
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Abstract Regular (Tree) Model Checking

Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomáš Vojnar

LIAFA, University Paris Diderot—Paris 7/CNRS and FIT, Brno University of Technology

Received: date / Revised version: date

Abstract. Regular model checking is a generic tech-
nique for verification of infinite-state and/or parametrised
systems which uses finite word automata or finite tree
automata to finitely represent potentially infinite sets
of reachable configurations of the systems being veri-
fied. The problems addressed by regular model checking
are typically undecidable. In order to facilitate termina-
tion in as many cases as possible, acceleration is needed
in the incremental computation of the set of reachable
configurations in regular model checking. In this work,
we describe how various incrementally refinable abstrac-
tions on finite (word and tree) automata can be used for
this purpose. Moreover, the use of abstraction does not
only increase chances of the technique to terminate, but
it also significantly reduces the problem of an explosion
in the number of states of the automata that are gener-
ated by regular model checking. We illustrate efficiency
of abstract regular (tree) model checking in verification
of simple systems with various sources of infinity such
as unbounded counters, queues, stacks, and parameters.
We then show how abstract regular tree model checking
can be used for verification of programs manipulating
tree-like dynamic data structures. Even more complex
data structures can be handled using a suitable tree-like
encoding.

1 Introduction

Model checking is nowadays widely accepted as a power-
ful technique for verification of finite-state systems. How-
ever, many real-life systems exhibit various aspects of
infinity. In the case of discrete systems that we concen-
trate on in this paper, infinity can arise due to dealing
with various kinds of unbounded data structures such as

push-down stacks needed for dealing with recursive pro-
cedures, queues of waiting processes or messages, un-
restricted counters (or integer variables), or dynamic
linked data structures (such as lists or trees). A need
to deal with infinite state spaces may also arise due to
various kinds of parameters (such as the maximum value
of some variable, the maximum length of a queue, or the
number of processes in a system) when one wants to ver-
ify a given parametric system for any value of its param-
eters. In the last case, to be more precise, we are dealing
with infinite families of systems which themselves may
be finite-state or infinite-state. Nevertheless, the need to
verify the system for any member of the family leads
anyhow to infinite-state verification as the union of the
state spaces of all the family members is infinite.

To deal with infinity in model checking, one can, e.g.,
try to identify sufficient finite bounds on the sources of
infinity—the so called cut-offs, one can use various finite-
range abstractions, or techniques of automated induc-
tion (for an overview of such techniques, see, e.g., [58]).
Yet another approach is to use symbolic model checking
based on a finite representation of infinite sets of states
by means of logics, automata, grammars, etc. Among
successful symbolic verification methods, we have the so
called regular (tree) model checking R(T)MC, first men-
tioned in [36], on which we concentrate in this paper.

In R(T)MC, configurations of systems are encoded as
words or trees over a finite alphabet whereas transitions
are modelled as finite state transducers or, more gener-
ally, as regularity preserving relations on words or trees1.
Finite (tree) automata can then naturally be used to rep-
resent and manipulate potentially infinite sets of config-
urations, allowing reachability properties to be checked
by computing transitive closures of transducers [35,23,5,
10,3] or images of automata by iteration of transducers
[16,52]—depending on whether dealing with reachability

1 Such relations can be expressed, e.g., as special operations on
automata.

2 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

relations or reachability sets is preferred. To facilitate
termination of the computation, which is in general not
guaranteed as the problem being solved is undecidable,
various acceleration methods are usually used.

In this paper, we, in particular, concentrate on using
abstraction as a means of acceleration. The description
builds on our proposal [15,13] of combining R(T)MC
with the CEGAR loop [21]. Instead of precise accelera-
tion techniques, we use abstract fixpoint computations
in some finite domain of automata. The abstract fixpoint
computations always terminate and provide overapprox-
imations of the reachability sets (relations). To achieve
this, we define techniques that systematically map any
automaton M to an automaton M ′ from some finite do-
main such that M ′ recognises a superset of the language
of M . For the case that the computed overapproximation
is too coarse and a spurious counterexample is detected,
we provide effective techniques allowing the abstraction
to be refined such that the new abstract computation
does not encounter the same counterexample.

Both for the word and tree cases, we discuss two
general purpose classes of techniques for abstracting au-
tomata2. They take into account the structure of the
automata and are based on collapsing their states ac-
cording to some equivalence relation. The first one is in-
spired by predicate abstraction [30]. However, contrary
to classical predicate abstraction, we associate predicates
with states of automata representing sets of configura-
tions rather than with the configurations themselves. An
abstraction is defined by a set of regular predicate lan-
guages LP . We consider a state q of an automaton M to
“satisfy” a predicate language LP if the intersection of
LP with the language L(M, q) accepted from the state
q is not empty. Then, two states are equivalent if they
satisfy the same predicates. The second abstraction tech-
nique is then based on considering two automata states
equivalent if their languages of words up to a certain
fixed length (or trees up to a certain fixed height) are
equal. For both of these two abstraction methods, we
provide effective refinement techniques allowing us to
discard spurious counterexamples.

All the above mentioned techniques have up to now
been implemented in prototype tools and tested on var-
ious case studies. In particular, abstract regular word
model checking was successfully applied for verification
of parametric networks of processes, pushdown systems,
counter automata, systems with queues, and programs
with dynamic singly-linked structures [15,12]. Abstract
regular tree model checking was applied for verification
of parametric networks of processes [13] and programs
with generic dynamic-linked data structures [14]. In this
paper, we briefly report on all these applications and
describe the last mentioned application in more detail.

2 In [12], some specialised abstractions optimised for verification
of list manipulating programs are proposed. These abstractions
are, however, beyond the scope of this paper.

2 Preliminaries

2.1 Finite Word Automata and Transducers

A (non-deterministic) finite-state automaton is a 5-tuple
M = (Q, Σ, δ, q0, F) where Q is a finite set of states, Σ
a finite alphabet, δ : Q×Σ → 2Q a transition function,
q0 ∈ Q an initial state, and F ⊆ Q a set of final states.
The transition relation −→

M
⊆ Q×Σ∗×Q of M is defined

as the smallest relation satisfying: (1) ∀q ∈ Q : q
ε
−→
M

q,

(2) if q′ ∈ δ(q, a), then q
a
−→
M

q′, and (3) if q
w
−→
M

q′ and

q′
a
−→
M

q′′, then q
wa
−→
M

q′′ for a ∈ Σ, w ∈ Σ∗. We drop

the subscript M if no confusion is possible. M is called
deterministic iff ∀q ∈ Q ∀a ∈ Σ : |δ(q, a)| ≤ 1.

The language recognised by a finite-state automaton
M = (Q, Σ, δ, q0, F) from a state q ∈ Q is defined by

L(M, q) = {w ∈ Σ∗ | ∃qF ∈ F : q
w
−→
M

qF }. The lan-

guage L(M) of M is equal to L(M, q0). A set L ⊆ Σ∗

is a regular set iff there exists a finite-state automa-
ton M such that L = L(M). We also define the back-

ward language
←−
L (M, q) = {w | q0

w
−→
M

q} and the for-

ward/backward languages of words up to a certain length:
L≤n(M, q) = {w ∈ L(M, q) | |w| ≤ n} and similarly
←−
L≤n(M, q). We define the forward/backward trace lan-
guages of states T (M, q) = {w ∈ Σ∗ | ∃w′ ∈ Σ∗ : ww′ ∈

L(M, q)} and similarly
←−
T (M, q). Finally, we define ac-

cordingly forward/backward trace languages T≤n(M, q)

and
←−
T ≤n(M, q) of traces up to a certain length.

Given a finite-state automaton M = (Q, Σ, δ, q0, F)
and an equivalence relation ∼ on its set of states Q, M/∼

denotes the quotient automaton of M wrt. ∼, M/∼ =
(Q/∼, Σ, δ/∼, [q0]/∼, F/∼) where Q/∼ and F/∼ are the
partitions of Q and F wrt. ∼, respectively, [q0]/∼ is the
equivalence class of Q wrt. ∼ containing q0, and δ/∼ is

defined s.t. [q1]/∼
a
−→
M/∼

[q2]/∼ for [q1]/∼, [q2]/∼ ∈ Q/∼,

a ∈ Σ iff q′1
a
−→
M

q′2 for some q′1 ∈ [q1]/∼, q′2 ∈ [q2]/∼.

A finite-state transducer over Σ is a 5-tuple τ =
(Q, Σ, δ, q0, F) where Q is a finite set of states, Σ a finite
input/output alphabet, δ : Q × Σε × Σε → 2Q a tran-
sition function, Σε = Σ ∪ {ε}, q0 ∈ Q an initial state,
and F ⊆ Q a set of final states. A finite-state trans-
ducer is called a length-preserving transducer if its tran-
sitions do not contain ε. The transition relation −→

τ
⊆

Q×Σ∗×Σ∗×Q is defined as the smallest relation sat-

isfying: (1) q
ε/ε
−→

τ
q for every q ∈ Q, (2) if q′ ∈ δ(q, a, b),

then q
a/b
−→

τ
q′, and (3) if q

w/u
−→

τ
q′ and q′

a/b
−→

τ
q′′, then

q
wa/ub
−→

τ
q′′ for a, b ∈ Σε, w, u ∈ Σ∗. The subscript τ will

again be dropped if no confusion is possible. A finite-
state transducer τ = (Q, Σ, δ, q0, F) defines the relation

̺τ = {(w, u) ∈ Σ∗ ×Σ∗ | ∃qF ∈ F : q0
w/u
−→

τ
qF }.

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking 3

A relation ̺ ⊆ Σ∗×Σ∗ is a regular relation iff there
exists a finite-state transducer τ such that ̺ = ̺τ . For
a set L ⊆ Σ∗ and a relation ̺ ⊆ Σ∗ × Σ∗, we denote
by ̺(L) the set {w ∈ Σ∗ | ∃w′ ∈ L : (w′, w) ∈ ̺}.
A relation ̺ ⊆ Σ∗ × Σ∗ is called regularity preserving
iff ̺(L) is regular for any regular set L ⊆ Σ∗. Note that
not all regularity preserving relations are regular—as an
example of a regularity preserving, non-regular relation,
one can take, e.g., the relation {(w, wR) | w ∈ Σ∗}, for
wR being the reversal of w, |Σ| > 1.

2.2 Finite Tree Automata and Transducers

A finite alphabet Σ is ranked if there exists a rank func-
tion # : Σ → N. For each k ∈ N, Σk ⊆ Σ is the set
of all symbols with rank k. Symbols of Σ0 are called
constants. Let χ be a denumerable set of symbols called
variables. TΣ [χ] denotes the set of terms over Σ and χ.
The set TΣ[∅] is denoted by TΣ, and its elements are
called ground terms. A term t from TΣ[χ] is called linear
if each variable occurs at most once in t.

A finite ordered tree t over a set of labels L is a map-
ping t : Pos(t) → L where Pos(t) ⊆ N∗ is a finite,
prefix-closed set of positions in the tree satisfying (1) for
all p ∈ Pos(t), if t(p) ∈ Σn with n ≥ 1, then {j | pj ∈
Pos(t)} = {1, . . . , n} and (2) for all p ∈ Pos(t), if t(p) ∈
Σ0 ∪ χ, then {j | pj ∈ Pos(t)} = ∅. A term t ∈ TΣ[χ]
can naturally be also viewed as a tree whose leaves are
labelled by constants and variables, and each node with
k sons is labelled by a symbol from Σk [22]. Therefore,
below, we sometimes exchange terms and trees. We de-
note by N lPos(t) = {p ∈ Pos(t) | ∃i ∈ N : pi ∈ Pos(t)}
the set of non-leaf positions.

A bottom-up tree automaton over a ranked alphabet
Σ is a tuple A = (Q, Σ, F, δ) where Q is a finite set of
states, F ⊆ Q is a set of final states, and δ is a set of
transitions of the following types: (i) f(q1, . . . , qn)→δ q,
(ii) a→δ q, and (iii) q →δ q′ where a ∈ Σ0, f ∈ Σn, and
q, q′, q1, . . . , qn ∈ Q. Below, we denote bottom-up tree
automata simply as tree automata.

Let t be a ground term. A run of a tree automaton
A on t is defined as follows. First, leaves are labelled
with states. If a leaf is a symbol a ∈ Σ0 and there is
a rule a →δ q ∈ δ, the leaf is labelled by q. An inter-
nal node f ∈ Σk is labelled by q if there exists a rule
f(q1, q2, . . . , qk) →δ q ∈ δ and the first son of the node
has the state label q1, the second one q2, ..., and the last
one qk. Rules of the type q →δ q′ are called ε-steps and
allow us to change a state label from q to q′. If the top
symbol is labelled with a state from the set of final states
F , the term t is accepted by the automaton A.

A set of ground terms accepted by a tree automaton
A is called a regular tree language and is denoted by
L(A). Let A = (Q, Σ, F, δ) be a tree automaton and q ∈
Q a state, then we define the language of the state q—
L(A, q)—as the set of ground terms accepted by the tree

automaton Aq = (Q, Σ, {q}, δ). The language L≤n(A, q)
is defined to be the set {t ∈ L(A, q) | height(t) ≤ n}.

A bottom-up tree transducer is a tuple τ = (Q, Σ, Σ′,
F, δ) where Q is a finite set of states, F ⊆ Q is a set of
final states, Σ is an input ranked alphabet, Σ′ is an out-
put ranked alphabet, and δ is a set of transition rules of
the following types: (i) f(q1(x1), . . . , qn(xn)) →δ q(u),
u ∈ TΣ′ [{x1, . . . , xn}], (ii) q(x) →δ q′(u), u ∈ TΣ′ [{x}],
and (iii) a →δ q(u), u ∈ TΣ′ where a ∈ Σ0, f ∈ Σn,
x, x1, . . . , xn ∈ χ, and q, q′, q1, . . . , qn ∈ Q. In the follow-
ing, we call a bottom-up tree transducer simply a tree
transducer. We always use tree transducers with Σ = Σ′.

A run of a tree transducer τ on a ground term t
is similar to a run of a tree automaton on this term.
First, rules of type (iii) are used. If a leaf is labelled
by a symbol a and there is a rule a →δ q(u) ∈ δ, the
leaf is replaced by the term u and labelled by the state
q. If a node is labelled by a symbol f , there is a rule
f(q1(x1), q2(x2), . . . , qn(xn)) →δ q(u) ∈ δ, the first sub-
tree of the node has the state label q1, the second one
q2, . . ., and the last one qn, then the symbol f and all
subtrees of the given node are replaced according to the
right-hand side of the rule with the variables x1, . . . , xn

substituted by the corresponding left-hand-side subtrees.
The state label q is assigned to the new tree. Rules of
type (ii) are called ε-steps. They allow us to replace a q-
state-labelled tree by the right hand side of the rule and
assign the state label q′ to this new tree with the variable
x in the rule substituted by the original tree. A run of
a transducer is successful if the root of a tree is processed
and is labelled by a state from F .

A tree transducer is linear if all right-hand sides of
its rules are linear (no variable occurs more than once).
The class of linear bottom-up tree transducers is closed
under composition. A tree transducer is called structure-
preserving (or a relabelling) if it does not modify the
structure of input trees and just changes the labels of
their nodes. A transducer τ defines the relation ̺τ =
{(t, t′) ∈ TΣ ×TΣ | t→∗

δ q(t′) for some q ∈ F}. For a set
L ⊆ TΣ and a relation ̺ ⊆ TΣ ×TΣ, we denote ̺(L) the
set {w ∈ TΣ | ∃w′ ∈ L : (w′, w) ∈ ̺} and ̺−1(L) the
set {w ∈ TΣ | ∃w′ ∈ L : (w, w′) ∈ ̺}. If τ is a linear
tree transducer and L is a regular tree language, then
the sets ̺τ (L) and ̺−1

τ (L) are regular and effectively
constructible [27,22]. Finally, the notions of regular tree
relations and regularity preserving tree relations can be
introduced analogously to the word case.

3 Regular Model Checking

3.1 The Basic Idea

As we have already mentioned in the introduction, the
basic idea behind regular model checking is to encode
particular configurations of the considered systems as

4 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

T

N

(a) Init

T/N

N/N

N/T

 N/N

0 1 2

 T/T T/T

(b) τ

Fig. 1. A model of a simple token passing protocol: (a) an automa-
ton Init encoding the initial set of configurations I = L(Init),
(b) a transducer τ encoding the 1-step transition relation ̺ = ̺τ

words over a suitable finite alphabet and to represent in-
finite, but regular, sets of such configurations by finite-
state automata. Transitions between the configurations,
constituting the one-step transition relation of the given
system, are then encoded using (one or more) finite-state
transducers, or, more generally, using (one or more) reg-
ularity preserving relations expressed, e.g., by specialised
automata operations.3 In this section, we, for simplicity,
concentrate on using a single transducer encoding the
one-step transition relation of a given system.

Before going into more technical details of regular
model checking, we present a simple illustrating exam-
ple from the area of verification of parametric networks
of processes with a linear topology. When dealing with
such systems, each letter in a word representing a config-
uration will typically model the state of a single process,
and the length of the word will correspond to the number
of processes in the given instance of the system. Let us
in particular consider a very simple token passing proto-
col. We have an arbitrary, but finite number of processes
arranged into a linear network. Each process either does
not have a token and is waiting for a token to arrive from
its left neighbour, or it has a token and then it can pass it
to its right neighbour. We suppose that initially there is
only one token which is owned by the left-most process.
To encode the state of each process in our protocol, we
suffice with the alphabet Σ = {N, T } where N means
that the process does not have a token whereas T means
the process has a token. Then, the set I of all possible
initial configurations can be encoded by the automaton
Init shown in Fig. 1(a) and the single-step transition
relation by the transducer τ in Fig. 1(b).

Once we have a transducer encoding the single-step
transition relation ̺ of the system and an automaton
encoding its set of initial configurations I, there are two
basic strategies we can follow. We can either try to di-
rectly compute the set of all reachable configurations
̺∗(I), or the reachability relation ̺∗ of the system. The
set ̺∗(I) can be obtained by repeatedly applying the
single-step transition relation ̺ on the set of the so far
reached states and by taking the union of all such sets,

3 Several transducers/regularity preserving relations may al-
ways be united into a single transducer/regularity preserving rela-
tion, respectively. Dealing with one complex or more simple trans-
ducers or regularity preserving relations may, however, differ in
efficiency in different scenarios.

N

N

T

N

N

N T

N

N

N TN

ρ(I):

ρ(ρ(I)):

ρ(ρ(ρ(I))):

U

U

I

U

U

Fig. 2. Divergence of the non-accelerated reachability set compu-
tation ̺∗(I) = I ∪ ̺(I) ∪ ̺(̺(I)) ∪ ... for the protocol from Fig. 1

i.e., ̺∗(I) = I ∪ ̺(I) ∪ ̺(̺(I)) ∪ On the other hand,
the reachability relation ̺∗ can be obtained by repeat-
edly composing ̺ with the so far computed reachability
relation and by taking the union of all such relations,
i.e., ̺∗ = ι ∪ ̺ ∪ (̺ ◦ ̺) ∪ (̺ ◦ ̺ ◦ ̺) ∪ ... where ι is the
identity relation.

The problem is that in the context of parameterised
and infinite-state systems, if we try to compute the above
infinite unions using a straightforward fixpoint compu-
tation, the computation will usually not terminate. We
can illustrate this even on our simple token passing pro-
tocol. In Fig. 2, we give the first members of the sequence
I, ̺(I), ̺(̺(I)), ̺(̺(̺(I))), ..., which clearly show that
a fixpoint will never be reached (the token can be at the
beginning, one step to the right, two steps to the right,
three steps to the right, etc.).

In order to make the computation of ̺∗(I) or ̺∗ ter-
minate at least in many practical cases, we need some
kind of acceleration of the computation which will allow
us to obtain the result of an infinite number of the de-
scribed computation steps at once (i.e., in some sense, to
“jump” to the fixpoint). We can, e.g., notice that in our
example, the token is moving step-by-step to the right,
and we can accelerate the fixpoint computation by allow-
ing the token to move arbitrarily far to the right in one
step. If we use such an acceleration, we will immediately
reach the fixpoint shown in Fig. 3(a), which represents
the set of all reachable configurations of our protocol.
In the literature, several different approaches to a sys-
tematic acceleration of fixpoint computations in regular
model checking have been proposed. We will very briefly
review them in Section 3.3.

3.2 Verification by Regular Model Checking

It is well known that checking of safety properties can be
reduced to checking that no “bad” states are reachable
in the given system. If the set of bad states, for which we
want to check that they are not reachable in the given

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking 5

N

T

N

(a)

N

T

N

N
T

N,T

T

(b)

Fig. 3. The simple token passing protocol—automata encoding
the set of (a) reachable and (b) bad configurations

system, can be expressed as a regular set B, we may
simply compute the reachability set ̺∗(I) and check that
̺∗(I) ∩B = ∅.

For instance, in our simple token passing protocol, we
can consider as bad the situation when there is no token
in the system or when there appear two or more tokens.
The set of such bad states is encoded by the finite-state
automaton in Fig. 3(b), and it is clear that its intersec-
tion with the set of reachable states from Fig. 3(a) is
empty, and thus the system is safe in the given sense.

Checking of liveness properties within regular model
checking is considerably more difficult. In the world of
finite-state systems, it is known that liveness can be
reduced to the repeated reachability problem. A sim-
ilar approach can be taken in the context of regular
model checking when the studied systems are modelled
by length-preserving transition relations, which is typi-
cal, e.g., for parameterised networks of processes. In such
cases, clearly, the only way how a system can loop is to
repeatedly go through some configuration. In a similar
way as above, we can then instrument the system by
a Büchi automaton4 (or automata) encoding the unde-
sirable behaviours, and check, e.g., that ̺∗(I) ∩ A ∩
domain(̺+ ∩ ι) = ∅. Here, A is the set of accepting con-
figurations, ι is the identity relation, and domain is the
projection of a relation onto its domain.

Note that in the above described computation, we
need to compute not only the reachability set, but also
the reachability relation. Nevertheless, this step may be
avoided by guessing when an accepting cycle begins, dou-
bling every letter in the given configuration word, then
continuing the computation only on the even letters and
detecting a closure of the loop by looking for a situation
when all the even letters correspond to the odd ones—
we have practically tested this technique in some of the
experiments presented in Section 4.5 (and it was studied
more deeply in [49]).

A systematic framework for modelling parameterised
networks of processes as well as specifying their proper-

4 Büchi automata are finite automata that accept infinite words
by infinitely looping through some of their accepting states (for
a formal definition and the associated theory see, e.g., [43]).

ties to be checked via regular model checking (includ-
ing liveness properties) has been proposed in [2,3]. The
framework uses as a modelling as well as a specifica-
tion language LTL(MSO) that is a combination of the
linear time temporal logic LTL for expressing temporal
relations and the monadic second-order logic on words
for expressing properties on configuration words. (The
MSO part is used for specifying, e.g., that every pro-
cess in a configuration has to satisfy some condition, or
that in the configuration there must exist a process for
which some condition holds, and so on.) The work also
proposes an automatic translation of the models as well
as properties to be checked over them into an automata
framework suitable for regular model checking. A com-
putation of the reachability relation is then used for the
actual verification.

Finally, checking liveness properties for systems mod-
elled using non-length-preserving transition relations is
even more complex than checking liveness in the length-
preserving case. This is because a non-length-preserving
system may exhibit infinite behaviours infinitely going
through an accepting state of the monitoring Büchi au-
tomaton even when it does not loop at all—it suffices
to imagine a system with a queue that keeps growing
beyond every bound. For such cases, [17] has proposed
an approach based on using regular model checking for
automatically computing the greatest simulation rela-
tion on the reachable configurations which is compatible
with the property being tracked. Then, instead of check-
ing that an accepting configuration can be reached that
is reachable from itself too, one checks that an accepting
configuration c1 is reachable from which an accepting
configuration c2 simulating c1 (i.e., allowing at least the
same behaviours from the point of view of the tracked
property) is reachable. An alternative approach based on
learning fixpoints of specially proposed modalities from
their generated samples using language inference algo-
rithms has then been proposed in [56].

3.3 Acceleration in Regular Model Checking

Acceleration methods designed for regular model check-
ing include acceleration schemes [44], quotienting [5], ex-
trapolation [16,39], inference of regular languages [29,
33], and abstraction of automata [15]. The use of ab-
straction is described in detail in Section 4. A short de-
scription of the other methods is given below.

The use of acceleration schemes has been proposed in
[44]. Acceleration schemes allow one to derive (from the
original transitions of a system) meta-transitions encod-
ing the effect of firing some of the original transitions an
arbitrary number of times. The work [44] has provided
three particular schemes for which it is experimentally
checked that they suffice for verification of many cases of
parameterised networks of processes. In particular, the
following schemes are considered: (1) local acceleration
allowing an arbitrary number of successive transitions of

6 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

a single process to be fired at once, (2) global acceleration
of unary transitions allowing any number of processes
to fire a certain transition in a sequential order within
one accelerated step, and (3) global acceleration of bi-
nary transitions allowing any number of processes to fire
in a sequential order two consecutive transitions each—
and thus communicate with both of its neighbours—in
one atomic step (this way, e.g., a token in a token pass-
ing protocol can “jump” any number of positions ahead
in one accelerated step). This method has been imple-
mented in the TLV[P] tool [50].

The quotienting technique has been elaborated in the
works [16,35,41,23,4,5,42]. Let τ = (Q, Σ, δ, q0, F) be
a length-preserving transducer encoding the single-step
transition relation ̺ of a system being examined. The
basic idea of the quotienting technique stems from view-
ing the result of an arbitrary number of compositions
of ̺ encoded by τ as an infinite-state “history” trans-
ducer τhist = (Q+, Σ, δhist, {q0}

+, F+) whose states5 re-
flect the history of their creation in terms of which states
of τ have been passed at a particular position in a word
in the first, second, and further transductions. There-

fore, δhist is defined such that q1q2...qn
a/a′

−→
τhist

q′1q
′
2...q

′
n for

some n ≥ 1 iff there exist a1, a2, ..., an+1 ∈ Σ such that

a = a1, a′ = an+1, and ∀i ∈ {1, ..., n} : qi
ai/ai+1

−→
τ

q′i.

Intuitively, this means that q1q2...qn
a/a′

−→
τhist

q′1q
′
2...q

′
n rep-

resents the composition of the qi
ai/ai+1

−→
τ

q′i transductions

for i = 1, ..., n. Clearly, τhist encodes the reachability re-
lation ̺+. Of course, the history transducer τhist is of no
practical use as it is infinite-state. The idea is to come
up with some column equivalence ≃ on its states—i.e.,
on sequences (or, in the original terminology, columns)
of states of the original transducer τ—such that the quo-
tient transducer τhist/≃ is (1) finite-state as often as
possible, and at the same time, (2) describes exactly
the same relation as τhist. Suitable column equivalences
have been proposed along with ways on how to build
the quotient transducer incrementally (e.g., by gradually
adding new transitions obtained by composing transi-
tions as described above while also gradually quotienting
the automaton—obviously, one cannot construct a his-
tory transducer and only then quotient it).

The extrapolation (or widening) approach to regular
model checking [16,10] is based on comparing succes-
sive elements of the sequence I, ̺(I), ̺(̺(I)), ..., trying
to find some repeated growth pattern in it, and adding
an arbitrary number of its occurrences into the reach-
ability set. In particular, following [16], let L ⊆ Σ∗ be
a so far computed reachability set and ̺ ⊆ Σ∗ × Σ∗

a regular one-step transition relation. One can check
whether there are regular sets L1, L2, and ∆ satisfy-
ing the following two conditions: (C1) L = L1.L2 and

5 We allow here a set of initial states.

̺(L) = L1.∆.L2 and (C2) L1.∆
∗.L2 = ̺(L1.∆

∗.L2)∪L.
If the conditions hold, L1.∆

∗.L2 is added to the so far
computed reachability set. Intuitively, C1 means that the
effect of applying ̺ is to add ∆ between L1 and L2. C2
then ensures that ̺∗(L) ⊆ L1.∆

∗.L2, and so we add at
least all the configurations reachable from L by iterat-
ing ̺. Note that the exactness of the acceleration—i.e.,
whether L1.∆

∗.L2 ⊆ ̺∗(L) holds too—is not guaranteed
in general. However, [16] gives a sufficient condition on
̺ under which C1 and C2 lead to an exact accelera-
tion. This condition in particular requires ̺ to be well-
founded, i.e., not allowing any word to have an infinite
number of predecessors wrt. ̺. There is also a syntactic
criterion for the so called simple rewriting relations that
are guaranteed to satisfy the above condition and that
seem to appear quite often in practice.

Regular model checking based on inference of regu-
lar languages was studied in [33] extending [29]. Here, an
important observation is that, for an infinite-state sys-
tem whose behaviour is described by a length-preserving
transducer τ , a set containing all reachable words up to
the given length can be computed by a simple itera-
tive application of τ on the set of initial configurations.
These configurations are taken as a sample. Then some
language inference algorithm may be applied to learn the
whole reachable set (or its overapproximation) from this
sample. As shown in [33], termination of the method is
guaranteed whenever the set of all reachable configura-
tions is regular. This is not the case for other acceleration
methods. In [55,54,56,57], similar results were proved,
covering even omega-regular model checking and check-
ing of branching-time properties.

4 Abstract Regular Model Checking

Apart from the need to accelerate the reachability com-
putation to make it terminate in as many practical sce-
narios as possible, another crucial problem to be faced in
regular model checking is the state space explosion in au-
tomata (transducer) representations of the sets of config-
urations (or reachability relations) being examined. One
of the sources of this problem is related to the nature of
the previously mentioned regular model checking tech-
niques. Typically, these techniques try to calculate the
exact reachability sets (or relations) independently of the
property being verified. However, it is often enough to
only compute an overapproximation of the reachability
set (or relation) precise enough just to verify the given
property of interest. Indeed, this is the way how large (or
infinite) state spaces are often being successfully han-
dled outside the domain of regular model checking using
the so called abstract-check-refine paradigm often imple-
mented in the form of some counterexample guided ab-
straction refinement (CEGAR) loop [30,8,48,21,34,24].

Inspired by the above, we have proposed in [15] a new
approach to regular model checking which is based on

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking 7

the abstract-check-refine paradigm. Instead of a precise
acceleration, we use abstract fixpoint computations in
some finite domain of automata. As we have already
briefly mentioned in the introduction, the abstract fix-
point computations always terminate and provide over-
approximations of the reachability sets (relations). To
achieve this, we define techniques that systematically
map any automaton M to an automaton M ′ from some
finite domain such that M ′ recognises a superset of the
language of M .

The abstraction techniques we discuss below take
into account the structure of automata and are based on
collapsing their states according to some equivalence re-
lation. The first one is inspired by predicate abstraction.
We consider a state q of an automaton M to “satisfy”
a predicate language LP if the intersection of LP with
the language L(M, q) accepted from the state q is not
empty. Subsequently, two states are equivalent if they
satisfy the same predicates. The second abstraction tech-
nique is then based on considering two automata states
equivalent if their languages of words up to a certain
fixed length are equal. For both of these two abstraction
methods, we provide effective refinement techniques al-
lowing us to discard spurious counterexamples.

We also introduce several natural alternatives to the
above basic approaches, based on backward and/or trace
languages of states of automata. For them, it is not al-
ways possible to guarantee the exclusion of a spurious
counterexample, but according to our experience, they
still provide good practical results.

All of our techniques can be applied to dealing with
reachability sets (obtained by iterating length-preserving
or even general transducers) as well as length-preserving
reachability relations.

4.1 A Running Example and Some Basic Assumptions

As a simple running example capable of illustrating the
different techniques of abstract regular model checking
that we discuss here, we consider a slight modification
of the token passing protocol from Fig. 1. The modifica-
tion consists in that each process can pass the token to
its third right neighbour (instead of its direct right neigh-
bour). The one-step transition relation of the system is
encoded by the transducer τ in Fig. 4 (a). The transducer
includes the identity relation too. In the initial configu-
rations described by the automaton Init from Fig. 4 (c),
the second process has the token, and the number of
processes is divisible by three. We want to show that
it is not possible to reach any configuration where the
last process has the token. This set is described by the
automaton Bad from Fig. 4 (b).

Note that in the following, in order to shorten the
descriptions, we identify a transducer and the relation
it represents and write τ(L) instead of ̺τ (L). Let ι ⊆
Σ∗ ×Σ∗ be the identity relation and ◦ the composition

T/TT/T
N/N N/N

T/N N/TN/NN/N

(a) Transducer τ

0

N

T
1

(b) Bad

NTN

N

N

(c) Init

N
N

TN N

N

N

(d) τ∗(L(Init))

Fig. 4. A transducer τ modelling a modified token passing pro-
tocol and automata describing the initial, bad, and reachable con-
figurations of the system

of relations. We define recursively the relations (trans-
ducers) τ0 = ι, τ i+1 = τ ◦ τ i, and τ∗ = ∪∞i=0τ

i. As in
our running example, we suppose ι ⊆ τ for the rest of
the section meaning that τ i ⊆ τ i+1 for all i ≥ 0.

For our running example, τ∗(L(Init)) is depicted in
Fig. 4(d), and the property of interest clearly holds.
However, in general, τ∗(L(Init)) is neither guaranteed
to be regular nor computable. In the following, the veri-
fication task is thus to find a regular overapproximation
L ⊇ τ∗(L(Init)) such that L ∩ L(Bad) = ∅.

4.2 The Method of Abstract Regular Model Checking

We now describe the general principle of abstract regular
model checking (ARMC) using a generic framework for
automata abstraction based on collapsing states of the
automata. This framework is then instantiated in several
concrete ways in the following two sections. For simplic-
ity, we restrict to the case where the one-step transition
relation of the system at hand is given by a single trans-
ducer (the more general cases being analogical). More-
over, we concentrate on the use of ARMC for computing
reachability sets only. However, ARMC can be applied
for dealing with reachability relations too—though in
the context of length-preserving transducers only6.

4.2.1 The Basic Framework of Automata Abstraction

Let Σ be a finite alphabet and MΣ the set of all finite
automata over Σ. By an automata abstraction function
α, we understand a function that maps every automaton
M over Σ to an automaton α(M) whose language is an
overapproximation of the one of M . To be more precise,

6 Indeed, length-preserving transducers over an alphabet Σ can
be seen as finite-state automata over Σ × Σ.

8 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

L(Mk)

L(Mα
k)

L(Xk+1)

L(Xk)

L(M0)

L(Mα
0)

L(Mk-1)

L(Mα
k-1)

L(Mk+1)

L(Mα
k+1)

L(Ml)

L(Bad)

L(Xl)

Fig. 5. A spurious counterexample in an abstract regular fixpoint
computation

for some abstract domain of automata AΣ ⊆ MΣ , α is
a mapping MΣ → AΣ such that ∀M ∈ MΣ : L(M) ⊆
L(α(M)). We call α finitary iff its range AΣ is finite.

Working conveniently on the level of automata, given
a transition relation expressed as a transducer τ over Σ
and an automata abstraction function α, we introduce
the abstract transition function τα as follows: For each
automaton M ∈ MΣ , τα(M) = α(τ̂ (M)) where τ̂(M) is
the minimal deterministic automaton of τ(L(M))7. Now,
we can iteratively compute the sequence (τ i

α(M))i≥0.
Since we suppose ι ⊆ τ , it is clear that if α is fini-
tary, there exists k ≥ 0 such that τk+1

α (M) = τk
α(M).

The definition of α implies L(τk
α(M)) ⊇ τ∗(L(M)). This

means that in a finite number of steps, we can compute
an overapproximation of the reachability set τ∗(L(M)).

4.2.2 Refining Automata Abstractions

We call an automata abstraction function α′ a refine-
ment of α iff ∀M ∈MΣ : L(α′(M)) ⊆ L(α(M)). A need
to refine α arises when a situation depicted in Fig. 5
happens. Suppose we are checking whether no configu-
ration from the set described by some automaton Bad
is reachable from some given set of initial configurations
described by an automaton M0. We suppose L(M0) ∩
L(Bad) = ∅—otherwise the property being checked is
broken already by the initial configurations. Let Mα

0 =
α(M0) and for each i > 0, Mi = τ̂ (Mα

i−1) and Mα
i =

α(Mi) = τα(Mα
i−1). There exist k and l (0 ≤ k < l)

such that: (1) ∀i : 0 ≤ i < l : L(Mi) ∩ L(Bad) = ∅.
(2) L(Ml) ∩ L(Bad) = L(Xl) 6= ∅. (3) If we define
Xi as the minimal deterministic automaton accepting
τ−1(L(Xi+1))∩L(Mα

i) for all i such that 0 ≤ i < l, then
∀i : k < i < l : L(Xi)∩L(Mi) 6= ∅ and L(Xk)∩L(Mk) =
∅ despite L(Xk) 6= ∅. Next, we see that either k = 0 or
L(Xk−1) = ∅, and it is clear that we have encountered
a spurious counterexample.

Note that when no l can be found such that L(Ml)∩
L(Bad) 6= ∅, the computation eventually reaches a fix-
point, and the property is proved to hold. On the other
hand, if L(X0) ∩ L(M0) 6= ∅, we have proved that the
property is broken.

The spurious counterexample may be eliminated by
refining α to α′ such that for any automaton M whose

7 A generalisation of ARMC to dealing with nondeterministic
automata is possible—cf. [11].

language is disjoint with L(Xk), the language of its α′-
abstraction will not intersect L(Xk) either. Then, the
same faulty reachability computation (i.e., the same se-
quence of Mi and Mα

i) may not be repeated because we
exclude the abstraction of Mk to Mα

k . Moreover, reach-
ability of the bad configurations is in general excluded
unless there is another reason for it than overapproxi-
mating by subsets of L(Xk).

A slightly weaker way of eliminating the spurious
counterexample consists in refining α to α′ such that at
least the language of the abstraction of Mk does not in-
tersect with L(Xk). In such a case, it is not excluded that
some subset of L(Xk) will again be used for an overap-
proximation somewhere, but we still exclude a repetition
of exactly the same faulty computation. The obtained re-
finement can be coarser, which may lead to more refine-
ments and a slower computation. On the other hand, the
computation may terminate sooner due to quickly jump-
ing to the fixpoint and use less memory due to working
with less structured sets of configurations of the systems
being verified—the abstraction is prevented from becom-
ing unnecessarily precise in this case. For the latter rea-
son, as illustrated later, one may sometimes successfully
use even some more heuristic approaches that guarantee
that the spurious counterexample will only eventually be
excluded (i.e., after a certain number of refinements) or
that do not guarantee the exclusion at all.

An obvious danger of using a heuristic approach that
does not guarantee an exclusion of spurious counterex-
amples is that the computation may easily start loop-
ing. Notice, however, that even when we refine automata
abstractions such that spurious counterexamples are al-
ways excluded, and the computation does not loop, we
do not guarantee that it will eventually stop—we may
keep refining forever. Indeed, the verification problem we
are solving is undecidable in general.

4.2.3 Abstracting Automata by Collapsing Their States

In the following two sections, we discuss several con-
crete automata abstraction functions. They are based
on automata state equivalence schemas that define for
each automaton from MΣ an equivalence relation on its
states. An automaton is then abstracted by collapsing all
its states related by this equivalence. We suppose such
an equivalence to reflect the fact that the future and/or
history of the states to be collapsed is close enough, and
the difference may be abstracted away.

Formally, an automata state equivalence schema E

assigns an automata state equivalence ∼E

M⊆ Q × Q to
each finite automaton M = (Q, Σ, δ, q0, F) over Σ. We
define the automata abstraction function αE based on E

s.t. ∀M ∈ MΣ : αE(M) = M/ ∼E

M . We call E finitary iff
αE is finitary. We refine αE by refining E such that more
states are distinguished in at least some automata.

The automata state equivalence schemas presented
below are then all based on one of the following two ba-

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking 9

sic principles: (1) comparing states wrt. the intersections
of their forward/backward languages with some predi-
cate languages (represented by predicate automata) and
(2) comparing states wrt. their forward/backward be-
haviours up to a certain bounded length.

4.3 State Equivalences Based on Predicate Languages

We start by introducing two automata state equivalence
schemas defined wrt. a finite set of predicate languages
represented by a set P of finite automata, which we de-
note as predicate automata. Namely, we introduce the
schema FP based on forward languages of states and the
schema BP based on backward languages. They compare
two states of a given automaton according to the inter-
sections of their forward/backward languages with the
predicates.8 Below, we first introduce the basic princi-
ples of the schemas and then add some implementation
and optimisation notes.

4.3.1 The FP Automata State Equivalence Schema

The automata state equivalence schema FP defines two
states of a given automaton to be equivalent when their
languages have a nonempty intersection with the same
predicates of P . Formally, for an automaton M = (Q, Σ,
δ, q0, F), FP defines the state equivalence as the equiva-
lence ∼P

M such that ∀q1, q2 ∈ Q : q1 ∼P
M q2 ⇔ (∀P ∈ P :

L(P) ∩ L(M, q1) 6= ∅ ⇔ L(P) ∩ L(M, q2) 6= ∅).
Clearly, as P is finite and there is only a finite number

of subsets of P representing the predicates with which
a given state has a nonempty intersection, FP is finitary.

For our example from Fig. 4, if we take as P the au-
tomata of the languages of the states of Bad, the au-
tomaton Init from Fig. 4(c) is abstracted as follows:
All states of Init except the final one become equiva-
lent since their languages have all empty intersections
with the languages accepted from states 0 and 1 of Bad.
Hence, when equivalent states are collapsed, we obtain
the automaton in Fig. 6(a), which after determinisa-
tion and minimisation gives the automaton in Fig. 6(b).
Then, the intersection of τ̂ (α(Init)) with the bad con-
figurations—cf. Fig. 6(d)—is not empty, and we have to
refine the abstraction.

The FP schema may be refined by adding new predi-
cates into the current set of predicates P . In particular,
we can extend P by automata corresponding to the lan-
guages of all the states in Xk from Fig. 5. Theorem 1
shows that this prevents abstractions of languages dis-
joint with L(Xk), such as—but not only—L(Mk), from

8 The use of intersection with predicate languages needs not
be the only possible way of constructing some predicate lan-
guage abstraction. Proposing a different abstraction based on
predicate languages may be an interesting subject for further
work. However, such an abstraction should come with some way
of counterexample-guided refinement. This is not straightforward
and we are currently not aware of any other refinable abstractions
based on predicate languages than using the FP and BP schemas.

intersecting with L(Xk). Consequently, as we have al-
ready explained, a repetition of the same faulty compu-
tation is excluded, and the set of bad configurations will
not be reached unless there is another reason for this
than overapproximating by subsets of L(Xk).

Theorem 1. Let M = (QM , Σ, δM , qM
0 , FM) and X =

(QX , Σ, δX , qX
0 , FX) be any two finite automata and let

P be a finite set of predicate automata such that ∀qX ∈
QX : ∃P ∈ P : L(X, qX) = L(P). Then, if L(M) ∩
L(X) = ∅, L(αFP

(M)) ∩ L(X) = ∅ too.

Proof. We prove the theorem by contradiction. Suppose
L(αFP

(M)) ∩ L(X) 6= ∅. Let w ∈ L(αFP
(M)) ∩ L(X).

As w is accepted by αFP
(M), M must accept it when we

allow it to perform a certain number of “jumps” between
states equal wrt. ∼P

M—after accepting a prefix of w and
getting to some q ∈ QM , M is allowed to jump to any
q′ ∈ QM such that q ∼P

M q′ and go on accepting from
there (with or without further jumps).

Suppose that the minimum number of jumps needed
to accept a word from L(αFP

(M)) ∩ L(X) in M is i
with i > 0, and let w′ be such a word. Let the last
jump within accepting w′ in M be from some state q1 ∈
QM to some q2 ∈ QM such that q1 ∼P

M q2. Let w′ =
w1w2 such that w1 is read (possibly with jumps) just
before the jump from q1 to q2. Clearly, q2 −→

w2

M q3 for
some q3 ∈ FM . We know that X accepts w′. Suppose
that after reading w1, it is in some qX ∈ QX . As w2 ∈
L(X, qX) and w2 ∈ L(M, q2), L(M, q2) ∩ L(P) 6= ∅ for
the predicate(s) P ∈ P for which L(P) = L(X, qX).
Moreover, as q1 ∼P

M q2, L(M, q1) ∩ L(P) 6= ∅ too. This
implies there exists w′

2 ∈ L(P) such that w′
2 ∈ L(M, q1)

and w′
2 ∈ L(X, qX). However, this means that w1w

′
2 ∈

L(αFP
(M)) ∩ L(X) can be accepted in M with i − 1

jumps, which is a contradiction to the assumption of i
being the minimum number of jumps needed. ⊓⊔

In our example, we refine the abstraction by extend-
ing P with the automata representing the languages of
the states of X0 from Fig. 6(e). Fig. 6(f) then indicates,
for each state q of Init, the predicates corresponding to
the states of Bad and X0 whose languages have a non-
empty intersection with the language of q. For example,
the third state from the left of Init is labelled by 5 be-
cause it accepts N which is also accepted by state 5 of
X0. The first two states of Init are equivalent and are
collapsed to obtain the automaton from Fig. 6(g), which
is a fixpoint showing that the property is verified. Notice
that it is an overapproximation of the set of reachable
configurations from Fig. 4(d).

The price of refining FP by adding predicates for all
the states in Xk may seem prohibitive, but fortunately
this is not the case in practice. As described later on in
Section 4.3.3, we do not have to treat all the new predi-
cates separately. We exploit the fact that they come from
one original automaton and share large parts of their

10 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

N

N,T

N
(a) α(Init) before
determinisation

T

T

N

N

(b) α(Init)

N

N

TN

NT
T T

T

N

(c) τ̂(α(Init))

N

N

TNN

(d) X1 = τ̂(α(Init)) ∩ Bad

T N N N

N

N N

N

N
T

T

T

2 3 4 5 6

7 8 9 10

(e) X0 s.t. L(X0) = τ−1(L(X1))

4

10
6
3
15 NTN

N

N

(f) Init labelled with states of X0 and Bad

N

NT

N

N

(g) The final result

Fig. 6. An example using abstraction based on predicate languages

structure. In fact, we can work just with the original au-
tomaton and each of its states may be considered an ini-
tial state of some predicate. This way, adding the original
automaton as the only predicate and adding predicates
for all of its states becomes roughly equal. Moreover, the
refinement may be weakened by taking into account just
some states of Xk as discussed later on.

4.3.2 The BP Automata State Equivalence Schema

The BP automata state equivalence schema is an alterna-
tive of FP using backward languages of states rather than
the forward ones. For an automaton M = (Q, Σ, δ, q0, F),
it defines the state equivalence as the equivalence ←−∼P

M

such that ∀q1, q2 ∈ Q : q1
←−∼P

M q2 ⇔ (∀P ∈ P : L(P) ∩
←−
L (M, q1) 6= ∅ ⇔ L(P) ∩

←−
L (M, q2) 6= ∅).

Clearly, BP is finitary for the same reason as FP . It
may also be refined by extending P by automata corre-
sponding to the languages of all the states in Xk from
Fig. 5. Theorem 2 shows that the effect is the same as
for FP .

Theorem 2. Let M = (QM , Σ, δM , qM
0 , FM) and X =

(QX , Σ, δX , qX
0 , FX) be any two finite automata and let

P be a finite set of predicate automata such that ∀qX ∈

QX : ∃P ∈ P :
←−
L (X, qX) = L(P). Then, if L(M) ∩

L(X) = ∅, L(αBP
(M)) ∩ L(X) = ∅ too.

Proof. The theorem can be proved by contradiction in
a similar way as Theorem 1. This time, as a consequence
of working with backward languages of states, we do not
deal with the last jump, but the first jump in accepting
some w′ ∈ L(αBP

(M))∩L(X) in M . We do not look for
a replacement w′

2 of w2 to be accepted from q1 instead of
q2, but for a replacement w′

1 of w1 to be accepted before
q2 rather than before q1. ⊓⊔

4.3.3 Optimising Collapsing Based on FP/BP

The abstraction of an automaton M wrt. the automata
state equivalence schema FP can be implemented by first

labelling states of M by the states of predicate automata
in P with whose languages they have a non-empty in-
tersection and then collapsing the states of M that are
labelled by the initial states of the same predicates (pro-
vided the sets of states of the predicate automata are
disjoint). The labelling can be done in a way similar to
constructing a backward synchronous product of M with
the particular predicate automata: (1) ∀P ∈ P ∀qP

F ∈
FP ∀qM

F ∈ FM : qM
F is labelled by qP

F , and (2) ∀P ∈
P ∀qP

1 , qP
2 ∈ QP ∀qM

1 , qM
2 ∈ QM : if qM

2 is labelled by
qP
2 , and there exists a ∈ Σ such that qM

1 →aδM
qM
2 and

qP
1 →

a
δP

qP
2 , then qM

1 is labelled with qP
1 . The abstraction

of an automaton M wrt. the BP schema can be imple-
mented analogously.

If the above construction is used, it is then clear
that when refining FP/BP , we can just add Xk into P
and modify the construction such that in the collaps-
ing phase, we simply take into account all the labels by
states of Xk and do not ignore the (anyway constructed)
labels other than qXk

0 .

Moreover, we can try to optimise the refinement of
FP/BP by replacing Xk in P by its important tail/head
part defined wrt. Mk as the subautomaton of Xk based
on the states of Xk that appear in at least one of the
labels of Mk wrt. FP∪{Xk}/BP∪{Xk}, respectively. The
effect of such a refinement corresponds to the weaker
way of refining automata abstraction functions described
in Section 4.2.2.9 This is due to the strong link of the
important tail/head part of Xk to Mk wrt. which it is
computed. A repetition of the same faulty computation
is then excluded, but the obtained abstraction is coarser,
which may sometimes speed up the computation as we
have already discussed.

A further possible heuristic to optimise the refine-
ment of FP/BP is trying to find just one or two key
states of the important tail/head part of Xk such that if

9 The key last/first jump in an accepting run of M mentioned
in the proofs of Theorems 1, 2 is between states that can be la-
belled by some states of X. The concerned states of X are thus in
the important tail/head part of X, and the proof construction of
Theorems 1, 2 can still be applied.

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking 11

their languages are considered in addition to P , L(Mα
k)

will not intersect L(Xk).

We close the section by noting that in the initial set
of predicates P of FP/BP , we may use, e.g., the au-
tomata describing the set of bad configurations and/or
the set of initial configurations. Further, we may also
use the domains or ranges of the transducers encoding
the particular transitions in the systems being exam-
ined (whose union forms the one-step transition relation
τ which we iterate). The meaning of the latter predi-
cates is similar to using guards or actions of transitions
in predicate abstraction [8].

4.4 State Equivalences Using Finite-Length Languages

We now present the approach of defining automata state
equivalence schemas which is based on comparing au-
tomata states wrt. a certain bounded part of their lan-
guages. It is a simple, yet (according to our practical
experience) often quite efficient approach. As a basic rep-
resentative of this kind of schemas, we first present the
schema FL

n based on forward languages of words of a lim-
ited length. Then, we discuss its possible alternatives.

The FL
n automata state equivalence schema defines

two states of an automaton to be equal if their languages
of words of length up to a certain bound n are identi-
cal. Formally, for an automaton M = (Q, Σ, δ, q0, F),
FL

n defines the state equivalence as the equivalence ∼n
M

such that ∀q1, q2 ∈ Q : q1 ∼n
M q2 ⇔ L≤n(M, q1) =

L≤n(M, q2).

FL
n is clearly finitary. It may be refined by incremen-

tally increasing the bound n on the length of the words
considered. This way, since we work with minimal deter-
ministic automata, we may achieve the weaker type of
refinement described in Section 4.2.2. Such an effect is
achieved when n is increased to be equal or bigger than
the number of states in Mk from Fig. 5 minus one. In
a minimal deterministic automaton, this guarantees that
all states are distinguishable wrt. ∼n

M , and Mk will not
be collapsed at all.

In Fig. 7, we apply FL
n to the example from Fig. 4.

We choose n = 2. In this case, the abstraction of the Init
automaton is Init itself. Fig. 7(a) indicates the states of
τ̂ (Init) that have the same languages of words up to size
2 and are therefore equivalent. Collapsing them yields
the automaton shown in Fig. 7(b) (after determinisation
and minimisation), which is a fixpoint. Notice that it
is a different overapproximation of the set of reachable
configurations than the one obtained using FP . If we
choose n = 1, we obtain a similar result, but we need
one refinement step of the above described kind.

Let us, however, note that according to our practical
experience, the increment of n by |QM |−1 may often be
too big. Alternatively, one may use a fraction of it (e.g.,
one half), increase n by the number of states in Xk (or
a fraction of it), or increase n just by one. In such cases,

N T N

N

N N
T

N N

(a) τ̂(Init)

N

T NN

N

N

(b) The final result

Fig. 7. An example using abstraction based on languages of words
up to length n (for n = 2)

an immediate exclusion of the faulty run is not guaran-
teed, but clearly, such a computation will be eventually
excluded because n will sooner or later reach the nec-
essary value. The impact of working with abstractions
refined in a coarser way is then like in the case of using
FP/BP .

Regarding the initial value of n, one may use, e.g.,
the number of states in the automaton describing the set
of initial configurations or the set of bad configurations,
their fraction, or again just one.

As a natural alternative to dealing with forward lan-
guages of words of a limited length, one may also use
backward languages of words of a limited length and for-
ward/backward languages of traces of a limited length.
The automata equivalence schemas BL

n , FT
n , as well as

BT
n based on them can be formally defined analogously

to FL
n .

Clearly, all these schemas are finitary. Moreover, we
can refine them in a similar way as FL

n . For FT
n and BT

n ,
however, no guarantee of excluding a spurious counterex-
ample may be provided. Using FT

n , e.g., we can never
distinguish the last three states of the automaton in
Fig. 7(b)—they all have the same trace languages. Thus,
we cannot remember that the token cannot get to the
last process. Nevertheless, despite this, our practical ex-
perience shows that the schemas based on traces may be
quite successful in practice.

4.5 Experiments with Abstract Regular Model Checking

We have implemented the ideas described above in a pro-
totype tool written in YAP Prolog using the FSA library
[53]. To demonstrate that abstract regular model check-
ing is applicable to verification of a broad variety of sys-
tems, we tried to apply the tool to a number of different
verification tasks.

4.5.1 The Types of Systems Verified

Parameterised Networks of Processes. We have consid-
ered several somewhat idealised mutual exclusion algo-
rithms for arbitrarily many processes (namely, the Bak-

12 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

ery, Burns, Dijkstra, and Szymanski algorithms in ver-
sions similar to [41]). In most of these systems, the par-
ticular processes are finite-state. We encode their global
configurations by words whose length corresponds to the
number of participating processes, and each letter rep-
resents the local state of some process. In the case of
the Bakery algorithm where each process contains an
unbounded ticket value, this value is not represented di-
rectly, but encoded in the ordering of the processes in
the word.

We verified the mutual exclusion property of the al-
gorithms, and for the Bakery algorithm, we verified that
some process will always eventually get to the critical
section (communal liveness) as well as that each indi-
vidual process will always eventually get there (indi-
vidual liveness) under suitable fairness assumptions. For
checking liveness, we manually composed the appropri-
ate Büchi automata with the system being verified. Loop
detection was allowed by working with pairs of configu-
rations consisting of a remembered potential beginning
of a loop (fixed at a certain—randomly chosen—point
of time) and the current configuration. Checking that
a loop is closed then consisted in checking that a pair
of the same configurations was reached. To encode the
pairs of configurations using finite automata, we inter-
leaved their corresponding letters.

Push-down Systems. We considered a simple system of
recursive procedures—the plotter example from [28]. We
verified a safety part of the original property of interest
describing the correct order of plotter instructions to be
issued. In this case, we use words to encode the contents
of the stack.

Systems with Queues. We experimented with a model
of the Alternating Bit Protocol (ABP) for which we
checked correctness of the delivery order of the mes-
sages. A word encoding a configuration of the proto-
col contained two letters representing internal states of
the communicating processes. Moreover, it contained the
contents of the two lossy communication channels with
a letter corresponding to each message. Let us note that
in this case, as well as in the above and below cases,
general (non-length-preserving) transducers were used to
encode transitions of the systems.

Petri Nets and Systems with Counters. We examined
a general Petri net with inhibitor arcs, which can be
considered an example of a system with unbounded coun-
ters too. In particular, we modelled a Readers/Writers
system extended with a possibility of dynamic creation
and deletion of processes, for which we verified mutual
exclusion between readers and writers and between mul-
tiple writers. We considered a correct version of the sys-
tem as well as a faulty one, in which we omitted one of
the Petri net arcs. Markings of places in the Petri net
were encoded in unary, and the particular values were

1: x = NULL;
2: while (list → next) {
3: y = list → next;
4: list → next = x;
5: x = list; list = y;
6: }
7: list → next = x;

Fig. 8. Nonempty list reversal

put in parallel10. Further, we also considered the Bakery
algorithm for two processes modelled as a counter au-
tomaton with two unbounded counters. For the actual
verification, a binary encoding of the values of counters
like in NDDs [59] was successfully used.

Dynamic Linked Data Structures. As a representative
case study, we considered verification of a procedure for
reversing (non-empty) singly-linked lists—cf. Fig. 8.

When abstracting the memory manipulated by the
procedure, we focused on the cases where in the mem-
ory there are at most two linked lists linking consecutive
cells, the first list in a descending way and the second one
in an ascending way. We represented configurations of
the procedure as words over the following alphabet: List
items were represented by symbols i, left/right point-
ers by </>, pointer variables were represented by their
names (list is shortened to l), and o was used to rep-
resent the memory outside the list. Moreover, we used
symbols iv (resp. ov) to denote that v points to i (resp.
outside the list). We used | to separate the ascending
and descending lists. Pointer variables pointing to null
were not present in the configuration representations.
A typical abstraction of the memory then looked like
i < i < i | il > i ox where the first list contains three
items, the second one two, list points to the beginning
of the second list, x points outside the two lists, and
y points to null. For such an abstraction of the memory
contents (prefixed with the current control line), it is not
difficult to associate transducers with each command of
the procedure. For example, the transducer correspond-
ing to the command list → next := x at line 4 trans-
forms a typical configuration 4 i < ix | il > iy > i o to
the configuration 5 i < ix < il | iy > i o (the succes-
sor of the item pointed to by l is not anymore the one
pointed to by y, but the one pointed to by x). Then,
the transducer τ corresponding to the whole procedure
is the union of the transducers of all the commands.

If the memory contents did not fit the above de-
scribed form, it would be abstracted to a single word
with the “don’t know” meaning. However, starting from
configurations like 1 il > i > i o or 1 i < i < il o, the ver-
ification showed that such a situation could not happen.
Via a symmetry argument exploiting the fact that the
procedure never refers to concrete addresses, the results

10 Using this encoding, a marking of a net with places p and q,
two tokens in p, and four in q is written as q|q|pq|pq.

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking 13

Table 1. Results of experimenting with abstract regular model
checking using the finite-length-languages-based abstractions

Experiment F
L
n/F

T
n/B

L
n/B

T
n Tbest

Bakery Fw, F
T
n , |QBad|/2 0.02

Bakery/comm. liv. Fw, F
T
n , |QBad| 0.14

Bakery/ind. liv. Fw, F
T
n , 1 8.66

Bakery – counters Bw, B
L
n , |QBad| 0.08

ABP Fw, F
L
n , |QBad|/2 0.32

Burns Fw, B
T
n , 1 0.31

Dijkstra Fw, F
T
n , 1 1.75

PDS Bw, F
L
n , |QBad|/2 0.02

Petri net/Read. Wr. Fw, B
T
n , special n 21.07

Faulty PN/Rd. Wr. Fw, F
L
n , |QBad| 0.73

Szymanski Fw, B
T
n , 1 0.25

Rev. Lists Fw, F
L
n , |QInit|/2 + |QXk

|/2 0.61

Rev. Lists/Transd. Fw, F
L
n , |QInit|/2 21.79

of the verification easily generalise to lists with items
stored at arbitrary memory locations.

By computing an abstraction of the reachability set
τ∗(Init), we checked that the procedure outputs a list.
Moreover, by computing an overapproximation of the
reachability relation τ∗ of the system, we checked that
the output list has the same length as the input one.

In [12], a generalised encoding for 1-selector linked
structures was provided and various list-manipulating
procedures were successfully verified. Moreover, later,
abstract regular tree model checking was used in [14] for
verification of programs with dynamic data structures
with more selectors and various complicated topologies.
In this paper in Section 6, we concentrate on the latter,
more recent and more general approach.

4.5.2 A Summary of the Results

The efficiency of using the FL
n , FT

n , BL
n , or BT

n automata
state equivalence schemas heavily depends on the choice
of the initial value of n and the strategy of increasing
it. In our experiments, we have tried |QBad|, |QBad|/2,
|QInit|, |QInit|/2, and 1 as the initial value of n and
|QMk

|, |QMk
|/2, |QXk

|, |QXk
|/2, and 1 as its increment.

The results we obtained are summarised in Table 1.
In the table, we always mention the scenario for which
we obtained the shortest execution time11. We first say
whether it was in a forward or backward computation
(i.e., starting from the initial configurations or the “bad”
ones), then the automata state equivalence schema used,
followed by the initial value of n, and if it was needed,
the increment of n written behind a plus symbol. In the
case of the Readers/Writers example, the time consump-
tion was relatively high, and we tried to iteratively find
a value of n for which it was the best.

11 In some cases, a few scenarios gave a very similar result out of
which just one is mentioned.

Table 2. Results of experimenting with abstract regular model
checking using the predicate-based abstractions

Experiment FP/BP Tbest

Bakery Fw, FP , [Bad] 0.02

Bakery/comm. liv. Fw, FP , [Bad|Grd] 0.13

Bakery/ind. liv. Fw, FP , [Bad], Key St. 19.41

Bakery – counters Bw, BP , [Bad|Grd] 0.09

ABP Fw, BP , [Init|Grd] 0.68

Burns Fw, BP , [Bad] 0.06

Dijkstra Fw, BP , [Bad] 0.73

PDS Bw, FP , [Bad] 0.02

Petri net/Read. Wr. Fw, BP , [Bad|Grd] 5.86

Faulty PN/Rd. Wr. Fw, BP , [Init|Grd] 0.81

Szymanski Fw, FP , [Init|Grd] 0.55

Rev. Lists Fw, BP , [Bad|Grd|Act] 1.29

Rev. Lists/Transd. Fw, BP , [Init|Grd|Act] 42.60

Similarly to the above, the efficiency of using the
FP/BP automata state equivalence schemas depends a lot
on the choice of the initial predicates. As the basic ini-
tial predicates in our experiments, we considered using
automata representing the set of bad or initial configu-
rations. We used them alone or together with automata
corresponding to the domains or ranges of the transduc-
ers encoding the particular transitions in the systems
being examined. The scenarios that lead to the best re-
sults are listed in Table 2. The heuristic optimisation of
the refinements described in Section 4.3.3, had a very
significant positive impact in the case of checking indi-
vidual liveness in the Bakery example. In the other cases,
the effect was neutral or negative.

The times presented in Tables 1 and 2 are in seconds
and were obtained on a computer with a 1.7 GHz In-
tel Pentium 4 processor. They do not include the time
needed for reading the input model. Taking into account
that the tool used was an early prototype written in
YAP Prolog using the FSA library [53]12, the results are
very positive. For example, the Uppsala Regular Model
Checker [5] took from about 8 to 11 seconds when ap-
plied to a comparable encoding of the Burns, Szymanski,
and Dijkstra examples (and the situation did not change
much with [42]). Finally, Tables 1 and 2 also show that
apart from cases where the approaches based on lan-
guages of words/traces up to a bounded length and the
ones based on intersections with predicate languages are
roughly equal, there are really cases where either the for-
mer or the latter approach is faster. This experimentally
justifies our interest in both of the techniques.

12 Prolog was chosen as a rapid, but still relatively efficient, pro-
totyping environment.

14 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

5 Regular Tree Model Checking

As was already noted, regular tree model checking is
a generalisation of regular (word) model checking to trees.
A configuration of a system is encoded as a term (tree)
over a ranked alphabet and a set of such terms as a reg-
ular tree automaton. The transition relation of a system
is typically encoded as a linear tree transducer τ13.

To illustrate the use of tree automata and transduc-
ers, let us consider a simple example—namely, a gener-
alisation of the simple token passing protocol from Sec-
tion 3.1 to trees. We suppose having a tree-shaped net-
work of processes of an arbitrary size. Initially, a token
is situated in one of the leaf nodes. Then, it is to be sent
up to the root. We would like to check that the token
does not disappear nor duplicate.

The initial configurations of the simple tree token
passing protocol is encoded by the tree automaton Init =
(QInit, Σ, FInit, δInit) where Σ = Σ0 ∪ Σ2 with Σ0 =
{T0, N0} and Σ2 = {T, N}14, QInit = {p0, p1}, FInit =
{p1}, and δInit contains the following transitions:

N0 → p0 T0 → p1

N(p0, p0)→ p0

N(p1, p0)→ p1 N(p0, p1)→ p1

The one-step transition relation is represented by the
tree transducer τ with Σ used as the input/output al-
phabet, Qτ = {q0, q1, q2}, Fτ = {q2}, and the following
transitions15:

N0/N0 → q0 T0/N0 → q1

N/N(q0, q0)→ q0 T/N(q0, q0)→ q1

N/T (q1, q0)→ q2 N/T (q0, q1)→ q2

N/N(q2, q0)→ q2 N/N(q0, q2)→ q2

Finally, the set of bad configurations is encoded by
the tree automaton Bad with Σ as its ranked alphabet,
QBad = {r0, r1, r2}, FBad = {r0, r2}, and the following
transitions:

N0 → r0 T0 → r1

N(r0, r0)→ r0 T (r0, r0)→ r1

N(r1, r0)→ r1 N(r0, r1)→ r1

T (r1, r0)→ r2 T (r0, r1)→ r2

N or T (r1, r1)→ r2 N or T (r0 or r1, r2)→ r2

N or T (r2, r0 or r1)→ r2 N or T (r2, r2)→ r2

Similarly to the case of classical word regular model
checking, the basic safety verification problem of reg-
ular tree model checking consists in deciding whether
̺∗τ (L(Init)) ∩ L(Bad) = ∅ holds. Of course, this prob-
lem is again in general undecidable, an iterative com-
putation of ̺∗τ (L(Init)) does not necessarily terminate,

13 Like in RMC, another possibility is to use several transducers
and/or special-purpose operations on tree automata.
14 To respect the formal definition of a ranked alphabet, we dis-

tinguish leaf and non-leaf nodes with/without a token.
15 We are dealing with a relabelling transducer and for a better

readability, we write its transitions in the form f/g(q1, q2) → q
where f is an input symbol and g an output symbol.

and so some acceleration techniques are needed to make
it terminate as often as possible. Generalisations of the
various acceleration schemes from regular model check-
ing into trees have been considered—see, e.g., [50,51,
18,19,6,7]. Below, we concentrate on a generalisation of
using abstraction for this purpose.

5.1 Abstract Regular Tree Model Checking

A generalisation of abstract regular model checking to
trees was originally considered in [13]. The proposed ap-
proach allows one to deal with structure-preserving as
well as non-preserving tree transducers. Similarly to the
word case, the introduction of an automated abstraction
with a counterexample-guided refinement brings in not
only an efficient acceleration technique, but also a quite
efficient way for fighting the state explosion problem in
the number of tree automata states.

In particular, two abstractions for tree automata have
been proposed. Similarly to abstract word regular model
checking, both of them are based on collapsing automata
states according to a suitable equivalence relation. The
first is based on considering two tree automata states
equivalent if their languages of trees up to a certain fixed
height are equal. The second abstraction is defined by
a set of regular tree predicate languages as an analogy to
the word automata predicate abstraction.

The proposed technique was successfully applied for
verification of parametric tree networks of processes [13]
and also programs with complex dynamic data struc-
tures [14], which we will discuss in detail in Section 6.

5.1.1 The Framework of ARTMC

We can formalise the basic framework of abstract regular
tree model checking (ARTMC) in a way quite similar to
word regular model checking. We basically phrase all the
needed concepts not for classical finite automata, but for
finite tree automata.

Note that in the following as in ARMC, in order to
shorten the descriptions, we identify a tree transducer
and the relation it represents and write τ(L) instead of
̺τ (L). Let ι ⊆ TΣ × TΣ be the identity relation and ◦
the composition of relations. We define recursively the
relations τ0 = ι, τ i+1 = τ ◦ τ i and τ∗ = ∪∞i=0τ

i. Below,
we suppose ι ⊆ τ meaning that τ i ⊆ τ i+1 for all i ≥ 0.

Let Σ be a ranked alphabet and MΣ the set of all
tree automata over Σ. We define an abstraction func-
tion as a mapping α : MΣ → AΣ where AΣ ⊆ MΣ and
∀M ∈ MΣ : L(M) ⊆ L(α(M)). An abstraction α′ is
called a refinement of the abstraction α if ∀M ∈ MΣ :
L(α′(M)) ⊆ L(α(M)). Given a tree transducer τ and an
abstraction α, we define a mapping τα : MΣ → MΣ as
∀M ∈ MΣ : τα(M) = τ̂ (α(M)) where τ̂ (M) is a min-
imal automaton describing the language τ(L(M)). An
abstraction α is finite range if the set AΣ is finite.

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking 15

Let Init be a tree automaton representing the set
of initial configurations and Bad be a tree automaton
representing the set of bad configurations. Now, we may
iteratively compute the sequence (τ i

α(Init))i≥0. Since we
suppose ι ⊆ τ , it is clear that if α is finitary, there exists
k ≥ 0 such that τk+1

α (Init) = τk
α(Init). The definition of

α implies L(τk
α(Init)) ⊇ τ∗(L(Init)). This means that

in a finite number of steps, we can compute an overap-
proximation of the reachability set τ∗(L(Init)).

If L(τk
α(Init))∩L(Bad) = ∅, then the safety verifica-

tion problem checking whether τ∗(L(Init))∩L(Bad) = ∅
has a positive answer. Otherwise, the answer is not nec-
essarily negative since during the computation of the set
τ∗
α(L(Init)), the abstraction α may introduce extra be-

haviours leading to L(Bad). Let us examine this case.
Assume τ∗

α(Init) ∩ L(Bad) 6= ∅, meaning that there is
a symbolic path Init, τα(Init), τ2

α(Init), . . . , τn
α (Init)

such that L(τn
α (Init)) ∩ L(Bad) 6= ∅. We analyse this

path by computing the sets Xn = L(τn
α (Init))∩L(Bad),

and for every k ≥ 0, Xk = L(τk
α(Init))∩τ−1(Xk+1). Two

cases may occur: (1) X0 = L(Init) ∩ (τ−1)n(Xn) 6= ∅,
which means that the safety verification problem has
a negative answer, or (2) there is a k ≥ 0 such that
Xk = ∅, and this means that the considered symbolic
path is actually a spurious counterexample due to the
fact that α is too coarse. In this last situation, we need to
refine α and iterate the procedure. Therefore, ARTMC is
based on abstraction schemas allowing to compute fam-
ilies of (automatically) refinable abstractions.

5.1.2 Abstractions over Tree Automata

Below, we discuss two tree automata abstraction schemas
based on tree automata state equivalences. First, tree au-
tomata states are split into several equivalence classes by
an equivalence relation. Then, states from each equiva-
lence class are collapsed into one state. Formally, a tree
automata state equivalence schema E is defined as fol-
lows: To each tree automaton M = (Q, Σ, F, δ) ∈ MΣ ,
an equivalence relation∼E

M⊆ Q×Q is assigned. Then the
automata abstraction function αE corresponding to the
abstraction schema E is defined as ∀M ∈MΣ : αE(M) =
M/ ∼E

M . We call E finitary if αE is finitary (i.e., there is
a finite number of equivalence classes). We refine E by
making ∼E

M finer.

Abstraction Based on Tree Languages of Finite Height.
We now present the possibility of defining automata state
equivalence schemas which are based on comparing au-
tomata states wrt. a certain bounded part of their lan-
guages. The abstraction schema Hn is a generalisation
of the schema based on languages of words up to a cer-
tain length (cf. Section 4.4). The Hn schema defines two
states of a tree automaton M as equivalent if their lan-
guages up to the given height n are identical.

Formally, for a tree automaton M = (Q, Σ, F, δ),
Hn defines the state equivalence as the equivalence ∼n

M

such that ∀q1, q2 ∈ Q : q1 ∼n
M q2 ⇔ L≤n(M, q1) =

L≤n(M, q2).
There is a finite number of languages of trees with

a maximal height n, and so this abstraction is finite
range. Refining of the abstraction can be done by in-
creasing the value of n.

One can implement the abstraction schema Hn much
like minimisation of tree automata [22], by simply stop-
ping the main minimisation loop after n iterations.

Abstraction Based on Predicate Tree Languages.We next
introduce a predicate-based abstraction schema PP that
is inspired by the predicate-based abstraction on words
discussed in Section 4.3.

Let P = {P1, P2, . . . , Pn} be a set of predicates. Each
predicate P ∈ P is a tree language represented by a tree
automaton. Let M = (Q, Σ, F, δ) be a tree automaton,
then two states q1, q2 ∈ Q are equivalent if their lan-
guages L(M, q1) and L(M, q2) have a nonempty inter-
section with exactly the same subset of predicates from
the set P . Formally, for an automaton M = (Q, Σ, F, δ),
PP defines the state equivalence as the equivalence ∼P

M

such that ∀q1, q2 ∈ Q : q1 ∼P
M q2 ⇔ (∀P ∈ P : L(P) ∩

L(M, q1) 6= ∅ ⇔ L(P) ∩ L(M, q2) 6= ∅).
Clearly, since P is finite and there is only a finite

number of subsets of P representing the predicates with
which a given state has a nonempty intersection, PP is
finitary. It can be refined by adding new predicates into
P in a way analogous to the word case (cf. Section 4.3).
Thus, we can show that a spurious counterexample can
be eliminated by extending the predicate set P by the
languages of all states of the tree automaton represent-
ing Xk+1 in the analysis of the spurious counterexample
(recall that Xk = ∅) as presented in Section 5.1. Similar
optimisations like those in Section 4.3.3 apply here too.

Above, we discussed the PP abstraction schema in-
spired by the predicate-based abstraction from word ab-
stract regular model checking. In particular, it is inspired
by the backward predicate-based abstraction schema BP .
Interestingly, as illustrated in Figure 9, it is impossible to
obtain a tree analogy with the forward predicate-based
abstraction schema FP of word abstract regular model
checking. The tree analogy would be to label a state with
a predicate state if the languages of their contexts—i.e.,
trees where we substitute Σ∗ for the language of the node
being labelled/used for labelling—have a non-empty in-
tersection. However, in this case, the refinement schema
we use in all our predicate-based abstractions does not
work. For instance, consider tree automata whose frac-
tions are shown in Figure 9. In the figure, Li below
a state means that the language of that state is Li, and
we assume that Li ∩ Lj = ∅ for any i 6= j. Suppose
we start with no predicates and want to refine the ab-
straction so that the refined abstraction of M does not
intersect the language of Bad. To ensure this using our
refinement schema, we should take the context languages
of the states of Bad as the new predicates. Assume we

16 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

q1

q2
q3

q4 q5
q6

q7
f

f
f

f

p

q r
L2

L3
L4 L5

L6

L7

L2 L5

-
r

q -
-

-

M: Bad:

Fig. 9. A problem with the forward tree predicate abstraction

do so and try to abstract M . In Figure 9, the upper in-
dex of the states of M shows by which states of Bad
they are labelled when abstracting M (the minus sign
means that no state appears in the label). The abstrac-
tion would now collapse states q2, q5, q6, and q7. Con-
sequently, as the arrows show, the resulting automaton
could accept trees f(t1, t2) for t1 ∈ L2 and t2 ∈ L5 be-
longing to L(Bad) despite L(M) does not contain such
trees. So, the refinement has not excluded trees from
L(Bad) from the language of the abstraction of M and
there is no way how to refine the abstraction further
using our refinement schema.

6 Verification of Programs with Pointers

This section discusses our fully-automated method for
analysing various important properties of programs ma-
nipulating complex dynamic linked data structures that
was first published in [14]. We consider non-recursive, se-
quential C programs manipulating dynamic linked data
structures with possibly several next pointer selectors,
storing data from finite domains. The properties to be
checked include basic consistency of pointer manipula-
tions (i.e., checking that there are no null pointer as-
signments, no use of undefined pointers, no references
to deleted elements). Moreover, further undesirable be-
haviours of the programs at hand (such as, for instance,
disobedience of certain shape invariants, e.g., due to in-
troducing undesirable sharing, cycles, etc.) may be de-
tected via testers written in C and attached to the ver-
ified programs. Then, verification of such properties re-
duces to reachability of a designated error location.

Our verification method uses the approach of abstract
regular tree model checking. In order to be able to apply
it on programs manipulating dynamic linked data struc-
tures whose configurations (naturally viewed as the so
called shape graphs) need not be tree-like, we proceed
as follows. We use trees to encode the tree skeletons of
shape graphs. The edges of a shape graph that are not
directly encoded in the tree skeleton are represented by
routing expressions over the tree skeleton—i.e., regular
expressions over directions in a tree (such as left up,
right down, etc.) and the kind of nodes that can be vis-
ited on the way. The routing expressions are referred to
from the tree skeletons. Both the tree skeletons and the

routing expressions are automatically discovered by our
method. The idea of using routing expressions is inspired
by PALE [40] and graph types [38].

We implemented our method in a prototype tool built
on top of the Mona tree libraries [37]. We have tested
it on a number of non-trivial procedures manipulating
singly-linked lists (SLL), doubly-linked lists (DLL), trees
(including the Deutsch-Schorr-Waite tree traversal), lists
of lists, and also trees with linked leaves. All the pro-
cedures were automatically verified for absence of null
pointer dereferences, absence of manipulation with un-
defined pointers, and absence of dereferencing of deleted
objects. Additionally, further shape properties (such as
absence of sharing, acyclicity, preservation of input ele-
ments, etc.) were also verified for some of the procedures.

6.1 Related Approaches

The area of research on automated verification of pro-
grams manipulating dynamic linked data structures is
very active. Various approaches to verification of such
programs differing in their principles, degree of automa-
tion, generality, and scalability have emerged. They are
based, e.g., on monadic second order logic [40], 3-valued
predicate logic with transitive closure [47], separation
logic [45,31,60,20]16, or automata [25,12,14]. Among all
of these approaches, the method presented here is one of
the most general and fully automated at the same time.

The closest approach to what we present here is the
one of PALE that also uses tree automata (derived from
WSkS formulae) as well as the idea of a tree skeleton
and routing expressions. However, first, the encoding of
PALE is different in that the routing expressions must
deterministically choose their target, and also, for a given
memory node, selector, and program line, the expression
is fixed and cannot dynamically change during the run of
the analysed program. Further, program statements are
modelled as transformers on the level of WSkS formulae,
not as transducers on the level of tree automata. Finally,
the approach of PALE is not fully automatic as the user
has to manually provide loop invariants and all needed
routing expressions, which are automatically synthesised
in our approach.

6.2 The Considered Programs

We consider standard, non-recursive, sequential C pro-
grams manipulating dynamic linked data structures with
possibly several next pointer selectors. We do not con-
sider pointer arithmetics, and we suppose all non-pointer
data to be abstracted to a finite domain by some of the
existing techniques before our method is applied. The
abstract syntax of the considered programs is given in
Figure 10(a), where Lab is a finite set of program la-
bels (one for each control location), V is a finite set of

16 We briefly comment on these approaches in Section 6.8 too.

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking 17

l, l1, l2 ∈ Lab, x, y, z ∈ V, d ∈ D,

next ∈ S
Program := {l : Stmnt; }∗

Stmnt := IfStmnt | Update | Asgn | Goto

IfStmnt := if (Cond) then goto l1;
else goto l2;

Cond := x == y | x == NULL |
x->data == d

Update := x = malloc() | free(x)
Asgn := x = y | x = NULL | x = y->next

x->next = y | x->data = d

Goto := goto l

// doubly-linked lists
typedef struct {

DLL *next, *prev;
} DLL;

DLL *DLL reverse(DLL *x) {
DLL *y,*z;
if (x==NULL) return x;
z = NULL;
y = x->next;
while (y!=NULL) {

x->next = z;
x->prev = y;
z = x; x = y;
y = x->next;

}
return x;

}

// A DLL shape tester example
x = aDLLHead;
while (x != NULL && random())

x = x->next;
if (x != NULL && x->next->prev != x)

error();

Fig. 10. (a) Abstract syntax of the considered programs, (b) a running example: reversion of DLLs, (c) a shape tester example

pointer variables, D is a finite set of data values, and S
is a finite set of selectors. We suppose other commonly
used statements (such as while loops or nested derefer-
ences) to be encoded by the listed statements. An ex-
ample of a typical program that our method can handle
is the reversion of doubly-linked lists (DLLs) shown in
Figure 10(b), which we also use as our running example.

Memory Configurations. Memory configurations of the
considered programs with a finite set of pointer variables
V , a finite set of selectors S = {1, ..., k}, and a finite do-
main D of data stored in dynamically allocated memory
cells can be described as shape graphs of the following
form. A shape graph is a tuple SG = (N, S, V, D) where
N is a finite set of memory nodes, N ∩ {⊥,⊤} = ∅ (we
use ⊥ to represent null, and ⊤ to represent an undefined
pointer value), N⊥,⊤ = N ∪ {⊥,⊤}, S : N × S → N⊥,⊤

is a successor function, V : V → N⊥,⊤ is a mapping that
defines where the pointer variables are currently point-
ing to, and D : N → D defines what data are stored in
the particular memory nodes.

6.3 The Considered Properties

First of all, the properties we intend to check include
basic consistency of pointer manipulations, i.e., absence
of null and undefined pointer dereferences and references
to already deleted nodes. Further, we would like to check
various shape invariance properties such as absence of
sharing, acyclicity, or, e.g., the fact that if x->next ==

y (and y is not null) in a DLL, then also y->prev == x,
etc. To define such properties, we use the so called shape
testers written in the C language. They can be seen as
instrumentation code trying to detect violations of the
memory shape properties at selected control locations of
the original program.

For defining testers, we slightly extend the C lan-
guage by allowing next pointers to be followed backwards

and by non-deterministic branching. The testers become
a part of the code being verified. An error is announced
when a line denoted by an error label is reached. This
way, we can check a whole range of properties, including
acyclicity, absence of sharing, and other shape invari-
ants such as the relation of next and previous pointers in
DLLs—cf. Fig 10(c). Shape testers can be directly writ-
ten by the user, or they can be generated from a more
declarative specification based, e.g., on the specialised
logic proposed in [14].

In theory, bad shapes may be described directly using
a tree automata memory encoding. The problem is to
not miss any of their possible encodings since—as we will
see—the memory encoding that we are going to use is not
canonical. This problem does not arise when using shape
testers as in their case, only reachability of a certain line
is tested and the choice of a suitable encoding is subject
to the automatic abstraction refinement.

6.4 The Verification Problem

Above, we have explained that for checking preserva-
tion of shape invariants, we use shape testers, for which
we need to check unreachability of their designated er-
ror location. Moreover, we model all program statements
such that if some basic memory consistency error (like
a null pointer assignment) happens, the control is auto-
matically transferred to a unique error control location.
Thus, we are in general interested in checking unreacha-
bility of certain error control locations in a program.

6.5 Encoding the Programs in Tree Automata

In this section, we describe our encoding of memory con-
figurations of the considered programs into trees and tree
automata and our encoding of program statements using
tree transducers and specialised automata operations.

18 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

6.5.1 Encoding of Sets of Memory Configurations

As was described in Section 6.2, memory configurations
of the considered programs with a finite set of pointer
variables V , a finite set of selectors S = {1, . . . , k}, and
a finite domain D of data stored in dynamically allocated
memory cells can be described as shape graphs SG =
(N, S, V, D). We suppose ⊤ ∈ D—the data value ⊤ is
used to denote “zombies” of deleted nodes, which we
keep and detect all erroneous attempts to access them.

To be able to describe the way we encode sets of
shape graphs using tree automata, we first need a few
auxiliary notions. First, to allow for dealing with more
general shape graphs than tree-like, we do not simply
identify the next pointers with the branches of the trees
accepted by tree automata. Instead, we use the tree
structure just as a backbone over which links between
the allocated nodes are expressed using the so called
routing expressions, which are regular expressions over
directions in a tree (like move up, move left down, etc.)
and over the nodes that can be seen on the way. From
nodes of the trees described by tree automata, we re-
fer to the routing expressions via their symbolic names
called pointer descriptors—we suppose dealing with a fi-
nite set of pointer descriptors R. Moreover, we couple
each pointer descriptor with a unique marker from a set
M (and so |R| = |M|). The routing expressions may
identify several target nodes for a single source mem-
ory node and a single selector. Markers associated with
the target nodes can then be used to decrease the non-
determinism of the description (only nodes marked with
the right marker are considered as the target).

Let us now fix the sets V , S, D, R, and M. We use
a ranked alphabet Σ = Σ2∪Σ1∪Σ0 consisting of symbols
of ranks k = |S|, 1, and 0. Symbols of rank k represent
allocated memory nodes or nodes that were allocated,
but later they have been deleted (freed). Allocated nodes
may be pointed to by pointer variables whereas deleted
nodes are not pointed to by any variables since we make
all variables pointing to such nodes undefined. Allocated
as well as deleted nodes may be marked by some markers
as targets of some next pointers, they contain some data,
and have k next pointers that are either null, undefined
(which is the only possibility for deleted nodes), or given
by some next pointer descriptor. Thus, Σ2 = Σ2,a∪Σ2,d

where Σ2,a = 2V×2M×D×(R∪{⊥,⊤})k×{alloc} and
Σ2,d = {∅}× 2M×D×{⊤}k×{del}. Given an element
n ∈ Σ2, we use the notation n.var, n.mark, n.data, and
n.s (for s ∈ S) to refer to the pointer variables, mark-
ers, data, and descriptors associated with n, respectively.
Σ1 is used for specifying nodes with undefined and null
pointer variables, and so Σ1 = 2V . Finally, in our trees,
the leaves are all the same (with no special meaning),
and so Σ0 = {•}.

We can now specify the tree memory backbones we
use to encode memory configurations as the trees that
belong to the language of the tree automaton with the

following rules17: (1) • → qi, (2) Σ2(qi/qm, ..., qi/qm)→
qm, (3) Σ1(qm/qi) → qn, and (4) Σ1(qn) → qu. Intu-
itively, qi, qm, qn, and qu are automata states where
qi accepts the leaves, qm accepts the memory nodes,
qn accepts the node encoding null variables, and qu,
which is the accepting state, accepts the node with unde-
fined variables. Note that there is always a single node
with undefined variables, a single node with null vari-
ables, and then a sub-tree with the memory allocated
nodes. Thus, every memory tree t can be written as
t = undef (null(t′)) for undef , null ∈ Σ1. We say a mem-
ory tree t = undef (null(t′)) is well-formed if the pointer
variables are assigned unique meanings, i.e., undef ∩
null = ∅ ∧ ∀p ∈ N lPos(t′) : t′(p).var ∩ (null∪ undef) =
∅ ∧ ∀p1 6= p2 ∈ N lPos(t′) : t′(p1).var ∩ t′(p2).var = ∅.

We let S−1 = {s−1 | s ∈ S} be the set of “inverted se-
lectors” allowing one to follow the links in a shape graph
in the reverse order. A routing expression is then for-
mally defined as a regular expression on pairs s.p ∈ (S ∪
S−1).Σ2. Intuitively, each pair used as a basic building
block of a routing expression describes one step over the
tree memory backbone: The step follows a certain branch
up or down after which a certain kind of node should be
encountered (most often, we will use the node compo-
nents of routing expressions to check whether a certain
marker is set in the target node).

A tree memory encoding is a tuple (t, µ) where t is
a tree memory backbone and µ a mapping from the set
of pointer descriptors R to routing expressions over the
set of selectors S and the memory node alphabet Σ2 of
t. An example of a tree memory encoding for a doubly-
linked list (DLL) is shown in Fig. 11.

Let (t, µ), t = undef (null(t′)), be a tree memory en-
coding with a set of selectors S and a memory node
alphabet Σ2. We call π = p1s1...plslpl+1 ∈ Σ2.((S ∪
S−1).Σ2)

l a path in t of length l ≥ 1 iff p1 ∈ Pos(t′)
and ∀i ∈ {1, ..., l} : (si ∈ S ∧ pi.si = pi+1 ∧ pi+1 ∈
Pos(t′))∨(si ∈ S−1∧pi+1.si = pi). For p, p′ ∈ N lPos(t′)

and a selector s ∈ S, we write p
s
−→ p′ iff (1) t′(p).s ∈ R,

(2) there is a path p1s1...plslpl+1 in t for some l ≥ 0 such
that p = p1, pl+1 = p′, and (3) s1t

′(p2)...t
′(pl)slt

′(pl+1) ∈
µ(t′(p).s).

The set of shape graphs represented by a tree mem-
ory encoding (t, µ) with t = undef (null(t′)) is denoted
by [[(t, µ)]] and given as all the shape graphs SG =
(N, S, V, D) for which there is a bijection β : Pos(t′) →
N such that:

1. ∀p, p′ ∈ N lPos(t′) ∀s ∈ S : (t′(p).s 6∈ {⊥,⊤} ∧ p
s
−→

p′) ⇔ S(β(p), s) = β(p′), i.e., the links between
memory nodes are respected.

17 We use a set of symbols instead of a single input symbol in
a transition rule to concisely describe a set of rules using any of the
symbols in the set. Similarly, a use of q1/q2 instead of a single state
means that one can take either q1 or q2, and if there is a k-tuple
of states, one considers all possible combinations of the states.

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking 19

M2

M1

M1

M2

M2

M1

D1

D1

D1

D2

D2

D2

7

10

14

26 Z

Y null

null

null

X

7

10

14

26

X

Z

Y

A tree memory encoding of the DLLThe original DLL

null pointers

undefined pointers

Fig. 11. A tree memory encoding for a doubly linked list (DLL).
The descriptors are mapped as follows: D1 : 1.M1 and D2 : 1.M2.
Only allocated nodes are present, hence the alloc flag is omitted.

2. ∀p ∈ N lPos(t′) ∀s ∈ S ∀x ∈ {⊥,⊤} : t′(p).s = x ⇔
S(β(p), s) = x, i.e., null and undefined successors are
respected.

3. ∀v ∈ V ∀p ∈ Pos(t′) : v ∈ t′(p).var ⇔ V (v) =
β(p), i.e., assignment of memory nodes to variables
is respected.

4. ∀v ∈ V : (v ∈ null ⇔ V (v) = ⊥) ∧ (v ∈ undef ⇔
V (v) = ⊤), i.e., assignment of null and undefinedness
of variables are respected.

5. ∀p ∈ N lPos(t′) ∀d ∈ D : t′(p).data = d⇔ D(β(p)) =
d, i.e., data stored in memory nodes is respected.

A tree automata memory encoding is a tuple (A, µ)
where A is a tree automaton accepting a regular set of
tree memory backbones and µ is a mapping as above.
Naturally, A represents the set of shape graphs defined
by [[(A, µ)]] =

⋃
t∈L(A) [[(t, µ)]].

The tree automata memory encoding is clearly not
canonical, i.e. two tree automata having different lan-
guages might represent the same set of shape graphs.
Nevertheless, as we show below, program statements can
still be encoded faithfully, partly using relabelling tree
transducers and partly specialised operations on tree au-
tomata. Another important property of the encoding is
that given a tree automata memory encoding (A, µ), the
set [[(A, µ)]] can be empty although L(A) is not empty
(since the routing expressions can be incompatible with
the tree automaton). Of course, if L(A) is empty, then
[[(A, µ)]] is also empty. Therefore, checking emptiness of
[[(A, µ)]] (which is important for applying the ARTMC
framework, see Section 6.7) can be done in a sound way
by checking emptiness of L(A).

6.5.2 Pointer Descriptors and Routing Expressions

As for the set of pointer descriptors R, we restrict our-
selves to a unique pointer descriptor for each destruc-
tive update x->s = y that appears in the program. This
is because statements of this kind establish new links
among the allocated memory nodes and having one de-
scriptor per such a statement appears to be sufficient
according to our practical experience. In addition, we
might have some further descriptors if they are a part
of the specification of the input configurations (see Sec-
tion 6.7).

Further, in our automata-based framework, we en-
code routing expressions using tree transducers. A trans-
ducer representing a routing expression r simply copies
the input tree memory backbone on which it is applied
up to: (1) looking for a data node n1 that is labelled
with a special token � 6∈ V ∪M∪ D and (2) moving �

to a data node n2 that is the target of the next pointer
described by r and that is also marked with the ap-
propriate marker. As described in the next section, we
can then implement program statements that follow the
next pointers (e.g., x = y->s) by putting the token � to
a node pointed to by y, applying the transducer imple-
menting the appropriate routing expression, and making
x point to the node to which � was moved. Due to apply-
ing abstraction, the target may not always be unique—in
such a case, the transducer implementing the routing ex-
pression simply returns a set of trees in which � is put to
some target data node such that all possibilities where
it can get via the given routing expression are covered.

Note that the use of tree transducers for encoding
routing expressions allows us in theory to express more
than using just regular expressions. In particular, we can
refer to the tree context of the nodes via which the given
route is going. In our current implementation, we, how-
ever, do not use this fact.

6.5.3 Encoding of Program Statements

We encode the considered pointer-manipulating state-
ments as relabelling tree transducers or sets of such trans-
ducers being applied sequentially, in one case combined
with an application of an additional specialised opera-
tion on the tree automata being handled18. When sim-
ulating the various program statements, we expect the
tree memory encoding to be extended by a new root
symbol, corresponding to the current program line or
to an error indicator when an error is found during
the analysis. The encoding of the program statements
works in such a way that the effect of the statements
is simulated on any set of shape graphs represented by
a tree automata memory encoding. If a shape graph SG
represented by a tree memory encoding is changed by

18 The primary reason for this is to avoid a need of implementing
non-structure preserving transducers on top of the MONA tree
automata library [37], which we use to implement our techniques.

20 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

a program statement to a shape graph SG′, then the
encoding of the statement transforms the tree memory
encoding such that it represents SG′. This makes sure
that although the memory encoding is not canonical, we
simulate program statements faithfully.

Non-destructive Updates and Tests. The simplest state-
ment to encode is the x = NULL assignment. The trans-
ducer implementing it simply goes through the input
tree and copies it to the output with the exception that
(1) it removes x from the labelling of the node in which
it currently is, (2) it adds x to the labelling of the null
node, and (3) it changes the current line appropriately.
The transducer implementing an assignment x = y is
similar, it just puts x not to the null node, but to the
node which is currently labelled by y.

The transducers encoding conditional statements of
the form if (x == NULL) goto l1; else goto l2; are
very similar to the above—of course, they do not change
the node in which x is, but only change the current pro-
gram line to either l1 or l2 according to whether or not
x is in the null node. If x is in undef , an error indica-
tion is used instead of l1 or l2. The transducers encod-
ing statements if (x == y) goto l1; else goto l2;

are similar—they test whether or not x and y appear in
the same node (both being different from undef).

The transducer for an x = y->s statement is a union
of several complementary actions. If y is in null or undef ,
an error is indicated. If y is in a regular data node and
its s-th next pointer node contains either ⊥ or ⊤, the
transducer removes x from the node it is currently in
and puts it into the null or undef node, respectively. If
y is in a regular data node n and its s-th next pointer
node contains some pointer descriptor r ∈ R, the � to-
ken is put to n. Then, the routing expression transducer
associated with r is applied. Finally, x is removed from
its current node and put into the node to which � was
moved by the applied routing expression transducer. If
the target is marked as deleted, an error is announced.

Destructive Updates. Destructive pointer updates of the
form x->s = y are implemented as follows. If x is in null
or undef , an error is announced. If x is defined and y is
in null or undef , the transducer puts ⊥ or ⊤ into the
s-th next pointer node below x, respectively. Otherwise,
the transducer puts the pointer descriptor r associated
with the particular x->s = y statement being fired into
the s-th next pointer node below x, and it marks the
node in which y is by the marker coupled with r. Then,
the routing expression transducer associated with r is
updated such that it includes the path from the node of
x to the node of y.

One could think of various strategies how to extract
the path going from the node of x to the node of y. We
consider a simple strategy, which is, however, successful
in many practical examples as our experiments show. We
extract the shortest path between x and y on the tree

memory backbone, which consists of going some num-
ber of steps upwards to the closest common parent of x
and y and then going some number of steps downwards.
The upward or the downward phase can also be skipped
when going just down or up, respectively. When extract-
ing this shortest path, we project away all information
about nodes we see on the way and about nodes not di-
rectly lying on the path. Only the directions (left/right
up/down) and the number of steps are preserved.

Note that we, in fact, perform the operation of rout-
ing expression extraction on a tree automaton, and we
extract all possible paths between where x and y may
currently be. The result is transformed into a transducer
τxy that moves the token � from the position of x to the
position of y, and τxy is then united with the current
routing expression transducer associated with the given
pointer descriptor r. The extraction of the routing paths
is done partly by rewriting the input tree automaton via
a special transducer τπ that in one step identifies all the
shortest paths between all x and y positions and projects
away the non-necessary information about the nodes on
the way. The transducer τπ is simple. It just checks that
one follows some branch up from x and then some branch
down to y where the up and down sweeps meet in a sin-
gle node. The transition relation of the resulting trans-
ducer is then post-processed by changing the context of
the path to an arbitrary one, which is done by directly
modifying the structure of the transducer.19

Dynamic Allocation and Deallocation. Statements of the
form x = malloc() are implemented by rewriting the
right-most • leaf node to a new data node pointed to by
x. All the k next pointers are set to ⊤.

To be able to exploit the regularity that is mostly
present in algorithms allocating new data structures,
which typically add new elements at the end/leaves of
the structure, we also explicitly support a statement of
the form x.s = malloc(). We even try to pre-process
programs and compact all successive pairs of statements
of the form x = malloc(); y->s = x (provided x is not
used any further) to y->s= malloc(). This statement is
then implemented by adding the new element directly
under the node pointed to by y (provided it is a leaf)
and joining it by a simple routing expression of the form
“one level down via a certain branch”. This typically
yields much simpler and more precise routing expres-
sions.

Finally, statements of the form free(x) are imple-
mented by transducers that move all variables that are
currently in the node pointed to by x to the undef node
(if x is in null or undef , an error is announced). Then,
the node is denoted as deleted, but it stays in our tree
memory encoding with all its current markers set.

19 A more precise, but also more costly, approach would be to
preserve (some of) the context.

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking 21

6.6 Input Structures for the Verified Programs

In order to encode the input structures, we can directly
use the tree automata memory encoding. Such an encod-
ing can be provided manually or derived automatically
from a description of the concerned linked data structure
provided, e.g., as a graph type [38]. The main advan-
tage is that the verification process starts with an exact
encoding of the set of all possible instances of the con-
sidered data structure. Another possibility is to attach
a constructor written in C before the verified procedure.
The verification then starts with the empty shape graph.

6.7 Applying ARTMC

Apparently, we assume ARTMC to be used in its more
general form, having the one-step transition relation split
into several transducers that are applied in some partic-
ular order, together with one special operation on the
tree automata used when extracting the routing expres-
sions. We compute an overapproximation of the reach-
able configurations for each program line in such a way
that we start from an initial set of shape graphs repre-
sented by a tree automata memory encoding (possibly
representing the empty heap when an input constructor
is used) and we iterate the abstract fixpoint computa-
tion described in Section 5.1 along the control flow graph
of the program (using the depth-first strategy). The fix-
point computation stops if the abstraction α that is used
is finitary. In such a case, the number of abstracted tree
automata that encode sets of memory backbones which
can arise in the program being checked is finite. More-
over, the number of the arising routing expressions is also
finite since they are extracted from the bounded num-
ber of tree automata describing the encountered sets of
memory backbones.20

During the computation, we check whether a desig-
nated error location in the program is reached, a basic
pointer exception is detected during simulating the ef-
fect of some statement, or whether a fixpoint is attained.
In the latter case, the program is found correct. In the
former case, we compute backwards along the path in
the CFG that is being currently explored to check if the
obtained counterexample is spurious as explained in Sec-
tion 5.1. However, as said in Section 6.5.1, the check for
emptiness is not exact and therefore we might conclude
that we have obtained a real counterexample although
this is not the case. However, such a situation has never
happened in any of our experiments21.

We use a slight refinement of the basic finite-height
and predicate abstractions described in Section 5.1. Con-
cretely, we prevent the abstraction from allowing a cer-

20 The non-canonicity of our encoding does not prevent the com-
putation from stopping. It may just take longer since several en-
codings for the same graph could be added.
21 A precise (but more costly) spuriousness check is to replay the

obtained path from the beginning without using abstraction.

tain pointer variable to point to several memory nodes at
the same time. In particular, this amounts to prohibiting
collapsing of states that would create a loop over a node
pointed to by some pointer variable.

Apart from the basic abstraction schemas, we sup-
port one more abstraction schema called the neighbour
abstraction. Under this schema, only the tree automata
states are collapsed that (1) accept nodes with equal la-
bels and (2) that directly follow each other (i.e., they are
neighbours). This strategy is very simple, yet it proved
useful in some practical cases.

Finally, we allow the abstraction to be applied either
at all program lines or only at the loop closing points.
In some cases, the latter approach is more advantageous
due to some critical destructive pointer updates are done
without being interleaved with abstraction. This way, we
may avoid having to remove lots of spurious counterex-
amples that may otherwise arise when the abstraction
is applied while some important shape invariant is tem-
porarily broken.

6.8 Experimental Results

We have implemented the above proposed method in
a prototype tool22 based on the Mona tree automata
library [37]. We have performed a set of experiments
with singly-linked lists (SLL), doubly-linked lists (DLL),
trees, lists of lists, and trees with linked leaves. As one
of the most complicated case studies, we have also con-
sidered the so called task-lists. The task-list structure is
showed in Figure 12 and it is inspired by the structures
often used in operating systems [9].

All three mentioned types of automata abstraction—
the finite-height abstraction (with the initial height be-
ing one), predicate abstraction (with no initial predi-
cates), and neighbour abstraction—proved useful in dif-
ferent experiments. All case studies were automatically
verified for null/undefined/deleted pointer exceptions.
Additionally, some further shape properties (such as ab-
sence of sharing, acyclicity, preservation of input ele-
ments, etc.) were verified in some case studies too. For
a detailed overview of the case studies and verified prop-
erties, see [46].

Table 3 contains verification times for our experi-
ments. We give the best result obtained using one of the
three mentioned abstraction schemas and say for which
schema the result was obtained. The note “restricted”
accompanying the abstraction means that the abstrac-
tion was applied at the loop points only. The experiments
were performed on a 64bit Opteron at 2.8 GHz. The col-
umn |Q| gives information about the size (in numbers
of states) of the biggest encountered automaton while
Nref gives the number of refinements. The column SP
provides information whether preservation of some shape
properties was verified (together with the default checks

22 www.fit.vutbr.cz/research/groups/verifit/tools/artmc/

22 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

next back

next back

next

next

task

back

actthread

actthread

actthread

next back

next back

next

next

task

back

actthread

actthread

actthread

null
back

null
back

...

root

unlock unlock
nextthread nextthread

nullnull

Fig. 12. The “task-list” data structure

of undesired manipulation of null, undefined, or deleted
objects).

Despite the prototype nature of our tool, which can
still be optimised in many ways (some of them are men-
tioned below), the results are quite positive. For exam-
ple, for checking the Deutsch-Schorr-Waite tree traver-
sal, TVLA (version 2) took 1 minute on the same ma-
chine with manually provided instrumentation predicates
and predicate transformers. In the case of the trees with
linked leaves, we are not aware of any other fully auto-
mated tool with which experiments with this structure
have been performed.

Recent fully automated tools based on separation
logic appear to be more scalable, but the abstraction
used in them is much more restricted to a particular
shape of data structures (usually lists of lists [9,60,20]
like in the case of task-lists23) and their particular prop-
erties. For example, the abstraction of [60] is fine-tuned
not to report spurious errors in the considered experi-
ments and the authors themselves make a note on use-
fulness of automated refinement.

7 Conclusions

We have discussed the approach of abstract regular (tree)
model checking as a generic technique for verification of
parameterised and infinite-state programs, using finite
word and tree automata for finitely representing possi-
bly infinite sets of reachable configurations. As a possible
application of ARTMC, we have discussed verification
of programs manipulating complex dynamic data struc-
tures. Other applications include verification of parame-

23 In [31], more complex structures are automatically manipu-
lated, but they are built by the programs in some “nice” way,
suitable for the inductive predicates being constructed and used.

terised networks of processes or systems with unbounded
queues, stacks, counters, etc.

An important on-going research on (abstract) regular
(tree) model checking includes improvements in the un-
derlying automata technology. This especially concerns
the use of non-deterministic word or tree automata. For
them to be useful, one needs to be able to perform all the
needed operations without determinising the automata.
This is problematic in the case of inclusion checking
and reduction (minimisation) of the automata. How-
ever, recent advances in using antichain-based and/or
simulation-based approaches [26,1] have overcome this
obstacle, although further improvements are still possi-
ble. Very significant improvements in the performance
of ARTMC have already been reported on some case
studies [11]. Further, development of abstractions and
encodings particularly suitable for various application
areas is needed. For instance, an interesting question is
how to introduce the principle of separation (frame rule),
which underlies the scalability of separation-logic-based
approaches, into automata, combining it with automated
refinement and higher generality while still retaining full
automation [32].

Acknowledgement.This work was supported by the Czech
Science Foundation (projects P103/10/0306 and 201/09
/P531), the Czech Ministry of Education (projects COST
OC10009 and MSM 0021630528), the internal BUT FIT
grant FIT-S-11-1, the Czech-French Barrande project
MEB021023, the French ANR RNTL Averiles project
and the French ANR-09-SEGI Veridyc project.

References

1. P.A. Abdulla, Y.-F. Chen, L. Hoĺık, R. Mayr, and T. Vo-
jnar. When Simulation Meets Antichains (on Checking
Language Inclusion of NFAs). In Proc. of TACAS’10,
LNCS 6015. Springer, 2010.

2. P.A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and
M. Saksena. Regular Model Checking for MSO + LTL.
In Proc. of CAV’04, LNCS 3114. Springer, 2004.

3. P. A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and
M. Saksena. Regular Model Checking for LTL(MSO),
Special Section on Regular Model Checking, STTT, in
this volume, 2010.

4. P.A. Abdulla, J. d’Orso, B. Jonsson, and M. Nilsson.
Regular Model Checking Made Simple and Efficient. In
Proc. of CONCUR’02, LNCS 2421. Springer, 2002.

5. P.A. Abdulla, J. d’Orso, B. Jonsson, and M. Nilsson.
Algorithmic Improvements in Regular Model Checking.
In Proc. of CAV’03, LNCS 2725. Springer, 2003.

6. P.A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso.
Regular Tree Model Checking. In Proc. of CAV’02,
LNCS 2404. Springer, 2002.

7. P.A. Abdulla, A. Legay, J. d’Orso, and A. Rezine.
Simulation-Based Iteration of Tree Transducers. In Proc.

of TACAS’05, LNCS 3440. Springer, 2005.

A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking 23

Table 3. Results of experiments with analysing programs manipulating dynamic data structures

Example Time Abstraction method |Q| Nref SP

Creation of SLLs 1s predicates, restricted 25 0 yes
Reversion of SLLs 5s predicates 52 0 yes

Deletion from DLLs 6s finite height 100 0 yes
Insertion into DLLs 10s neighbour, restricted 106 0 yes
Reversion of DLLs 7s predicates 54 0 yes
Insertsort of DLLs 2s predicates 51 0 no
Inserting into trees 23s predicates, restricted 65 0 yes
Depth-first search 11s predicates 67 1 yes

Linking leaves in trees 40s predicates 75 2 yes
Inserting into a list of lists 5s predicates, restricted 55 0 yes

Deutsch-Schorr-Waite tree traversal 47s predicates 126 0 no
Insertion into task-lists 11m 25s finite-height, restricted 277 0 yes
Deletion in task-lists 1m 41s predicates, restricted 420 0 yes

8. S. Bensalem, Y. Lakhnech, and S. Owre. Computing
Abstractions of Infinite State Systems Compositionally
and Automatically. In Proc. of CAV’98, LNCS 1427.
Springer, 1998.

9. J. Berdine, C. Calcagno, B. Cook, D. Distefano,
P. O’Hearn, T. Wies, and H. Yang. Shape Analysis
for Composite Data Structures. In Proc. of CAV’07,
LNCS 4490. Springer, 2007.

10. B. Boigelot, A. Legay, and P. Wolper. Iterating Trans-
ducers in the Large. In Proc. of CAV’03, LNCS 2725.
Springer, 2003.

11. A. Bouajjani, P. Habermehl, L. Hoĺık, T. Touili, and
T. Vojnar. Antichain-Based Universality and Inclusion
Testing over Nondeterministic Finite Tree Automata. In
Proc. of CIAA’08, LNCS 5148. Springer, 2008.

12. A. Bouajjani, P. Habermehl, P. Moro, and T. Voj-
nar. Verifying Programs with Dynamic 1-Selector-Linked
Structures in Regular Model Checking. In Proc. of

TACAS’05, LNCS 3440. Springer, 2005.
13. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vo-

jnar. Abstract Regular Tree Model Checking. In Proc.

of Infinity’05, ENTCS 149:37–48, 2006.
14. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vo-

jnar. Abstract Regular Tree Model Checking of Com-
plex Dynamic Data Structures. In Proc. of SAS’06,
LNCS 4134. Springer, 2006.

15. A. Bouajjani, P. Habermehl, and T. Vojnar. Ab-
stract Regular Model Checking. In Proc. of CAV’04,
LNCS 3114. Springer, 2004.

16. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Reg-
ular Model Checking. In Proc. of CAV’00, LNCS 1855.
Springer, 2000.

17. A. Bouajjani, A. Legay, and P. Wolper. Handling Live-
ness Properties in (ω-)Regular Model Checking. In Proc.

of Infinity’04, ENTCS 138:101–115, 2005.
18. A. Bouajjani, T. Touili. Extrapolating Tree Transforma-

tions. In Proc. of CAV’02, LNCS 2404. Springer, 2002.
19. A. Bouajjani, and T. Touili. Widening Techniques for

Regular Tree Model Checking, Special Section on Regular

Model Checking, STTT, in this volume, 2010.
20. C. Calcagno, D. Distefano, P.W. O’Hearn, and H. Yang.

Compositional Shape Analysis by Means of Bi-
abduction. In Proc. of POPL’09. ACM Press, 2009.

21. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-Guided Abstraction Refinement. In
Proc. of CAV’00, LNCS 1855. Springer, 2000.

22. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree Automata
Techniques and Applications, 2005.
URL: http://www.grappa.univ-lille3.fr/tata.

23. D. Dams, Y. Lakhnech, and M. Steffen. Iterating Trans-
ducers. In Proc. of CAV’01, LNCS 2102. Springer, 2001.

24. S. Das and D.L. Dill. Counter-Example Based Pred-
icate Discovery in Predicate Abstraction. In Proc. of

FMCAD’02, 2002.
25. J.V. Deshmukh, E.A. Emerson, and P. Gupta. Auto-

matic Verification of Parameterized Data Structures. In
Proc. of TACAS’06, LNCS 3920. Springer, 2006.

26. L. Doyen and J.-F. Raskin. Antichain Algorithms for
Finite Automata. In Proc. of TACAS’10, LNCS 6015.
Springer, 2010.

27. J. Engelfriet. Bottom-up and Top-down Tree
Transformations—A Comparison. Mathematical System

Theory, 9:198–231, 1975.
28. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon.

Efficient Algorithms for Model Checking Pushdown Sys-
tems. In Proc. of CAV’00, LNCS 1855. Springer, 2000.

29. L. Fribourg and H. Olsen. Reachability Sets of
Parametrized Rings as Regular Languages. In Proc. of

Infinity’97, ENTCS 9, 1997.
30. S. Graf and H. Säıdi. Construction of Abstract State

Graphs with PVS. In Proc. of CAV’97, LNCS 1254.
Springer, 1997.

31. B. Guo, N. Vachharajani, and D.I. August. Shape Anal-
ysis with Inductive Recursion Synthesis. In Proc. of

PLDI’07. ACM Press, 2007.
32. P. Habermehl, L. Hoĺık, A. Rogalewicz, J. Šimáček, and

T. Vojnar. A Proposal of a New Automata-based Repre-
sentation of Heaps, 2010. SVARM’10, work in progress.

33. P. Habermehl and T. Vojnar. Regular Model Checking
Using Inference of Regular Languages. In Proc. of Infin-

ity’04, ENTCS 138:21–36, 2005.
34. T.A. Henzinger, R. Jhala, R. Majumdar, G. Sutre. Lazy

Abstraction. In Proc. of POPL’02. ACM Press, 2002.
35. B. Jonsson and M. Nilsson. Transitive Closures of Reg-

ular Relations for Verifying Infinite-State Systems. In
Proc. of TACAS’00, LNCS 1785. Springer, 2000.

36. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, E. Shahar.
Symbolic Model Checking with Rich Assertional Lan-
guages. In Proc. of CAV’97, LNCS 1254. Springer, 1997.

37. N. Klarlund and A. Møller. MONA Version 1.4 User
Manual, 2001. BRICS, Department of Computer Science,
University of Aarhus, Denmark.

24 A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar: Abstract Regular (Tree) Model Checking

38. N. Klarlund and M.I. Schwartzbach. Graph Types. In
Proc. of POPL’93. ACM Press, 1993.

39. A. Legay. Extrapolating (Omega-)Regular Model Check-
ing. Special Section on Regular Model Checking, STTT,
in this volume, 2010.

40. A. Møller and M.I. Schwartzbach. The Pointer Assertion
Logic Engine. In Proc. of PLDI’01. ACM Press, 2001.

41. M. Nilsson. Regular Model Checking. Licentiate Thesis,
Uppsala University, Sweden, 2000.

42. M. Nilsson. Regular Model Checking. PhD thesis, Upp-
sala University, 2005.

43. D. Perrin and J.-E. Pin. Infinite Words: Automata,

Semigroups, Logic and Games. Academic Press, 2003.
44. A. Pnueli and E. Shahar. Liveness and Acceleration

in Parameterized Verification. In Proc. of CAV 2000,
LNCS 1855. Springer, 2000.

45. J.C. Reynolds. Separation Logic: A Logic for Shared
Mutable Data Structures. In Proc. of LICS’02. IEEE
CS Press, 2002.

46. A. Rogalewicz. Verification of Programs with Complex

Data Structures. PhD thesis, FIT, Brno University of
Technology, 2005.

47. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape
Analysis via 3-valued Logic. TOPLAS, 24(3), 2002.

48. H. Saidi. Model Checking Guided Abstraction and Anal-
ysis. In Proc. of SAS’00, LNCS 1824. Springer, 2000.

49. V. Schuppan and A. Biere. Liveness Checking as Safety
Checking for Infinite State Spaces. In Proc. of Infinity’05,
2005.

50. E. Shahar. Tools and Techniques for Verifying Parame-

terized Systems. PhD thesis, Weizmann Institute of Sci-
ence, Rehovot, Israel, 2001.

51. E. Shahar, A. Pnueli. Acceleration in Verification of Pa-
rameterized Tree Networks. Technical Report MCS02-12,
Weizmann Institute of Science, Rehovot, Israel, 2002.

52. T. Touili. Regular Model Checking Using Widening
Techniques. ENTCS, 50, 2001.

53. G. van Noord. FSA6.2, 2004.
URL: http://odur.let.rug.nl/~vannoord/Fsa/.

54. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Ac-
tively Learning to Verify Safety for FIFO Automata. In
Proc. of FSTTCS’04, LNCS 3328. Springer, 2004.

55. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha.
Learning to Verify Safety Properties. In Proc. of

ICFEM’04, LNCS 3308. Springer, 2004.
56. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Us-

ing Language Inference to Verify Omega-Regular Proper-
ties. In Proc. of TACAS’05, LNCS 3440. Springer, 2005.

57. A. Vardhan and M. Viswanathan. Learning to Ver-
ify Branching Time Properties. In Proc. of ASE’05.
IEEE/ACM, 2005.

58. T. Vojnar. Cut-offs and Automata in Formal Verification

of Infinite-State Systems. Habilitation thesis, FIT, Brno
University of Technology, Czech Republic, 2007.

59. P. Wolper and B. Boigelot. Verifying Systems with In-
finite but Regular State Spaces. In Proc. of CAV’98,
LNCS 1427. Springer, 1998.

60. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook,
D. Distefano, and P.W. O’Hearn. Scalable Shape Anal-
ysis for Systems Code. In Proc. of CAV’08, LNCS 5123.
Springer, 2008.

