appear in
any of the rules and therefore seem to be of a low relevance in general.

¶http://graphics.cs.msu.ru/en/science/research/machinelearning/AdaBoosttoolbox

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18

Table III. The average and standard deviation of the accuracy and sensitivity of the AdaBoost classifiers
derived for the test cases containing known errors.

Error reproduction Rare behaviours

Accurancy Sensitivity Accurancy Sensitivity

CaseStudies Mean Std Mean Std Mean Std Mean Std

Airlines 0.7488 0.0163 0.8917 0.0250 0.6601 0.0508 0.6880 0.0900
Animator 0.8353 0.0154 0.9489 0.0195 0.8503 0.0489 0.9006 0.0549
Crawler 0.9916 0.0026 0.9948 0.0018 0.7453 0.0437 0.7549 0.0740
Elevator 0.9568 0.0056 0.9965 0.0034 0.7161 0.0439 0.7327 0.0797
Rover 0.8859 0.0142 0.9611 0.0088 0.6108 0.0406 0.6330 0.0950

Average 0.8837 0.0108 0.9586 0.0117 0.7165 0.0456 0.7418 0.0787

Table IV. The average and standard deviation of the accuracy and sensitivity of the AdaBoost classifiers
derived for the test cases without known errors.

Rare behaviours

Accurancy Sensitivity

CaseStudies Mean Std Mean Std

Cache4j 0.8454 0.0671 0.8963 0.0907
HEDC 0.7819 0.0443 0.7797 0.0758
Montecarlo 0.6692 0.0607 0.6702 0.1230
Raytracer 0.6298 0.0713 0.6380 0.1114
Sor 0.7807 0.0457 0.8203 0.0797
TSP 0.6420 0.0674 0.6587 0.1179

Average 0.7248 0.0594 0.7439 0.0998

Table V. Inferred rules for the error manifestation property with the most influential intervals marked out.

Airlines
Rules x1 ≤ 275 x3 ≤ 0.5 or 3.5 < x3 x6 ≤ 1.5 2.5 < x10 73.5 < x12

Weights 0.16 0.50 0.04 0.18 0.12
Animator

Rules 705 < x1 2.5 < x3 ≤ 3.5 x6 ≤ 0.5
Weights 0.19 0.55 0.26

Crawler
Rules x1 ≤ 215 15 < x2 1.5 < x3 ≤ 3.5 0.5 < x4 x5 ≤ 0.5 x6 ≤ 1.5

or 4.5 < x3
Weights 0.32 0.1 0.38 0.05 0.08 0.07

Elevator
Rules x1 ≤ 5 x3 ≤ 0.5 or 3.5 < x3 ≤ 4.5 x7 ≤ 0.5 8.5 < x10

Weights 0.93 0.04 0.01 0.02
Rover

Rules 515 < x1 2.5 < x3 ≤ 3.5 0.5 < x4 x6 ≤ 0.5
Weights 0.21 0.48 0.08 0.23

As for the error manifestation property (i.e., Table V), the most influential parameters are x3 in
four of the test cases and x1 in the Crawler test case. This indicates that the selection of a suitable
noise type (x3) or noise frequency (x1) is the most important decision to be done when testing these
programs with the aim of reproducing the errors present in them. Another important parameter is

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 19

Table VI. Rules inferred for the rare behaviours property.

Airlines
Rules x1 ≤ 295 or 745 < x1 ≤ 925 x2 ≤ 35 0.5 < x5 61.5 < x12 ≤ 91.5

Weights 0.52 0.06 0.1 0.32
Animator

Rules 0.5 < x3 ≤ 3.5 or 4.5 < x3 0.5 < x6 ≤ 1.5
Weights 0.80 0.20

Crawler
Rules 0.5 < x3 ≤ 3.5 or 4.5 < x3 0.5 < x4 0.5 < x5 0.5 < x6 ≤ 1.5

Weights 0.46 0.08 0.20 0.26
Elevator

Rules 0.5 < x3 ≤ 3.5 0.5 < x4 0.5 < x5 1.5 < x6 1.5 < x10 ≤ 4.5
or 4.5 < x3 or 7.5 < x10

Weights 0.22 0.05 0.20 0.06 0.47
Rover

Rules 2.5 < x3 ≤ 3.5 or 4.5 < x3 x4 ≤ 0.5 x6 ≤ 0.5 0.5 < x7
Weights 0.46 0.26 0.16 0.12

Cache4j
Rules x3 ≤ 0.5 or 3.5 < x3 ≤ 4.5 x5 ≤ 0.5 1.5 < x6 x9 ≤ 0.5

Weights 0.92 0.02 0.05 0.01
HEDC

Rules x1 ≤ 279 49.5 < x2 x3 ≤ 0.5 or 3.5 < x3 ≤ 4.5 1.5 < x6
Weights 0.03 0.02 0.89 0.06

Montecarlo
Rules x1 ≤ 548.5 x3 ≤ 0.5 x5 ≤ 0.5 0.5 < x6 x9 ≤ 0.5 3.5 < x10 ≤ 5.5

or 3.5 < x3
Weights 0.09 0.30 0.05 0.18 0.09 0.29

Raytracer
Rules 20.5 < x2 ≤ 53.5 0.5 < x5 x6 ≤ 0.5 0.5 < x7 x10 ≤ 1.5

or 75.5 < x2 or 4.5 < x10
Weights 0.29 0.09 0.15 0.06 0.41

Sor
Rules x1 ≤ 144.5 x3 ≤ 1.5 or 3.5 < x3 0.5 < x6 x7 ≤ 0.5 x10 < 13

Weights 0.26 0.32 0.07 0.07 0.28
TSP – part1

Rules x1 ≤ 691 x2 ≤ 26 x3 ≤ 0.5 or 3.5 < x3 ≤ 4.5 x5 ≤ 0.5
Weights 0.07 0.11 0.48 0.06

TSP – part2
Rules 0.5 < x6 0.5 < x8 x9 ≤ 0.5 x10 ≤ 18.5

Weights 0.06 0.06 0.07 0.09

x6 controlling the use of the sharedVarNoise heuristic. Moreover, the parameters x1, x3, and x6 are
considered important in all of the rules, which suggests that, for reproducing the considered kind of
errors, they are of a general importance.

In two cases, namely, Crawler and Rover, the haltOneThread heuristic (x4) turns out to be
relevant. In these test cases, the haltOneThread heuristic should be enabled in order to detect
an error. This behaviour fits into our previous results [35] in which we show that, in some cases,
this unique heuristic (the only heuristic which allows one to exercise thread interleavings which are
normally far away from each other) considerably contributes to the detection of an error. Finally, the
presence of the x10 and x12 parameters in the rules derived for the Airlines test case indicates that the
number of threads (x10) and the number of cycles executed during the test (x12) pays an important
role in the noise-based testing of this particular test case. The x10 parameter (i.e., the number of
threads) turns out to be important for the Elevator test case too, indicating that the number of threads
is of a more general importance.

Finally, we can see that the x8, x9, and x11 parameters are not present in any of the derived
rules. This indicates that the coverage-based noise placement heuristics are of a low importance in
general, and the x11 parameter specific for Airlines is not really important for finding errors in this
test case.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20

Next, for the case of classifying according to the rare behaviours property, the obtained rules are
shown in Table VI. The highest weights can again be found in rules based on the x3 parameter
(Animator, Crawler, Rover, Cache4j, HEDC, Montecarlo, Sor, TSP) and on the x1 parameter
(Airlines). However, in the case of Elevator and Raytracer, the most contributing parameter is now
the number of threads used by the test (x10). Moreover, the x10 parameter is also important in the
Montecarlo, Sor, and TSP test cases. This suggests that choosing the right number of threads is quite
important to maximize the chances to spot rare behaviours, and that it is not necessarily the case
that the higher number of threads is used the better. Further, the generated sets of rules often contain
the x3 parameter controlling the type of noise (all test cases except for Airlines and Raytracer) and
the x6 parameter which controls the sharedVarNoise heuristic. These parameters thus appear to be
of a general importance for the rare behaviours property.

The parameter x12, i.e., the number of test cycles, does again turn out to be important in the
Airlines test case. Finally, the x8 parameter is shown only in one test case (TSP), x9 shows up in
the rules generated for two test cases (Cache4j and TSP), and the x11 parameter does not show up
in any of the rules, and hence seem to be of a low importance in general for finding rare behaviours
(which is the same as for reproduction of known errors).

Overall, the obtained results confirmed some of the facts we discovered during our previous
experimentation such as that different goals and different test cases may require a different setting
of noise heuristics [35, 23, 21] and that the haltOneThread noise injection heuristics (x4) provides
in some cases a dramatic increase in the probability of spotting an error [35]. More importantly, the
analysis revealed (in an automated way) some new knowledge as well. Mainly, the type of noise (x3)
and the setting of the sharedVarNoise heuristic (x6) as well as the frequency of noise (x1) are often
the most important parameters (although the importance of x1 seems to be a bit lower). Further, it
appears to be important to suitably adjust the number of threads (x10) whenever that is possible.

4.5. Fully Automated Noise-based Testing with AdaBoost

We now present experimental results showing usefulness of the ways of applying AdaBoost in fully
automated noise-based testing that we proposed in Section 3.4. We consider both the combination
of AdaBoost and random noise injection as well as the combination of AdaBoost and genetic
algorithms. We start by considering the case of repeated reproduction of a known concurrency error
and then proceed to the case of coverage of rare tasks.

4.5.1. Repeated Error Manifestation Within our experiments aimed at repeated reproduction
of known concurrency-related errors, we compare noise-based testing under test and noise
configurations generated in the following ways:

• Purely random generation (referred to as Random below).
• Generation based on single-objective and multiple-objective genetic algorithms proposed in

our earlier work and briefly described in Section 2.4 (denoted as SOGA and MOGA below).
• Random generation filtered through the classic AdaBoost approach as described in the first

part of Section 3.4.1 (referred to as AdaBoost in what follows).
• Random generation restricted to the AdaBoost-recognised most influential values of

parameters described in the second half of Section 3.4.1 (denoted as AdaBoost2 below).
• Generation based on the single-objective and multiple-objective genetic algorithms restricted

to the AdaBoost-recognised most influential values of parameters as proposed in Section 3.4.2
(referred to as SOGA2 and MOGA2 below).

We run 5000 executions in the learning phase of those approaches that need some training. To
compare capabilities of the obtained test and noise configurations in repeatadly finding the known
errors, we then run 20 executions for 20 best configurations obtained through each of the approaches
(apart from the random approach where we simply run 400 executions).

For experiments with the genetic algorithms, one has to choose the fitness function to be used.
In particular, for the SOGA and SOGA2 experiments, based on the experience we gained in our

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 21

previous work, we have chosen the following fitness function:

fitness =
Error

Errormax
∗ 10 + Warning

Warningmax
+

GoldiLockSC∗

GoldiLockSC∗max

+
timemax − time

timemax

Here, the GoldiLockSC∗ coverage metric is used since it has good properties for measuring general
coverage of concurrency behaviour. The value GoldiLockSC∗ used in the fitness function gives
the cumulative number of tasks covered in a series of five test runs performed with the given
test and noise parameter values while GoldiLockSC∗max gives the maximal cumulative number
of covered tasks across all so far performed series of test runs. However, since we want the fitness
function to steer the search towards error discovery, we add to the fitness function information about
the number of detected errors and error warnings. In particular, Error gives the number of error
manifestations detected in the given series of five runs by looking for unhandled exceptions, and
Errormax gives the maximal number of error manifestations so far seen in some series of five test
runs. Warning gives the number of warnings detected in the given series of five test runs through
the Avio checker [34] which detects atomicity violations over one variable. This metric has been
chosen because atomicity violations are present in all the case studies considered in this experiment.
Again, Warningmax gives the maximum Avio coverage obtained in the so far performed series of
test runs. Finally, as we want to reflect the time needed for the test runs, we add it into the fitness
function in such a way that lower amounts of time needed for the test runs are preferred‖.

For the MOGA and MOGA2 experiments, we have let the multi-objective genetic algorithm work
with the same objectives as those summarized in the fitness function of the SOGA and SOGA2
approaches, i.e., the number of detected error manifestations, the Avio coverage, the GoldiLockSC∗

coverage, and the needed testing time. In all our experiments with the genetic algorithms, we used
the following settings: the probability of mutation was set to 0.5, the number of individuals in
one population was 20, and each individual was evaluated by using the cumulative value from five
executions of one configuration. We used the two-point crossover and the tournament selection
operator (which provided us with the best results in our previous work [22]). For each case study,
we repeat each experiment ten times.

Table VII compares results obtained using the above described approaches. In particular, the
table presents numbers and percentages of the executions that managed to find an error in those of
our benchmark programs that contain a known error. As we can see, the single-objective genetic
algorithm restricted to the AdaBoost-selected most influential parameter values (i.e., SOGA2) has
achieved the best results on average. However, random generation of test and noise parameter
values restricted to the AdaBoost-selected most influential parameter values (AdaBoost2) and the
combination of the multi-objective genetic algorithm and AdaBoost (MOGA2) have also achieved
very good results.

Table VII. An experimental comparison of various fully automated approaches to noise-based testing in the
context of reproducing a known error. The best results are highlighted in bold.

Random SOGA MOGA AdaBoost AdaBoost2 SOGA2 MOGA2
CaseStudies error/ % error / % error/ % error/ % error/ % error/ % error/ %

Airlines 132.93/33.23 313.25/78.31 272.25/68.06 323.50/80.88 351.80/87.95 371.80/92.95 332.7/83.13
Animator 106.75/26.69 220.20/55.05 131.00/32.75 144.80/36.20 252.40/63.10 350.30/87.58 241.25/60.31
Crawler 0.00/0.00 0.50/0.13 0.50/0.13 0.80/0.20 1.00/0.25 2.40/0.60 0.80/0.20
Elevator 59.25/14.81 133.25/33.31 116.75/29.19 80.40/20.10 36.60/9.15 105.00/26.25 86.80/21.70
Rover 17.00/4.25 143.00/35.75 88.25/22.06 57.40/14.35 48.4/12.65 324.80/81.20 203.30/50.83

Average /15.80 /40.51 /30.44 /19.11 /34.62 /57.72 /43.24
ASD /6.01 /5.50 /7.91 /7.44 /4.91 /4.89 /2.58

‖Here, one could be tempted to divide the fitness values by the time needed. We do not use this approach since our
previous experience [22] showed that this often leads to significant degeneration of the search (producing configurations
that produce very low coverage in extremely short time).

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

22

It must be noted that 14 generations were used for the SOGA and MOGA experiments, and 7
generations were used for the SOGA2 and MOGA2 experiments, which are very small numbers
only. The reason for using such small numbers of generations is that we wanted to compare the
different approaches while giving them the same time for the learning phase. The MOGA2 approach
had the lowest standard deviation on average. This means that the MOGA2 approach gives good
results with a high probability.

4.5.2. Coverage of Rare Concurrent Behaviours In the second part of our experiments, we
concentrate on increasing coverage of rare concurrent behaviours. Compared with the experiments
of the previous section, we consider all of our benchmark programs since we do not need them
to contain an error. For the SOGA and SOGA2 approaches, we use the following simplified fitness
function:

fitness =
GoldiLockSC∗

GoldiLockSC∗max

+
timemax − time

timemax

From the fitness function, we have left out information about errors and warnings since we now do
not focus on occurrences of any known errors. The MOGA and MOGA2 approaches are based on
the same objectives as SOGA and SOGA2, i.e., time and GoldiLockSC∗. As in the experiments of
the previous section, the probability of mutation was set to 0.5, and each individual was evaluated
using cumulative coverage obtained in five runs. Each generation had 20 individuals.

For the random approach, we executed 1000 test runs with randomly generated test and noise
configurations. For the other approaches, we used the same number of test runs, which we divided
into 500 runs to train the approaches and the remaining 500 runs to execute the test cases with the
configurations obtained from the training phase. When training the AdaBoost-based approaches, we
took as positive (i.e., suitable for testing) 50 configurations with the highest results of cumulative
coverage obtained from five runs and the other configurations as negative. For the approaches based
purely on genetic algorithms, i.e., SOGA and MOGA, we used five generations in the training
phase. For the combination of AdaBoost and genetic algorithms, i.e., SOGA2 and MOGA2, we
used 250 runs for training AdaBoost and three generations for the subsequent training of the genetic
algorithms. For each case study, we repeated each experiment ten times.

Table VIII. A comparison of average cumulative numbers of rare tasks over the time needed to cover them.

Rand. SOGA MOGA AdaBoost AdaBoost2 SOGA2 MOGA2
CaseStudies rareTasks/ % rareTasks/ % rareTasks/ % rareTasks/ % rareTasks/ % rareTasks/ % rareTasks/ %

Airlines 0.6566/ 41.4 1.2950/ 81.6 1.5462/ 97.4 0.4768/ 30.0 0.9298/ 58.6 1.5876/ 100.0 1.1216/ 70.6
Animator 7.0193/ 4.6 145.8694/ 95.3 153.0821/ 100.0 87.3576/ 57.1 136.5519/ 89.2 114.9578/ 75.1 110.4470/ 72.1
Cache4j 0.0165/ 38.9 0.0167/ 39.4 0.0413/ 97.4 0.0292/ 68.9 0.0194/ 45.8 0.0389/ 91.7 0.0424/ 100.0
Crawler 3.0415/ 51.1 4.7546/ 79.9 3.1230/ 52.5 3.6581/ 61.5 5.8669/ 98.6 4.1439/ 69.6 5.9502/ 100.0
Elevator 9.0015/ 48.1 13.5446/ 72.4 16.9801/ 90.8 17.4073/ 93.1 18.7019/ 100.0 14.9516/ 79.9 17.1540/ 91.7
HEDC 0.3605/ 22.1 0.9909/ 60.7 0.7595/ 46.5 0.9754/ 59.7 1.1568/ 70.8 1.3836/ 84.7 1.6334/ 100.0
Montecarlo 0.1469/ 59.9 0.2158/ 88.0 0.2453/ 100.0 0.1482/ 60.4 0.1780/ 72.5 0.1664/ 67.8 0.1823/ 74.3
Raytracer 0.0009/ 7.7 0.0003/ 2.6 0.0003/ 2.6 0.0006/ 5.1 0.0052/ 44.4 0.0117/ 100.0 0.0104/ 88.9
Rover 1.1532/ 42.1 1.7713/ 64.6 1.5623/ 57.0 1.4008/ 51.1 1.3018/ 47.5 1.9877/ 72.5 2.7411/ 100.0
Sor 0.0497/ 25.4 0.0742/ 37.9 0.0860/ 44.0 0.1088/ 55.6 0.1154/ 59.0 0.1855/ 94.8 0.1956/ 100.0
TSP 0.0381/ 36.9 0.0659/ 63.9 0.0971/ 94.1 0.0520/ 50.4 0.0642/ 62.2 0.0867/ 84.0 0.1032/ 100.0

Average / 34.4 / 62.4 / 71.1 / 55.6 / 67.7 / 83.6 / 90.7
ASD / 17.6 / 26.9 / 32.5 / 20.7 / 20.5 / 11.8 / 12.4

In Table VIII, we present results of the above experiments (which took in total approximately
6,939 core hours, i.e., 289 core days). In particular, the entries of the table contain—for the different
programs and different approaches—the obtained coverage of rare tasks over the time needed to
obtain the coverage. We divide the obtained coverage by the needed time in order to better see
which of the approaches is better to quickly obtain a high coverage of rare tasks. Moreover, the
obtained coverage over the testing time is followed by its interpretation in per cent. Namely, the
approach with one hundred per cent is the winning one, and, for the others, the percentage shows
how far they are from the winning approach in terms of the achieved coverage over time. As we can
see, the combinations of AdaBoost with the genetic approaches (i.e., MOGA2 and SOGA2) have the
best results on average, and they are also more stable than the other methods.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 23

5. RELATED WORK

Below, we divide related works to two areas: First, we discuss works representing alternative
approaches to noise-based testing of concurrent programs. Second, we discuss works where data
mining is applied in testing. None of them, however, is going in the same direction as this paper.

5.1. Testing and Analysis of Concurrent Programs

As we have already indicated above, finding errors in concurrent programs is a particularly difficult
problem due to the fact that a multi-threaded program can generate many executions differing in the
interleavings of its threads, out of which, however, usually a very small fraction leads to errors only.
Moreover, naı̈vely repeated test executions are likely to repeatedly execute similar interleavings
and hence miss the errors [3, 8]. One of the ways to cope with this problem is the approach of
noise-based testing [8, 13] whose further improvement we propose in this paper.

Among the main alternatives to noise-based testing, we first mention the so-called systematic
testing [20, 3, 58, 38, 25, 24] that controls the scheduling of threads and systematically
enumerates their different interleavings. Unlike noise-based testing, systematic testing provides
better guarantees that a concurrency-related error will be found if present, and it can avoid re-
execution of the same schedules. On the other hand, despite many heuristic optimizations that have
been proposed, due to a need to systematically enumerate different schedules, systematic testing is
still more heavy-weight than noise-based testing. Moreover, systematic testing can have problems
with programs containing sources of non-determinism such as user input, external client requests,
etc.

Coverage-driven testing as proposed in [61] and implemented in the Maple tool attempts to
influence the scheduling such that the obtained coverage of several important synchronization
idioms (called iRoots) is maximized. These idioms capture several important memory access
patterns that are shown to be often related with error occurrences. Maple uses several heuristics
to likely increase the coverage of iRoots. The technique provides lower guarantees of finding an
error than systematic testing, but it is more scalable. The approach of Maple does not support some
kinds of bugs (e.g., value-dependent bugs or some forms of deadlocks). Interestingly, multiple of
the heuristics it uses are based on randomization. Maple can thus be viewed as being in between
of systematic testing and noise-based testing (note that some of our noise placement heuristics are
based on maximizing coverage too). An interesting question for future work is thus whether an
approach for finding suitable values of noise parameters, such as the one we propose in this paper,
could be combined with the heuristics used in Maple too.

Another approach to increase efficiency of discovering concurrency-related errors is that of
extrapolating dynamic analysis. Such an analysis is trying to discover symptoms of concurrency-
related errors (e.g., wrong locking order, use of different locks to guard the same variable, etc.),
and it can warn about a possible error even if it is not witnessed in a given run. Many extrapolating
dynamic analyses have been proposed, including, e.g., analyses targeting data races [49, 10, 16],
deadlocks [4], atomicity violations [14, 39, 15], etc. Note that extrapolating dynamic analyses can
be combined with noise injection as these approaches are to a large degree complementary.

Yet another possibility how to look for concurrency-related errors is that of using techniques of
static analysis, often with deep formal roots. There exist many static analysis techniques, including,
e.g., software model checking, data flow analysis, abstract interpretation, or searching for error-
patterns. Some of these techniques have problematic scalability (e.g., model checking), some suffer
from false alarms, and/or have problems to capture all forms of concurrency-related errors (e.g.,
error patterns). On the other hand, some of them can provide very high guarantees of finding errors
or be very fast. These techniques can be viewed as complementary to testing and dynamic analysis.
Their deeper discussion is beyond the scope of this paper—for an overview, see, e.g., [36].

Finally, various combinations of the above approaches have been studied in the literature. In
active testing, which is considered, e.g., in [50, 44, 27], some bug detector based on static analysis
or extrapolating dynamic analysis is used to detect possible concurrency errors and then some form
of noise-based testing, directed by information from the first phase, is used to check whether the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

24

detected error is real. In [12], an approach combining noise-based testing and extrapolating dynamic
analysis in the first phase was combined with bounded software model checking along the (partially)
recorded trace from the first phase and in its neighbourhood.

Note that it is not a goal of this paper to argue that any single of the above mentioned approaches
is clearly better than the rest. Each of the approaches has advantages and disadvantages, and hence,
in practice, the best way is to use several of these approaches and/or some of their combinations such
as those mentioned above. The goal of this paper is to significantly advance one of the approaches,
namely, noise-based testing. In particular, we proposed a new solution to the problem of finding
suitable settings of the many parameters that control noise-based testing. For that, previous works
used random noise setting [8] or applied genetic algorithms [21, 23]. Our experiments show that
our approach based on data mining can overcome both of the previous approaches in some cases
(in general, there is no single best approach). Moreover, data mining and genetic algorithms can be
combined, yielding an approach which produced the best results in most of our experiments.

5.2. Related Works from the Area of Data Mining

Most of the existing works on obtaining new knowledge from multiple test runs of concurrent
programs focus on gathering debugging information that helps to find the root cause of a failure [9,
54]. In [54], a machine learning algorithm is used to infer points in the execution such that the error
manifestation probability is increased when noise is injected into them. It is then shown that such
places are often involved in the erroneous behaviour of the program. Another approach [9] uses
a technique similar to data mining, more precisely, a feature selection algorithm, to infer a reduced
call graph representation of the system under test, which is then used to discover anomalies in the
behaviour of the system under test within erroneous executions.

None of the works above, and, to the best of our knowledge, no other existing work has applied
data mining for finding values of test and noise parameters suitable for noise-based testing of
concurrent programs. The only exception is our preliminary work [1], on which this paper is based.
However, compared with [1], the present paper provides (1) a significantly improved presentation
of the idea, (2) it proposes a new way of exploiting the results from data mining for fully automated
noise-based testing, (3) a combination of data mining with genetic approaches, and (4) it provides
a significantly improved experimental evaluation of the approach.

Naturally, there is much richer literature and tool support for data mining test results without
a particular emphasis on concurrent programs. The existing works study different aspects of testing,
including identification of test suite weaknesses [2], optimisation of the test suite [60], or error
localization [11]. Adler et al [2] show that a substring hole analysis is used to identify sets of
untested behaviours using coverage data obtained from testing of large programs. Contrary to the
analysis of what is missing in coverage data and what should be covered by improving the test suite,
other works focus on what is redundant. Yoo et al [60] show that a clustering data mining technique
is used to identify tests which exercise similar behaviours of the program. The obtained results are
then used to prioritise the available tests. Erman et al [11] show that clustering of similar test case
failures is used to help the analyst to identify the underlying causes of the failures and thus to make
it easier to deal with huge numbers of test results obtained due to test automation.

Further, data mining techniques are, of course, used in many other areas of software engineering
than testing. An exhaustive list of such applications is beyond the scope of this paper, and so we
mention just a few examples. For instance, in the recent result [59], machine learning is used to
extract design knowledge allowing one to improve assignment of responsibilities to classes, which
is a vital task in object-oriented design. Cheung et al [5] show that clustering is used to detect
smells in spreadsheet cells, which are susceptible to contain errors. Rubinič et al [47] show that
machine learning is applied for software defect prediction, using ensembles of genetic classifiers to
deal with imbalanced data sets. Luo et al [41], data mining is used for automatically identifying
code changes that may potentially be responsible for a performance regression. Next, Kreutzer
et al [30] show that a clustering algorithm is used in combination with two syntactical similarity
metrics to automatically detect groups of similar code changes. Liang et al [37] focus on improving
the precision of code mining with the aim of error detection by carefully preprocessing the source

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 25

code. Tantithamthavorn et al [53] show that an automated parameter optimization technique has
been applied to obtain prediction models in the form of classifiers trained to identify defect-prone
software modules. Wang et al [55] show that machine learning is used to automatically learn a
semantic representation of programs from their source code.

6. CONCLUSIONS AND FUTURE WORK

In the paper, we have proposed a novel application of data mining in the context of noise-based
testing of concurrent programs. In particular, we have employed data mining based on binary
classification, decision trees, and the AdaBoost machine learning algorithm. We have shown how
to use these technologies for finding a suitable set up of noise injection, i.e., selecting suitable
noise injection heuristics out of the many known ones and finding suitable values of their various
parameters, with the aim of maximizing chances of meeting a given testing goal. We have
illustrated our approach on two concrete testing goals in the context of concurrent programs, namely,
reproduction of known errors for debugging purposes and covering rare behaviours, which are
more likely to contain so far unknown bugs than common behaviours. We have shown how data
mining can be used to gain more insight into the suitability of the different noise heuristics and their
parameters, allowing testers to choose the right ones for the given context, as well as how to use
data mining to improve fully automated noise-based testing. For the latter case, we have combined
our approach both with noise-based testing on a random basis as well as with genetically optimized
noise-based testing. For all the proposed approaches, we have illustrated on a number of case studies
that they can indeed improve the process of noise-based testing of concurrent programs.

In the future, we would like to apply in the context of testing of concurrent programs other
approaches to data mining than AdaBoost and binary classification that we considered in this paper.
This could include approaches such as outliers detection, clustering, or association rules mining.
We would also like to look for other applications of data mining than setting up noise injection
in a suitable way. For example, many of the concurrency coverage metrics based on dynamic
detectors contain a lot of information on the behaviour of the tested programs, and when mined,
this information could be used for debugging purposes. One could also think of generalising the
various existing works devoted to detection of untested behaviour or to eliminating tests of similar
behaviour of sequential programs (cf. Section 5) for the case of concurrent programs.

Acknowledgement. This work was supported by the Czech Science Foundation project 14-
11384S, the EU/Czech IT4Innovations Excellence in Science project LQ1602, and the internal
project of FIT BUT FIT-S-14-2486.

REFERENCES

1. R. Avros, V. Hrubá, B. Křena, Z. Letko, H. Pluháčková, S. Ur, T. Vojnar, and Z. Volkovich. Boosted Decision Trees
for Behaviour Mining of Concurrent Programs. In Proc. of MEMICS’14, pages 15–27. NOVPRESS, 2014.

2. Y. Adler, N. Behar, O. Raz, O. Shehory, N. Steindler, S. Ur, and A. Zlotnick. Code Coverage Analysis in Practice
for Large Systems. In Proc. of ICSE’11, pages 736–745. ACM, 2011.

3. T. Ball, S. Burckhardt, K. E. Coons, M. Musuvathi, and S. Qadeer. Preemption Sealing for Efficient Concurrency
Testing. In Proc. of TACAS’10, volume 6015 of LNCS, pages 420–434. Springer-Velrlag, 2010.

4. S. Bensalem and K. Havelund. Dynamic deadlock analysis of multi-threaded programs. In In Proc. of PADTAD’05,
pages 208–223. Springer-Verlag, 2005.

5. S.-Ch. Cheung, W. Chen, Y. Liu, and Ch. Xu. CUSTODES: Automatic Spreadsheet Cell Clustering and Smell
Detection using Strong and Weak Features, In Proc. of ICSE’16, IEEE/ACM, 2016, Austin, TX, USA.

6. K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley paperback series. Wiley, 2009.
7. R. Dias, C. Ferreira, J. Fiedor, J. Lourenço, A. Smrčka, D.G. Sousa, and T. Vojnar. Verifying Concurrent Programs

using Contracts. In Proc. of ICST’17. IEEE CS, 2017.
8. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur. Framework for Testing Multi-threaded Java

Programs. Concurrency and Computation: Practice and Experience, 15(3-5):485–499. Wiley, 2003.
9. F. Eichinger, V. Pankratius, P. W. L. Große, and K. Böhm. Localizing Defects in Multithreaded Programs by Mining

Dynamic Call Graphs. In Proc. of TAIC PART’10, volume 6303 of LNCS, pages 56–71. Springer-Verlag, 2010.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

26

10. T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and Transaction-aware Java Runtime. In Proc. of PLDI’07,
pages 245–255. ACM, 2007.

11. N. Erman, V. Tufvesson, M. Borg, A. Ardö, and P. Runeson. Navigating Information Overload Caused by
Automated Testing – A Clustering Approach in Multi-Branch Development, ICST’15, IEEE, 2015.

12. J. Fiedor, V. Hruba, B. Krena, T. Vojnar. DA-BMC: A Tool Chain Combining Dynamic Analysis and Bounded
Model Checking, In Proc. of RV’11, LNCS 7186. Springer-Verlag, 2012.

13. J. Fiedor, V. Hrubá, B. Křena, Z. Letko, S. Ur, and T. Vojnar. Advances in Noise-based Testing of Concurrent
Software. In Software Testing, Verification and Reliability, 25(3):272–309. Elsevier, 2015.

14. C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for multithreaded programs. SIGPLAN
Not., 39(1):256–267, Jan. 2004.

15. C. Flanagan, S. N. Freund, and J. Yi. Velodrome: a sound and complete dynamic atomicity checker for
multithreaded programs. SIGPLAN Not., 43(6):293–303, 2008.

16. C. Flanagan and S. N. Freund. FastTrack: efficient and precise dynamic race detection. In Proc. of PLDI’09, pages
121–133, New York, NY, USA, 2009. ACM.

17. Y. Freund. Boosting a weak learning algorithm by majority. In Information and Computation, 121(2):256–
285,1995.

18. Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Application to
Boosting. Journal of Computer and System Sciences, 55(1): 119–139, Academic Press, Inc., Orlando, FL, USA,
August 1997.

19. Y. Freund and R. E. Schapire. A Short Introduction to Boosting. In In Proc. of IJCAI’99, pages 1401–1406.
Morgan Kaufmann, 1999.

20. S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold. Testing Concurrent Programs to Achieve High
Synchronization Coverage. In Proc. of ISSTA’12. ACM, 2012.

21. V. Hrubá, B. Křena, Z. Letko, S. Ur, and T. Vojnar. Testing of Concurrent Programs Using Genetic Algorithms. In
Proc. of SSBSE’12, volume 7515 of LNCS, pages 152–167. Springer-Velrlag, 2012.

22. V. Hrubá, B. Křena, Z. Letko, H. Pluháčková, and T. Vojnar. Testing Concurrent Programs Using Multi-objective
Genetic Algorithms, FIT-TR-2013-05, Brno, 2013.

23. V. Hrubá, B. Křena, Z. Letko, H. Pluháčková, and T. Vojnar. Multi-objective Genetic Optimization for Noise-based
Testing of Concurrent Software. In Proc. of SSBSE’14, volume 8636 of LNCS, pages 107–122. Springer-Verlag,
2014.

24. G.-H. Hwang, H.-Y. Lin, S.-Y. Lin, Ch.-S. Lin. Statement-Coverage Testing for Concurrent Programs in
Reachability Testing, In Journal of Information Science and Engineering, Volume 30, number 4, pages 1095-1113,
2014.

25. G.-H. Hwang, Ch.-S. Lin, T.-S. Lee, Ch. Wu-Lee. A model-free and state-cover testing scheme for semaphore-
based and shared-memory concurrent programs, In Software Testing, Verification and Reliability, Volume 24, Issue
8, pages 706737, December 2014.

26. H. Ishibuchi and Y. Shibata. A Similarity-based Mating Scheme for Evolutionary Multiobjective Optimization,
Lecture Notes in Computer Science, 2003, pages 1065–1076, Springer

27. P. Joshi, M. Naik, C.-S. Park, K. Sen. CalFuzzer: An Extensible Active Testing Framework for Concurrent
Programs, In Proc. of CAV’09, LNVS 5643. Springer-Verlag, 2009.

28. G. Korl and N. Shavit and P. Felber. Noninvasive concurrency with Java STM.
29. S. B. Kotsiantis. Supervised Machine Learning: A Review of Classification Techniques. Informatica 31:249 – 268,

2007.
30. P. Kreutzer, G. Dotzler, M. Ring, b. M. Eskofier, and M. Philippsen. Automatic Clustering of Code Changes. In

Proc. of MSR’16, IEEE/ACM, 2016, Austin, TX, USA.
31. W. J. Krzanowski and D. J. Hand. ROC Curves for Continuous Data, Monographs on Statistics and Applied

Probability 111 2009, Chapman & Hall/CRC.
32. B. Křena, Z. Letko, Y. Nir-Buchbinder, R. Tzoref-Brill, S. Ur, and T. Vojnar. A Concurrency Testing Tool and Its

Plug-ins for Dynamic Analysis and Runtime Healing. In Proc. of RV’09, LNCS 5779, Springer-Verlag, 2009.
33. B. Křena, Z. Letko, T. Vojnar, and S. Ur. A Platform for Search-based Testing of Concurrent Software. In Proc. of

PADTAD’10, ACM, 2010.
34. B. Křena, Z. Letko, and T. Vojnar. Coverage Metrics for Saturation-based and Search-based Testing of Concurrent

Software. In Proc. of RV’11, volume 7186 of LNCS, pages 177–192. Springer-Velrlag, 2012.
35. B. Křena, Z. Letko, and T. Vojnar. Influence of Noise Injection Heuristics on Concurrency Coverage. In Proc. of

MEMICS’11, volume 7119 of LNCS, pages 123–131, Springer-Velrlag, 2012.
36. B. Křena and T. Vojnar. Automated Formal Analysis and Verification: An Overview In International Journal of

General Systems, 42(4):335–365. Taylor and Francis, 2013.
37. B. Liang, P. Bian, Y. Zhang, W. Shi, W. You, and Y. Can. AntMiner: Mining More Bugs by Reducing Noise

Interference. In Proc. of ICSE’16,IEEE/AMC, 2016, Austin, TX, USA.
38. Ch.-S. Lin and G.-H. Hwang. State-cover Testing for Nondeterministic Concurrent Programs with an Infinite

number of Synchronization Sequences, In SCIENCE OF COMPUTER PROGRAMMING, Volume 78, Issue 9, 1
September 2013, Pages 12941323.

39. S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity Violations via Access Interleaving Invariants. In
Proc. of ASPLOS’06. ACM, 2006.

40. S. Luke. Essentials of Metaheuristics, first, 2011.
Available for free at http://cs.gmu.edu/∼sean/book/metaheuristics/

41. Q. Luo, D. Poshyvanyk, and M. Grechanik. Mining Performance Regression Inducing Code Changes in Evolving
Software. In Proc. of MSR’16, IEEE/ACM, 2016, Austin, TX, USA.

42. R. V. van Nieuwpoort Efficient Java-Centric Grid Computing, 2003, Rob van Nieuwpoort. Available for free at
https://books.google.cz/books?id=fRmZ6aC4eDwC

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

BOOSTED DECISION TREES FOR BEHAVIOUR MINING OF CONCURRENT PROGRAMS 27

43. Y. Nir-Buchbinder, R. Tzoref, S. Ur. Deadlocks: From Exhibiting to Healing, In Third Workshop on Runtime
Verification (RV03), volume 89(2) of Electronic Notes in Theoretical Computer Science, 2004.

44. S. Park, S. Lu, Y. Zhou. CTrigger: Exposing Atomicity Violation Bugs from Their Hiding Places, In Proc. of
ASPLOS’09, ACM Press, 2009.

45. Ch. von Praun and T. R. Gross. Object Race Detection, SIGPLAN Not., 2001, volume 36, number 11, pages 70
–82, New York, NY, USA, ACM.

46. Ch. von Praun and T. R. Gross. Static detection of atomicity violations in object oriented programs, Runtime
Verification, 2008, pages 104–118, Springer Berlin Heidelberg.

47. E. Rubinić, G. Mauša, and T. Galinac Grbac. Software Defect Classification with a Variant of NSGA-II and Simple
Voting Strategies, In Proc. of SSBSE’15, LNCS 9275, pp.347–353,2015.

48. P. Saint-Hilaire, Ch. von Praun, E. Stolte, G. Alonso, A. O. Benz and T. Gross. The RHESSI Experimental Data
Center, Solar Physics 210: 143–164, 2002.

49. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic Data Race Detector for
Multi-threaded Programs. In Proc. of SOSP’97. ACM, 1997.

50. K. Sen. Race Directed Random Testing of Concurrent Programs, In Proc. of PLDI’08, ACM Press, 2008.
51. L. A. Smith, J. M. Bull, J. Obdržálek. A Parallel Java Grande Benchmark Suite. In Proc. of Supercomputing’01,

ACM, 2001.
52. S. D. Stoller. Testing Concurrent Java Programs using Randomized Scheduling, Proc. Second Workshop on

Runtime Verification (RV), 2002, series: Electronic Notes in Theoretical Computer Science, volume 70(4), Elsevier.
53. Ch. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. Automated Parameter Optimization of

Classification Techniques for Defect Prediction Models, In Proc. ICSE’16, IEEE/ACM, 2016, Austin, TX, USA.
54. R. Tzoref, S. Ur, and E. Yom-Tov. Instrumenting Where It Hurts: An Automatic Concurrent Debugging Technique.

In Proc. of ISSTA’07, pages 27–38. ACM, 2007. ACM.
55. S. Wang, T. Liu, and L. Tan. Automatically Learning Semantic Features for Defect Prediction, In Proc. of ICSE’16,

IEEE/ACM, 2016, Austin, TX, USA.
56. D. White. Software Review: The ECJ Toolkit. Genetic Programming and Evolvable Machines, 13, 2012.
57. I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques. Morgan

Kaufmann, 3rd edition, 2011.
58. J. Wu, Y. Tang, G. Hu, H. Cui, and J. Yang. Sound and Precise Analysis of Parallel Programs through Schedule

Specialization. In Proc. of PLDI’12. ACM, 2012.
59. Y. Xu, P. Liang, and M. A. Babar. Introducing Learning Mechanism for Class Responsibility Assignment Problem,

In Proc. of SSBSE’15, LNCS 9275, pp. 311–317, 2015.
60. S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering Test Cases to Achieve Effective and Scalable Prioritisation

Incorporating Expert Knowledge. In Proc. of ISSTA’09, pages 201–212. ACM, 2009.
61. J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: A Coverage-driven Testing Tool for Multithreaded

Programs. In Proc. of OOPSLA’12. ACM, 2012.
62. E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, ETH

Zurich, 1999.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

