A Uniform (Bi-)Simulation-Based
Framework for Reducing
Tree Automata

FIT BUT Technical Report Series

Parosh A. Abdulia, Lulgés? Holik,
Lisa Kaati, and Tomas Vojnar

Technical Report No. FIT-TR-2008-005
Faculty of Information Technology, Brno University of Technology

Last modified: July 14, 2008

A Uniform (Bi-)Simulation-Based Framework for Reducing Tree
Automata*

Parosh A. Abdulld, Lukas Holik, Lisa Kaatt, and Tomas Vojnar

1 Department of Information Technology, University of Uplgs&weden
email: {parosh, | i sa. kaati }@t. uu. se
2 Faculty of Information Technology, Brno University of Tewlogy, Brno, Czech Republic
email:{hol i k, voj nar }@i t. vutbr.cz

Abstract. In this paper, we address the problem of reducing the sizeoofieterministic (bottom-up) tree
automata. We propose a uniform framework that allows forliaing various upward and downward bisimu-
lation and simulation relations in order to obtain a langtpgeserving combined relation suitable for reducing
tree automata without a need to determinise them. The framkegeneralises and extends several previous
works and provides a broad spectrum of different relatidaklyng a possibility of a fine choice between the
amount of reduction and the computational demands. We,overeprovide a significantly improved way of
computing the various combined (bi-)simulation relatiove analyse properties of the considered relations
both theoretically as well as through a series of experiment

1 Introduction

Finite tree automata are a natural generalisation of waichaata. Since trees (or terms) appear in many
areas of computer science and engineering, tree autonetpée broadly applicable—including, for
instance, applications in XML manipulation, natural laage processing, or formal verification. In most
of these applications, dealing with as small automata asilpess highly desirable. In order to reduce
the size of a given tree automaton, one can always try to mdetese and minimise it. However, the
determinisation may lead to an exponential blow-up in tlze,sand even the minimal deterministic
automaton might still be bigger than the original nondeteigtic automaton. Moreover, even if the
minimal deterministic automaton is really small, it mighg impossible to compute it due to the very
expensive determinisation step.

An alternative way to reduce a given (nondeterministice taeitomaton is to identify a suitable,
language-preserving equivalence relation over its statdscollapse those states that are equal accord-
ing to this relation. As in the case of word automata, goodiwhtes for such relations are various
bisimulations and simulation equivalences. In particulae so-called forward and backward bisimula-
tions and simulation equivalences are well known to be Uisgian reducing the size of word automata.
In this paper, we deal with their tree automata extensiohg-so-calledlownwardandupward bisim-
ulationsandsimulation equivalences

Thedownward (bi-)simulationswvhich straightforwardly generalise the appropriate ekl (bi-)si-
mulations from word automata to (bottom-up) tree autorratacompatible with the language inclusion
preorder. That is, if a statedownward (bi-)simulates a staggthen the language accepteddig a sub-
set of the language acceptedhyrherefore, these relations are a natural choice for raedubie size of
tree automata.

Theupward (bi-)simulationsre not compatible with the language inclusion preordestebd, they
are compatible with the inclusion of the so-callsmhtext languagesvhere a context of a statgarises
from a tree accepted atby replacing some of its leaves by a “hole”. It can, howevershown that
when we restrict ourselves to upward (bi-)simulations catilte with the set of final states of au-
tomata, the downward and upward (bi-)simulations carcémmbinedin such a way that they yield

* The work was supported by the Czech Grant Agency (proje@#¥00322 and 102/05/H050), the Czech-French Barrande
project 2-06-27, and the Czech Ministry of Education by thejgct MSM 002163052&ecurity-Oriented Research in
Information Technology

a language-compatible equivalence. In the worst case,dh®ioed relation is as coarse as the ap-
propriate downward (bi-)simulation equivalence, but adow to our practical experiments, it usually
leads to significantly better reductions of the automata.

Tree bisimulations can be computed efficiently in timg? m log) wherer’is the maximal rank
of the input symbolsm the size of the transition table, amdthe number of states of the given tree
automaton [3, 10, 1]. However, the reduction obtained bggibisimulations is often limited. Tree sim-
ulations are weaker than bisimulations and hence offertataetduction. On the other hand, despite the
recent advances in algorithms devised for computing thgniH&y are significantly more expensive to
compute. The time complexity of computing simulation pdess is roughly iro (¢ 2 m?) where/ is
the size of the alphabet.

In this paper, we propose a novel notion of upward simulatiand bisimulationparameterised
by aninducingdownward simulation or bisimulation (in any possible conation). Moreover, we in-
troduce a new operator—calledwaeakening combination operatefor combining such upward and
downward simulation and bisimulation relations on treeomadta. This way, we obtain aniform tree
(bi-)simulation frameworkvhich brings in several significant advantages.

First, the proposed framework allows one to combine not enéximal downward and upward
simulations or maximal downward and upward bisimulations@nsidered in previous works [2, 1], but
to combine any inducing downward simulation (i.e., also wmeard bisimulation or, e.g., the identity
relation) with any induced upward simulation (i.e., alsasarbulation or identity). This way, we explain
in a uniform way several previous results [10, 2, 1] and, roeee we obtain severalew combined
relations suitable for reducing tree automata. The use of such remtioixing in various ways the
advantages of simulations and bisimulations allows the tastne-tunethe ratio between the possible
reductions and their cost.

We carefully analyse mutual relationships of the varioussaered relations. We establish a certain
partial ordering between their reduction capabilities, but we also show thahy of them have an
incomparablereduction power.

Further, compared to the previous works, the newly propesecbination operator brings in also
a significantly improved way of computing the combined @ulation relations. Before the combina-
tion was accomplished by randomly looking for some combirgtation satisfying the needed require-
ments. The newly proposed combination operator computasxamal combined relatigrwhich we
show to be unique. The algorithm that we propose for this ggeeggurns out to be quite simple and runs
in time O(n®) (or, in fact, even in a slightly better time). The use of theximel combined relations
turns out to itself give much better results in our experitaghan the previously used random combina-
tion algorithms. Let us also note that the notion of combif@¢simulation relations that we propose is
applicable even for word automata as for a special case@automata.

In order to experimentally examine the broad spectrum attieis offered by our framework, we
implemented a prototype tool in which we have performeddhgh experiments with tree automata
from the domain of formal verification of infinite-state sists based on the so-called regular tree model
checking and abstract regular tree model checking [8, 4, Ur experimental results confirm that we
have obtained a broad range of algorithms for reducing téenaata, differing in their computation
complexity and reduction capabilities.

Related work. Several algorithms for reducing the size of non-deterrtimisee automata while pre-
serving their language have been proposed in the literafure first attempt was done in [3] where
an algorithm inspired by the partition refinement algoritbgn Paige and Tarjan [12] was presented.
In [10], two different types of bisimulations—a backwarddaiorward bisimulation—were presented.
These bisimulations turn out to be special cases of theae&aarising in our framework.

Efficient algorithms for computing simulation equivalesamrer tree automata have then been dis-
cussed in [2] together with a proposal of combined simutatidations. In [1], the ideas from [2] were
extended to work for bisimulations. In this paper, we comhinese previous works in a framework
which allows us to explain them in a uniform way and, morepterobtain multiple new relations
applicable for reducing tree automata. The obtained framnewllows the user to mix advantages of

2

simulation and bisimulation approaches in a degree seitflla given scenario. The way we use for
computing the upward and downward relations that we arerdgalith is inspired by the approach

of [2] and [1]. We, however, provide a new and significantlynoved way of combining these relations
via the newly proposed weakening combination operator.

Plan of the paper. The rest of the paper is organised as follows. We start withespreliminaries in
Section 2. In Section 3, we introduce the notions of downwhidsimulations, and propose the notion
of parameterised upward (bi-)simulations. Subsequeintigection 4, we propose the weakening com-
bination operator and its use for obtaining combined retegtisuitable for reducing tree automata. Next,
Section 5 analyses properties of the most interesting Iplessombined relations. Section 6 overviews
algorithms usable for computing downward and upward (inil}ations and proposes an algorithm for
computing their combinations. In Section 7, we give an expental evaluation of using the obtained
spectrum of relations for reducing tree automata. Finallysummarise the paper and discuss possible
future work in Section 8.

2 Preliminaries
In this section, we introduce some preliminaries on retegjdrees, and tree automata.

Trees. A ranked alphabek is a set of symbols together with a functionZ-+~ N. For f € Z, the value
#(f) is called therank of f. For anyn > 0, we denote by, the set of all symbols of rank from Z.

Let € denote the empty sequencetr@e tover a ranked alphabgtis a partial mapping : N* — X that
satisfies the following conditions:

— dom(t) is a finite, prefix-closed subset b, and
— for eachp € dom(t), if #(t(p)) =n> 0, then{i | pi € domt)} = {1,...,n}.

Each sequencp € dom(t) is called anodeof t. For a nodep, we define thé'" child of p to be the node
pi, and the" subtreeof p to be the tre¢’ such that'(p') =t(pip) for all p’ € N*. A leafof t is a node
p which does not have any children, i.e., there is gaN with pi € dom(t). We denote byl (X) the set
of all trees over the alphabgt

Tree Automata. A (finite, non-deterministic, bottom-upyee automaton(abbreviated as TA in the
following) is a quadrupléA = (Q, Z,A,F) whereQ is a finite set of state$; C Q is a set of final states,
> is a ranked alphabet, anilis a set of transition rules. Each transition rule is a triplahe form

((g1,--.,0n), f,q) whereqy,...,0n,q€ Q, f € 2, and # f) = n. We use(qy,...,0n) LR gto denote that
((d1,---,0n), f,q) € A. In the special case where= 0, we speak about the so-calleghf rules which

we sometimes abbreviate af5e g. We useLhs(A) to denote the set déft-hand side®f rules, i.e., the

set of tuples of the fornfq,...,qn) where(qu,...,0n) LN g for somef andq. Finally, we denote by
f(A) the smallesh € N such thain > mfor eachm € N where(qq,...,qm) € Lhs(A) for someq; € Q,
1 <i < m. We omit the reference 1 if no confusion may arise.

A run of A over a tred € T(X) is a mappingt: domt) — Q such that, for each nodec dom(t)

whereq = 11(p), if g = 1(pi) for 1 <i < n, thenA has a rulg(q,...,qn) 1) 0. We writet == q to

denote thattis a run ofA overt such thatr(e) = g. We uset = q to denote that = q for some
run Tt Thelanguageof a stateg is defined byL(q) = {t|t = q}, while thelanguageof A is defined by
L(A) = quF L(q).

An environmentis a tuple of the form((qy,...,q-1,00,0i+1,---,0n), f,q) obtained by removing
a stateg;, 1 <i < n, from thei'" position of the left hand side of aruléas, ..., 01,6, +1,--.,0n), f,q),
and by replacing it by a special symbal¢ Q (called ahole below). Like for transition rules, we write

(qla LR D> cee aQn) L q prOVided((qla cee >Qi—1aQi>Qi+1> ce aQn)> f>q) €A for SOmeq; € Q Sometimes;

we also write the environment &g,,...,0;,...,0n) LN g to emphasise that the hole is at positiowwe
denote the set of all environments Aby EnVA) and we will drop the reference #if no confusion
may arise.

Relations. For an equivalence relatios defined on a se@, we call each equivalence class =f
ablock and use)/= to denote the set of blocks ia. For a preordeP, we will denote=p the maximal
equivalence included iR.

Quotient Tree Automata. The idea of reducing the size of an automaton is to identifiable equiva-
lence relations on its states, and then collapse the setste$ svhich form equivalence classes. Consider
aTAA=(Q,%,AF) and an equivalence relatiaa on Q. Thequotient tree automatoderived fromA
and=is A= = (Q=,2,A=,F=) where:

— Q= is the set of blocks ir=. In other words, we collapse all states which belong to timeeshlock
into one state of the quotient automaton.

— (B1,...,Bpn) L Biff (q1,---,0n) LN gfor someq; € By,...,0n € Bn,q € B. This is, there is a tran-
sition in the quotient automaton iff there is a transitiotviEen states in the corresponding blocks
in the original TA.

— F= contains a blockB iff BNF # 0. Intuitively, a block is accepting if it contains a state athiis
accepting.

3 (Bi-)Simulations on Tree Automata

We now present definitions of downward (bi-)simulations antdsequently, we propose a notion of
upward (bi-)simulationgparameterisedoy a downward simulation as one of the cornerstones of our
framework. We will call a downward simulation that is usedamrameter of an upward (bi-)simulation
aninducing relation and the obtained upward (bi-)simulation will then be ahbaminduced relation

In the next section, we will show how a pair of an inducing amduiced relation can be combined
into a new equivalence suitable for reducing tree autoniaée that the inducing relation is thus used
in two different ways: as a parameter of the upward (bi-)$thon and as a constituent of the combined
relation. By considering various inducing relations, weaitp a wide spectrum of combined relations
differing in their computational complexity and coarse@sghich is usually better and never worse than
that of the inducing relation).

3.1 Downward (Bi-)Simulations

For a tree automatoh= (Q,Z,A,F), adownward simulation Os a binary relation o® such that ifgDr
and(qs,...,0n) LR g, then(ry,...,rn) f, r with g;Dr; for eachi : 1 <i < n. A downward bisimulation

D is a binary relation o such that ifqDr, then(qy, ..., 0n) LN gifand only if (ry,...,rp) v with
giDri foreachi: 1<i<n.

The following two lemmas state some basic properties of aeavd (bi-)simulations.

Lemma 1. Given a tree automaton A, the set of all downward simulat@mms\ is closed under reflexive
and transitive closure and under union.

Lemma 2. Given a tree automaton A, the set of all downward bisimutetion A is a subset of the set
of all downward simulations on A and it is closed under symimetflexive, and transitive closure and
under union.

Proofs of Lemmas 1 and Lemma 2 can be found in [5] (cf. also AgpeA.1). The lemmas imply
that for a given tree automaton, there is a unigue maximahe@xd bisimulation which is an equiv-
alence and a unique maximal downward simulation which isemnoler. We note that the notion of
downward bisimulations corresponds to that of backwarnirhikations from [10].

The obvious fact that any downward bisimulation is a dowmlagimulation allows us to simplify
some further reasoning by considering just downward sitima and handling bisimulations as their
special case.

3.2 Induced Upward Simulations

Given a tree automatoA = (Q,Z,A,F) and an inducing downward simulation preord@granupward
simulation Uinduced byD is a binary relation oiQ such that ifqUr, then

@) if (q,---,0n) Lq’ with g =q, 1 <i <n, then(ry,...,r) v with ri=r,qUr’, andq;Dr; for
eachj:1<j#i<n;
(i) geF = rekF.

The following lemma subsumes basic properties of upwardlsitions. Note that it also implies that
for any inducing downward simulation preord®ythere is always a uniqgue maximal upward simulation
induced byD which is a preorder.

Lemma 3. Given a tree automaton A and a downward simulation preordethe set of all upward
simulations induced by D is closed under reflexive and ttaresclosure and under union.

3.3 Induced Upward Bisimulations

Let A= (Q,%,A,F) be a tree automaton and IBtbe a downward simulation preorder. Aqpward
bisimulation U on Q induced by 3 a binary relation oQ such that ifgUr, then

() (qu,...,0n) —— o with g = q,1 <i < n, if and only if (rq,...,rm) — r’ with r; = r, qUr’, and
gj=prjforeachj:1<j#i<nm;
(i) geF < rekF.

As for upward simulations, it is not hard to prove the basiopgrties of upward bisimulations.
Note that the following lemma implies that for any downwaimh@ation preordeD, there is a unique
maximal upward bisimulation induced Wy that is an equivalence. It is also clear that any upward
bisimulation induced by is also an upward simulation induced By This will allow us to prove the
main results just for upward simulations and maintain bidations as a special case.

Lemma 4. Given a tree automaton A and a downward simulation preordethe set of all upward
bisimulations induced by D is a subset of the set of all upveartulations on A induced by D and it is
closed under symmetric, reflexive, and transitive closume @nder union.

Proofs of Lemmas 3 and 4 can be found in [5] (cf. also AppendiX)ALet us note that the no-
tion of an upward bisimulation induced by the identity rielatcorresponds to the notion of a forward
bisimulation from [10].

4 Combined Relations for Reducing the Size of Tree Automata

Upward simulation equivalences and upward bisimulatidoeeacannot be used for reducing tree au-
tomata as they do not preserve their language. To circuntiisnproblem, we have to take into account
the inducing relation andombineit with the induced upward (bi-)simulation—as we have alsemen-
tioned in the previous section, the induced relation is teed in two different ways.

As one of the main contributions of this work, we are now goiagdefine a new combination
operator—we call it aveakening combination operatefover the inducing downward simulations and
induced upward simulations. Unlike the operators usedewripus works [2, 1], the new operator allows
us to combine any inducing downward simulation (i.e., albgsanulation or identity) with any induced
upward simulation (bisimulation, identity) offering us eohd spectrum of the resulting relations.

Moreover, in the previous works, we were randomly computing relation out of the set of possible
language-preserving combined relations. Here, we firsteptbat there is always anique maximal
combined preordefor a given upward simulation and its inducing downward datian. In Section 6,
we then provide a simple algorithm for computing this maxipraorder. From a practical point of view,
using the maximal preorder instead of a random one has in sas@s a great impact on the size of the
reduced automaton as witnessed by our practical experément

5

A weakening combination operator. We define theweakening combination operatep, which is
normally to be applied over an inducing downward simulatmd an induced upward simulation, on
arbitrary preorders as follows: Given two preordetsand S over a selQ, for x,y € Q, X(H @ S)y iff

(i) x(HoS)y and (i) vze Q: yHz = x(H 0 S)z2 Intuitively, a paire= (x,y) € Q x QthatisinHoS
will also appear irH @ Siff after adding it to the preordéf, there is a possibility to supplement the
obtained relatioH U {e} by other pairs of elements @ that are inH o Sto ensure transitivity and get
this way a preorder again.

Lemma 5. For any set Q and any preorders,BC Q x Q, H® S is a unique maximal preorder such
that HCH®SCHoS.

Proof. LetW = H @ SandC = H o S* Keep in mind thawW,H,SC C and thatH and S are reflexive
and transitive. We first prove some auxiliary facts for any z € Q allowing us to derive existence of
certain elements of the relations that we are dealing with:

I. xCy = xHwSyfor somew € Q, which follows directly from the definition dt.

Il. xHyCz = xCz FromyCzand (I), we have/HwSzor somew € Q. FromxHyHw, we havexHw.
FromxHwSzand from the definition o€, we havexCz

lll. X\WyHz=— xCz which follows directly from the definition diV.

IV. xCySz—> xCz FromxCyand (I), we havexHwSyfor somew € Q. FromwSySzwe havewSz
FromxHwSzand (ll), we havexCz

V. X\WyCz=— xCz FromyCzand (l), we haveyHwSzfor somew € Q. FromxWyHwand (lIl), we
havexCw;, which together with (I) givegHvSwfor somev € Q. FromvSwSzwe havevSzand so
vCz(asSC C), which together withkHvand (ll) givesxCz

Now, we can prove the claim of the lemma. First, we will arguetH C W. To do this, suppose that
xHy for somex,y € Q. We will show thatxWy AsH C C, we have thakCy, which fulfils Condition (i)
from the definition ofp. To satisfy Condition (ii), we have to show that for arbiyrar= Q suchyHz xCz
holds. From transitivity oH and fromxHyHz we havexH z which implies thakCzwhen we take into
account thaH C C. Thus, even Condition (ii) is fulfilled, and we are obtainx\yyfrom the definition
of @. Hence, we have proved thidat C W. Moreover, the fact thaty C C is trivial as it is a part of the
definition of .

We will now prove thalV is a preorder. We first prove by contradiction thitis transitive. Sup-
pose that there existy,z € Q such thatxtWyW z but notxW z Recall thatw C C. From (I), we have
xHwWSyHvS#or somev,w € Q. FromxWyHvand (l11), we havexCv. FromxCvSznd (1V), we havexCz
From the definition ofp, xCztogether with noW zimply that there is & € Q such thatxCzHq but
notxCqg FromyW zHgand (Ill), we getyCg ThenxWyCq and(V) givesxCqg which is a contradiction.
We have proven that the relatidM is transitive. Showing thaw is also reflexive is immediate as we
already know thaH C W and thatH is reflexive. Thus, we have proven thtis a preorder.

Finally, we will show thaiV is a uniqgue maximal preorder included@and containingH. It can
be easily seen from the definition fthat any pairx,y) € C\ W cannot be contained in any preorder
P such thatH C P C C as no relatior such thatH C P C C and(x,y) € P can be transitive. Thuyy
contains all the pairs that can be elements of a preordarded! inC and containingH, and therefore
any such preordeP is a subset ofW. As we have proven thaW itself is a preorder, it has to be the
unique maximal preorder that includelsand that is itself included i€. O

Lemma 5 is a key result that allows us to define combined pezsrand equivalences applicable for
reducing the size of tree automata as follows.

3 Here,H o Sis the common composition of relations, iy € Q: X(HoSy <= Jze Q:xHzSy

4 For an easier orientation in the symbols, let us note thatsedufor the result of applying the weakening combination
operatorC to denote the composition &f andS, H is a preorder which is “hard” in the sense that it has to beuied! in
W, whereasSis “soft” in the same sense.

Combined relations for reducing tree automata. Consider a tree automaténa downward simulation
preorderD, and an upward simulatiod induced byD. We call the relatioWw = D & U~ a combined
preorderand=yy a combined equivalenc€orrectness of using the combined equivalence for reducin
the size of tree automata is stated in the following theotem.

Theorem 1. L(A-,) = L(A) for any tree automaton A and each combined preorder W .

A proof of Theorem 1 can be found in [5] (cf. also Appendix AlSpte that the theorem also covers
the case of reducing automata using downward simulationsi{simulations) alone. Indeed, given any
downward simulatiorD, the identity is always an upward simulation inducedbyl hen, the combined
preorderD & id~! equalsD, which means that we can reduce the automaton usiggln particular,
this elegantly covers as special cases the proofs of cogestof reducing automata using downward
bisimulations and simulation equivalences stated in [2].

Corollary 1. L(A=,) =L(A) for any tree automaton A and each downward simulation preoi

5 Variants of Combined Relations and Their Properties

Theorem 1 and Lemmas 2 and 4 allow us to consider quite a Ipegram of relations suitable for
reducing tree automata. We now examine properties of tdiaek from this spectrum that arise when
we consider the identity, the maximal downward bisimulatiand the maximal downward simulation
as the inducing relatioB for both the maximal upward bisimulation and upward sinmatat

Our notation for the various types of combined equivalerthaswe consider consists of two parts:
a relation symbol and an additional symbol above the ralasigmbol. The relation symbol denotes
the type of the inducing downward relation. Namely,denotes the identity;> denotes the maximal
downward bisimulation, ané the maximal downward simulation. The additional symbohtdenotes
the type of the upward relation. We uedor the maximal upward bisimulation ardfor the maximal
upward simulation. No additional symbol corresponds tortteximum equivalence embedded in the
downward relation itself—the downward (bi-)simulatiorende viewed as compositions where the role
of the upward relation is played by the identity. For examﬁledenotes the relatioesp, ;-1 Where
D is the maximal downward bisimulation amd is the maximal upward simulation induced By In
what follows, we will implicitly consider all the downwardd upward (bi-)simulations that we will be
dealing with to be the maximal ones.

A partial ordering of the combined relations wrt. their coar seness.From the -
definition of a combined preorder, it clearly follows thatr & fixed inducing re-
lation D, if we are choosing the type of the upward relatibhom the strongest
one to the coarsest one, i.e., starting from the identitygaidg through the up-
ward bisimulation induced b to the upward simulation induced iy, we
obtain coarser and coarser combined preorBerd) —1.

On the other hand, if the inducing preord2is growing, from the definition
of the upward (bi-)simulation, we can see that the maximatard (bi-)simu- —
lation U induced byD and thus also the relatidbo U ~* are growing too. But, Fig. 1. Coarseness of
when havingD oU ~! computed and then computing the preorBepU — from various types of com-
it, the relationD acts as a restriction. A bigger relati@hcan cause that morebined equivalences
pairs are violating Condition (ii) from the definition &f. In general, having two
downward simulation preordeB; andD», we are guaranteed that the maximal upward (bi-)simulation
U1 induced byD; is included in the maximal upward (bi-)simulatif? induced byD,. Therefore, we

o
2o

Il
2 =2

/

R —— Re

5 Note that contrary to downward simulations, the combinembpters do not have to refine the language inclusion preorder
which is due to the fact that they strongly depend also on pweand simulations, which are not compatible with the
language inclusion preorder. Nevertheless, Theorem 1stiwat the combined equivalences still preserve the larggobg
the entire automaton when used for collapsing it.

et
NS

(@)L (b) A2 (c) A3

X \
v aa,

Fig. 2. Transition relations of automata proving the non-inclasielationships from Figure 1, and of an automaton proving
that one cannot use withia preorders included in the language inclusion preorderatahot downward simulations.

know thatD; oU; * C DpoU,?, but the combined preordeBy ¢ U; * andD, ©U, * can be incompa-
rable®
Based on these observations, we obtain the partial ordefiatj the considered types of combined

equivalences according to inclusion which is depicted guFé 1. For an automatok, we denote by
=(A) the combined equivalence of tyge on A. In the figure, the line from=; up to =, means that
for any automatorh, =1(A) C =(A). It is not hard to find an automatoh showing that all these
relationships are strict, i.e., such that for each of theeedg the figure=1(A) C =2(A). We construct
such an automaton in Example 1.

Example 1.Let Q = {q,r,s,t,u,v,W,X,y,z} be a set of states and [Etbe a ranked alphabet such that
>o={l} andZ; = {a,b,c}. The automatoi®\ = (Q,Z,A;, {x}) proves strictness of the relations in Fig-
ure 1. For each two types of relations from Figure 1 such #hais above=1, =1(A) C =2(A) holds.
The transition relatioi\; is depicted in Figure 2(a). In the table below there are dttite appropriate
combined equivalences for all the combinations of the dmred types of inducing and induced rela-
tions. For each type of combination, we list nontrivial eglince classes of the resulting combined

equivalence: .
: {q7r7s} 2 {t7u}7{q7r7s} N {t7u7v}7{q7r7s}7{x7z}
= {r,s} ~: {t,u},{r,s} ~:{t,u, v} {r,s}
= ~: {t,u} ~:{t,u,v}
It is now easy to check that all the inclusions from Figured strict for the automatoA. a

Incomparability of some of the combined relations. To complete the picture, we need to show that
the types of combined relations that are not connected inr€id are really incomparable. In other
words, that for each paie1, =, of types of combined equivalences that are not connectedyimd-1
there exists an automat@such that neithee=1(A) € =»(A) nor =1(A) 2 =,(A). We construct such
automata within Example 2.

Example 2.Let Q = {q,r,s,t,u,v} be a set of states and [Etbe a ranked alphabet such that= {I}
andX; = {a,b,c}. All the incomparability results show up taking automata= (Q\ {v},Z,A, {u})
andA; = (Q,Z,A, U {v -2 g}, {u}) where the transition relatioA; is depicted in Figure 2(b). One
can easily check that(A;) and=(A;) define just one nontrivial equivalence clgsss} and thus they
are incomparable with~(A1),~(A1),~(A;) that define only one nontrivial equivalence clasgr}.

In the case of the automatd¥, the added transition -2 q distinguishes the downward simulation
from the downward bisimulation. Analogically as fag, we have that-(A;) and~(Ay) define just one
nontrivial equivalence clasfr,s} and thus they are incomparable with(A;) and ~(A) that define
only one nontrivial equivalence clagg,r}. This gives all the incomparability relationships. a

6 Although, in our experiments, the former one usudlincluded in the latter one.

8

According to our experiments presented in Section 7, theatgah capabilities are rising when we
move in Figure 1 not only in the bottom-up direction (accogdio the edges), but also in the left-right
direction (as though within a full diamond). As a trade-tfie computational complexity of constructing
the relations is rising in the same way from the bottom to tipeand from the left to the right.

Impossibility of relaxing the need of downward simulations It is easy to see that when not consid-
ering combined relations (and when not thinking of the cotational complexity), one can replace the
use of downward (bi-)simulations in reducing the size of a@tomata by a use of any preorder which
is included in the so called language inclusion preotdel(q,r) € LP <= L(q) C L(r)). A natural
question comes forward: Is it also possible to induce (amakdne by®) an upward (bi-)simulation with
any preorder included ibP (not only with downward simulations)? Here, we give a negasnswer.
Not all preorders included ibP can be used within the operaterfor reducing automata. We prove this
claim by the following counterexample.

Example 3.Consider an automatoh = (Q, %,Az; U LeavesF) whereQ = {q,r,s,t,u}, Zo={l}, Z1 =
{a}, Az is depicted in Figure 2(c),eaves= {% x| x € Q},” andF = Q. Let us choose the relation
R=idU{(q,r),(r,t),(q,t)}, which is apparently contained itP, as the inducing preord&n\e can
choose the relatiob =id U {(q,t)} as the upward simulation preorder inducedRbyrhen, we obtain
RoU~1=RuU~tuU{(r,q)}. The pair(r,q) is present irRoU ~! because ofr,t) ¢ Rand(q,t) cU. Let
W = RaU ~! be the combined preordd®oU ! itself is already a preorder, and thereféve= RoU ~1.
We see that we have obtained an equivalence dlggs of =w which is bad as it implies that the
quotient automatod-,, contains the rulgq,r} -2, {q,r}. This definitely changes the language of the
original automatorf since no cycles were presentAn

Observe that if we take a downward simulation as the indupiegrder, such a situation does not
arise. The problem above is caused by the presengegfin RoU ~%, which is enabled byr,t) € R. If R
was a downward simulation containifgt), thenRwould have to contain evefg, s) from the definition
of a downward simulation. So, we would géR @ U ~1)gRswhich according to Condition (ii) of the
definition of & enforcesr(RoU ~1)s. However,r(RoU ~1)s does not hold for any pair of an inducing
downward simulatiorR and an induced upward simulatitbh(not even when one considers the maximal
ones), and so the pdir,q) is not present in any combined preorder, and we are nevevedito collapse
gandr. O

A note on word automata. We note that all the above results carry over to word autoriidiinclusion
properties from Figure 1 hold for word automata too sincey tten be seen as a special case of tree
automata. Moreover, our automata examples proving stsstof the relationships and incomparability
relationships are built using just leaf and unary rules, smthey are valid for word automata as well.

6 Computing the Proposed Relations

Below, we first briefly discuss methods for computing dowrdhamd upward (bi-)simulations proposed
in earlier works. Then, we propose an algorithm for commutime combined relations and analyse its
complexity. For the rest of the section, let us fix a tree aatomA = (Q,%,A,F) and letn = |Q],
m=|A, £ = |Z].

6.1 Computing Downward and Upward (Bi-)Simulations

The problem of computing (bi-)simulations over tree auttarigaddressed in [2, 1, 10]. In [2, 1], a quite
general method for computing tree (bi-)simulations viasfarming this problem to special instances

7 The set of ruled.eavesds present so that the language of the automaton is not beyempt
8 As we deal here only with unary and leaf symbols, upward gbmilation does not depend on the inducing relation.

of the classical problem of computing (bi-)simulations olabelled transition systems (LTS) is pro-
posed. Classical (bi-)simulation algorithms like [12, 38 then applied to the LTSs obtained from the
translation.

As studied in [1], using the above approach, we obtain algms for computing the maximal down-
ward and upward bisimulations in time(f® m logn) ando (mlog(n+ ¢) + T(D)), respectively, where
T (D) denotes the complexity of computing the inducing relafion

The case of tree simulations is considered in [2], where waiokalgorithms with the following
complexities when using the translation to LTS: [Debe the maximal downward simulation énand
let |Lhs(A)/=p| be the size of the partitioning of the left-hand sides of #aagition rules according
to D. D can be computed in time ((¢+)) - |Lhg - |Lhs/=p| + m-|Lhs/=p|), which can be roughly
approximated by ((f +¢) m?). LetU be the maximal upward simulation éninduced by a preorded,
we denote the set of environments partitioned with resgadtasEnv/=. Assuming thaf (D) is the
time of computing the inducing relatidd, U can be computed in time ((¢ |EnV +fm) |Env/=y| +
f2mlog |[EnV + T (D)), which can be roughly approximated by/ ? m? +T(D)).

Let us add that specialised algorithms for computing therdeavd bisimulation and upward bisim-
ulation induced by the identity were proposed in [10]. Thakgrithms run in timeo (7> m log n) and
o (Fmlog n), respectively.

6.2 Computing the Combined Relations

Given an inducing downward simulatidh and an upward simulatiod induced byD, the combined
preorderW = D @ U ! can be easily computed by simply following its definition.idtsufficient to
start by computing the relatioB = D oU ! and then just erase all the elementgCofwhich are pairs
of elements of the base s@) that break Condition (ii) from the definition @b. Using suitable data
structures, this computation starting from the relatidrendD can be implemented in time(min{|D| -
|Q,|U|-|Q|}) as follows.

We encode a relatiop on Q as an array indexed by elements@bf lists of elements o). A state
g is present in a list with index iff (r,q) € p. Note that given a boolean matrix representation of the
relation, the “array of lists”-representation can be dagtiin timeo (|Q|?). Note also that ad andD are
reflexive, we have that |, |D| > |Q| and thusQJ?> < min{|D|-|Q|,|U|-|Q|}. Let arrays of listD,U*
encode relation®,U 1.

The relationC = D oU ~! represented by a Boolean matfixcan be computed in the following way:
(1) Initialise all entries ofC to false (2) For eaclhy € Q, pass through all elements of the I3fg], and
for eachr € D|g], pass through all elemeng®f U~1[r], and seC[q, s to true. This procedure takes time
o([{(ars) | (ar)eDA(r,s)€U}]) S o(min{|D|-|Q[,|U]-|Ql}).

Then we compute a Boolean matrix representaibaf the relationV =D& U ~1 as follows: (3) We
initialise W as a copy of the matrig (representindd ocU 1), and in the subsequent Step (4), we erase
from W all the pairs of elements @ that break Condition (ii) from the definition &f. In Step (4), we
proceed in the following way: For afj € Q, for allr € D[], for alls€ U~[r], if not C[q, 9] (i.e.,(q,S) &
DoU™1), thenW([q, s = false This gives us the s@@U ! represented by the matriX. The complex-
ity of Steps (3), (4) isir (|{(q,r,s) | (a,r) € DA(r,s) €U~} +|{(q,r,8) | (g,r) €eU~LA(r,s) € D}|),
which is again iro (min{|D|-|Q|,|U|-|Q|}).

7 Experiments

We have implemented our algorithms in a prototype tool emitin Java. We have used the tool on
a number of tree automata from the frameworksegfular tree model checkingRTMC) andabstract
regular tree model checkifdRTMC) [8, 4, 6, 7].

RTMC is the name of a family of techniques for analysing inéirétate systems such as parame-
terised networks of processes, systems with queues, stathsunded integers, and/or dynamic linked
data structures like lists or trees. In RTMC, states arespnted by trees, sets of states by tree automata,

10

Table 1. The obtained reduction in percent and the computation tinseconds for the various considered relations applied for
reducing TA obtained from RTMC and ARTMC case studies. The sf the TA is the number of their states plus the number
of their transition rules.

TA ~ ° 2 2

origin size [|reduction timejreduction timereduction timelreduction time|
ARTMC 195 18% 055 2% 05s 23% 055 61% 10s
RTMC 613 27% 359 19% 209§ 19% 255 88% 5.1s
RTMC 909 | 52% 3.6s 72% 315 82% 345 8%% 351
ARTMC 2029 10% 27.08 37% 26.058 33% 29.0s 93% 39.0
RTMC 2403 26% 31.0 0% 2503 0% 340s 82% 37.1

OO

5
5

TA ~ 2 2 2

origin size ||reduction time|reduction time|reduction timereduction time|
ARTMC 195 | 18% 0.1s 2% 05% 23% 023% 23% 0.65
RTMC 613 0% 033 0% 043 0% 08s 27% 3.75
RTMC 909| 14% 06s 72% 04s% 82% 08s 83% 415
ARTMC 2029| 10% 178 14% 148 19% 31s 44% 29.0
RTMC 2403 0% 033 0% 063 0% 073 27% 310

O

and transitions by tree transducers (or, sometimes, alsorng specialised operations on tree automata).
ARTMC is a combination of RTMC and the abstract-check-refiaeadigm which usually greatly im-
proves the efficiency of the technique. Most of the algorghmthe frameworks of both RTMC and
ARTMC rely crucially on efficient automata reduction mete@ihce the size of the generated automata
often explodes, making computations infeasible withowgdaction.

The tree automata that we have considered in our experiragogée within various computations
within the frameworks of RTMC and ARTMC. Our experimentabkation was carried out on an
AMD Athlon 64 X2 2.19GHz PC with 2.0 GB RAM. We have compare@ tize of tree automata
after reducing them with all the different reduction tecués considered in this paper.

Table 1 shows the computation time and the reduction (ingmeydor the different relations within
the considered framework and illustrates that we haveyreditained a wide spectrum of relations
differing in their reduction capabilities and computatibnomplexity. As can be seen from the results,
gives the best reduction in all experiments, but it alsoesaffrom a high computation time. Combining
simulations and bisimulations does not give the same anufueduction as the combined simulation,
but the computation time is lower and the reduction is béfttan~. Note that no attempt to optimise the
implementation of any of the relations was done, and theedfee computation times could probably be
much lower with an optimised implementation for all of them.

8 Conclusions and Future Work

We have presented a uniform framework for deriving equivederelations suitable for reducing tree
automata based on combining upward and downward simu$agiod bisimulations. The framework is

based on two main ingredients: a new notion of upward (Ipill&itions parameterised by any down-
ward (bi-)simulation and a new operator for combining upvand downward (bi-)simulations. The

framework explains in a uniform way various previously afta results [10, 2, 1] and also yields mul-

tiple new combined relations for reducing tree automatartia in various degrees advantages of the
various upward and downward simulations and bisimulatidinés step is motivated by giving users of

tree automata a finer choice between the reduction capebitind computational costs of the relations
to be used for reducing tree automata.

We have established a partial ordering of the obtained aomeshielations according to their reduc-
tion capabilities, and showed that some of them are alsaripasable. Moreover, we have performed
a number of experiments with automata from the area of @tt$tregular tree model checking that show
a practical applicability of the obtained relations andwllus to conclude that the considered relations

11

really offer a fine choice of balance in the trade-off betwesgtuction capabilities and computational
requirements.

Furthermore, the proposed weakening combination opevatarhich our framework is based yields
a significantly more efficient way of combining upward and deward (bi-)simulations than the previ-
ously used random combination algorithms.

The proposed framework is built on quite general princigled we believe that it can be extended
to more advanced types of automata such as guided tree datonested word automata, or hedge
automata that find their use in many applications in formaifieation, decision procedures of various
logics, structured document processing, or natural lagguaocessing. Reduction of automata from
some of such classes has already been considered in treguliter(e.g., in [9], the author proposes
a bisimulation-based minimisation of weighted word auttanand a use of bisimulations for reducing
weighted tree automata is considered in [11]).

From the practical point of view, it is also interesting twdstigate more efficient techniques of
computing the (bi-)simulation relations, e.g., by compgtthem in a symbolic way (for symbolically
encoded automata). Furthermore, it can be interestingglmexmore deeply the principles of the pro-
posed combination of downward and upward (bi-)simulatielations. One can, for instance, think of
defining still weaker types of relations preserving the leagge of tree automata by using the combined
relations repeatedly as inducing relations.

AcknowledgementVe would like to thank Ahmed Bouajjani for fruitful discuesis on the subject of
the paper.

References

1. P. Abdulla, A. Bouajjani, L. Holik, L. Kaati, and T. VojnaComposed Bisimulation for Tree Automata., 2008. Accépte
at CIAA08.

2. P. Abdulla, A. Bouajjani, L. Holik, L. Kaati, and T. VojnaComputing Simulations over Tree Automata: Efficient Fech
niques for Reducing Tree Automata. Pnoc. of TACAS'08LNCS. Springer, 2008. An extended version appeared as the
technical report FIT-TR-2007-001 of FIT, Brno Universiti/Technology.

3. P. Abdulla, J. Hogberg, and L. Kaati. Bisimulation Mirnation of Tree Automata. IRroc. of CIAA’06 volume 4094 of
LNCS pages 173-185. Springer, 2006.

4. P. Abdulla, B. Jonsson, P. Mahata, and J. d'Orso. Reguke Wlodel Checking. IfProc. of CAV’02 volume 2404 of
LNCS Springer, 2002.

5. P. Abdulla, A. Legay, J. d’'Orso, and A. Rezine. Simulati®ased Iteration of Tree Transducers.Hroc. of TACAS'05
volume 3440 oLNCS Springer, 2005.

6. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojn&bstract Regular Tree Model Checking. Pmoc. of INFIN-
ITY'05. Published in ENTCS 149(1), 2006.

7. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnabstract Regular Tree Model CheckinGNTCS 149:37-48,
2006.

8. A. Bouajjani and T. Touili. Extrapolating Tree Transfations. InProc. of CAV'02 volume 2404 ofLNCS Springer,
2002.

9. P. Buchholz. Bisimulation relations for weighted auttend@heor. Comput. S¢i393(1-3):109-123, 2008.

10. J. Hogberg, A. Maletti, and J. May. Backward and ForwBigsimulation Minimisation of Tree Automata. IRroc. of
CIAA'07, volume 4094 oL NCS pages 109-121. Springer, 2007.

11. J. Hogberg, A. Maletti, and J. May. Bisimulation mingaiion for weighted tree automata. In T. Harju, J. Karhuimak
and A. Lepisto, editorRroc. 11th Int. Conf. Developments in Language Theeojume 4588 of LNCS, pages 229-241.
Springer, 2007.

12. R. Paige and R. Tarjan. Three Partition Refinement Allgms. SIAM Journal on Computindl6:973-989, 1987.

13. F. Ranzato and F. Tapparo. A New Efficient Simulation #ajence Algorithm. IrProc. of LICS’'07 IEEE CS, 2007.

12

A Appendix

A.1 Proofs of the Basic Properties of the Downward Relations
Proof (Lemma 1)We fix a tree automatoA = (Q,Z,A,F).

Union: Given two downward simulatiori3; andD,, we want to prove thdd = D; UD; is also a down-
ward simulation. LegDr for someq,r € Q, then eitheigD;r or gD,r. Assume without loss of gen-
erality thatqD;r. Then, from the definition of downward simulations, wheneg, ..., q,) LN d,
then there is a rul¢ry,...,ry) f, r with giD4rj foralli:1<i<n. AsD; C D givesq;Dr; for all
the positions, D fulfils the definition of a downward simulation.

Reflexive closure: It can be seen from the definition of downavgamulations that the identity is a down-
ward simulation. Thus, the union of the identity and any deward simulation is a downward simu-
lation.

Transitive closure: LeD be a downward simulation and Bt be its transitive closure. LetDq™ and

(..., q) ", 4. Fromg'Drq™, we have that there are stats. .., q™ such thag'!De?D. .. DG™.
Therefore, from the definition of downward simulations,réhare also ruleeq%,) LN qt,...

(ar,....qm ", g"with q'D...Dg™, andg!D...Dg"for alli: 1 <i < n. Thus, aDr is the transi-
tive closure oD, we obtainqilDTqim foralli:1<i <n.Wehave proven th& fulfils the definition
of downward simulations.

O

Proof (Lemma 2)The fact that each downward bisimulation is also a downwardilation follows
straight from the definitions of these relations. The clesunder union, reflexivity, and transitivity
can be proven analogically as in the case of downward silooktWhat remains is the closure under
symmetry. LetD be a downward bisimulation and IBls = DUD™! be its symmetrical closure. It is
sufficient to prove thab—* is a downward bisimulation because then, from the closudeuanion,Ds
is a downward bisimulation too.

Let gD~ 1r. Then, fromrDg, we have thatr,...,rp) v if and only if (01,...,0n) LN g with

riDg for alli:1 <i<n. AsrDq is equivalent togD~'r, we can write that(qy,...,qn) LN q iff

(ry,...,r) LR r with giD~1r; for all i : 1 <i < n. We directly see thab—! matches the definition
of downward bisimulations. O

A.2 Proofs of the Basic Properties of the Upward Relations

Lemmas 4 and 3 can be proven analogically as Lemmas 2 and 1.

Proof (Lemma 3)We fix a tree automatoA = (Q,Z,A,F).

Union: Given a downward simulation preorderand two upward simulationd; andU, induced by
D, we want to prove that) = U; UU, is also an upward simulation induced By Let qUr for
someq,r € Q, then eitherqUsr or qU,r. Assume without loss of generality thaityr. Then, from
the definition of upward simulations, wheneve, . . .,qn) LN g with g = g, then there is a rule
(ri,...,) v with quir',d e F = r' € F,andq;Drjforall j:1<j#i<n AsU; CU
givesqUr’, U fulfils the definition of upward simulations induced by

Reflexive closure: It can be seen from the definition that demtity is an upward simulation induced
by D for any downward simulation preord&. Therefore, from the closure under union, the union
of the identity and any upward simulation inducedys an upward simulation induced B

Transitive closure: Léet) be an upward simulation induced by a downward simulatoioner D and
let Ut be its transitive closure. Let*'Urq™ and (o}, ...,q3) Lt with gt = gt. FromqgtUrq™,
we have that there are statgs...,q™ such thatg!Ug?U ...Ug™. Therefore, there are also rules
(at,...,qk) LN rt AP, gqm) e with g=q,....g"=g"rlu..UMrtcF =

13

.= MekF, andqle...Dq’j“ forall j:1<j#i<n. Thus, from the definition obly, we
havertUr™, from the transitivity of =, we haver! € F = r™ ¢ F, and from the transitivity of
D, we haveqleq’j“ forall j:1<j+#i<n.We have thus proven thek fulfils the definition of an
upward simulation induced Hy.

O

Proof (Lemma 4)The fact that each upward bisimulation induced by a downwarailationD is also
an upward simulation induced [y follows straight from the definitions of these relationseTdlosure
under union, reflexivity, and transitivity can be provenlagially as in the case of upward simulations.
What remains is the closure under symmetry.Wdie an upward bisimulation induced by a downward
simulation preordeb and letUs = U UU ! be its symmetrical closure. It is sufficient to prove tbiat!
is an upward bisimulation induced Iy because then, from the closure under unldgjs an upward
bisimulation induced by too.

Letqu~!r. Then, fromrUq, we have thatrs,...,r,) P withr =r; ifand only if (q1,...,0n) LN
q with g=q, r'Uq, andrj =p g; forall j: 1< j#i<n. As=p is an equivalence and a8Jq is
equivalent tog’U ~r’, we can write(qy,...,0n) LN q with q=q iff (rq,...,rn) v withr = ri,
qU ', andg; =p rj for all j: 1< j#i <n. We directly see that ~! matches the definition of an
upward bisimulation induced Hy. a

A.3 Proof of Theorem 1

We fix a tree automatoA, a downward simulation preordgr, and an upward simulatidd induced by
D.LetW=Dq (U™1).

We will relate the languages & and A-,,. To do that, we first define the notion ofa@ntext
Intuitively, a context is a tree with “holes” instead of leav Formally, we consider a special symbol
O ¢ X with rank 0. Acontextover X is a treec over U {(J} such that for all leavep € c, we have
c(p) = . For a context with leavespy, ..., p, and for treedy,...,ty, we defineclts, ... ,t,] to be the
treet, where

— dom(t) = dom(c)U{ps- p| p’ € dom(t;) }U---U{pn- P'| P’ € dom(tn)},
— for eachp=p;- p, we havet(p) =ti(p'), and
— for eachp € dom(c) \ {pa,-.., Pn}, we havet(p) = c(p).

In other wordsglts, ..., ty] is the result of appending the tregs.. ., t to the holes of. We extend the
notion of runs to contexts. Letbe a context with leaves, ..., pn. A run Ttof Aoncfrom (qs,...,0n)
is defined in a similar manner to a run on a tree except thatleafa;, we haver(pi) =g, 1<i<n.In
other words, each leaf labelled withis annotated by ong. We usec[qy, ..., 0n| SLLN g to denote that
1tis a run ofAonc from (qy, ..., qs) such thatt(€) = g. The notatiorc[q, . ..,0.] = qis explained in
a similar manner to runs on trees.

Lemma 6. If c[gi1,0p,...,0n) = q and qUr; for somel < i < n, then there are stategr..,ri_1,
lit1,-..,, I such that gDr; for each jsuchthal < jzi<n,qUr,and ¢rq,...,r)] =r.

Proof. To simplify the notation, we assume (without loss of genfathati = 1. We use induction on
the structure o€. The base case is trivial since the contexbnsists of a single hole. For the induction
step, we assume thatis not only a single hole. Suppose thed);,qy, ..., 0] =L q for some runm
and thatg,Ur;. Let py,..., p; be the left-most leaves afwith a common parent. Lgi be the parent of
P1,..., Pj. Notice thatyy = 11(py),...,q; = TI(p;). Letd’ = 1(p) and letc’ be the context with the leaves
P1,...,p; deleted. In other wordgjom(c’) = dom(c) \ {p1,...,pj}, C(P) =c(p) if p € domc’)\
{p,p1,...,pj}, andc’(p) =0. Observe that' [, gj 11, ..,0n] =>qand thatqy, ..., q;) Lq/ for some

f. By the definition of the upward simulation and the prenujgér, it follows that there are,, ... rp,r’

such thaipDr» €,...,q;Drj,qUr’, and(ry,...,rj) ', v. Sincec is smaller tharc, we can apply the
induction hypothesis and conclude that thererare, ..., ry,r such thagj 1Drj 1,...,0nDrn,qUr, and
c[r',rjs1,...,rn] = r. The claim follows immediately. O

14

For a stateg € Q, a setB C Q of states, and a relatidR C Q x Q, we write BRqto denote that there
is ag € B with gRr.

Lemma 7. For blocksB4y,...,Bn, B € Q=, and a context ¢, ifB4,...,Bn] = B, then there exist states
r1,...,fn,r € QwithBiDry,...,ByDrn,BUr, and drq,...,r)) =r.

Proof. The claim is shown by induction on the structurecofn the base case, the contextonsists of
a single hole. We choose anye BN F provided thatB N F = 0, and anyg € B otherwise. The claim
holds obviously by reflexivity oD andU.

For the induction step, we assume thas not only a single hole. Suppose tlté8;, ..., By] B
for some runrt Let py,..., p; be the left-most leaves afwith a common parent. Lt be the parent
of py,...,pj. Notice thatB; = 1(p1),...,Bj = 1(p;). Let B’ = 1(p) and letc’ be the context with
the leavesp,,..., p; deleted. In other wordslom(c’) = dom(c) \ {py,...,pj}, ¢ (p') = c(p’) provided
p' e dom(c)\{p, p1,...,p;}, andc'(p) = 0. Observe that'[B’,Bj1,...,Bn] = B. Sincec’ is smaller
thanc, we can apply the induction hypothesis and conclude thaetaeev,d|, ;,...,0,d such that
B'DV,Bj;1Ddj. - --,BaD0y, BUL, C'V,d,4,...,05] = d. It follows that there ares € B, gj11 €
Bj+1,...,0n € Bn,g € B such thauDv, qUd, andd;+1Dd] ;... .,aGnDdp. By the definition ofA,, there

are statesy; € By,...,q; € Bj, andz € B’ such that(qs,...,q;) ", 7 for somef. SinceD CW and
uDv, we getuW v Sinceu,z € B, it follows thatu = z and henceWu From transitivity ofW, we
getzWv From the definition ofV, there is a statev such thazDwandvUw. By the definition of the

language inclusion preorder and premigé&sv and (qy,...,q;) LR z, there are states,...,r; with

a1Dry,...,qjDrj, and(rq,...,rj) w By Lemma 6 and premised&Jwandc'[v,j 4, ..,0n] = d,
there are stateg1,...,rn, andr with o ;Drj1,...,q,Drn,qUr, andc'[w,rj1,...,rn] = r. Finally,
by transitivity of D andU, we getq;1Drj.1,...,0nDrn, qUr. The claim thus holds. O

Lemma 8. If t = B, then t==-w for some w witlBUw. Moreover, ifB € F-,, then also we F.

Proof. Suppose that =L B for somert Let p1,-...,Pn be the leafs of, and letr(p;) = B; for each
i:1<i<n Letc be the context that we get fromby deleting the leavess, ..., pn. Observe that
c[By,...,Bn] =L B. It follows from Lemma 7 that there exist statgs...,r,r€Qandgi € By,...,0n €
Bn,q € B such thatg;Dry,...,0q,Drn,qUr, c[r1,...,ry] =, and if BNF # 0, thenr € F. By the

definition of A-,, it follows that there arey; € By,...,q, € By, and fy,..., fy such that—" q for
eachi such that 1< i < n. We show by induction om that for eachi such that 1< i < n there are
statesul, u,,v:+1, ,Vh,W such thaiqlDul, ,q,Du,,q.HDv:H, ., OnDV,, rtUw!, andc[ul, ul,
V:+1, ,v'] — W. The base case where= 0 is trivial. We consider the induction step. SinbeC
W and g 1Dvii1, we getg1Wy.1. Sinceqi+1,qi’+1 € Bi1, we have tha'qi’+1 =w Qi1 and hence
o, 1Wa,1. By transitivity of W, it follows thatqf, ;W\ 1. By the definition ofW, there isz 1 _such
that q,+1Dz.+1 andviy1Uz1. By Lemma 6, there arey,...,z,7Z2,...,zy,z with uyDz,...,uDz,
\/:+2Dz+2, ViDz,, WUz andclz,...,z] = z By transitivity of D and the premlsquDu' and
u‘j Dz;, we havquDzJ for eachj : 1 < j <i. By transitivity of D and the premises; DvI andvi iDzj, we
haveq;Dz; foreachj:i+2<j<n. Defineuij+l ziforj:1<j<i+1, v'”_zj for j :i+2§ j<n,
andwtl =z

The induction proof above implies thafu],...,uy] = w". From the definition of the language

inclusion preorder and the premiseb: g andgDu, it follows that - u for eachi: 1 <i<n. It
follows thatt = c[f4,..., f,] = W". By the definition ol and the fact that € F if BNF # 0, it follows
that for alli : 1 <i <n, w € F provided that3 < F-,,- Thus, in the claim of the lemma, it suffices to
takew = w". 0

Proof (Theorem 1)The inclusionL(A=,,) D L(A) is trivial. Lett € L(Az,,), i.e.,t = B for some block
B whereBNF # 0. Lemma 8 implies that— w such thatv € F. O

15

