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Abstract. In this paper, we address the problem of reducing the size of nondeterministic (bottom-up) tree
automata. We propose a uniform framework that allows for combining various upward and downward bisimu-
lation and simulation relations in order to obtain a language-preserving combined relation suitable for reducing
tree automata without a need to determinise them. The framework generalises and extends several previous
works and provides a broad spectrum of different relations yielding a possibility of a fine choice between the
amount of reduction and the computational demands. We, moreover, provide a significantly improved way of
computing the various combined (bi-)simulation relations. We analyse properties of the considered relations
both theoretically as well as through a series of experiments.

1 Introduction

Finite tree automata are a natural generalisation of word automata. Since trees (or terms) appear in many
areas of computer science and engineering, tree automata are quite broadly applicable—including, for
instance, applications in XML manipulation, natural language processing, or formal verification. In most
of these applications, dealing with as small automata as possible is highly desirable. In order to reduce
the size of a given tree automaton, one can always try to determinise and minimise it. However, the
determinisation may lead to an exponential blow-up in the size, and even the minimal deterministic
automaton might still be bigger than the original nondeterministic automaton. Moreover, even if the
minimal deterministic automaton is really small, it might be impossible to compute it due to the very
expensive determinisation step.

An alternative way to reduce a given (nondeterministic) tree automaton is to identify a suitable,
language-preserving equivalence relation over its statesand collapse those states that are equal accord-
ing to this relation. As in the case of word automata, good candidates for such relations are various
bisimulations and simulation equivalences. In particular, the so-called forward and backward bisimula-
tions and simulation equivalences are well known to be useful when reducing the size of word automata.
In this paper, we deal with their tree automata extensions—the so-calleddownwardandupward bisim-
ulationsandsimulation equivalences.

Thedownward (bi-)simulations, which straightforwardly generalise the appropriate backward (bi-)si-
mulations from word automata to (bottom-up) tree automata,are compatible with the language inclusion
preorder. That is, if a stater downward (bi-)simulates a stateq, then the language accepted byq is a sub-
set of the language accepted byr. Therefore, these relations are a natural choice for reducing the size of
tree automata.

Theupward (bi-)simulationsare not compatible with the language inclusion preorder. Instead, they
are compatible with the inclusion of the so-calledcontext languages, where a context of a stateq arises
from a tree accepted atq by replacing some of its leaves by a “hole”. It can, however, be shown that
when we restrict ourselves to upward (bi-)simulations compatible with the set of final states of au-
tomata, the downward and upward (bi-)simulations can becombinedin such a way that they yield

? The work was supported by the Czech Grant Agency (projects 102/07/0322 and 102/05/H050), the Czech-French Barrande
project 2-06-27, and the Czech Ministry of Education by the project MSM 0021630528Security-Oriented Research in
Information Technology.
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a language-compatible equivalence. In the worst case, the combined relation is as coarse as the ap-
propriate downward (bi-)simulation equivalence, but according to our practical experiments, it usually
leads to significantly better reductions of the automata.

Tree bisimulations can be computed efficiently in timeO (r̂2 m log n) where ˆr is the maximal rank
of the input symbols,m the size of the transition table, andn the number of states of the given tree
automaton [3, 10, 1]. However, the reduction obtained by using bisimulations is often limited. Tree sim-
ulations are weaker than bisimulations and hence offer a better reduction. On the other hand, despite the
recent advances in algorithms devised for computing them [2], they are significantly more expensive to
compute. The time complexity of computing simulation preorders is roughly inO (` r̂2 m2) where` is
the size of the alphabet.

In this paper, we propose a novel notion of upward simulations and bisimulationsparameterised
by an inducingdownward simulation or bisimulation (in any possible combination). Moreover, we in-
troduce a new operator—called aweakening combination operator—for combining such upward and
downward simulation and bisimulation relations on tree automata. This way, we obtain auniform tree
(bi-)simulation frameworkwhich brings in several significant advantages.

First, the proposed framework allows one to combine not onlymaximal downward and upward
simulations or maximal downward and upward bisimulations as considered in previous works [2, 1], but
to combine any inducing downward simulation (i.e., also a downward bisimulation or, e.g., the identity
relation) with any induced upward simulation (i.e., also a bisimulation or identity). This way, we explain
in a uniform way several previous results [10, 2, 1] and, moreover, we obtain severalnew combined
relations suitable for reducing tree automata. The use of such relations mixing in various ways the
advantages of simulations and bisimulations allows the user to fine-tunethe ratio between the possible
reductions and their cost.

We carefully analyse mutual relationships of the various considered relations. We establish a certain
partial ordering between their reduction capabilities, but we also show thatmany of them have an
incomparablereduction power.

Further, compared to the previous works, the newly proposedcombination operator brings in also
a significantly improved way of computing the combined (bi-)simulation relations. Before the combina-
tion was accomplished by randomly looking for some combinedrelation satisfying the needed require-
ments. The newly proposed combination operator computes amaximal combined relation, which we
show to be unique. The algorithm that we propose for this purpose turns out to be quite simple and runs
in time O(n3) (or, in fact, even in a slightly better time). The use of the maximal combined relations
turns out to itself give much better results in our experiments than the previously used random combina-
tion algorithms. Let us also note that the notion of combined(bi-)simulation relations that we propose is
applicable even for word automata as for a special case of tree automata.

In order to experimentally examine the broad spectrum of relations offered by our framework, we
implemented a prototype tool in which we have performed thorough experiments with tree automata
from the domain of formal verification of infinite-state systems based on the so-called regular tree model
checking and abstract regular tree model checking [8, 4, 6, 7]. Our experimental results confirm that we
have obtained a broad range of algorithms for reducing tree automata, differing in their computation
complexity and reduction capabilities.

Related work. Several algorithms for reducing the size of non-deterministic tree automata while pre-
serving their language have been proposed in the literature. The first attempt was done in [3] where
an algorithm inspired by the partition refinement algorithmby Paige and Tarjan [12] was presented.
In [10], two different types of bisimulations—a backward and forward bisimulation—were presented.
These bisimulations turn out to be special cases of the relations arising in our framework.

Efficient algorithms for computing simulation equivalences over tree automata have then been dis-
cussed in [2] together with a proposal of combined simulation relations. In [1], the ideas from [2] were
extended to work for bisimulations. In this paper, we combine these previous works in a framework
which allows us to explain them in a uniform way and, moreover, to obtain multiple new relations
applicable for reducing tree automata. The obtained framework allows the user to mix advantages of
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simulation and bisimulation approaches in a degree suitable for a given scenario. The way we use for
computing the upward and downward relations that we are dealing with is inspired by the approach
of [2] and [1]. We, however, provide a new and significantly improved way of combining these relations
via the newly proposed weakening combination operator.

Plan of the paper. The rest of the paper is organised as follows. We start with some preliminaries in
Section 2. In Section 3, we introduce the notions of downward(bi-)simulations, and propose the notion
of parameterised upward (bi-)simulations. Subsequently,in Section 4, we propose the weakening com-
bination operator and its use for obtaining combined relations suitable for reducing tree automata. Next,
Section 5 analyses properties of the most interesting possible combined relations. Section 6 overviews
algorithms usable for computing downward and upward (bi-)simulations and proposes an algorithm for
computing their combinations. In Section 7, we give an experimental evaluation of using the obtained
spectrum of relations for reducing tree automata. Finally,we summarise the paper and discuss possible
future work in Section 8.

2 Preliminaries

In this section, we introduce some preliminaries on relations, trees, and tree automata.

Trees. A ranked alphabetΣ is a set of symbols together with a function # :Σ → N. For f ∈ Σ, the value
#( f ) is called therank of f . For anyn ≥ 0, we denote byΣn the set of all symbols of rankn from Σ.
Let ε denote the empty sequence. Atree t over a ranked alphabetΣ is a partial mappingt : N∗ → Σ that
satisfies the following conditions:

– dom(t) is a finite, prefix-closed subset ofN∗, and
– for eachp∈ dom(t), if #(t(p)) = n≥ 0, then{i | pi ∈ dom(t)} = {1, . . . ,n}.

Each sequencep∈ dom(t) is called anodeof t. For a nodep, we define theith child of p to be the node
pi, and theith subtreeof p to be the treet ′ such thatt ′(p′) = t(pip′) for all p′ ∈ N∗. A leaf of t is a node
p which does not have any children, i.e., there is noi ∈ N with pi ∈ dom(t). We denote byT(Σ) the set
of all trees over the alphabetΣ.

Tree Automata. A (finite, non-deterministic, bottom-up)tree automaton(abbreviated as TA in the
following) is a quadrupleA = (Q,Σ,∆,F) whereQ is a finite set of states,F ⊆ Q is a set of final states,
Σ is a ranked alphabet, and∆ is a set of transition rules. Each transition rule is a tripleof the form

((q1, . . . ,qn), f ,q) whereq1, . . . ,qn,q∈ Q, f ∈ Σ, and #( f ) = n. We use(q1, . . . ,qn)
f

−→ q to denote that
((q1, . . . ,qn), f ,q) ∈ ∆. In the special case wheren = 0, we speak about the so-calledleaf rules, which

we sometimes abbreviate as
f

−→ q. We useLhs(A) to denote the set ofleft-hand sidesof rules, i.e., the

set of tuples of the form(q1, . . . ,qn) where(q1, . . . ,qn)
f

−→ q for some f andq. Finally, we denote by
r̂(A) the smallestn∈ N such thatn≥ m for eachm∈ N where(q1, . . . ,qm) ∈ Lhs(A) for someqi ∈ Q,
1≤ i ≤ m. We omit the reference toA if no confusion may arise.

A run of A over a treet ∈ T(Σ) is a mappingπ : dom(t) → Q such that, for each nodep∈ dom(t)

whereq = π(p), if qi = π(pi) for 1≤ i ≤ n, then∆ has a rule(q1, . . . ,qn)
t(p)
−→ q. We write t

π
=⇒ q to

denote thatπ is a run ofA over t such thatπ(ε) = q. We uset =⇒ q to denote thatt
π

=⇒ q for some
run π. Thelanguageof a stateq is defined byL(q) = {t| t =⇒ q}, while thelanguageof A is defined by
L(A) =

S

q∈F L(q).
An environmentis a tuple of the form((q1, . . . ,qi−1,�,qi+1, . . . ,qn), f ,q) obtained by removing

a stateqi , 1≤ i ≤ n, from theith position of the left hand side of a rule((q1, . . . ,qi−1,qi ,qi+1, . . . ,qn), f ,q),
and by replacing it by a special symbol� 6∈ Q (called aholebelow). Like for transition rules, we write

(q1, . . . ,�, . . . ,qn)
f

−→ q provided((q1, . . . ,qi−1,qi ,qi+1, . . . ,qn), f ,q) ∈ ∆ for someqi ∈ Q. Sometimes,

we also write the environment as(q1, . . . ,�i, . . . ,qn)
f

−→ q to emphasise that the hole is at positioni. We
denote the set of all environments ofA by Env(A) and we will drop the reference toA if no confusion
may arise.
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Relations. For an equivalence relation≡ defined on a setQ, we call each equivalence class of≡
ablock, and useQ/≡ to denote the set of blocks in≡. For a preorderP, we will denote≡P the maximal
equivalence included inP.

Quotient Tree Automata. The idea of reducing the size of an automaton is to identify suitable equiva-
lence relations on its states, and then collapse the sets of states which form equivalence classes. Consider
a TA A = (Q,Σ,∆,F) and an equivalence relation≡ on Q. Thequotient tree automatonderived fromA
and≡ is A≡ = (Q≡,Σ,∆≡,F≡) where:

– Q≡ is the set of blocks in≡. In other words, we collapse all states which belong to the same block
into one state of the quotient automaton.

– (B1, . . . ,Bn)
f

−→B iff (q1, . . . ,qn)
f

−→ q for someq1 ∈ B1, . . . ,qn ∈Bn,q∈B. This is, there is a tran-
sition in the quotient automaton iff there is a transition between states in the corresponding blocks
in the original TA.

– F≡ contains a blockB iff B∩F 6= /0. Intuitively, a block is accepting if it contains a state which is
accepting.

3 (Bi-)Simulations on Tree Automata

We now present definitions of downward (bi-)simulations andsubsequently, we propose a notion of
upward (bi-)simulationsparameterisedby a downward simulation as one of the cornerstones of our
framework. We will call a downward simulation that is used asa parameter of an upward (bi-)simulation
an inducing relation, and the obtained upward (bi-)simulation will then be called aninduced relation.

In the next section, we will show how a pair of an inducing and induced relation can be combined
into a new equivalence suitable for reducing tree automata.Note that the inducing relation is thus used
in two different ways: as a parameter of the upward (bi-)simulation and as a constituent of the combined
relation. By considering various inducing relations, we obtain a wide spectrum of combined relations
differing in their computational complexity and coarseness (which is usually better and never worse than
that of the inducing relation).

3.1 Downward (Bi-)Simulations

For a tree automatonA= (Q,Σ,∆,F), adownward simulation Dis a binary relation onQ such that ifqDr

and(q1, . . . ,qn)
f

−→ q, then(r1, . . . , rn)
f

−→ r with qiDr i for eachi : 1≤ i ≤ n. A downward bisimulation

D is a binary relation onQ such that ifqDr, then(q1, . . . ,qn)
f

−→ q if and only if (r1, . . . , rn)
f

−→ r with
qiDr i for eachi : 1≤ i ≤ n.

The following two lemmas state some basic properties of downward (bi-)simulations.

Lemma 1. Given a tree automaton A, the set of all downward simulationson A is closed under reflexive
and transitive closure and under union.

Lemma 2. Given a tree automaton A, the set of all downward bisimulations on A is a subset of the set
of all downward simulations on A and it is closed under symmetric, reflexive, and transitive closure and
under union.

Proofs of Lemmas 1 and Lemma 2 can be found in [5] (cf. also Appendix A.1). The lemmas imply
that for a given tree automaton, there is a unique maximal downward bisimulation which is an equiv-
alence and a unique maximal downward simulation which is a preorder. We note that the notion of
downward bisimulations corresponds to that of backward bisimulations from [10].

The obvious fact that any downward bisimulation is a downward simulation allows us to simplify
some further reasoning by considering just downward simulations and handling bisimulations as their
special case.
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3.2 Induced Upward Simulations

Given a tree automatonA = (Q,Σ,∆,F) and an inducing downward simulation preorderD, anupward
simulation Uinduced byD is a binary relation onQ such that ifqUr, then

(i) if (q1, . . . ,qn)
f

−→ q′ with qi = q, 1≤ i ≤ n, then(r1, . . . , rn)
f

−→ r ′ with r i = r, q′Ur ′, andq jDr j for
each j : 1≤ j 6= i ≤ n;

(ii) q∈ F =⇒ r ∈ F.

The following lemma subsumes basic properties of upward simulations. Note that it also implies that
for any inducing downward simulation preorderD, there is always a unique maximal upward simulation
induced byD which is a preorder.

Lemma 3. Given a tree automaton A and a downward simulation preorder D, the set of all upward
simulations induced by D is closed under reflexive and transitive closure and under union.

3.3 Induced Upward Bisimulations

Let A = (Q,Σ,∆,F) be a tree automaton and letD be a downward simulation preorder. Anupward
bisimulation U on Q induced by Dis a binary relation onQ such that ifqUr, then

(i) (q1, . . . ,qn)
f

−→ q′ with qi = q,1 ≤ i ≤ n, if and only if (r1, . . . , rn)
f

−→ r ′ with r i = r, q′Ur ′, and
q j ≡D r j for each j : 1≤ j 6= i ≤ n;

(ii) q∈ F ⇐⇒ r ∈ F .

As for upward simulations, it is not hard to prove the basic properties of upward bisimulations.
Note that the following lemma implies that for any downward simulation preorderD, there is a unique
maximal upward bisimulation induced byD that is an equivalence. It is also clear that any upward
bisimulation induced byD is also an upward simulation induced byD. This will allow us to prove the
main results just for upward simulations and maintain bisimulations as a special case.

Lemma 4. Given a tree automaton A and a downward simulation preorder D, the set of all upward
bisimulations induced by D is a subset of the set of all upwardsimulations on A induced by D and it is
closed under symmetric, reflexive, and transitive closure and under union.

Proofs of Lemmas 3 and 4 can be found in [5] (cf. also Appendix A.2). Let us note that the no-
tion of an upward bisimulation induced by the identity relation corresponds to the notion of a forward
bisimulation from [10].

4 Combined Relations for Reducing the Size of Tree Automata

Upward simulation equivalences and upward bisimulations alone cannot be used for reducing tree au-
tomata as they do not preserve their language. To circumventthis problem, we have to take into account
the inducing relation andcombineit with the induced upward (bi-)simulation—as we have already men-
tioned in the previous section, the induced relation is thusused in two different ways.

As one of the main contributions of this work, we are now goingto define a new combination
operator—we call it aweakening combination operator—over the inducing downward simulations and
induced upward simulations. Unlike the operators used in previous works [2, 1], the new operator allows
us to combine any inducing downward simulation (i.e., also abisimulation or identity) with any induced
upward simulation (bisimulation, identity) offering us a broad spectrum of the resulting relations.

Moreover, in the previous works, we were randomly computingone relation out of the set of possible
language-preserving combined relations. Here, we first prove that there is always aunique maximal
combined preorderfor a given upward simulation and its inducing downward simulation. In Section 6,
we then provide a simple algorithm for computing this maximal preorder. From a practical point of view,
using the maximal preorder instead of a random one has in somecases a great impact on the size of the
reduced automaton as witnessed by our practical experiments.
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A weakening combination operator. We define theweakening combination operator⊕, which is
normally to be applied over an inducing downward simulationand an induced upward simulation, on
arbitrary preorders as follows: Given two preordersH andS over a setQ, for x,y ∈ Q, x(H ⊕S)y iff
(i) x(H ◦S)y and (ii)∀z∈ Q : yHz =⇒ x(H ◦S)z.3 Intuitively, a paire= (x,y) ∈ Q×Q that is inH ◦S
will also appear inH ⊕S iff after adding it to the preorderH, there is a possibility to supplement the
obtained relationH ∪{e} by other pairs of elements ofQ that are inH ◦S to ensure transitivity and get
this way a preorder again.

Lemma 5. For any set Q and any preorders H,S⊆ Q×Q, H⊕S is a unique maximal preorder such
that H⊆ H ⊕S⊆ H ◦S.

Proof. Let W = H ⊕S andC = H ◦S.4 Keep in mind thatW,H,S⊆ C and thatH andS are reflexive
and transitive. We first prove some auxiliary facts for anyx,y,z∈ Q allowing us to derive existence of
certain elements of the relations that we are dealing with:

I. xCy =⇒ xHwSyfor somew∈ Q, which follows directly from the definition ofC.
II. xHyCz =⇒ xCz. FromyCzand (I), we haveyHwSzfor somew∈ Q. FromxHyHw, we havexHw.

FromxHwSzand from the definition ofC, we havexCz.
III. xWyHz=⇒ xCz, which follows directly from the definition ofW.
IV. xCySz=⇒ xCz. FromxCy and (I), we havexHwSyfor somew ∈ Q. FromwSySz, we havewSz.

FromxHwSzand (II), we havexCz.
V. xWyCz=⇒ xCz. FromyCzand (I), we haveyHwSzfor somew ∈ Q. FromxWyHwand (III), we

havexCw, which together with (I) givesxHvSwfor somev∈ Q. FromvSwSz, we havevSzand so
vCz(asS⊆C), which together withxHvand (II) givesxCz.

Now, we can prove the claim of the lemma. First, we will argue thatH ⊆W. To do this, suppose that
xHy for somex,y∈ Q. We will show thatxWy. As H ⊆C, we have thatxCy, which fulfils Condition (i)
from the definition of⊕. To satisfy Condition (ii), we have to show that for arbitrary z∈Q suchyHz, xCz
holds. From transitivity ofH and fromxHyHz, we havexHz, which implies thatxCzwhen we take into
account thatH ⊆C. Thus, even Condition (ii) is fulfilled, and we are obtainingxWyfrom the definition
of ⊕. Hence, we have proved thatH ⊆W. Moreover, the fact thatW ⊆C is trivial as it is a part of the
definition of⊕.

We will now prove thatW is a preorder. We first prove by contradiction thatW is transitive. Sup-
pose that there existx,y,z∈ Q such thatxWyW z, but notxWz. Recall thatW ⊆ C. From (I), we have
xHwSyHvSzfor somev,w∈Q. FromxWyHvand (III), we havexCv. FromxCvSzand (IV), we havexCz.
From the definition of⊕, xCztogether with notxWzimply that there is aq ∈ Q such thatxCzHq, but
not xCq. FromyWzHqand (III), we getyCq. ThenxWyCq, and(V) givesxCq, which is a contradiction.
We have proven that the relationW is transitive. Showing thatW is also reflexive is immediate as we
already know thatH ⊆W and thatH is reflexive. Thus, we have proven thatW is a preorder.

Finally, we will show thatW is a unique maximal preorder included inC and containingH. It can
be easily seen from the definition of⊕ that any pair(x,y) ∈C\W cannot be contained in any preorder
P such thatH ⊆ P⊆C as no relationP such thatH ⊆ P⊆C and(x,y) ∈ P can be transitive. Thus,W
contains all the pairs that can be elements of a preorder included inC and containingH, and therefore
any such preorderP is a subset ofW. As we have proven thatW itself is a preorder, it has to be the
unique maximal preorder that includesH and that is itself included inC. ut

Lemma 5 is a key result that allows us to define combined preorders and equivalences applicable for
reducing the size of tree automata as follows.

3 Here,H ◦S is the common composition of relations, i.e.,∀x,y∈ Q : x(H ◦S)y ⇐⇒ ∃z∈ Q : xHzSy.
4 For an easier orientation in the symbols, let us note that we useW for the result of applying the weakening combination

operator,C to denote the composition ofH andS, H is a preorder which is “hard” in the sense that it has to be included in
W, whereasS is “soft” in the same sense.
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Combined relations for reducing tree automata.Consider a tree automatonA, a downward simulation
preorderD, and an upward simulationU induced byD. We call the relationW = D⊕U−1 a combined
preorderand≡W a combined equivalence. Correctness of using the combined equivalence for reducing
the size of tree automata is stated in the following theorem.5

Theorem 1. L(A≡W) = L(A) for any tree automaton A and each combined preorder W.

A proof of Theorem 1 can be found in [5] (cf. also Appendix A.3). Note that the theorem also covers
the case of reducing automata using downward simulations (and bisimulations) alone. Indeed, given any
downward simulationD, the identity is always an upward simulation induced byD. Then, the combined
preorderD⊕ id−1 equalsD, which means that we can reduce the automaton using≡D. In particular,
this elegantly covers as special cases the proofs of correctness of reducing automata using downward
bisimulations and simulation equivalences stated in [2].

Corollary 1. L(A≡D) = L(A) for any tree automaton A and each downward simulation preorder D.

5 Variants of Combined Relations and Their Properties

Theorem 1 and Lemmas 2 and 4 allow us to consider quite a large spectrum of relations suitable for
reducing tree automata. We now examine properties of the relations from this spectrum that arise when
we consider the identity, the maximal downward bisimulation, and the maximal downward simulation
as the inducing relationD for both the maximal upward bisimulation and upward simulation.

Our notation for the various types of combined equivalencesthat we consider consists of two parts:
a relation symbol and an additional symbol above the relation symbol. The relation symbol denotes
the type of the inducing downward relation. Namely,= denotes the identity,' denotes the maximal
downward bisimulation, and∼ the maximal downward simulation. The additional symbol then denotes
the type of the upward relation. We use• for the maximal upward bisimulation and◦ for the maximal
upward simulation. No additional symbol corresponds to themaximum equivalence embedded in the
downward relation itself—the downward (bi-)simulations can be viewed as compositions where the role
of the upward relation is played by the identity. For example,

◦
' denotes the relation≡D⊕U−1 where

D is the maximal downward bisimulation andU is the maximal upward simulation induced byD. In
what follows, we will implicitly consider all the downward and upward (bi-)simulations that we will be
dealing with to be the maximal ones.

�
�

�
�

=

'

∼

•
=

•
∼

•
'

◦
'

◦
∼

◦
=

Fig. 1. Coarseness of
various types of com-
bined equivalences

A partial ordering of the combined relations wrt. their coar seness.From the
definition of a combined preorder, it clearly follows that, for a fixed inducing re-
lationD, if we are choosing the type of the upward relationsU from the strongest
one to the coarsest one, i.e., starting from the identity andgoing through the up-
ward bisimulation induced byD to the upward simulation induced byD, we
obtain coarser and coarser combined preordersD⊕U−1.

On the other hand, if the inducing preorderD is growing, from the definition
of the upward (bi-)simulation, we can see that the maximal upward (bi-)simu-
lationU induced byD and thus also the relationD ◦U−1 are growing too. But,
when havingD◦U−1 computed and then computing the preorderD⊕U−1 from
it, the relationD acts as a restriction. A bigger relationD can cause that more
pairs are violating Condition (ii) from the definition of⊕. In general, having two
downward simulation preordersD1 andD2, we are guaranteed that the maximal upward (bi-)simulation
U1 induced byD1 is included in the maximal upward (bi-)simulationU2 induced byD2. Therefore, we

5 Note that contrary to downward simulations, the combined preorders do not have to refine the language inclusion preorder,
which is due to the fact that they strongly depend also on the upward simulations, which are not compatible with the
language inclusion preorder. Nevertheless, Theorem 1 shows that the combined equivalences still preserve the language of
the entire automaton when used for collapsing it.
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Fig. 2. Transition relations of automata proving the non-inclusion relationships from Figure 1, and of an automaton proving
that one cannot use within⊕ preorders included in the language inclusion preorder thatare not downward simulations.

know thatD1◦U−1
1 ⊆ D2◦U−1

2 , but the combined preordersD1⊕U−1
1 andD2⊕U−1

2 can be incompa-
rable.6

Based on these observations, we obtain the partial orderingof all the considered types of combined
equivalences according to inclusion which is depicted in Figure 1. For an automatonA, we denote by
≡(A) the combined equivalence of type≡ on A. In the figure, the line from≡1 up to≡2 means that
for any automatonA, ≡1(A) ⊆ ≡2(A). It is not hard to find an automatonA showing that all these
relationships are strict, i.e., such that for each of the edges in the figure,≡1(A) ( ≡2(A). We construct
such an automaton in Example 1.

Example 1.Let Q = {q, r,s, t,u,v,w,x,y,z} be a set of states and letΣ be a ranked alphabet such that
Σ0 = {l} andΣ1 = {a,b,c}. The automatonA = (Q,Σ,∆1,{x}) proves strictness of the relations in Fig-
ure 1. For each two types of relations from Figure 1 such that≡2 is above≡1, ≡1(A) ( ≡2(A) holds.
The transition relation∆1 is depicted in Figure 2(a). In the table below there are stated the appropriate
combined equivalences for all the combinations of the considered types of inducing and induced rela-
tions. For each type of combination, we list nontrivial equivalence classes of the resulting combined
equivalence:

◦
=: {q, r,s}

◦
': {t,u},{q, r,s}

◦
∼: {t,u,v},{q, r,s},{x,z}

•
=: {r,s}

•
': {t,u},{r,s}

•
∼: {t,u,v},{r,s}

=: ': {t,u} ∼: {t,u,v}

It is now easy to check that all the inclusions from Figure 1 are strict for the automatonA. ut

Incomparability of some of the combined relations. To complete the picture, we need to show that
the types of combined relations that are not connected in Figure 1 are really incomparable. In other
words, that for each pair≡1,≡2 of types of combined equivalences that are not connected in Figure 1
there exists an automatonA such that neither≡1(A) * ≡2(A) nor ≡1(A) + ≡2(A). We construct such
automata within Example 2.

Example 2.Let Q = {q, r,s, t,u,v} be a set of states and letΣ be a ranked alphabet such thatΣ0 = {l}
andΣ1 = {a,b,c}. All the incomparability results show up taking automataA1 = (Q\ {v},Σ,∆2,{u})
andA2 = (Q,Σ,∆2 ∪{v a

−→ q},{u}) where the transition relation∆2 is depicted in Figure 2(b). One
can easily check that

•
=(A1) and

◦
=(A1) define just one nontrivial equivalence class{r,s} and thus they

are incomparable with
◦
'(A1),

•
∼(A1),

◦
∼(A1) that define only one nontrivial equivalence class{q, r}.

In the case of the automatonA2, the added transitionv a
−→ q distinguishes the downward simulation

from the downward bisimulation. Analogically as forA1, we have that
•
'(A2) and

◦
'(A2) define just one

nontrivial equivalence class{r,s} and thus they are incomparable with
•
∼ (A2) and

◦
∼(A2) that define

only one nontrivial equivalence class{q, r}. This gives all the incomparability relationships. ut

6 Although, in our experiments, the former one usuallyis included in the latter one.
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According to our experiments presented in Section 7, the reduction capabilities are rising when we
move in Figure 1 not only in the bottom-up direction (according to the edges), but also in the left-right
direction (as though within a full diamond). As a trade-off,the computational complexity of constructing
the relations is rising in the same way from the bottom to the top and from the left to the right.

Impossibility of relaxing the need of downward simulations. It is easy to see that when not consid-
ering combined relations (and when not thinking of the computational complexity), one can replace the
use of downward (bi-)simulations in reducing the size of tree automata by a use of any preorder which
is included in the so called language inclusion preorderLP ((q, r) ∈ LP ⇐⇒ L(q) ⊆ L(r)). A natural
question comes forward: Is it also possible to induce (and combine by⊕) an upward (bi-)simulation with
any preorder included inLP (not only with downward simulations)? Here, we give a negative answer.
Not all preorders included inLP can be used within the operator⊕ for reducing automata. We prove this
claim by the following counterexample.

Example 3.Consider an automatonA = (Q,Σ,∆3∪Leaves,F) whereQ = {q, r,s, t,u}, Σ0 = {l}, Σ1 =

{a}, ∆3 is depicted in Figure 2(c),Leaves= {
l

−→ x | x ∈ Q},7 andF = Q. Let us choose the relation
R = id ∪{(q, r),(r, t),(q, t)}, which is apparently contained inLP, as the inducing preorder.8 We can
choose the relationU = id∪{(q, t)} as the upward simulation preorder induced byR. Then, we obtain
R◦U−1 = R∪U−1∪{(r,q)}. The pair(r,q) is present inR◦U−1 because of(r, t) ∈ Rand(q, t) ∈U . Let
W = R⊕U−1 be the combined preorder.R◦U−1 itself is already a preorder, and thereforeW = R◦U−1.
We see that we have obtained an equivalence class{q, r} of ≡W which is bad as it implies that the
quotient automatonA≡W contains the rule{q, r} a

−→ {q, r}. This definitely changes the language of the
original automatonA since no cycles were present inA.

Observe that if we take a downward simulation as the inducingpreorder, such a situation does not
arise. The problem above is caused by the presence of(r,q) in R◦U−1, which is enabled by(r, t)∈R. If R
was a downward simulation containing(r, t), thenRwould have to contain even(q,s) from the definition
of a downward simulation. So, we would getr(R⊕U−1)qRswhich according to Condition (ii) of the
definition of⊕ enforcesr(R◦U−1)s. However,r(R◦U−1)s does not hold for any pair of an inducing
downward simulationRand an induced upward simulationU (not even when one considers the maximal
ones), and so the pair(r,q) is not present in any combined preorder, and we are never allowed to collapse
q andr. ut

A note on word automata. We note that all the above results carry over to word automata. The inclusion
properties from Figure 1 hold for word automata too since they can be seen as a special case of tree
automata. Moreover, our automata examples proving strictness of the relationships and incomparability
relationships are built using just leaf and unary rules, andso they are valid for word automata as well.

6 Computing the Proposed Relations

Below, we first briefly discuss methods for computing downward and upward (bi-)simulations proposed
in earlier works. Then, we propose an algorithm for computing the combined relations and analyse its
complexity. For the rest of the section, let us fix a tree automaton A = (Q,Σ,∆,F) and letn = |Q|,
m= |∆|, ` = |Σ|.

6.1 Computing Downward and Upward (Bi-)Simulations

The problem of computing (bi-)simulations over tree automata is addressed in [2, 1, 10]. In [2, 1], a quite
general method for computing tree (bi-)simulations via transforming this problem to special instances

7 The set of rulesLeavesis present so that the language of the automaton is not be empty.
8 As we deal here only with unary and leaf symbols, upward (bi-)simulation does not depend on the inducing relation.
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of the classical problem of computing (bi-)simulations over labelled transition systems (LTS) is pro-
posed. Classical (bi-)simulation algorithms like [12, 13]are then applied to the LTSs obtained from the
translation.

As studied in [1], using the above approach, we obtain algorithms for computing the maximal down-
ward and upward bisimulations in timeO (r̂3 m logn) andO (m log(n+ `)+T(D)), respectively, where
T(D) denotes the complexity of computing the inducing relationD.

The case of tree simulations is considered in [2], where we obtain algorithms with the following
complexities when using the translation to LTS: LetD be the maximal downward simulation onA and
let |Lhs(A)/≡D| be the size of the partitioning of the left-hand sides of the transition rules according
to D. D can be computed in timeO ((` + r̂)) · |Lhs| · |Lhs/≡D|+ m· |Lhs/≡D|), which can be roughly
approximated byO ((r̂ +`) m2). LetU be the maximal upward simulation onA induced by a preorderD,
we denote the set of environments partitioned with respect to U asEnv/≡U . Assuming thatT(D) is the
time of computing the inducing relationD, U can be computed in timeO ((` |Env|+ r̂ m) |Env/≡U |+
r̂2 m log |Env|+T(D)), which can be roughly approximated byO (` r̂2 m2+T(D)).

Let us add that specialised algorithms for computing the downward bisimulation and upward bisim-
ulation induced by the identity were proposed in [10]. Thesealgorithms run in timeO (r̂2 m log n) and
O (r̂ m log n), respectively.

6.2 Computing the Combined Relations

Given an inducing downward simulationD and an upward simulationU induced byD, the combined
preorderW = D⊕U−1 can be easily computed by simply following its definition. Itis sufficient to
start by computing the relationC = D ◦U−1 and then just erase all the elements ofC (which are pairs
of elements of the base setQ) that break Condition (ii) from the definition of⊕. Using suitable data
structures, this computation starting from the relationsU andD can be implemented in timeO (min{|D| ·
|Q|, |U | · |Q|}) as follows.

We encode a relationρ on Q as an array indexed by elements ofQ of lists of elements ofQ. A state
q is present in a list with indexr iff (r,q) ∈ ρ. Note that given a boolean matrix representation of the
relation, the “array of lists”-representation can be derived in timeO (|Q|2). Note also that asU andD are
reflexive, we have that|U |, |D| ≥ |Q| and thus|Q|2 ≤ min{|D| · |Q|, |U | · |Q|}. Let arrays of listsD,U−1

encode relationsD,U−1.
The relationC = D◦U−1 represented by a Boolean matrixC can be computed in the following way:

(1) Initialise all entries ofC to false. (2) For eachq∈ Q, pass through all elements of the listD[q], and
for eachr ∈D[q], pass through all elementssof U−1[r], and setC[q,s] to true. This procedure takes time
O (|{(q, r,s) | (q, r) ∈ D∧ (r,s) ∈U−1}|) ⊆ O (min{|D| · |Q|, |U | · |Q|}).

Then we compute a Boolean matrix representationW of the relationW = D⊕U−1 as follows: (3) We
initialise W as a copy of the matrixC (representingD ◦U−1), and in the subsequent Step (4), we erase
from W all the pairs of elements ofQ that break Condition (ii) from the definition of⊕. In Step (4), we
proceed in the following way: For allq∈ Q, for all r ∈ D[q], for all s∈U−1[r], if not C[q,s] (i.e.,(q,s) 6∈
D◦U−1), thenW[q,s] = false. This gives us the setD⊕U−1 represented by the matrixW. The complex-
ity of Steps (3), (4) is inO (|{(q, r,s) | (q, r) ∈ D∧(r,s) ∈U−1}|+ |{(q, r,s) | (q, r) ∈U−1∧ (r,s) ∈ D}|),
which is again inO (min{|D| · |Q|, |U | · |Q|}).

7 Experiments

We have implemented our algorithms in a prototype tool written in Java. We have used the tool on
a number of tree automata from the frameworks ofregular tree model checking(RTMC) andabstract
regular tree model checking(ARTMC) [8, 4, 6, 7].

RTMC is the name of a family of techniques for analysing infinite-state systems such as parame-
terised networks of processes, systems with queues, stacks, unbounded integers, and/or dynamic linked
data structures like lists or trees. In RTMC, states are represented by trees, sets of states by tree automata,
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Table 1.The obtained reduction in percent and the computation time in seconds for the various considered relations applied for
reducing TA obtained from RTMC and ARTMC case studies. The size of the TA is the number of their states plus the number
of their transition rules.

TA ∼ ◦
=

◦
'

◦
∼

origin size reduction time reduction time reduction time reduction time
ARTMC 195 18% 0.5 s 2% 0.5 s 23% 0.5 s 61% 1.0 s
RTMC 613 27% 3.5 s 19% 2.0 s 19 % 2.5 s 88% 5.1 s
RTMC 909 52% 3.6 s 72% 3.1 s 82% 3.4 s 89% 35.1 s
ARTMC 2029 10% 27.0 s 37% 26.0 s 33% 29.0 s 93% 39.0 s
RTMC 2403 26% 31.0 s 0% 25.0 s 0% 34.0 s 82% 37.1 s

TA ' •
=

•
'

•
∼

origin size reduction time reduction time reduction time reduction time
ARTMC 195 18% 0.1 s 2% 0.5 s 23% 0.2 s 23% 0.6 s
RTMC 613 0% 0.3 s 0% 0.4 s 0% 0.8 s 27% 3.7 s
RTMC 909 14% 0.6 s 72% 0.4 s 82% 0.8 s 83% 4.1 s
ARTMC 2029 10% 1.7 s 14% 1.4 s 19% 3.1 s 44% 29.0 s
RTMC 2403 0% 0.3 s 0% 0.6 s 0% 0.7 s 27% 31.0 s

and transitions by tree transducers (or, sometimes, also bysome specialised operations on tree automata).
ARTMC is a combination of RTMC and the abstract-check-refineparadigm which usually greatly im-
proves the efficiency of the technique. Most of the algorithms in the frameworks of both RTMC and
ARTMC rely crucially on efficient automata reduction methods since the size of the generated automata
often explodes, making computations infeasible without a reduction.

The tree automata that we have considered in our experimentsarose within various computations
within the frameworks of RTMC and ARTMC. Our experimental evaluation was carried out on an
AMD Athlon 64 X2 2.19GHz PC with 2.0 GB RAM. We have compared the size of tree automata
after reducing them with all the different reduction techniques considered in this paper.

Table 1 shows the computation time and the reduction (in percent) for the different relations within
the considered framework and illustrates that we have really obtained a wide spectrum of relations
differing in their reduction capabilities and computational complexity. As can be seen from the results,

◦
∼

gives the best reduction in all experiments, but it also suffers from a high computation time. Combining
simulations and bisimulations does not give the same amountof reduction as the combined simulation,
but the computation time is lower and the reduction is betterthan

•
'. Note that no attempt to optimise the

implementation of any of the relations was done, and therefore the computation times could probably be
much lower with an optimised implementation for all of them.

8 Conclusions and Future Work

We have presented a uniform framework for deriving equivalence relations suitable for reducing tree
automata based on combining upward and downward simulations and bisimulations. The framework is
based on two main ingredients: a new notion of upward (bi-)simulations parameterised by any down-
ward (bi-)simulation and a new operator for combining upward and downward (bi-)simulations. The
framework explains in a uniform way various previously obtained results [10, 2, 1] and also yields mul-
tiple new combined relations for reducing tree automata that mix in various degrees advantages of the
various upward and downward simulations and bisimulations. This step is motivated by giving users of
tree automata a finer choice between the reduction capabilities and computational costs of the relations
to be used for reducing tree automata.

We have established a partial ordering of the obtained combined relations according to their reduc-
tion capabilities, and showed that some of them are also incomparable. Moreover, we have performed
a number of experiments with automata from the area of (abstract) regular tree model checking that show
a practical applicability of the obtained relations and allow us to conclude that the considered relations
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really offer a fine choice of balance in the trade-off betweenreduction capabilities and computational
requirements.

Furthermore, the proposed weakening combination operatoron which our framework is based yields
a significantly more efficient way of combining upward and downward (bi-)simulations than the previ-
ously used random combination algorithms.

The proposed framework is built on quite general principlesand we believe that it can be extended
to more advanced types of automata such as guided tree automata, nested word automata, or hedge
automata that find their use in many applications in formal verification, decision procedures of various
logics, structured document processing, or natural language processing. Reduction of automata from
some of such classes has already been considered in the literature (e.g., in [9], the author proposes
a bisimulation-based minimisation of weighted word automata, and a use of bisimulations for reducing
weighted tree automata is considered in [11]).

From the practical point of view, it is also interesting to investigate more efficient techniques of
computing the (bi-)simulation relations, e.g., by computing them in a symbolic way (for symbolically
encoded automata). Furthermore, it can be interesting to explore more deeply the principles of the pro-
posed combination of downward and upward (bi-)simulation relations. One can, for instance, think of
defining still weaker types of relations preserving the language of tree automata by using the combined
relations repeatedly as inducing relations.

Acknowledgement.We would like to thank Ahmed Bouajjani for fruitful discussions on the subject of
the paper.
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A Appendix

A.1 Proofs of the Basic Properties of the Downward Relations

Proof (Lemma 1).We fix a tree automatonA = (Q,Σ,∆,F).

Union: Given two downward simulationsD1 andD2, we want to prove thatD = D1∪D2 is also a down-
ward simulation. LetqDr for someq, r ∈ Q, then eitherqD1r or qD2r. Assume without loss of gen-

erality thatqD1r. Then, from the definition of downward simulations, whenever (q1, . . . ,qn)
f

−→ q,

then there is a rule(r1, . . . , rn)
f

−→ r with qiD1r i for all i : 1≤ i ≤ n. As D1 ⊆ D givesqiDr i for all
the positionsi, D fulfils the definition of a downward simulation.

Reflexive closure: It can be seen from the definition of downward simulations that the identity is a down-
ward simulation. Thus, the union of the identity and any downward simulation is a downward simu-
lation.

Transitive closure: LetD be a downward simulation and letDT be its transitive closure. Letq1DTqm and

(q1
1, . . . ,q

1
n)

f
−→ q1. Fromq1DTqm, we have that there are statesq1, . . . ,qm such thatq1Dq2D . . .Dqm.

Therefore, from the definition of downward simulations, there are also rules(q1
1, . . . ,q

1
n)

f
−→ q1, . . . ,

(qm
1 , . . . ,qm

n )
f

−→ qm with q1D . . .Dqm, andq1
i D . . .Dqm

i for all i : 1≤ i ≤ n. Thus, asDT is the transi-
tive closure ofD, we obtainq1

i DTqm
i for all i : 1≤ i ≤ n. We have proven thatDT fulfils the definition

of downward simulations.
ut

Proof (Lemma 2).The fact that each downward bisimulation is also a downward simulation follows
straight from the definitions of these relations. The closure under union, reflexivity, and transitivity
can be proven analogically as in the case of downward simulations. What remains is the closure under
symmetry. LetD be a downward bisimulation and letDS = D∪D−1 be its symmetrical closure. It is
sufficient to prove thatD−1 is a downward bisimulation because then, from the closure under union,DS

is a downward bisimulation too.
Let qD−1r. Then, fromrDq, we have that(r1, . . . , rn)

f
−→ r if and only if (q1, . . . ,qn)

f
−→ q with

r iDqi for all i : 1 ≤ i ≤ n. As rDq is equivalent toqD−1r, we can write that(q1, . . . ,qn)
f

−→ q iff

(r1, . . . , rn)
f

−→ r with qiD−1r i for all i : 1 ≤ i ≤ n. We directly see thatD−1 matches the definition
of downward bisimulations. ut

A.2 Proofs of the Basic Properties of the Upward Relations

Lemmas 4 and 3 can be proven analogically as Lemmas 2 and 1.

Proof (Lemma 3).We fix a tree automatonA = (Q,Σ,∆,F).

Union: Given a downward simulation preorderD and two upward simulationsU1 andU2 induced by
D, we want to prove thatU = U1 ∪U2 is also an upward simulation induced byD. Let qUr for
someq, r ∈ Q, then eitherqU1r or qU2r. Assume without loss of generality thatqU1r. Then, from

the definition of upward simulations, whenever(q1, . . . ,qn)
f

−→ q′ with qi = q, then there is a rule

(r1, . . . , rn)
f

−→ r ′ with q′U1r ′, q′ ∈ F =⇒ r ′ ∈ F, andq jDr j for all j : 1≤ j 6= i ≤ n. As U1 ⊆ U
givesq′Ur ′, U fulfils the definition of upward simulations induced byD.

Reflexive closure: It can be seen from the definition that the identity is an upward simulation induced
by D for any downward simulation preorderD. Therefore, from the closure under union, the union
of the identity and any upward simulation induced byD is an upward simulation induced byD.

Transitive closure: LetU be an upward simulation induced by a downward simulatoin preorderD and

let UT be its transitive closure. Letq1UTqm and (q1
1, . . . ,q

1
n)

f
−→ r1 with q1 = q1

i . From q1UTqm,
we have that there are statesq1, . . . ,qm such thatq1Uq2U . . .Uqm. Therefore, there are also rules

(q1
1, . . . ,q

1
n)

f
−→ r1, . . . ,(qm

1 , . . . ,qm
n )

f
−→ rm with q1

i = q1
i , . . . ,q

m
i = qm, r1U . . .Urm, r1 ∈ F =⇒
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. . . =⇒ rm ∈ F, andq1
j D . . .Dqm

j for all j : 1 ≤ j 6= i ≤ n. Thus, from the definition ofUT , we
haver1UT rm, from the transitivity of=⇒ , we haver1 ∈ F =⇒ rm∈ F, and from the transitivity of
D, we haveq1

j Dqm
j for all j : 1≤ j 6= i ≤ n. We have thus proven thatUT fulfils the definition of an

upward simulation induced byD.
ut

Proof (Lemma 4).The fact that each upward bisimulation induced by a downwardsimulationD is also
an upward simulation induced byD follows straight from the definitions of these relations. The closure
under union, reflexivity, and transitivity can be proven analogically as in the case of upward simulations.
What remains is the closure under symmetry. LetU be an upward bisimulation induced by a downward
simulation preorderD and letUS =U ∪U−1 be its symmetrical closure. It is sufficient to prove thatU−1

is an upward bisimulation induced byD because then, from the closure under union,US is an upward
bisimulation induced byD too.

Let qU−1r. Then, fromrUq, we have that(r1, . . . , rn)
f

−→ r ′ with r = r i if and only if (q1, . . . ,qn)
f

−→
q′ with q = qi , r ′Uq′, andr j ≡D q j for all j : 1 ≤ j 6= i ≤ n. As ≡D is an equivalence and asr ′Uq′ is

equivalent toq′U−1r ′, we can write(q1, . . . ,qn)
f

−→ q′ with q = qi iff (r1, . . . , rn)
f

−→ r ′ with r = r i ,
q′U−1r ′, andq j ≡D r j for all j : 1 ≤ j 6= i ≤ n. We directly see thatU−1 matches the definition of an
upward bisimulation induced byD. ut

A.3 Proof of Theorem 1

We fix a tree automatonA, a downward simulation preorderD, and an upward simulationU induced by
D. LetW = D⊕ (U−1).

We will relate the languages ofA and A≡W. To do that, we first define the notion of acontext.
Intuitively, a context is a tree with “holes” instead of leaves. Formally, we consider a special symbol
� 6∈ Σ with rank 0. Acontextover Σ is a treec over Σ∪{�} such that for all leavesp ∈ c, we have
c(p) = �. For a contextc with leavesp1, . . . , pn and for treest1, . . . , tn, we definec[t1, . . . , tn] to be the
treet, where

– dom(t) = dom(c)
S

{p1 · p′| p′ ∈ dom(ti)}
S

· · ·
S

{pn · p′| p′ ∈ dom(tn)},
– for eachp = pi · p′, we havet(p) = ti(p′), and
– for eachp∈ dom(c)\{p1, . . . , pn}, we havet(p) = c(p).

In other words,c[t1, . . . , tn] is the result of appending the treest1, . . . , tk to the holes ofc. We extend the
notion of runs to contexts. Letc be a context with leavesp1, . . . , pn. A run π of A on c from (q1, . . . ,qn)
is defined in a similar manner to a run on a tree except that for aleaf pi , we haveπ(pi) = qi , 1≤ i ≤ n. In
other words, each leaf labelled with� is annotated by oneqi . We usec[q1, . . . ,qn]

π
=⇒ q to denote that

π is a run ofA onc from (q1, . . . ,qn) such thatπ(ε) = q. The notationc[q1, . . . ,qn] =⇒ q is explained in
a similar manner to runs on trees.

Lemma 6. If c[q1,q2, . . . ,qn] =⇒ q and qiUr i for some1 ≤ i ≤ n, then there are states r1, . . . , r i−1,
r i+1, . . . , rn, r such that qjDr j for each j such that1≤ j 6= i ≤ n, qUr, and c[r1, . . . , rn] =⇒ r.

Proof. To simplify the notation, we assume (without loss of generality) that i = 1. We use induction on
the structure ofc. The base case is trivial since the contextc consists of a single hole. For the induction
step, we assume thatc is not only a single hole. Suppose thatc[q1,q2, . . . ,qn]

π
=⇒ q for some runπ

and thatq1Ur1. Let p1, . . . , p j be the left-most leaves ofc with a common parent. Letp be the parent of
p1, . . . , p j . Notice thatq1 = π(p1), . . . ,q j = π(p j). Letq′ = π(p) and letc′ be the contextc with the leaves
p1, . . . , p j deleted. In other words,dom(c′) = dom(c) \ {p1, . . . , p j}, c′(p′) = c(p′) if p′ ∈ dom(c′) \

{p, p1, . . . , p j}, andc′(p) = �. Observe thatc′[q′,q j+1, . . . ,qn] =⇒qand that(q1, . . . ,q j)
f

−→q′ for some
f . By the definition of the upward simulation and the premiseq1Ur1, it follows that there arer2, . . . , rn, r ′

such thatq2Dr2 ∈, . . . ,q jDr j ,q′Ur ′, and(r1, . . . , r j)
f

−→ r ′. Sincec′ is smaller thanc, we can apply the
induction hypothesis and conclude that there arer j+1, . . . , rn, r such thatq j+1Dr j+1, . . . ,qnDrn,qUr, and
c′[r ′, r j+1, . . . , rn] =⇒ r. The claim follows immediately. ut
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For a stater ∈ Q, a setB ⊆ Q of states, and a relationR⊆ Q×Q, we writeBRqto denote that there
is aq∈ B with qRr.

Lemma 7. For blocksB1, . . . ,Bn,B ∈Q≡W and a context c, if c[B1, . . . ,Bn] =⇒B, then there exist states
r1, . . . , rn, r ∈ Q withB1Dr1, . . . ,BnDrn,BUr, and c[r1, . . . , rn] =⇒ r.

Proof. The claim is shown by induction on the structure ofc. In the base case, the contextc consists of
a single hole. We choose anyq ∈ B∩F provided thatB∩F 6= /0, and anyq ∈ B otherwise. The claim
holds obviously by reflexivity ofD andU .

For the induction step, we assume thatc is not only a single hole. Suppose thatc[B1, . . . ,Bn]
π

=⇒ B

for some runπ. Let p1, . . . , p j be the left-most leaves ofc with a common parent. Letp be the parent
of p1, . . . , p j . Notice thatB1 = π(p1), . . . ,B j = π(p j). Let B′ = π(p) and letc′ be the contextc with
the leavesp1, . . . , p j deleted. In other words,dom(c′) = dom(c)\{p1, . . . , p j}, c′(p′) = c(p′) provided
p′ ∈ dom(c′)\{p, p1, . . . , p j}, andc′(p) = �. Observe thatc′[B′,B j+1, . . . ,Bn] =⇒B. Sincec′ is smaller
than c, we can apply the induction hypothesis and conclude that there arev,q′j+1, . . . ,q

′
n,q

′ such that
B′Dv,B j+1Dq′j+1, . . . ,BnDq′n,BUq′, c′[v,q′j+1, . . . ,q

′
n] =⇒ q′. It follows that there areu ∈ B′, q j+1 ∈

B j+1, . . . ,qn ∈ Bn,q∈ B such thatuDv, qUq′, andq j+1Dq′j+1, . . . ,qnDq′n. By the definition ofA≡W , there

are statesq1 ∈ B1, . . . ,q j ∈ B j , andz∈ B′ such that(q1, . . . ,q j)
f

−→ z for some f . SinceD ⊆ W and
uDv, we getuWv. Sinceu,z∈ B′, it follows that u ≡W z and hencezWu. From transitivity ofW, we
get zWv. From the definition ofW, there is a statew such thatzDwandvUw. By the definition of the

language inclusion preorder and premiseszDw and (q1, . . . ,q j)
f

−→ z, there are statesr1, . . . , r j with

q1Dr1, . . . ,q jDr j , and(r1, . . . , r j)
f

−→ w. By Lemma 6 and premisesvUw andc′[v,q′j+1, . . . ,q
′
n] =⇒ q′,

there are statesr j+1, . . . , rn, andr with q′j+1Dr j+1, . . . ,q′nDrn,q′Ur, andc′[w, r j+1, . . . , rn] =⇒ r. Finally,
by transitivity ofD andU , we getq j+1Dr j+1, . . . ,qnDrn, qUr. The claim thus holds. ut

Lemma 8. If t =⇒ B, then t=⇒ w for some w withBUw. Moreover, ifB ∈ F≡W , then also w∈ F.

Proof. Suppose thatt
π

=⇒ B for someπ. Let p1, . . . , pn be the leafs oft, and letπ(pi) = Bi for each
i : 1 ≤ i ≤ n. Let c be the context that we get fromt by deleting the leavesp1, . . . , pn. Observe that
c[B1, . . . ,Bn]

π
=⇒B. It follows from Lemma 7 that there exist statesr1, . . . , rn, r ∈Q andq1 ∈B1, . . . ,qn ∈

Bn,q ∈ B such thatq1Dr1, . . . ,qnDrn,qUr, c[r1, . . . , rn] =⇒ r, and if B∩ F 6= /0, then r ∈ F. By the

definition of A≡W, it follows that there areq′1 ∈ B1, . . . ,q′n ∈ Bn, and f1, . . . , fn such that
fi−→ q′i for

eachi such that 1≤ i ≤ n. We show by induction oni that for eachi such that 1≤ i ≤ n there are
statesui

1, . . . ,u
i
i ,v

i
i+1, . . . ,v

i
n,w

i such thatq′1Dui
1, . . . ,q

′
iDui

i ,qi+1Dvi
i+1, . . . ,qnDvi

n, rUwi, andc[ui
1, . . . ,u

i
i ,

vi
i+1, . . . ,v

i
n] =⇒ wi . The base case wherei = 0 is trivial. We consider the induction step. SinceD ⊆

W and qi+1Dvi+1, we getqi+1Wvi+1. Sinceqi+1,q′i+1 ∈ Bi+1, we have thatq′i+1 ≡W qi+1 and hence
q′i+1Wqi+1. By transitivity of W, it follows that q′i+1Wvi+1. By the definition ofW, there iszi+1 such
that q′i+1Dzi+1 and vi+1Uzi+1. By Lemma 6, there arez1, . . . ,zi ,zi+2, . . . ,zn,z with ui

1Dz1, . . . ,ui
iDzi,

vi
i+2Dzi+2, . . . ,vi

nDzn, wiUz, andc[z1, . . . ,zn] =⇒ z. By transitivity of D and the premisesq′jDui
j and

ui
jDzj , we haveq′jDzj for each j : 1≤ j ≤ i. By transitivity ofD and the premisesq jDvi

j andvi
jDzj , we

haveq jDzj for eachj : i +2≤ j ≤ n. Defineui+1
j = zj for j : 1≤ j ≤ i +1, vi+1

j = zj for j : i +2≤ j ≤ n,
andwi+1 = z.

The induction proof above implies thatc[un
1, . . . ,u

n
n] =⇒ wn. From the definition of the language

inclusion preorder and the premises
fi−→ q′i andq′iDun

i , it follows that
fi−→ un

i for eachi : 1 ≤ i ≤ n. It
follows thatt = c[ f1, . . . , fn] =⇒wn. By the definition ofU and the fact thatr ∈ F if B∩F 6= /0, it follows
that for all i : 1≤ i ≤ n, wi ∈ F provided thatB ∈ F≡W. Thus, in the claim of the lemma, it suffices to
takew = wn. ut

Proof (Theorem 1).The inclusionL(A≡W)⊇ L(A) is trivial. Let t ∈ L(A≡W), i.e.,t =⇒B for some block
B whereB∩F 6= /0. Lemma 8 implies thatt =⇒ w such thatw∈ F. ut
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