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Abstract

We provide a verification technique for a class of programskimg oninteger ar-
rays of finite, but not a priori bounded length. We use the logicrdaéger arrays
SIL [17] to specify pre- and post-conditions of programs and thaitg Effects
of non-looping parts of code are computed syntacticallyhenlével ofSIL. Loop
pre-conditions derived during the computatiorSil. are converted into counter au-
tomata (CA). Loops are automatically translated—purelyr@nsyntactical level—
to transducers. Pre-condition CA and transducers are ceatp@nd the composi-
tion over-approximated by flat automata with difference fmbgonstraints, which
are next converted back intelL formulae, thus inferring post-conditions of the
loops. Finally, validity of post-conditions specified byetluser inSIL may be
checked as entailment is decidable L .
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1 Introduction

Arrays are an important data structure in all common prognarg languages. Automatic ver-
ification of programs using arrays is a difficult task sinceytlare of a finite, but often not a
priori fixed length, and, moreover, their contents may beoumioled too. Nevertheless, various
approaches for automatic verification of programs withyarfzave recently been proposed.

In this paper, we consider programs over integer arrays aaiignments, conditional state-
ments, andhon-nestedvhile loops. Our verification technique is based on a contlmnaof the
logic of integer array$IL [17], used for expressing pre-/post-conditions of prograntstheir
parts, anccounter automat&CA) andtransducersinto which we translate botS8IL formulae
and program loops in order to be able to compute the effeabagfd and to be able to check
entailment.

SIL (Single Index Logic) allows one to describe properties @reays of integers and scalar
variables. SIL uses difference bound constraints to compare array elsnsgnated within a
window of a constant size. For instance, the formifia0 <i <n;—1— b[i] >0) A (Vi.0<
i <ny—1— cli] < 0) describes a post-condition of a program partitioning aayeainto an array
b containing its positive elements and an arcayontaining its negative elemenfSIL formulae
are interpreted over prograstatesassigning integers to scalar variables and finite sequerices
integers to array variables. As already provedlif][the set of models of ag*V*-SIL formula
corresponds naturally to the set of traces dlad CA with loops labeled by difference bound
constraints. This entails decidability of the satisfidpiproblem for3*v*-SIL.

In this paper we take a novel perspective on the connectibweas 3*V*-SIL and CA,
allowing to benefit from the advantages of both formalismdekd, the logic is useful to express
human-readable pre-/post-conditions of programs andplaeis, and to compute the post-image
of (non-looping) program statements symbolically. On ttleeohand, automata are suitable for
expressing the effects of program loops.

In particular, given ad*v*-SIL formula, we can easily compute the strongest postcondition
of an assignment or a conditional statement in the same &agof the logic. Upon reaching
a program loop, we then translate th&v*-SIL formula ¢ describing the set of states at the
beginning of the loop into a CAy encoding its set of models. Next, to characterize the effect
of a loopL, we translate it—purely syntactically—intoteansducer T, i.e., a CA describing
the input/output relation on scalars and array elementseimgnted byL. The post-condition
of L is then obtained by composiniy with Ay. The result of the composition is a CBy |
representing thexactset of states afteany numbef iterations ofl. Finally, we translat@, |
back intod*Vv*-SIL, obtaining a post-condition afw.r.t. . However, due to the fact that counter
automata are more expressive th#iv*-SIL, this final step involves a (refinablapstraction
We first generate #iat CA that over-approximates the set of trace8gf , and then translate the
flat CA back intod*v*-SIL.

Our approach thus generates automaticalhuman-readable post-conditidor each pro-
gram loop, giving the end-user some insight of what the @agis doing. Moreover, as these
post-conditions are expressediity*-SIL , they can be used to check entailment of user-specified
post-conditions given itv*-SIL, which is possible due to the decidability of the satisfiapil
problem for3*v*-SIL.



We validate our approach by successfully and fully algomittally verifying several array-
manipulating programs, like splitting of an array into gvg and negative elements, rotating an
array, inserting into a sorted array, etc. Some of the stepe done manually as we have not yet
implemented all of the techniques—a full implementatiaat thill allow us to do more examples
is underway.

Related Work. The area of automated verification of programs with arraggarsynthesizing
loop invariants for such programs has recently received af lattention. For instance/[17, 1,

2, 15, 11] build on templates of universally quantified loop invatgand/or atomic predicates
provided by the user. The form of the sought invariants is thessed on these templates. Inferring
the invariants is tackled by various approaches, such algate abstraction using predicates
with Skolem constants/], constraint-based invariant synthesis P], or predicate abstraction
combined with interpolation-based refinemerii][

In [19], an interpolating saturation prover is used for derivingarriants from finite unfold-
ings of loops. In the very recent work of{)], loop invariants are synthesised by first deriving
scalar invariants, combining them with various predefinest-brder array axioms, and finally
using a saturation prover for generating the loop invasiantarrays. This approach can generate
invariants using quantifier alternation. A disadvantagi#t, unlike our approach, the method
does not take into account loop preconditions, which arestiones necessary to find reasonable
invariants. Also, the method does not generate invariants decidable logical fragment, in
general.

Another approach, based on abstract interpretation, wessing10]. Here, arrays are suit-
ably partitioned, and summary properties of the array sedsrere tracked. The partitioning is
based on heuristics related to tracking the position ofin@deiables. These heuristics, however,
sometimes fail, and human guidance is needed. The appraahesently improved inlf] by
using better partitioning heuristics and relational aloftdomains to keep track of the relations
of the particular array slices.

Recently, several works have proposed decidable logichtapf expressing complex prop-
erties of arraysf, 20, 8, 3, 9]. In general, these logics lack the capability of univegsedlating
two successive elements of arrays, which is allowed in oewvipus work [L3, 17]. Moreover,
the logics of b, 20, 8, 3, 9] do not give direct means of automatically dealing with peog
loops, and hence, verifying programs with arrays. In thiskwae provide a fully algorithmic
verification technique that uses the decidable logicl@f.[Unlike many other works, we do not
synthesize loop invariants, but directly post-conditiohtoops with respect to given precondi-
tions, using a two-way automata-logic connection that wal#ish.

2 Preliminaries

For a setA, we denote byA* the set of finite sequences of elements frAnk-or such a sequence
o € A%, we denote bya| its length, and by; the element at positianfor 0< i < |o|. We denote
by N the set of natural numbers, and Bythe set of integers. For a functidn A — B and a set
SC A, we denote byf | sthe restriction off to S. This notation is naturally lifted to sets, pairs or
sequences of functions.



Given a formulap, we denote bV (¢) the set of its free variables. If we denote a formula as
d(X1,..., %), we assume&V (¢) C {Xg,...,%n}. Ford(x), we denote byp[t /xi,...,xn] the formula
in which each free occurrence xf, .. ., X, is replaced by a term Given a formulap, we denote
by = ¢ the fact that is logically valid, i.e., it holds in every structure corpesding to its
signature.

A difference bound constrai(DBC) is a conjunction of inequalities of the forms §.) y <
C, (2)x<c, or (3)x > c, wherec € Z is a constant. We denote By (true) the empty DBC. It is
well-known that the negation of a DBC is equivalent to a fiitgunction ofpairwise disjoint
DBCs since, e.g7(Xx—y<c) <= y—x< —c—1land—-(x<c) < x>c+1. In particular,
the negation ofT is the empty disjunction, denoted ag(false).

A counter automato(CA) is a tupleA = (X, Q,l,—,F), where:X is a finite set of counters

ranging ovetz, Q is a finite set of control statesC Q is a set of initial states;~ is a transition

relation given by a set of ruqu;M

values of counterX to their future valueX’ = {X | x e X}, andF C Q s a set of final states.

A configurationof a CA A is a pair(qg,v) whereq € Q is a control state, and: X — Z is
a valuation of the counters M. For a configuratiort = (q,v), we designate byal(c) = v the
valuation of the counters ia A configuration(d',Vv’) is animmediate successof (q,v) if and

only if A has a transition rulg LIS q such that= ¢[v(X)/X][V'(X")/X']. Given two control

statesq,q € Q, a run of A from q to ¢ is a finite sequence of configurationsgc;. ..c, with
c1 =(q,v), cn = (d,V’) for some valuationg,Vv’ : X — Z, andc;1 is an immediate successor
of ¢, forall 1 <i < n. Let R (A) denote the set of runs & from some initial statep € | to
some final statejs € F, andTr(A) = {val(cy)val(cp)...val(cy) | c1C2...Ch € R(A)} be its set
of traces

For two counter automat® = (X, Q;, li, —i,F), i = 1,2 we define th@roduct automatoas

AL @A = (X1 UX2, Q1 x Qz,11 X 12, —, F1 x F2), where(qs, g2) 2, (3,05 ifand only if gu ill .

o2 332 o, andj= ¢ — d1 A d2. We have that, for all sequencese Tr(A; ® Az), 0] x,€ Tr(Ar)
ando|x,€ Tr(Az), and viceversa.

g where¢ is an arithmetic formula relating current

Lemma 1 Given A= (X, Qi li,—i,F), i = 1,2, for all sequences € (X;UXy — Z)*:
0 Tr(AL®Ap) ifand only ifa|x,€ Tr(A1) ando]x,€ Tr(A2)
Consequently, if X=Xp we have T(A1 @ Ax) = Tr(A1) NTr(A2).

Proof. The states ofA; ® Ay are pairs 0iQ1 x Q», and the initial (final) states o ® A, are
l1 x Iz (FL x F). There is a transitiorqs, rq) ﬂ (g2,r2) iIn Ay ® Az if and only if there exist

transitionsgz LZR g2 in A; andr; e, ro in Ao, and¢ = ¢1 A d. The equivalence condition is
proved by induction on the length of the traze O



3 Counter Automata as Recognizers of States and Transitions

In the rest of this section, let= {as,ay, ..., a} be a set o&rray variablesandb = {by, by, ..., bm}
be a set okcalar variables A state(a, 1) is a pair of valuationst : a — Z*, andi : b — Z. For
simplicity, we assume thati(a;)| = |a(a2)| = ... = |a(ak)| > 0, and denote bya| the size of
the arrays in the state.

In the following, letX be a set of counters that is partitioned intalue countersx =
{X1,%2,..., X}, index counters = {iy,ip,...,ix}, parameter = {p1, p2,. .., Pm}, andwork-
ing countersw. Notice thata andb are in 1:1 correspondence withi, andp, respectively.

Definition 1 Let(a,1) be a state. A sequencec (X — Z)* is said to beconsistenwith (a,1),
denoteds - (a,1) ifand only if, foralll < p<k,and alll <r <m:

1. forallge Nwith0<g< |o

, we haved < gq(ip) < |a

. forallg,r e Nwith0 < g <r < |al, we havesg(ip) < or(ip),

. for all se Nwith 0 <s < |a|, there exist® < q < |o| such thatog(ip) =S,

2
3
4. forallge Nwith0 < g < |o|, if og(ip) = s< |af, thenoy(Xp) = a(ap)[s],
5

. forallge Nwith 0 < g < |o|, we haveog(pr) = t(br).

Intuitively, a run of a CA represents the contents of a siraglay by traversing all of its
entries in one move from the left to the right. The contentmaftiple arrays is represented by
arbitrarily interleaving the traversals of the differentagys. From this point of view, for a run to
correspond to some state (i.e., todomsistentvith it), it must be the case that each index counter
either keeps its value or grows at each step of the run (pamhD2f. 1) while visiting each entry
within the array (points 1 and 3 of Def).! The value of a certain entry of an array is coded
by the value that the array countgy has when the index countgy contains the position of the
given entry (point 4 of Defl). Finally, values of scalar variables are encoded by vatfi¢ise
appropriate parameter counters which stay constant wathim (point 5 of Defl).

We call two sequences,p € (X — Z)* equivalent denotedo = p, iff they agree on the
value, index, and parameter counters, 08y, iup= Pl xuiup-

Proposition 1 Let (a,1) and (B,K) be two states, and € (X — Z)* be a sequence that is con-
sistent with botHa, 1) and (B,k). Thena = 3 and1 =K.

Proof. Firstwe prove thafo| = |B|. Suppose, by contradiction, that < |B| for some 1< p < k.
Then there exists £ p <k and 1< g < |g| such thafa| < gg(ip) < |B|, by the third point of

LIn fact, each index counter reaches the vatjavhich is by one more than what is needed to traverse an array
with entries 0..|a| — 1. The reason is technical, related to the composition wéthsducers representing program
loops (which produce array entries with a delay of one steph@mce need the extra index value to produce the last
array entry) as will become clear later. Note that the ertpoaition|a| is left unconstrained.



Definition 1. Sinceo - a, by the first point of Definitiorl, oq(ip) < |a|: a contradiction. Then,
la > |B|, and symmetrically, we can prove that < |B|. Hencela| = |B|.

Next, we prove that, for all £ p < kand for all 0< s < |a|, we haven(ap)[s] = B(ap)[s|. By
the third and fourth points of Definitioh, we have that, for all ¥ p < k and for all 0< s< |a],
there exists 6< q < |o| such thati(ap)[s] = aq(Xp) = B(ap)[s|.

Finally, by the fifth point of Definitionl, we have that, for all X r <m, 1(by) = oq(br)
K(by) forall1<q<|ol.

ol

A CA is said to bestate consistenf and only if for every traceo € Tr(A), there exists a
(unique) statéa, 1) such thao + (a,1). We denot& (A) = {(a,1) | 3o Tr(A) .ot (a,1)} the
set of states recognized by a CA.

A consequence of Definitiohis that, in between two adjacent positions of a trace, intesta
consistent CA, the index counters never increase by moneaih@. Consequently, each transition
whose relation is non-deterministic w.r.t. an index cougsn be split into two transitions: an
idle (no change) and #ck (increment by one). In the following, we will silently assarthat
each transition of a state-consistent CA is either idleakw.r.t. a given index counter.

Proposition 2 Let A be a state-consistent CA with index countetsiy, io,...,ix}, value coun-
tersx = {Xq,X2,..., X}, ando € Tr(A) be a trace. Then we hawe< aq,1(ip) —0q(ip) < 1, for
all<p<kandallo<qg<|a|.

Proof. By the second point of Definitiof, aq(ip) < 0g41(ip). Now, suppose thadg1(ip) >
oq(ip) +1, for some 1< p < k. SinceA s state-consistent, there exists a statg) such that -
(a,1). By the first point of Definitiori, 0 < 0g+1(ip) < |a|, hence < 0g41(ip) —1 < |al, and by

the third point of Definitioril, there exists a positionQ r < |o| such thavy (ip) = 0g11(ip) — 1.
Then either < r < qor q+1 < r. Both cases are in contradiction with the second point of
Definition 1. O

In the following, letay = {a},a), .. .,aLI }, 1 =1,2, be two sets of array variables (not neces-
sarily disjoint), and lek;, = {><'1,x'2,...,><{Q}, i = {i'l,i'z,...,i}q}, | = 1,2, be the corresponding
sets of value and index counters. Also,bet= {b},b),...,b},}, 1 = 1,2, be two sets of scalar
variables and lep; = {p}, ..., P }. | = 1,2, be the corresponding sets of parameters.

Lemma 2 Let A be two state consistent counter automata with value, indasameter, and
working countersx, i, pi, Vi, | = 1,2, respectively. Then & Ay is state consistent, and,
moreover, for all state¢a, 1) wherea : ajUay; — Z* andi : by Ubz — Z, we have:

(0,1) € Z(AL®A2) = (O a,1lb,) € Z(A1) and (0] ay, 1 n,) € Z(A2)
Consequently, iy = ap andb1 = by, we haveX (A1 @ Az) C Z(A1) NZ(A2).

Proof: We denoteX, = x; Ui Up; Uy, | =1,2.
(1) To prove thatA; ® Ay is state consistent, let € Tr(A; ® A) be a trace. By Lemma,
we haveo|x € Tr(A), | =1,2. SinceA; andA; are state consistent, there exist (unique) states

5



(a1,11), wherea, : & — Z* and; : by — Z, such thato | x - (ay,1;), | = 1,2. By Propositiori,
we have thata]a;nay, 11lb;nb,) = (02]a;nay, 121bsrb,). Therefore, we can build fronoy, 1),
| =1,2, astatda,1) such thao - (a,t).

(2) To prove the second point, letc Tr(A; ® Az) such thao - (a,1). As before, there exist
states(ay, 1), wherea, : & — Z* and\, : by — Z, such that | x - (a,1;), | =1,2. But since
ok (a,1), we havea | x - (a g, i), | =1,2. Thus(a]q,1]i) € Z(A), | =1,2. O

For any seU = {uy,...,un}, letus denot®’' = {uj,...,ul,} andu® = {u?,...,u3}. If s= (a,1)
andt = (B,K) are two states such thjat| = |B| for all 1 < p <k, the pair(s,t) is referred to as a
transition ACA T = (X,Q,l,—,F) is said to be dransduceiriff its set of counters is parti-

tioned into:input countersc! andoutput counters®, wherex = {xg,Xp, ..., X}, index counters
i = {iy,ip,...,ix}, input parameterp' andoutput parameterp®, wherep = {p1, p2,-- ., Pm}
andworking counterswv.

Definition 2 A sequence < (X — Z)* is said to beconsistenwith a transition(s,t), where
s=(a,1) andt= (B,K), denoted I (s,t) if and only if, foralll < p<kand all1 <r <m:

. forallge Nwith 0 < g < |o|, we haved < aq(ip) < |a],
. forallg,r e Nwith0 <q<r < |o|, we haveog(ip) < or(ip),

1
2
3. forall se Nwith 0 <s < |a|, there exist® < q < |o| such thatog(ip) =S,
4. forallge Nwith0 < q < |a, if ag(ip) = s < |a], thenagy(xp,) = a(ap)]s],
5

. forallge Nwith0<g< |o

, if Og(ip) = s> 0, thenag(x3) = B(ap)[s— 1,

6. for all g€ N with 0 < q < |o], we havesy(p}) = 1(br) anda(p?) = k(by).

The intuition behind the way the transducers represensitians of programs with arrays is
very similar to the way we use counter automata to represatetssof such programs—the trans-
ducers just have input as well as output counters whosewvaluans describe the corresponding
input and output states. Note that the definition of tranediiis such that the output values occur
with a delay of exactly one step w.r.t. the correspondingiirfpf. point 5 in Def.2).?

A transducefT is said to beransition consisteniff for every tracec € Tr(T) there exists a
transition(s,t) such thao - (s,t). We denoté®(T) = {(s;t) | 3o Tr(T) .ot (sit)} the set
of transitions recognized by a transducer.

2The intuition is that it takes the transducer one step to admfhe output value, once it reads the input. It
is possible to define a completely synchronous transdueemhewever, prefer this definition for technical reasons
related to the translation of program loops into transdsicer



3.1 Dependencies between Index Counters

Let X be a fixed set of counters, for the rest of this sectiordefgendency is a conjunction of
equalities between elements belonging to (a subset ofor a valuatiorv : X — 7Z, we write
v |= & if and only if the relation obtained fro@ by replacing each index countieoccurring ind
by v(i), is logically valid. For a sequeneec (X — Z)*, we denoteo |= & if and only if g |= 9,
forall0<I| < |q].

Proposition 3 Given an arbitrary sequenaec (X — Z)*, wherei C X is a set of index counters,
and a dependenayoni, we haveo |~ & if and only ifo ;= o.

Proof. From the definition of a dependendyjinvolves only variables from O

For a dependency, we denot€[d]] = {0 € (X — Z)* | there exists a statesuch thato -
sando | 8}, i.e., the set of all sequences that correspond to an armyhat satisfyd. A
dependency; is said to bestrongerthan another dependendy, denoted; — &, if and only
if the first order logic entailment betweén andd; is valid. Note tha®; — o, if and only if
[01]] C [82]]. If &1 — &2 andd, — &1, we writed; < d. For a state consistent counter automaton
(transition consistent transduceX) we denote by\(A) the strongest dependendysuch that
Tr(A) < [3].

Definition 3 A CA A= (x,Q,l,—,F), wherex C X, is said to bestate-complet& and only if
for all states s= 2(A), and each sequeneec (X — Z)*, such thao F s ando = A(A), we have
oceTr(A).

Intuitively, an automatoi is state-complete if it represents any s¢e>(A) in all possible
ways w.r.t. the strongest dependency relation on its indexiers. The next lemma is needed
for technical reasons.

Lemma 3 LetA = (x,Q,l1,—1,F), wherex; C X, | =1,2be two state consistent and complete
counter automata with the corresponding sets of arrays aradass a andby. If Z(Ag) |y
N X(A2) o w# 0, ford = a;nay andb’ = by Nby, then the following hold:

1. A(AL®A) — A(A1) NA(A2), and
2. At ® Ay is state complete.

Proof. (1) Leti; C X1 be the set of index counters Af, andi, C x» be the set of index counters
of Ao.
“—” According to the definition, we have

AAL®Az) = N{3|foralloeTr(A1®Az) such thao - sfor somes, o |= &}
= /{3 |forall traceso € (X — Z)* such that |y, € Tr(As),
Olx,€ Tr(Ap), ando - sfor somes, 0 = o}
— /\{6 | for all o € Tr(A;1) such thao - sfor somes, o |= &}
= AA)



Note that we have

/\{3 | for all traceso € (X — Z)* such that |x,€ Tr(As),
Olx,€ Tr(A2), ando - sfor somes, 0 |= 8}
— /\{8| for all o € Tr(A1) such that I- sfor somes, 0 |= 3}

because

{8 | for all traceso € (X — Z)* such thao |y, € Tr(Aq),
Olx,€ Tr(Az), ando - sfor somes, 0 = &}
D {d|forall o € Tr(A;) such thao + sfor somes, o |- 8}

Symmetrically, we obtaidh (A1 ® Az) — A(A2). ThenA(Ar ® Az) — A(A1) AA(Az) follows.

“—"Leto e (X — Z)" be atrace such that= A(A;) AA(A2) ands= (a,1) be an arbitrary
state such thai - s. By PropositiorB, a|;, i, = A(A1) AA(A2). SinceZ(Aq)la N Z(A2) o b7
0 for & = a;Naz andb’ = by N by, there exists a state= (B,K) over arraysy; Uap and scalars
b1 Ubz such that |5, b, € Z(A1) andt |4, p,€ Z(A2). Sinceo - s, it is possible to build a trace
o’ such thato |;,ui,= 0’ li,ui, ando’ - t: just replace the values(ap)[s| of the value counters
ap € a by the valuei(ap)|s| at each position iw where the value of the index counigris s
and replace the valugb) of the parameter countebg < b by the valuex(bq) at each position
ino.

We have thus’|;,ui, = A(A1) AA(A2). By Propositior8, we haveo’ = A(A1) AA(A2). Since
A is state-completey’ = A(A1) ando’ [y, t]a, n, € Z(A1), we obtaino’ |y, € Tr(A1), by Def-
inition 3. Symmetrically, we have’ |x,c Tr(A). Henceo’ € Tr(Aj® Az) by Lemmal. By
Lemma2, we have tha#; ® Ay is state consistent, and furthermore by definiflaA; ® Ay) C
[A(A1® A)]|. Henced' = A(A1 ® Ap), therefored’ |, ui,= 0li,ui, = A(A1 ® Az), and by Propo-
sition3, 0 E A(A1 @ Ag).

(2) Letse X(A1®A2) be a state and € (X — Z)* be a trace such thatt-sando |=
A(A1®A2). By Lemmaz2, we haves|a, n, € 2(A1), Sla,bh,€ 2(A2) and by the previous point,
0 =A(A1) ANA(Az). SinceAr andA; are state-complete, we hawgy, € Tr(Ar) ando|x, € Tr(Az)
and hence € Tr(A; ® A2) by Lemmal. 0

3.2 Composing Counter Automata with Transducers

For a counter automatohand a transduceér, Z(A) represents a set of states, wher@4s) is
a transition relation. A natural question is whether thetjdmsge ofZ(A) via the relation®d(T)
can be represented by a CA, and whether this automaton cdfebevely built from AandT.

Definition 4 Given a counter automaton A with index countets {iy, ...,ix}, value counters
X = {Xq,...,X}, and parameterp = {ps,..., pm} and a transducer T with index counters
input/output counters! /x°, and input/output parameteg® /p°, we say that A and T areom-
patibleiff, for all s € X(A) such that(s,t) € ©(T) for some state t, there exist traces Tr(A)
andp € Tr(T) such thaio - s ando = p[x/x'|[p/p'].
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Informally, the definition above says that a counter autom#t and a transducef are
compatible if and only if they can agree on the represemati@ach stata from the intersection
betweenx(A) and the pre-image é®(T). This guarantees that the composition of the two will
not “miss” any states.

The above definition gives a sufficient condition under wtiled post-image oE(A) under
O(T) can be represented by an effectively computable CA. Notiag tn general, even if the
post image can be represented by a CA, it is not always thetkbasthis CA can be computed
from the description oA andT.

Lemma 4 Given a state consistent counter automaton A with index tessin= {i1, ...,ix},
value counters = {xy, ..., X}, parameterp = {pi, ..., Pm}, and working counterg and a tran-
sition consistent transducer T with index countersput/output counters /X°, input/output
parameterspi/po, and working counters, zNu = 0, if A is compatible with T, one can con-
struct a state consistent counter automaton B such that:

2(B)={t|dseZ(A).(st)cO(T)}

Proof. We build a counter automatd@with index counters, value counterg = {y1,Yo, ..., Yk},
parameterg®, and working counters Ux°Up' UzUu. By x© andp'®, we denote the seidUx°
andp' Up®, respectively.

First, letA’ be the transducer with input countefsoutput counters®, input parameterp',

X' /x[p'/p]

output parametens®, and working countergU u, and with a transition rule ¢ q for

each ruleg 9, d of A. Obviously, for each trace € Tr(A'), we have(o |yiiupiuz) x/X][p/p'] €
Tr(A).

Second, lefl’ be the transducer with input countets output counters®, and working
countersz U u, and with the same set of transition rulesTasFinally, letB' = A’ @ T’ andB be
the counter automaton with index countengalue counterg, wherey N (x°Up®UiUuzUu) =0,
parameterg®, working counters® Up' UzUu, and transition rules

O A AL >T—y=00) A i =i —y|=y q

for each transition rulg LN q of B'.

Let us prove now thaB is state consistent. Let € Tr(B). By the definition ofB, 0’ =
0 | yioypiosivzuu€ TT(B") = Tr(A)NTr(T’). SinceA is state consistent, so &. SinceT is
transition consistent, so i§’. SinceT’ and A’ share the same set of index counters, the first
three points of Definitiorl hold for o/, and therefore foo. SinceT’ is transition consistent,
there exists a transitiofs,t), s= (a,1) andt = (B,k) such thgtqa(xg) = B(ap)[og(ip) — 1],
wheneveiog(ip) > 0, forall 1< p <k, 0< g < |0’|. By the definition ofB, we haveog(yp) =
B(ap)[og(ip)] = B(ap)[og(ip)]. Last, for all parameterpy € p°, we haveoq(p?) = Kk(br), by
Definition 2.

We are left with showing that indeeB) = {t | existss€ Z(A) s.t. (s;t) € O(T)}. “C” Let
t = (B,K) € Z(B). If t € Z(B), then there exists € Tr(B) such that - t. By the definition ofB,
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0" = 0o piouiuzuu€ TT(B) = Tr(A)NTr(T') such thatg(x3) = B(ap)[oq(ip) — 1], whenever
Oy(ip) > 1, forall 1< p<k, 0<q<|d']. Sincea’ € Tr(T’'), there exists a statesuch that
0’ = (s,t). Obviously,0’| o g iuu€ Tr(T) ando’ o pioyiy = (S;t), hence(s,t) € ©(T). By
Definition 2, we have that'|,i i i s. Moreover, ax’ € Tr(A), (o’ixiupiui)[x/xi][p/pi] €
Tr(A) and(0' i pivi) [X/X][p/p'] F sas well. Hence € Z(A).

“D”" Let se 2(A) such that(s,t) € ©(T). SinceA andT are compatible, there exist traces
o € Tr(A) andp € Tr(T) such that - sando = p[x/x][p/p']. Fromao andp, we can now build
atracerte Tr(A)NTr(T") =Tr(B') such that:

o TU,iupiLi= Plxiupivi= (olxupui)[xi/x][pi/p]
e T,=0l;
® T xoupeuu= Plxeupeuu

This is becaus&’ does not constrair®, p°, andu, whereasl’ does not constrain. Moreover,
p k(s t) impliesttt (s,t). We can now extentt € Tr(B') to a tracert € Tr(B) such thatt +t.
Hencet € 2(B). O

The lemma above guarantees composability of a transdutieawiounter automaton, under
the compatibility condition of Definitiod. However, this condition cannot be applied in practice,
due to undecidability reasohdn the following, we give sufficient compatibility conditis that
can easily be applied in practice.

Lemma 5 If Ais a state-complete counter automaton with value casmte- {xy, ..., X}, index
countersi = {i,...,ix}, and parameterp = {p1,..., Ppm}, and T is any transducer with input
countersx', index counters, and input parameterp' such thatA(T)[x/x'] — A(A), then A is
compatible with T.

Proof. Let s Z(A) be a state such thas,t) € ©(T), for some stat¢. Hence there exists
p € Tr(T) such thatp F (st), i.e., p[x/X][p/p'| Fs. Asp e Tr(T), p = A(T), and since
A(T)[x/x] — A(A), we also have[x/x] = A(A). Let o be a trace over the countersAtuch
thato = p[x/x][p/p']. By Propositior8, we haves = A(A) ando - s. SinceA is state-complete,
we obtaino € Tr(A). By Definition4, A is compatible withT . O

We have reduced the problem of checking compatibility tograblems of checking state-
completeness and comparing dependencies on index couletis criteria can now be guar-
anteed in a sound (but not necessarily complete) way by sgntactic conditions that will be
introduced later on. Namely, we prove that a counter automatgenerated from a formula is
state-complete, and we give sufficient syntactic conditiorguarantee that(T)[x/x1] — A(A),
whenA s generated from a formula afddfrom a program.

3Trace inclusion is undecidable for counter automata.
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Theorem 1 If A'is a state-consistent and state-complete counter aatomwith value counters

X = {X1,..., Xk}, index counters = {iy,...,ix}, and parameterp = {p1,...,Pm}, and T is a
transducer with input (output) countexs (x°), index counters, and input (output) parameters

p' (p°) such thatA(T)[x/x1] — A(A), then one can build a state-consistent counter automaton B,
such that(B) = {t | 3s€ Z(A) . (s,t) € ©(T)}, and, moreoveA(B) — A(T)[x/x/].

Proof. By Lemmabs A is compatible withT, and by Lemma, there exist8 such that(B) =
{t|3s€Z(A).(st)€O(T)}. Forthe second point, notice that, in the proof of Len#na(B)
AB')[x/X'] — (AA) ANA(T))[x/X'] = A(A) AA(T) = A(T). The ste@d(B') — AA) AA(T) is

becaus®’ = A'® T’ and uses the-%" direction of the proof of the first point of Lemna O

4  Singly Indexed Logic

We consider three types of variables. Téwmalar variables bby, by, ... € BVar appear in the
bounds that define the intervals in which some array progsrtequired to hold and within
constraints on non-array data variables. Ttex variablesiii1, i», ... € IVar andarray variables
a,ap,ay,... € AVar are used in array terms. The s&€ar, IVar, andAVar are assumed to be
pairwise disjoint.

nm,... € Z integer constants I,j,i1,ip,... € IVar index variables
b,bi,by,... € BVar scalarvariables a,aj,az,... € AVar array variables
® Presburger constraints- € {<,>}
B = n|b+n array-bound terms
G T|B<i<B|GAG|GVG guard expressions
V = ai+n~B|aifi+n—agfi+m~pl|i—ali+n~m|VAV value expressions
F = Vi.G—V|@B1,By,....By) | -F|FAF formulae

Figure 1: Syntax of the Single Index Logic

Figure 1 shows the syntax of the Single Index LogtL. We use the symbaol” to denote
the boolean valugrue. In the following, we will writei < f instead ofi < f —1,i = f instead
of f <i<f, ¢1V 2 instead of (-1 A—d2), andVi . u(i) instead ofvi . T — v(i). If
B1(b1),...,Bn(bn) are bound terms with free variablbs, ..., b, € BVar, respectively, we write
any Presburger formulg on termsas[B1],...,an[Bn] as a shorthand fofAy_;Vj . j = Bx —
ali] = by) Ad[b)/a1[B1], ...,by/an[Bn]], whereby, ..., by, are fresh scalar variables.

The semantics of a formulinis defined in terms of the forcing relatida, 1) = ¢ between
states and formulae. In particulae, ) = Vi . y(i,b) — v(i,a,b) if and only if, for all values €
Mai + m] occurs ino [~ lal =m— 1], if k= yin/il[1(b) /b, then alsd=u[n/il[1(b) /bl [a(a) /4]
We denotd[¢]] = {(a,1) | (a,1) = ¢}. Thesatisfiability problemasks, for a given formula,
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whether[¢]| 20. We say that an automata@hand aSIL formula¢ correspondf and only if
Z(A) =[o].

The 3*V* fragment ofSIL is the set of SIL formulae which, when written in prenex nokrma
form, have the quantifier prefix of the forf; ... JiVi1...Vim. As shown in [L7] (for a slightly
more complex syntax), thé'v* fragment ofSIL is equivalent to the set of existentially quantified
boolean combinations of (1) Presburger constraints omseatiabled, and (2) array properties
of the formVi . y(i,b) — vu(i,b,a).

Theorem 2 ([LZ7]) The satisfiability problem is decidable for tA&v* fragment ofSIL .

Below, we establish a two-way connection betwgéwi*-SIL and counter automata. Namely,
we show how loop pre-conditions written #1V*-SIL can be translated to CA in a way suitable
for their further composition with transducers represaniprogram loops (for this reason the
translation differs from17)). Then, we show hows*v*-SIL formulae can be derived from the
CA that we obtain as the product of loop transducers and gneliton CA.

4.1 From3J*V*-SIL to Counter Automata

Given a pre-conditio expressed ia*v*-SIL, we build a corresponding counter automa#on
i.e.,2(A) = [¢]. Without loosing generality, we will assume that the predition is satisfiable
(which can be effectively checked due to Theor®m

For the rest of this section, let us fix a set of array variables{a;,ap,...,a} and a set of
scalar variableb = {b1,by,...,bn}. As shown in 2], each3*V*-SIL formula can be equiva-
lently written as a boolean combination of two kinds of fotaeu

(i) array properties of the forrwi . f <i < g— v, wheref andg are bound terms, anad
is either: (1)ap[i] ~ B, (2) i —apli] ~ n, or (3) apli] — ag[i + 1] ~ n, where~e {<,>},
1<p,g<k nezZ,andBis abound term.

(i) Presburger constraints on scalar varialiles

Let us now fix a (normalized) pre-condition formuiéa, b) of 3*v*-SIL. By pushing nega-
tion inwards (using DeMorgan’s laws) and eliminating itrfré®resburger constraints on scalar
variables, we obtain a boolean combination of formulae efftiims (i) or (ii) above, wherenly
array properties may occur negated

W.l.0.g., we consider only pre-condition formulae withdigjunctions* For such formulae
¢, we build CAAy with index counter$ = {iq,i», ...,ix}, value counterg = {xg,Xo,...,X}, and
parameterp = {p1, P2, .., Pm}, corresponding to the scaldrs

For a term or formulaf, we denote byf the term or formula obtained frorh by replacing
eachbqy by pg, 1 < q < m, respectively. For an atomic propositionon array values of type
(2)—(3), we defina, andv as follows:

(@) 1y 2 {ip} andv 2 Xp ~ Bif visapli] ~ B, where 1< p <Kk,

4Given a formula containing disjunctions, we put it in DNF aiebck each disjunct separately.
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(b) T, £ {ip} andUéip—xpN nif visi—ap[i] ~n, where 1< p <k, and

©) 1,2 {ip,iq} andu £ Xp —Xq ~ Nif visap[i] — agli +1] ~ n, where 1< p,q <k

For a set of index countets= {ip,,ip,,...,ip} Where 1< 1 <k andp;j € {1,...,k} for each

1< j <1, we denote byick(1) £ Aj_;it, =ip, +1, byidle(l) £ A} i, =ip AX, =xp,, by
|~ 2 /\'J-:liIOj ~ ¢, and byl’ ~ ¢ £ /\'j:li’IOj ~ ¢, where~c {<,>,=} and/is any linear term.
For any set of countets, letcons{U) = A ey U = u.

The construction of\y is defined recursively on the structuredof

o If & =Wi1AYy, thenAy = Ay, ® Ay,.
e If ¢ is a Presburger constraint bnthenAy = (X, Q, {qi}, —, {qs}) where:

— X={pqg|bg e FV($p)NBVar 1< g<mj,
- Q={dg,q},

d)_ A /\xe)( X =x /\xeX X =X
i

-q qf andqs ———— Q.

e lfpisvi.f<i<g— v, thenAy = (X,Q,{ai},—,{qr}) where:

— X={Xpip|lape FV(p)NAVar 1< p<k} U {pq|bgeFV(p)NnBVar 1<q<
mp U {wn}

— Q= {0, 01,02, 03,01}

— Assumingconsi{pq | bg € FV(¢) NBVar, 1 < g < m}) to be an implicit transition

constraint,h=1 if v is apli| —agli+ 1] ~ n, 1 < p,q < k, andh=0 otherwise, the
transition relation is defined as shown in Figare

o Ifpis—(Vi.f <i<g—uv), thenAy = (X,Q,{qi},—,{qs}) where:

— X={Xpiplape FV(¢p)NAVar, 1 <p <k} U {vq|bge FV(p)NnBVar 1<q<
m} U {wn}

- Q={0,q1,0,03,9r}

— Assumingcons{{vq | bq € FV(¢) NBVar, 1 < q < m}) to be an implicit transition

constraint,h=1 if v is apli] —agfi+ 1] ~ n, 1 < p,q < k and h=0 otherwise, the
transition relation is defined as shown in Fig@re

Intuitively, the automatory or Ay for a formulavi . f <i < g— v waits inq; increas-
ing its index counters until the lower bourfdis reached, then moves tp and checks the
value constrainb until the upper bound is reached. Finally, the control movesdg and the
automaton scans the rest of the array until the end. In eath, $he automaton can also non-
deterministically choose to idle, which is needed to enstaée-completeness when making a
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Ty=0 A idle(ty) idle(ty)

g ———0Gq qj ——q; forall j € {1,2,3,f}
Ty+1<f<g A tick(ty) A O=Ty<wny—1 Ty+1<F A tick(ty) A Ty<wy—1

0] d1 a1 d1
Ty+1=T A tick(ty) A Ty<wy—1 Tu< A tick(Ty) AT A Ty<wy—1

Q1 g2 a2 02
Tu=0 A tick(ty) A U A Ty<wy—1 tick(ty) A Tu<wny—1

42 gs gs ds
tick(ty) A Ty=wn—1

as qr
f<ty<g A tick(ty) A T A O=Tp<wy—1 Ty+1=F<g A tick(ty) A O=Ty<wn—1

i 02 0] 02

T<t,=0 A tick(ty) A U A O=Ty<wy—1 (T>gvT<g<0) A tick(ty) A O=Ty<wn—1

Qi 03 G O3
tick(ty) AU A Tp=wn—1 . tick(ty) A Ty=wn—1 .

P (Tv) u=WN grif h=0 P (Tu) A Ty=WN grifh=1
tick(ty) A Ty=wn—1

01 as
tick(ty) A T<Ty,<g A T A O=Ty=wn—1 ) tick(ty) A (f>gvi<g<0) A O=Ty=wn—1 )

G (Tv) <ty<=gd v=WN q]‘lfh:O G (tu) A (f>gvi<g<0) v=WN qflfh:O
tick(ty) A 0<T<g A O=Ty=wn—1 . tick(ty) A O=Ty=wny—1 .

G (tu) <g V=WN Qflfhzo G (tu) V=WN ar it h=1

Figure 2: Transition rules of the automatdpforp =Vi . f <i<g—wv

product of such CA. Fov of type (1) and (2), the automaton has one indgx&nd value Xp)
counters, while foo of type (3), there are two dependent indgxi) and valueXp, Xg) counters.

Figure4.1 shows the CAAy for ¢ : Vi . f <i < g—v. Figure4.1shows the CAAy for
d:(Vi.f<i<g—u).

We aim now at computing the strongest dependeli@y,) between the index counters of
Ay, and, moreover, at showing tha§ is state-complete (cf. DefinitioB). SinceAy is defined
inductively, on the structure af, A(Ay) can also be computed inductively. L&tp) be the
formula defined as follows:

e 3(¢) =T if ¢ is a Presburger constraint bn

T if visapli] ~Bori—apli]~n,

L . A A
o for¢ =Vvi .f§|§9—>0,6(¢)=5(ﬂ¢>:{ ip=iq if visap[i] —agli+1] ~n,

® 3(d1AD2) =0(d1) A O(d2).

Theorem 3 Given a satisfiable formuld of 3*v*-SIL, the following hold for the CA § defined
in the previous:

1. Ay is state consistent,
2. Ay is state complete,
3. Ay and¢ correspond,

4. 8(Ag) > D(AY).
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g Ty=0 A idle(ty) g

Tu+1<F<g A tick(ty) A 0=Ty<wy—1
i a1
Ty+1=T A tick(ty) A Ty<wy—1
01 02

Tu<g A tick(ty) A U A Ty<wy—1
02 as

F<1,<g A tick(ty) A =0 A O=Ty<wy—1
Qi 03

T<ty<g A tick(ty) A T A O=Ty<wy—1 q
i 2

tick(ty) A 0 A Ty=wn—1

a2 qrif h=0

idle(ty)

g ——=qjforall je {1,2,3,f}

Tu+1<F A tick(ty) A Ty<wy—1

01 d1
Tu<g A tick(ty) AU A Ty<wy—1

02 02
tick(ty) A Tu<wny—1

a3 ok!

tick(ty) A To=wn—1

0z o]

Ty+1=T<g A tick(ty) A O=Ty<wny—1
i 02
tick(ty) A F<Ty<g A =0 A O=Ty=wn—1

0] gsifh=0

Figure 3: Transition rules of the automatany for¢ =Vi . f <i<g—uv

Proof. By induction on the structure df:

e b =Vi.f <i<g—u. Thiscase is by analysis of the CA in Figutd.

e O =—(Vi.f <i<g—v). This case is by analysis of the CA in FiguteL

e ¢ is a Presburger constraint brand|a|, a € a. This case is by the analysis of the CA.

e ¢ = Y1 Ay. Sinced is satisfiable, there exists a state 1) € [¢] = [Wi] N[[W2]. By the
induction hypothesis)y, corresponds tg;, hence there exists a tracge € Tr(Ay, ) such
thatoy - (a,1), i.e. (a,1) € Z(Ay,). Symmetrically,(a,1) € 3(Ay,), thereforex(Ay,) N
Z(Ay,) # 0. By applying LemmaB and the induction hypothesis, we obtain that

A(Ag) = A(Ag,) ANA(Ay,) = (1) A O(W2) = 5(9)

and thatAy = Ay, ® Ay, is state complete, sina®y, andAy, are. The fact thady is state
complete follows directly from the induction hypothesise \&fe left with proving thafy
corresponds t@. LetX; denote in the following the sets of countersAyf, and leta;, b;
denote the sets of array and bound variables corresporalgit= 1, 2.

— Leto € Tr(Ay) be a trace. By Lemma, we haveo|x e Tr(Ay), i = 1,2. By the
induction hypothesis, there exist states- (i, 1;) € [yi]] such thab|xFs,i=1,2.

By Propositionl we can build a state= (a,1) such that(a 5,1 |p) =S, 1 =1,2.
Henceo - sands € [P AW2]] = [[¢].

— Letse [¢] be a state. Sincee [[Y1]] N [[W2], by the induction hypothesis there exists
two traceso; € Tr(Ay;) such thao; s, i = 1,2. By an argument similar to the one
used in the proof of Lemma@, we can build a sequenaeec (X1 U Xz — Z)* such
thato|x e Tr(Ay), i =1,2, andot-s. By Lemmal, we haveo € Tr(Ay, ® Ay,) =

Tr(Ay).

O
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tick(ty) AO<T<gAO=Tp=wy—1

K(Tu) A (
k(o) A F <t <gGAUDAO=Tp=wy -1

T>gvi<g<0) AO=T1y=wN—

tick(ty) A Ty =wy —1

tick(Tu) ADA Ty =wny—1

v=0A
idle(ty ick(ty) A ick(ty) A
+1=TA v =0 A tick(ty) A tick(ty)
%

vHl<T<gn v
01 02

0=Ty <Wn— i /ru<va 1 DATy<wy—1 To=wn—1
Tw+I<fA Ty <J A tick(ty) A tick(ty) A

tick(ty) ATy <wny—1 U ATy <wy— Ty <wy-—1

Figure 4: The counter automaton for the SIL formuiae f <i <g— v for theh = 0 case (for
the other case, the three transitions frgnto g; are replaced with only one transition labeled
with tick(ty) A 0=T1, =wy — 1, andu is removed in the transitiogy — ()

tick(ty) A T<TH<gA TAO=Ty =wy—1

tick(ty) A 0 ATy =wy—1

v=0A
dle(ty Ytick(tu) A ick(Ty) A
+1<T<gn TWw+l=TA v =7 A tick(ty) A tick(ty) A
j 3

az

v
i q -
O0=T1y <wn — To<WN-—1 0 A Ty <WN — Tu=wy—1

Tw+I<fA Ty <7 A fick(ty) A tick(ty) A
tick(ty) ATy <wy—1 UATy <wy-—1

To<wy-—1

0 <G A tick(ty) A D A 0=Ty < Wi

Ty +1=T<gAtick(ty) A 0=Ty <wy —1

T<ty<gAtick(ty) A -0 AO0=Tp <wy—1

Figure 5: The counter automaton for the SIL formuta®i . f <i <g— v) for theh=0 case
(for the other case, two transitions, namegly— g andg, — qs, are removed)
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4.2 From Counter Automata to 3*VvV*-SIL

The purpose of this section is to establish a dual connecfrom counter automata to the
F*Vv* fragment ofSIL. Since obviously, counter automata are much more expeesnT*\v*-
SIL, our first concern is to abstract a given state-consistentAd#y a set ofrestricted CA
K, aX, ..., 4K, such thaB(A) C N, 2(4K), and for eachaX, 1 <i < n, to generate af*v*-
SIL formula¢; that corresponds to it. As a result, we obtain a formpda= A" ; di such that
Z(A) C [9a]l.

Let p(X,X’) be a relation on a given set of integer variab¥esand|(X) be a predicate
defining a subset di¥. We denote by(1) = {X’' | 3X €1 . (X,X') € R} the image ofl via R,
and we lepp Al = {{(X,X") e p| X € 1}. By p", we denote the-times relational composition
popo...op, p* =Vpop" is the reflexive and transitive closuremfandT is the entire domain
ZK. Itis known [5, 4] thatp" andp* are Presburger definablepis a difference bound constraint.

Let D(p) denote the strongest (in the logical sense) difference doelationD s.t. p C D.

If p is Presburger definabl€)(p) can be effectively computédand, moreover, ip is a finite
union ofn difference bound relations, this takegn x 4k?) time®.

We now define the restricted class of CA, calfied counter automata with difference bound
constrainty FCADBC) into which we abstract the given CA.ddntrol pathin a CAAis a finite
sequence)1qp...qn Of control states such that, for alldi < n, there exists a transition rule

g — Gi-1. A cycleis a control path starting and ending in the same contraé sfatelementary
cycleis a cycle in which each state appears only once, except éofirdt one, which appears
both at the beginning and at the end. A CA is said tdlétg(FCA) iff each control state belongs
to at most one elementary cycle. An FCA such that every mgldéibeling a transition occurring
in an elementary cycle is a DBC, and the other relations agsliRrger constraints, is called an
FCADBC.

With these notations, we define tikeunfolding of a one-state self-loop counter automa-
ton Ay = (X, {a},{a}.a> q,{q}) as the FCADBCAS = (X, Q. {an},—K, Q). whereQf =

K

{01,0,-..,0k } and—>§ is defined such thaj; LN gi-1, 1 <i <K, andgk PDnre, gk. TheK-

abstractionof A, denoted'ZlF’f (cf. Figure6), is obtained fromAE by replacing the transition rule

K K
a 2 (M Ap 0k with the difference bound rulex DD AP, gk Intuitively, the information

gathered by unfolding theoncreterelationK times prior to the abstraction on the logp — gk,

allows to tighten the abstraction, according tokhparameter. Notice that théf)( abstraction of
a relationp is an FCADBC with exactly one initial state, one self-loopdall states final. The
following lemma proves that the abstraction is sound, aatlititan be refined, by increasikg

Lemma 6 Given a relationp(X,X’) on X= {xq, X2, ...,X}, the following hold:

o Tr(Ag) =Tr(AS) CTr(ag), forall K >0,

5D(p) can be computed by finding the unique minimal assignmertz;j | 1 < i, j < k} — Z that satisfies the
Presburger formulg(z) : VXVX". p(X,X") = Ay xexux X — Xj < Zj.

8If p=p1Vp2V...Vpn and eachp; is represented by &2k)%-matrix M, D(p) is given by the pointwise
maximum among all matricdd;, 1 <i <n.
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K times

A

D(PX(T) Ap)
p

YO R A

Figure 6:K-abstraction of a relation
o Tr(45?) C Tr(4p) if Ky <Ka.

For the rest of this section, assume a set of areays{a;,ay,...,a} and a set of scalars
b = {by,by,...,bm}. At this point, we can describe an abstraction for count¢oraata that
yields from an arbitrary state-consistent 82a set of state-consistent FCADBT, 24X, ..., 4K,
whose intersection of sets of recognized states is a supefrsee original one, i.e.X(A) C
N, 2(4X). Let A be a state-consistent CA with countetspartitioned into value counters
X ={X1,...,X}, index counter$ = {iy,...,ix}, parameterp = { p1, ..., pm} and working counters
w. We assume that the only actions on an index courgeraretick (i’ =i + 1) andidle (i’ = i),
which is sufficient for the CA that we generate fr@tL or loops.

The main idea behind the abstraction method is to keep theetttions separate from ticks.
Notice that, by combining (i.e., taking the union of) idledatick transitions, we obtain non-
deterministic relations (w.r.t. index counters) that magak the state-consistency requirement
imposed on the abstract counter automata. Hence, the @psisstio eliminate the idle transitions.

Let & be an over-approximation of the dependeA¢q), i.e., A(A) — 8. In particular, ifA
was obtained as in Theorelmby composing a pre-condition automaton with a transdlicand
if we dispose of an over-approximati@of A(T), i.e.,A(T) — o, we have that\(A) — §, cf.
Theoreml—any over-approximation of the transducer’s dependeney isver-approximation
of the dependency for the post-image CA.

The dependency induces an equivalence relation on index counters: for, gk i, i ~5 |
iff 8— i = j. This relation partitions into n equivalence classek |, [is,], ..., [is,], Where 1<
S1,%,...,S < k. Let us considen identical copies ofA: Ag, Ay, ...,An. Each copyA; will be
abstractedv.r.t. the corresponding-s-equivalence clas§s;| into ,‘leK obtained as in Figureé.
Thus we obtairE(A) € N]_; Z(A€), by Lemmas.

We describe now the abstraction of thgcopy of A into JZL]-K. W.l.o.g., we assume that the
control flow graph ofA; consists of one strongly connected component (SCC)—otherwe
separately replace each (non-trivial) SCC by a flat CA olethias described below. Out of the
set of relationsk »; that label transitions oA, let v},...,up be the set ofdle relations w.r.t.
lis,], i.e.,0{ — Niejig)1' =1, 1<t <p, and6y, ...,84 be the set ofick relations w.r.t.[is ], i.e.,
8 — /\ie[isj] i"=1i+1, 1<t <qg. Note that since we consider index counters belonging to the
same~s-equivalence class, they either all idle or all tick, hedog,...,up} and{84,...,084}
form a partition ofR 4.

LetYj = Q)(vtp:l u}) be the best difference bound relation that approximate&itagart of

Aj, andY? be its reflexive and transitive closdre et ©; = \/{; D(Y}) 0 6{, and letAo, be the

’SinceY;] is a difference bound relation, b§,[4], we have thalj is Presburger definable.
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one-state self-loop automaton whose transition is labieye@;, andf4jK be theK-abstraction of
Ao, (cf. Figure6). It is to be noticed that the abstraction replaces a statsistent FCA with
a single SCC by a set of state-consistent FCADBIt one self-loop The soundness of the
abstraction is proved in the following:

Lemma 7 Given a state-consistent CA A with index countensd a dependengys.t.A(A) — §,
let [ig ], [is,),- - -, [is,] b€ the partition of into ~s-equivalence classes. Then eagh, 1 <i <n
is state-conS|stent arA) C N, 2(4K), for any K> 0.

The next step is to build, for each FCADB@‘, 1 <i<n, an3*Vv*-SIL formulad; such
that>(4K) = [¢i], for all 1 <i < n, and, finally, letba = A, &; be the needed formula. The
generation of the formulae builds on that we are dealing @Wighof the form depicted in the
right of Figure6.8

For a relationp (X, X’), X =xUp, let Z/(¢) be theSIL formula obtained by replacing each:

e unprimed value counte& € FV(¢) Nx by agfi], 1 <s<Kk,
e primed value countex; € FV(¢) Nx' by agfi + 1], 1 < s<Kk,

e parameters € FV(¢)Nvbybs, 1<s<m.

For the rest, fix an automatoﬁ< of the form from Figure for some 1< j <n, and letqp LN
Op+1, 1 < p <K, beits sequential part, amg A Ok its self-loop. Letig | = {it,,it,, ..., 1, } be the
set of relevant index counters fﬂ]K, and letx, = x\ {x,, ...,xtq} be the set of redundant value
counters. With these notations, the desired formula is eéfasd; = (leZ’llt(I)) vV (3b.b>
OAT(K) Aw(b)), where:

-1
/\qg(;li,Xr,Xll’,W. p)

s=0

wb) @ (Vi.K<j<K+b— F(3i, XX, W. A)) A
%(E”,X,X/,W. )\b[K/itM Itq][K +b— 1/|t17 ) q])

Here,b € BVaris a fresh scalar denoting the number of times the self-m@& gk is iterated.
AP denotes the formula defining thetimes composition ok with itself.®

8In case we start from a CA with more SCCs, we get a CA with a DAGged control flow interconnecting
components of the form depicted in Fig@after the abstraction. Such a CA may be convertesltoby describing
each component by a formula as above, parameterized bygiisrtieg and final index values, and then connecting
such formulae by conjunctions within particular controdubches and taking a disjunction of the formulae derived
for the particular branches.

9SinceA is difference bound relation” can be defined by a Presburger formuiia]].
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Intuitively, 1(I) describes arrays corresponding to runszl(}ff from g to q;, for some 1<
| <K, without iterating the self-loopk A gk, While w(b) describes the arrays corresponding to
runs going through the self-lodptimes. The second conjunct af(b) uses the closed form of
the b-th iteration of\, denoted\P, in order to capture the possible relations betwieemd the
scalar variableb corresponding to the paramet@ré A, created by iterating the self-loop.

Theorem 4 Given a state-consistent CA A with index countexsd given a dependenéysuch
thatA(A) — 8, we havex(A) C [[¢pa]], where:

e Oa= AlL;0i, whered; is the formula corresponding t@X, for all 1 <i < n, and

° ﬂf,ﬂlg,...,ﬁlﬁ are the K-abstractions corresponding to the equivalenessgs induced
by d oni.

5 Array Manipulating Programs

We consider programs consisting of assignments, conditgtatements, and non-nested while
loops in the syntax shown in Figure We consider a very simple syntax to make the presentation
of the proposed techniques easier: various more compléxrésacan be handled by straightfor-
wardly extending the techniques described below.

A state of a progranis a pair(l,s) wherel is a line of the program anglis a state(a, 1)
defined as in SectioB. The semantics of program statements is the usual one [(&5))., For
simplicity of the further constructions, we assume thabvabof-bound array referencexcur in
the programs. However, the approach can be extended todedkefsuch references if extended
as described in AppendB.

Considering the program statements given in Figyree have developed a strongest post-
condition calculus for the*Vv*-SIL, given in AppendixA. This calculus captures the semantics
of the assignments and conditionals, and is used to deakiateequential parts of the program
(the blocks of statements outside the loops). Itis also shbat3*Vv*-SIL is closed for strongest
post-conditions.

5.1 From Loops to Counter Automata

Given a loopL starting at control liné, such that’ is the control line immediately following,
we denote byd, = {(s,t) | there is a run ok from (l,s) to (I’,t)} the transition relation induced
by L. We define thdoop dependenc§_ as the conjunction of equalitieg = i, ip,iq € IVar,
where (1)e, = e Wheree; ande; are the expressions initializingandiq and (2) for each branch
of L finished by an index increment statementr(l), ip € | <= ig e |. The equivalence
relation~ on index counters is defined as befargrs iqiff =0 — ip =g

Assume that we are given a lob@s in Figure8 with AVar={ay, ..., a}, IVar={iy,...,ix},
andBVar= {bs,...,byn} being the sets of array, index, and scalar variables, résphsc Let
I1,12,...,In € IVar be the partition ofVar into equivalence classes, inducedby . ForE being
a condition, assignment, index increment, or an entire le@pdefinedg : AVar— NU{_L} as
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a,ai,ap,... € Avar
I,ig,i2,... € IVar ...
b,by,by,... € BVar ...

LHS.
RHS
ASGN
CND.
INC
IFL

IDX
WHILE

LHSp
RHS
ASGN
CNDp
IFp

PROGRAM ::

array variables
index variables
scalar variables

nez
eN

b|afi+c|

LHS +n|i+n

LHS =RHS;

CND. & CND. | RHS <RHS§
incr({[i,]" i});

if (CNDL) ASGN INC
[elseif (CND.) ASGN INC J*
else ASGNINC

[a:i=Db+n, ["a:i=b+n
Whi|e|Dx (CNDL) IF.

b|alb+c]

LHS+N

LHS =RHS;

CNDp & CNDp | RH$ <RHS

if (CNDp) [ ASGN | IFp | WHILE |*
[elseif (CNDp) [ASGMN | IFp | WHILE |* |*

else] ASGN | IFp | WHILE ]*

[ASGN | IFp | WHILE |

(2) If nis zero, we skip it.
(2) Each index variable may be incremented at most once imtnement statemeimcr.

(3) If the condition igrue, we skip the f keyword and thelsebranch.

(4) We assume a 1:1 correspondence between arrays andsimdlittee loop. The indices are
local to the loop.

integer constants
natural constants

left-hand sides in loops
right-hand sides in loop¥
assignements in loops
conditions in loops

index increment)

conditional statements in loops

index declaration and initializatiéh
while loops

left-hand sides outside of loops
right-hand sides outside of lodps
assignements outside of loops
conditions outside of loops

conditional statements outside of lo6Ps

array programs

Figure 7: Syntax of the considered array programs
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Whi|Eal;il:el7,..7akZik:Q< (C)
if (C1)S;...iSh;
elseif(Cy) &;...; % ;

ARE ] D!

elseif(Ch 1) S L. 1

h—1’
else $;..;;

Figure 8: A while loop

de(a) = max{c | afi + c] occurs inE} provideda is used inE, anddg(a) =L otherwise. The
transduceil. = (X, Q,{qo},—,{qfin}), corresponding to the program lotpis defined below:

o X={¢x,ir [1<r <kufw, [1<r<kl<l<d(a)ufwd |1<r<k0<I<
do(ar) U {.pir, pe,wr | 1 <r <mpuU{wyn} wherex/®, 1<t <k are input/output array
counters,p'r/ ° 1<r <k, are parameters storing input/output scalar valuesyand <

r < m, are working counters used for the manipulation of arragssmalars\{ stores the
common length of arrays).

e Q= {do,Ypre: Uoop; Gsuf, Afin  U{q[ [ 1 <1 <h,0<| <ne}.

e The transition rules ol are the following. We assume an implicit constraiht x for
each countex € X such tha’ does not appear explicitly:

= Jo L Opres & = Ar<rem(Wr = P}) AWN > OA Agcroie(ir = 0AX = Wo) A

A e (W, =WwP)) (the counters are initialized).
<I<d (a) '

— For each~; -equivalence clask, 1 < j <n, Qpre 9, Qpre With ¢ = Aj<ri(ir <
&(e)) A&(incr(l)) (T. copies the initial parts of the arrays untouched by

— Qpre LN Qicop: § = A1<r<kir = &(&) (TL starts simulating.).

— For each 1< | <, Goop > d, & = &(C) A Ni<r<1(7€(Cr)) NE(Cr) whereCp = T
(TL chooses the loop branch to be simulated).

&(9)

— Foreach I< I <h,1<r <n,q_; = qwhereq=d if r <n;, andq = Goop
otherwise (the automaton simulates one branch of the loop).

— Qioop LA Osuf & = =&(C) A A1<r<m(Wr = pp) (TL finished the simulation of the actual
execution otL).

— For each~; -equivalence clask, 1 < j <n, andir € Ij, Qsuf LN Osuf, & =1y <
wn A &(incr(lj)) (copy the array suffixes untouched by the loop).
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— Osuf LN dfin, & = A1<r<kir =W (all arrays are entirely processed).

The syntactical transformatiof of assignments and conditions preserves the structure of
these expressions, but replaces éadby the countew; and eacla [i; +c] by wP for b, € BVar,
a, € AVar, i, € IVar, andc € N. On the left-hand sides of the assignments, future values of
the counters are used. The translation of the incrememrstatts is a bit more involved as it
implies “shifting” of the contents of the window containitige array entries that the program
can currently manipulate:

e &(n) :=nforneZ,&by) = w forl<r<m&(i;) := iy for L <r <k, and&(a[ir +
c]) = wcforl<r<kceN,

E(LHS +n) := &(LHS.)+nforne Z,
E&(LHS. =RHS) = (§(LHS)) =&(RHS),

e {(RHS 1 <RHS ) := &{(RHS 1) <&(RHS ),
&(CNDL1 & CND 2) := &(CND_1) AE(CNDL2),
&(
&(

/\0<I§d|_(ar)worfl—1 - W?J /\V\/ir:d,_(ar) = V\ﬁ’de(ar) N i,/, = ir +1,
if d(ar) >0,
e E(incr(iy)) == X =wW¥oAXY =Wy AQl =iy +1, if di (&) =O.

r?

The main idea of the construction is the followinf. preserves the exact sequences of op-
erations done on arrays and scalark,ibut performs them on suitably chosen counters instead,
exploiting the fact that the program always accesses tlagsathrough a bounded window only,
which is moving from the left to right. The contents of thisngow is stored in the working
counters whose meaning shifts at each increment step. ficydar, the initial value of an array
cell al] is stored invvﬁdL(ar) for di(ar) > O (the case ofl_(a;) = O is just a bit simpler). This
value can then be accessed and/or modifiedijawhereq € {d.(&),...,0} in the iterations
| —d.(&),...,1, respectively, due to copyingﬁq into Wﬁqi1 whenever simulatingner(i;) for
g > 0. At the same time, the initial value &f]l] is stored irwv"rvdL(ar), which is then copied into

Wir,q for q € {d.(a;) — 1,...,1} and finally intox., which happens exactly whep reaches the
valuel. Within the simulation of the nexncr(i;) statement, the final value af[l] appears in
x?, which is exactly in accordance with how a transducer exgges change in a certain cell of
an array (cf. Def2).

Note also that the value of the index countgrss correctly initialized via evaluating the
appropriate initializing expressioms, it is increased at the same positions of the runs in both
the loopL and the transducel,, and it is tested within the same conditions. Moreover, the
construction takes care of appropriately processing tray aells which are accessed less than
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the maximum possible number of times (i.e., less thaa, ) + 1-times) by (1) “copying” from
the inputxir counters to the output® counters the values of all the array cells skipped at the
beginning of the array by the loop, (2) by appropriatelyisgtthe initial values of all the working
array counters before simulating the first iteration of thepl, and (3) by finishing the pass
through the entire array even when the simulated loop dogsass it entirely.

The scalar variables are handled in a correct way too: Thpirtivalue is recorded in thg
counters, this value is initially copied into the workingueersw, which are modified through-
out the run of the transducer by the same operations as the@fgie program variable, and,
at the end, the transducer checks whethemptheounters contain the right output value of these
variables.

Finally, as for what concerns the dependencies, note th#telrrays whose indices are
dependentin the loop (meaning that these indices are aeldamexactly the same loop branches
and are initialized in the same way) are processed at the sian@én the initial and final steps of
the transducers (when the transducer is in the controlsigieor gsyf). Within the control paths
leading fromgjoop tO Gioop, indices of such arrays are advanced at the same time aspise
directly correspond to the branches of the loop. Hence, tir&ing counters of these arrays have
always the same value, which is, however, not necessasdlgdke for the other arrays.

It is thus easy to see that we can formulate the correctnetb®e dfanslation as captured by
the following Theorem.

Theorem 5 Given a program loop L, the following hold:
e T, is a transition-consistent transducer,
e O(L)=0O(T.), and
o A(TL) —0L.

The last point ensures that is a safe over-approximation of the dependency between the
index counters of_. This over-approximation is used in Theorérno check whether the post-
image of a pre-condition automaténcan be effectively computed, by checkidg — A(A). In
order to meet requirements of Theordmone can extend, in a straightforward way to copy
from the input to the output all the arrays and integer vaeswhich appear in the program but
notinL.

Note that the described translation is not intended to beptimal as possible—it can for
sure be optimized and one can also use common static an&bysefurther optimization of the
obtained transducers. For example, one can always in asstanay (using substitutions of the
assigned values) compress each loofp agimulating a single branch afinto a self-loop.

6 Examples

In order to validate our approach, we have performed préabacept experiments with several
programs handling integer arrays. Tatileeports the size of the derived post-image automata
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(i.e., the CA representing the set of states after the maigrpm loop) in numbers afontrol
statesandcounters The automata were slightly optimized using simple, ligkityint static tech-
niques (eliminating useless counters, compacting se@seoicidling transitions with the first
tick transition, eliminating clearly infeasible transmis). The result sizes give a hint on the
simplicity and compactness of the obtained automata. Agmiotype implementation is not
completed to date, we have performed several steps of th&ldteon into counter automata and
back manually. The details of the experiments are given ipefp<C.

Table 1: Case studies
| program | control stateg counters||

init 4 8
partition 4 24
i nsert 7 19
rotate 4 15

Theinit example is the classical initialization of an array withaer Thepartition
example copies the positive elements of an ag@yto another arrayp, and the negative ones
into c. Theinsert example inserts an element on its corresponding positi@nsorted array.
Ther ot at e example takes an array and rotates it by one position to theHer all examples
from Tablel, a human-readable post-condition describing the expedtect of the program has
been inferred by our method.

7 Conclusion

In this paper, we have developed a new method for the verditatf programs with integer
arrays based on a novel combination of logic and countemzaii. \We use a logic of integer
arrays to express pre- and post-conditions of programsteeiddarts, and counter automata and
transducers to represent the effect of loops and to dectdéraents. We have successfully val-
idated our method on a set of experiments. A full implemeoadf our technique, which will
allow us to do more experiments, is currently under way. ftiture, we are, e.g., planning
to investigate possibilities of using more static analytse&irther shrink the size of the gener-
ated automata, optimizations to be used when computingitnaclosures needed within the
translation from CA t&SIL, adjusted for the typical scenarios that happen in oumrggtétc.
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A Post-condition Calculus

In this section we give rules to obtain the strongest postitimm for SIL formulae expressing
configurations of arrays w.r.t. statements of the prograra.al¥o explain how to decide verifi-
cation conditions involvingIL formulae.

Assignements It is sufficient to consider basic assignements of the forthé & RHSwhere
b is a scalar variable anldH Sdoes not contaibh and (2)a[b+ c] = RHSwherea s an arrayp
a scalar variable; a positive constant anldH Sdoes not contaia. Other assignements can be
simulated by several of these basic assignements.
Let us start with assignements of the fobm=- RHS Thenpost @) is defined as

0./ /b Ab= RHS

whereq[b//b] is the formulap with all free occurrences df replaced by'.
We continue with assignements of the foafb + c| = RHS We suppose that the only oc-
curences ob in @ are free. Therpost(g) is defined as

Ja.gla/alb+c|] Aalb+c]=RHS

whereg@[a/alb+ c]] is the formula where all “occurrences” afb + c] are replaced bg. Here
an occurrence ad[b+c] is an occurence @t] wheret is some index term which has potentially
the value ofb+ c. We obtainga/alb+ c|] in the following way:

e Replacep by an equivalent formulg where occurrences @b+ ] are isolated.q is
given as follows.

— Replace all subformulae of the fonn=Vj.G — V in @by ¢/ Ay’ which is obtained
as follows. LetT be the set of index terms accessai V. Then replace the guard
G by GA Aie1 b+ Cc#t to obtainy’. LetC be the set of constants appearinglin
Theny” is given as\ycc(G — V)[(b+c—c)/]]

e Now replace all occurrences afb+c| in ¢f by a.

Conditionals statements We consider a simple statement of the forfmCOND, ASGN,
else ASGIBL The other conditional statements can be handled in a vemesiway.

Let¢ be aSIL formula. Then the postcondition of the statement is givethbydisjunction of
the postcondition oASGN, of ¢ ACOND, and of the postcondition &ZSGN, of $ A ~COND;.

Closure under post-condition of the3*V* fragment It is clear that if¢ is a formula in3*V*-
SIL, then its post-condition is id*v*-SIL as well since only one existential quantifier is added
by the post-condition computation.
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Deciding verification conditions The user can specify a postconditipnn the v* fragment
of SIL, i.e. all formulae which when written in prenex normal foravk the quantifier prefix
Vii...Vim, Whereiq,...,im are index variablesy can contain freely occurring array and scalar
variables.

Then, checking if a formulg in 3*v*-SIL obtained as a computed postcondition entgils
is decidable since the validity df —  is equivalent to the non-satisfiability ¢fA —y. This
formula is in3*v*-SIL whose satisifiability problem is decidable due to Theom
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B Transducers Checking for Out-of-Bound Array References

In order to be able to check faut-of-bound array referencesve may assume that the set of
scalar variables used in the given program contains a \lattiglfor each array variable c Avar,
which stores the assumed length of the aaa§ We can now extend the translation from loops
to transducers, which we presented in Sechdh as follows. We translate a lodpof the form
depicted in Figure to the transducef,. = (X, Q,{qo}, —,{qfin, derr } ) defined below:

o X={d i |1<r<klu{w,|1<r<kl<I<d(a)ju{wl, |1<r<k0<I<
do(ar) U {.pir, pe,wr | 1 <r <mpuU{wyn} wherex/®, 1<r <k, are input/output array
counters,p'r/ ° 1<r <k, are parameters storing input/output scalar valuesyand <

r < m, are working counters used for the manipulation of arragssmalars\{ stores the
common length of arrays).

e Q= {0o,pre Qloop; dsuf, dfin, Goob; Qerr } U {Q{ |1<r<h0<I <n}.

e The transition rules o are the following. We assume an implicit constraiht= x for
each countex € X such tha’ does not appear explicitly:

— Qo L Gpres & = Ar<remWe = P}) AWN > OA A g oi(ir = 0AX = Wo) A

A e (W, =wP)). The counters are initialized.
<I<d (ar) ’

— For each~; -equivalence clask, 1 < j <n, Qpre s, Qpre With ¢ = Ajr(ir <
&(e)) A&(incr(l)). T copies the initial parts of the arrays untouched.by

— Qpre LN Qioop: & = A1<r<kir = &(&r). T starts simulatingy..

— Foreach K| <h, ioop 4, gh with ¢ = &(C) A—0(C) A A1<r<1(=&€(Cr) A=0(Cr)) A
&(C) A—0(C)) whereC,, = T. The automaton chooses a branch of the loop to sim-
ulate. Moreover, there are special transitions for the cdisan out-of-bound ac-

cess: For each £ | < h and each disjuna of o(G ), Qioop LN Ooob With ¢/ =

"

&(C) A N1<r<1(2€(Cr)) AW A Gout, and there are also transitiongop L Joob Where

¢" = WA dout for each disjunctp in o(C). The formuladout = Ar<r<m(Wr = pf)
defines the output values of scalar variables.

1ONote thatb, is a program variable whose contents may differ from theaniflength of the simulated arrays
wy that we introduce in our model in order to deal with (possiidylded or, on the other hand, shortened) arrays
having the same length. We can have a situation vilgenwy meaning that the real array is padded in our model by
cells which will not be used within a simulation of the loopn @e other hand, it may even be the casethat b,
which may happen when not all elementsdire really used in the loop (in which case they may effegtibel left
out within the simulation).
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§(S)n-o(s)

— Foreach K| <h,1<r<n,q _, ~———>qwhereq=d} if r <n andq= qioop

otherwise. The automaton simulates one branch of the loopthé case of out-of-

bound accesses, there are also transith¢n§ LALIN Joob for each disjunctp in

o).

— Gioop “E(ON0C) N out gsuf. The automaton finishes the simulation of the loop bodly.

— For each~; -equivalence clask, 1 < j <n, i; € I}, andt € {suf,oob}, g o, Ot

whered =i <wn A &(incr(lj)). These transitions copy the final parts of the arrays
untouched by the loop. The copy is synchronous for deperatesgs. Note that we
do not have to worry about the dependent arrays having diffdengthd, asT, is
now not really accessing the useful contents of the arrayéitee arrays are padded
to the same total lengthy.

— For (t,t') € {(suf, fin), (ooherr)}, g s, O whered = A< <ir = Wn. All arrays
are entirely processed.

In the above, we assume the same syntactical translatadrparticular assignement state-
ments, index increments, initialization expressions, @mtitions as in Sectiof.1 It remains
to define the test for an out-of-bound access within a camitir assignement statemet
O(E) = Vicr<kde ()L ip+de(ar) > by

In order to be able to describe the effect of the above trdosldet us assume that whenever
an out-of-bound array reference happens in a run of a pragifancontrol is transferred to a
special terminal error linerr without modifying the contents of the program variables iy a
way. Given a loof, we then denote b®+i,(L) the set of pairs of states,t) such that there
is a run ofL from (l1,s) to (l2,t), 12 # err, assuming thalt starts at the liné; andl; is the line
immediately followingL. Moreover, let@¢( (L) be the set of pairs of statés t) such that there
is a run ofL from (I1,s) to (err,t). Further, given the transducer derived for a loopL, let
TLf'” andT®" be the transducers obtained frdinby restricting its set of final states {a|tin } or
{qerr }, respectivelly. We can now give an alternative to Theoberharacterizing correctness of
the extended construction.

Theorem 6 Given a program loop L, the following hold:
e T is a transition-consistent transducer,
e O (L)=0(T/) forr € {fin,err}, and
o A(TL) — 0.
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C Details of the Considered Case Studies

C.1 Array Partition

Input: An arraya, parameteb; denoting the number of useful cellsan
Data: by, bz — auxiliary variables
Output: Array ap contains non-negative elements, aregycontains negative elements.

I* ¢: by >0 *|
by :=0;
bs:=0;

Whlle aliilzo,agligzo,agli:;:()(il < bl) do
if a1[i1] > Othen

afiz] r=ai1;
by :=bo+1;
i1+ +;
i2++;
else
aglis] r=ai1);
b3 :=b3+1;
i1+ +;
i3+ +;
end
end
[* @: Vi.(0<i<by—1)= (a]i] >0) A Vi.(0<i<bz—1)=(ag]i] <0) x|

Algorithm 1: Array partition program

Formuladi, expressing the program state at the point where the prognéansethe loop is
constructed according to the postcondition calculus, asrdeed in appendiA. This formula is
then translated to a counter automatgnaccording to sectiod.1 Then, a loop transducéy
is constructed in accordance with sectf The automator\,; describing a program state at
the point where the program leaves the loop is created aiogpia lemmad.

In the split example, we have

Bin=V, >0 A VL=0AVy=0,
Ain = ({V, Vi, Vi), (G, a5 ) {Gi}, —, {ar }), where

Vi >0 A Vb=0 A Vhb=0Aconsi(Vy Vi V) cons{Vi Vi Vi)
—={q — 2 : = gr, 0 —————> g )
AutomatonAy; is depicted in figure€C. 1 We don’t show the automatadf_as its structure is ex-
actly the same as iyt and labeling ofA_’s transitions is a subset 8§, 's transitions. Notably,
guards specifying post-image value countgisyb, ys) are not present iy . Correspondence
between program variables and counter8dn is given in tableC.1
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Figure 9: Array partition - correspondence between progranables and counters

array index | val. counter| val. counter| transducer
variable| counter| atloop exit| at loop entry| output
a i y1 Xy Xq
a i2 y2 X5 X}
a3 i3 % X, xS
scalar || parameter af parameter at
variable| loop exit loop entry
b1 V1 V'l
bz V2 \/'2
b3 V3 \/'3

Bo:

ip<wp AwWg >0 A centip++) A

Bs:

ip<wy AW <OA cnt(ip++) A

W =W A =wg o A=z + 1A W =W A X =wg ) Ay =izl
1= Ayo =" AYa=y3 AW, =Wp+1A 1= AYo=Yo Ayz =28 AWg=wz-+1A
constig, X5, X3, W3 o, W3) A constip, Xp, X3, W3 o, Wp) A
¢CO|’\S[ ¢C0n5[
Cli C22 C3Z
i1 <WN A cnt(ipg++) A ip <wn A ent(ip++) A i3 <wn A cntiz++) A
Vi=X' AYo=Yo AY3=Yy3 A Vi=Y1 AY2=X AYys=y3A Vi=Y1 AYo=Y2 Ayz=23 A
const(iz, Xy, 3, w3 o, consiz, X, X, w8 o, constiy, X X9, w8 o,
i3,5,08, W8 o, W, W3) A i3,5,08, W8 o, W, W3) A i2,%, 08, W8 o, Wa, W3) A
¢C0n5[ ¢CO|’\S[ ¢CO|’\S[
cnt(i):
entliy ++) =4 =w8 ) A ¢ =why A i =i +1
const ontliz ++) 1= =B’ A @' =wBq N i =ip+1
cons(v Vb, Vi, v1, V2, V3, Wy, wiy) entli++) i=x5 =wgy A X =wdy Aif=iz+l
i1 >wy 1= WN/\|2 WN A i3 =wy A

VL >0AL=0AV=0A
Wi o
wB o
WA

i1 = 0/\Xi1 =

ip= OAXé

ig= 0/\><3
)/1 yi A 3/2
1:\)1/\Wz:\liz/\W3:
cons(wy, wa. iz, Xp, X3 o,
2.y, 08,W3 .13, %,

Dconst

Y2 AYz=Yy3A
Vi A

3, W50) A

Vi=Y1AYo=Y2 AY3=Y3
W1 =V AWp = Vo AW3 = V3/\

cons{wy,ws, i1, Xi

i2, X503, W3,.13.X5, 33, w8 o) A

¢COHS[

I2X2 2y

cons{wy, w3, i1, >(1

L=Y1AYo=Y2 AY3=Yy3 A

W o

8 0,13, 3. Wg o) A
¢C0n5t

Figure 10: Array partition - loop post-image represented\qy
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C.1.1 From CAto SIL

Arraysay, ag, ag are independent.

Let us focus on computing the abstraction w.ap. equivalence class. The case &y is
similar (and the case @ is simpler).

The abstraction from a the non-flat CA to a flat CA with DBC coaisits is schematized in
figureC.1.1

@3 = By o D(BY) @c =Ca0D((D(C1VC3))*)

A1 Az As
Gioop

Figure 11: Array partition - abstraction of the post-image

C.1.2 Stateq|oop

Remark that relations apartitionedi.e, the set of counters restricted on every line are disjoin

By : ii<wiAij=i1+1AW,=w
A W(l),o>:0/\Xil/:W(1),o//\X(1)/:‘/"(1),0/\X3/:VV(1),0/\Y1=X(1)//\)/2=X8/
N Xi2/:W87o/
N i/2:i2—|—1
A V\/2:W2+1
A 1d (W8 g, X3, X3, Y3, Vi, Vo, Vs, V1, V2, V3, W, i3, Wiy )
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Bs

> > > > >

i1<W1/\ié|_:i1-|-1/\V\/1:W1

W o < OAXY =w8 o/ AXY = w8 g A8 =W g Ays =8 Ays =8
Xislz""g,o/
ié:i3+l
W3 =ws+1
1d (W3 g, X3, X5, Y2, Vi, Vo, Vi, V1, V2, V3, Wa, 2, Wiy )
D(B3) ig_zil/\V\/]_:W]_
AT
AT
N iézie,
A W3 >ws
A Id(Wg,07Xg?XiZ?yZaVilvvi27Vi37V17V27V37W27iZ,WN)

@z =BroD(BS) : i1>i1+1Ai1<WiAW =Wy
i/2 =ir+1

V\/2 =wr+1

W o> 0AXY =wWig=Yy1=Y2
XizleV%o/

i3> i3

V\/3ZW3
|d(VI1,VI2,V|3,V1,V2,V3,WN)

> > > > > > >

T(HiXIw. @) : T(y2>0)=ayfj]>0

@ ip>iitnAiz<wWiI AW, =W A

i/2: i2+n/\V\/2:w2+n/\

Xizlz""g,o/\

i > i3+ NAW, > ws+nATd(VE, Vb, Vi, Vi, V2, V3, wy)
T(JiIxIw . (AjoghoAy)) : T(v,=n)=by=n
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C.1.3 Stategsyt

C = i1<WN/\iéL:i1+1/\V\/N = WN

i/

Xp =Wl AXY =wWioAyL =X
|d(Y27YS7i27i37Wg7oaX07X|27Wg707X07X|37V|17VI27VI37V17V27V37W1,W2,W3>

> >

C = i2<WN/\i/2:i2+1/\V\/N:WN
AX =wE g MG =wBoAye =8
A |d(Y17Y37i17i37W(1)707X(1)7X|1,W3707X87XI3,V11,VI2,V13,V1,V2,V3,W1,W2,W3)
C3 = i3<WN/\i/3:i3+1/\V\/N:WN
i/
N oXg =wW8 A =wEonys =>§
A |d(Y27Y17i27i17Wg707X07X|27WioaX07X|17V|17VI27VI37V17V27V37W17W27W3>
D(C1VC3) = ilgiaﬁil-i-l
A i3<iz<iz+1
/\ V\/N:WN
A Id(y27i27Wg7O7X87XI27VI17VI27VI37V17V27V37W17W27W3>
Q)((Q)(Cl\/Cg))*) = ilgi&
N i3§i/3
VAN V\/N:WN
A Id(yz,i2,VV870,XS,XIZ,VI]_,VI2,VI3,V]_,V2,V3,W1,W2,W3)
@ =CooD((D(C1VC3))*) = ih=lip+1Ai2 <WyAWY =Wy
i/
A Xy =wWao AWg =28 =Y,
N I&ZI]_
N iéZig
A 1d(Vy, Vo, V5, Vi1, V2, V3, Wi, Wa, W3)

C.1.4 The SIL formula

The formula isgnVj . 0 <j <n — ay[j] > 0A by =n. This can be further simpliedtg . 0 <j <
b, — ap[j]. Notice thatk = 0 here, which simplifies things a lot. Fgywe obtain in a similar
wayVj . 0<j < bz — aglj].
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C.2 Insertion of an Element

Input: A sorted arraya, parameteb; denoting the number of used cells (see
precondition) in the input arrag, b, is an element to insert.
Data: bs, bs —auxiliary variables
Output: Elementb, is inserted inta (hence the number of useful cellsarincreases by
one), the value of a variabl® is an index ofa whereb, was inserted. The scalar
variablebs has a value of an index whelpe was inserted.

[* Wpre:Vi.(0<i<by—2)= (ali] <ali+1])A0<by J
b3:: bz;
bs :=0;

while aj—o(i < by) do
if (ali] < by) then

bs :=bs+1;
I+ +;
else
bs := alil;
afi] := bs;
b3 1= by;
I+ +;
end
end
afby] :=bg;
b1+ +;
I* Ypost: 0<bs<dp A Vi.(0<i<b1—2)=(afi] <ali+1]) A
Vi.(bs <i <bs) = (a]i] =by]) */

Algorithm 2 : Insertion of an element into a sorted array

Formuladi, expressing the program state at the point where the prognéansethe loop is
constructed according to the postcondition calculus, asrdeed in appendiA.

din == 01 A 02 A D3 A da, Wheredy == Vi.(0< i < by —2) = (ali] < afi +1]),

$2:=0<Dby, p3:=bz=Dby, ¢p4:=bs=0

This formula is then translated to a counter automa$graccording to a construction described
in section4.1 So, for each formulg;, i € {1,2,3,4}, we construct an automatdy,. A counter
transduceA, is constructed for the program loop (in accordance withigeét1). The automata
representation of the post-image of the and,op, is constructed by making product of &,
i €{1,2,3,4} andA_ and by adding new value counters (denoteg yexamples) in accordance
with sectiord.1.

It is convenient to make the product of the automata desgipresburger constraints and
of the loop transducer first (we can prevent some redundartiguo appear in the post-image
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automaton by this). By this, we obtaf’ = Ay, ® Ay, @ Ap, ® AL and then we make a product
Aout = A1 ® AL’ to obtain the post-image. Fdéy, see figureC.2, for A_ figure C.2 and forAEUt

figureC.2

{5} tick(i) A T=wy—1

{9} tick(i) A X <X Ai=wy—1

idle(i)

O:i<\/i1—2/\ @ {8} {10} {12}
(=i —2 A tick(i) A tick(i) A
q3 i=wy—1

tick(i) A X <X’ A
4 Q2 —
i<wy-—1 @XI<XI AT <wy—
i <VE -2 A tick(i) A

T,
X <X Ai<wy -1

tick(i) A
i<wn—

3)0=i=vh—2Atick(i) A X <x' AT<wy—1

{4}0=10 A 0>V —2 A tick(i) Ai<wy—1

Figure 12: Counter automat@q representing the forall subformula of the precondition

i <Vi1/\W(1);0 < Wy AW =Ws + 1A
X = w8 o AX =W o Atick(i) Ay =X/ A
cons{ws, Wy,

V1,V2,V3,Va, V5, WN

e

{1}
WN > OA Ginit A
i=0AX :V\/'io/\ (4} (6}
i i>ViA i =WwNA
SuU
cons(ws, Wy, W,

\/1 :Vl/\\liz =VoAW3 =
PWa = Vg AWg = V4 AWs = V5A \ |

wy = Vi4/\W5 :\/{5/\
cons(ws, Wz, Ws,

cons(ws, Wa, Ws, )
i i,X X0 wg
""" Vi Vh, VbV VE
Vi, V), Vig, Vg, Vs, 12 Y3 Va0 Vs
V1, V2, V3, V4, V5, W )

V1, V2, V3. V4, Vi, WN )
<V AWG g > W AWy =W oA

Wy =wg o AXY =wzA
K = w8 o Atick(i) Ay =" A
cons{ws,

Vi, Vo, Vs, Vi, Vs,
V1,V2,V3, V4, V5, WN

V1.V2,V3, V4, Vs, WN )

i<W AXY =wg

K = o/ Atick(i) Ay =
cons(v"l.v"z.v'é.v';l,vis,
V1,V2,V3, V4, V5, WN

Figure 13: Product of a loop counter transduBemwith automatad,, Az andA4 (note: dinit :=

0< Vi AV =V, AV = 0).
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AutomatonAgy; can be simplified further. Firstly, every non-loop, nortiediand non-final
state can be eliminated by composing its incoming and outa@rmansitions. Formally, let
in(s) (out(s)) be a set of all incoming (outcoming) transitions of staté&very states which is
neither initial nor final nor it contains any loops can be @hiated by composing evetye in(s)
with everyt’ € out(s). In our framowork, this elimination can be applied to statdere all
incoming transitions are idle or where all outcoming trédoss are idle (otherwise we would
lose state-consistency). With this additional conditibis simplification can be applied to states
(Gl Gioop)s (Af,Cloop), (Af,Gsuf) in the insert example.

Secondly, every non-trivial strongly connected compoisenbf the automaton can be anal-
ysed by constructing a dependency graph of its transitidinss technique may discover that
loops (or transitions, generally) can be performed onlyoims order. If this leads to simplifica-
tion of ascc(e.g. sccbecomes flat), then thisccis replaced by the dependency graph. In the
insert example, this is the case of stalg go0p), Where the dependency analysis discovers that a
transitiond 7 3y can never be followed b7 ») (analogically for statéds, gioop) and transitions
b(113) andd(112)).

Both previous optimizations have been implemented in th&TRLibrary. The result of this
optimization, an automatofy,’, can be seen in figur€.2 Moreover, by a simple analysis of
the loop, it can be found out that variablesandb, are never assigned, so the loop transducer
does not have to use auxiliary countessandws.

b(134)
“’ D D

Figure 14: Insert example, the post-image automa&igg (idle transitions are marked, the rest
are ticks).

39



b1
b2
b3
da
bs
bs

do := ¢<1 1)(s, 2)(134)(136)
$10 = ¢ (1,1)(5,3)(134)(136)
11:= $(104)
$12 1= §(12.2)(134)(136)
$13 = §(12,3)(134)(136)
$14:= d(125)(136)

/

Figure 15: SimplificatiorAo of the post-image automatdy,.

Definitions of transition labels:
b1 : O=i<Vi—2AX<(X) Ai<wy—1
Wy > 0A0< Vi AV =Vh AV =0AX :vvio/\v"l:vl/\v"2:vz/\W3:v'§/\w4:v';1/\w5:v';5
W o < Wo AWh =ws +LAXY =wf g AX =W o Atick(i) Ay =X

A ConS(W37W47 VI17 VI27VI37VI47VI , V1, V27V37V47V5)

b2 @ O=i<V—2AX<(X) Ai<wy—1
W > 0A0< VYAV = Vo AVE = 0AX =W) o AV] = VIAVH = Vo AWg = V3 AW = V4 AWs =V
W0 > Wo AW, = W8 g Aws =W g AXY =wa AX = w8 o Atick(i) Ay =X
A consi(Ws, Vi, Vb, Vi, Vi, Vi, Vi, V2, V3, Va, V)

b3 : O=i=Vi—2AX<(X) Ai<wy—1
WN > 0A0 < VAV = Vo AVE = 0AX = W) o AV] = VIAVh = Vo AW = V3 AWg = V4 AWs =V
W o < W2 AW :W5+1Ax°’:\/v‘l)pri':vv‘io’/\tick(i)Ay:xo’

A ConS(W37W47 VI17 VI27VI37VI47VI , V1, V27V37V47V5)

40



ba

s

b6

bo

O=i=Vi—-2AX <) ni<wy—1

W > 0A0< VY AVE = Vo AVE = 0AX =W) o AV] = VIAVH = Vo AWg = V3 AWy = V4 AWs =V
W0 > Wo AW, = w8 g Aws =W g AXY =wa AX = w8 o Atick(i) Ay =X

cons(Wa, Vi, Vb, Vi3, Vi Vi Vi, V2, V3, Va, Vi)

O=iAVi=1Ai<wy—1

WN > 0AV3=Vp AVs =0AT =0AX =W g AV] = VI AV, = Vo AW3 = V3 AW = Vy AWs = Vg
WE o < W2 AW :W5+1Ax°’:vv‘iOAxi':vv‘io’/\tick(i)Ay:xo’
CONS(Wa, Wy, Vi, Vb, Vi3, Vi, V., Vi, V2, Vi3, Vg, Vis )

O=iAVi=1Ai<wy—1

Wn > OAVE =VHAVE =0AT =0AX :vvio/\v"l:vl/\v"z:vz/\W3:v'§/\w4:v';1/\w5:v';5
W0 > Wa AW, = W8 g AWs =W g AXY = ws A X = w8 o Atick(i) Ay =X

CONS(Wa, Vi, Vb, Vi3, Vi, Vi, Vi, V2, V3, Vs, Vi)

b7 : i=Vi-2AX<(X) Ai<wy—1
A Wo <o AW =Ws+L1AXY =wg o AX = w8 o/ Atick(i) Ay =X
A CO”S(WS,W4,\/i1,\/i2,\/i3,\/i4,\/i5,V]_,V2,V3,V4,V5>

bg : i=Vi—2AX<(X) Ai<wy—1

> > > >

AW o> W2 AWy =WE g AW = Wg g AX —wWsAX = Wi o' Atick(i) Ay = x
A CONS{(Ws,Vy, V5, Vi3, Vg, Vs, V1, V2, V3, Va, Vi)

O=i=wy—1

Wy > 0A0 < Vh AV =Vh AVE=0AX =W g AV] = V1 AV = Vo AWg = V3 AWg = Vi AWs =V
i =Vi — 1AW, = V3 AW, = V4 AWE = V5 A

W o < W2 AW :w5+1/\x°’:vv‘io/\x":vv‘io’/\tick(i)/\y:xo’

ConS(W37W47VI17VI27VI37VI47VI 7V17V27V37V47V5)
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d10 : O=i=wy—-1

WN > 0A0 <y AV =VhAVE = 0AX = W) o AV] = VIAVH = Vo AWg = V5 AWy = V4 AWs =V
i =Vi— 1AW, = V3 AW, = V4 AW, = V5 A

WE g > Wo AW = WE g AWs = W] g A X =wzAX' = W] o' Atick(i) Ay =x

consi(Ws, Vi, Vh, Vi, Viy, Vi, Vi, V2, V3, Va, Vi)

> > > >

b11 ¢ I >VIAW3=V3AWg =V4AW5 = V5 A
A CO”S(Wg,W4,W5,|,X 7X07W27O7y7 \/17\/'27\/'37\/'47\/'57V17V27V37V47V5)

¢12 0 i=wn-1
A T=V]— 1AW =V3AW; = V4AW; = V5 A
A W <o AW =Ws+1AX =wWE o AX = w8 o Atick(i) Ay =x"
A CONS(Wa, Wa, Vi, Vi, Vi, Vy, VE, Vi, V2, V3, Vg, Vi)

b1z 1 i=wn—1
A T=V]—1AW; =V3AW; =V4AW5 = V5 A
A Wio>W2/\V\/4:W270/\V\/3:Wio/\x0/:Wg/\xi/:Wi()//\tick(i)/\yzxol
A CONS{(Ws, V1, V5, Vi3, Vg, V5, V1, V2, V3, Va, V)

14 i=wn—1
A X =w8 oA =w8 o Atick(i) Ay =X
A cons(Vi,Vé,Vé,V;l,\/ ,V1,V2,V3, V4, Vs)

G15 1 CONS(Wz, Wa, W, i, X, X%, Wi o, Y, Vi, Vi, V3, Vg, V5, Vi, V2, Vi3, Va, V)
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C.2.1 Postcondition computation

Where .
932= 072/ \X =Wiy Ny =W’ (and impliesy <)
033 =073/ Wa=w3 <X =WjyAY =wj; (and impliesy <)
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C.3 Array Rotation

Input: An arraya;, parameteb; denoting the number of used cellsan

Data: Auxiliary arrayap, which used for specification of postcondition, keeps a aufpy
ai, auxiliary scalar variable, holding value of the first element af.

Output: Array a; is rotated by one to the left.

I* Ypre: b1 >0 A Vi.(0<i<b—1)= (ay]i] = ayfi]) x|
by :=ay[0];
while aj—o(i < bj —2) do
al[i] = al[i + 1];
I+ +;
end
al[bl—l] = bz;
I* Wpost: Vi.(0<i<b;—2)= (ai]i] = ai+1]) A
Vi.(bl—lgigbl—l):>(a1[i]:b2) */

Algorithm 3: Array rotation

A loop post-image counter automaton is constructed in a saarer as in split and insert
examples. By a simple analysis of the loop, it can be foundraitvariableb; is never assigned,
so the loop transducer does not have to use auxiliary counteFurthermore, we have to deal
with variables which are not used in the loop in this example:

e scalar variables — scalar varialiigis not used in the loop, the product is modified in the
way that the initial transition containsvg = v» constraint

e array variables —array variabdg is not used in the loop, the product automaton is modified
in the way that every transition contains¢a= y» constraint. iy andi, are dependent in
the precondition) and ticks if and only ifiq ticks.

o1 1 O={iyiz} =wn-1=v; -2

Xp =X AX] =V

Wn > 0AV] =VIAVL = Vs

X) = Wi o AWE g = Wim

X' :W(l),l/\xil/ :le,l/\W(l),O/ =W AwWg, :V\"i,ll/\tiCk(il,iZ) Ay =X Nxo =Y,

> > > > >

ConS(\,I]_?Vl?WN?VIZ?VZ)
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b2

b3

4

> > > > > > > > > >

> > > > >

i1 <V —2A i <wWyA
B = A B = oh
b =W AW = w8 i b =Wy AW = w8 1A
wo /= wh o Atick(in) Ayp =x" A w8y =wh " Atick(in) Ayp = A

cons(vi1 V1, W) cons(\/il, V1, WN)

\/1:V1Ai1:0A i1>\/i172/\ “ i =WNA
@ Xy =W g Aw :"‘)1,1A ons’(i13xi1>>€,vs/’1_’1,v@_’03v@13y1 U °n5(i1>xi1~ngwi,lvvﬁ,o~vﬁ,1>yl@
. . . (=} 1 .
ONSHiz, Xy, €. 1.8 o, W8 ;.2\ Vi v ) N Vi v w)

Vi, v, W) {3} {5}
{1}

wy > 0A

Figure 16: Loop automatofy

OZ{il,iz} :WN—l:Vil—l
%z&A&:@ |

Wy > 0AV] =VIAVL = Vs

Xy =W gAWE g =W

X =Wo o AXY = Wi AWR g = W81 AWR /=W ' Atick(in,iz) Ayr =28 A =2

Cons(\,I]_?Vl?WN?VIZ?VZ)

0= {il,iz} < WN —1/\{i1,i2} <Vi1—1
xilzxiz/\xi_lz\/"z |

Wn > 0AV] = ViAW, =

Xy =W o AWS g =W

X{ =Wi1 A = Wy AW g =WE i AWR = Wi171/ Atick(in,iz) Ayr =3¢ A%y =Y

g

ConS(VILVl?WN?VIZ?VZ)

OZ{il,iz}:Vil—1<WN—1
xilzxiz/\xillz\/"2 |

Wy > 0AV] =VIAVL = Vs

Xy =W g AWE g =W g

X3 =W A = Wj1,1 AWE o =WE g AWg, = Wi1,1/ Atick(iz,iz) Ayr =3 AX, =y

const(Vy, vi, Wy, Vy, Vo)
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{4} {iz.ip} = 0A{in.in} < Vi — 1A tick(iy,ip) AX] =xbA X =Vh A {iz,in} =wy —1

{8} tick(iy, |Z)A><'1 Xz/\{ll i} =wy—1

{iz,iz}=0n

idle(iq, {22} i {7} y
{izi2} =0 liziz} =vy —1A 11
X {ig,iz} <V —1A |ck(|1 |2)/\x1 x2 tick(ig,ig)A
ql tick(iy, |2 /\><1 X, q2 {igig} <wy—1 q3
{i1, lz} <WN h‘g I —1n T

tick(is, |2)/\>(1 x2 {ig,in} <wy —1
{iz.ig} <wn -1

{iniz} =wn -1

{3} {in,in} = 0A{in in} = Vi — 1A tick(in,in) AX) = xhA X =Vh A iz in} <wn—1

Figure 17: Counter automataf representing the forall subformula of the preconditiontifop
mized byb; > 0 formula — 2 transitions were be removed).

3.0 =" (G Goop) @2

(53

G2, Qsuf

74

Y

Figure 18: Rotation example, the product automaton (idladitions are marked, the rest are
ticks)

i, Qsuf
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03
(1,1)(2,2)

d2

[}
(5,3)(7,4)

o1
(1,1)(4,2)(12,3)(12,5)

910
(11,4)(12,5)

64
(1,1)(1,3)(3,4)

Figure 19: Rotation example, the simplified product autamdidle transitions composed)

s

b6

b7

{il,iz} < WN —1/\{i1,i2} <Vi1—1

X = X%

X; = Wi i A Xil/ = Wj171 /\W(1)7o/ =Wy, /\W(1)71/ = Wi171/ Atick(i,i2) Ayr =X AXo =Y>
ConS(Vi:IJVl?WN?ViZ?VZ)

{il,iz} = WN —1:\/i1—2
X =%
X = W81 AXY = Wi AWR g = W81 AWR =W ' Atick(in,iz) Ayr =28 A =2

constVy, vi, Wy, Vy, Vo)

{.i]_,iz}. = WnN —1>Vil—2
X = X%
X3 =W A = Wi AWE g =wWE AW = W'1,1/ Atick(iz,i2) Ayr =3 AXo =Y>

constVy, vi, Wy, Vy, Vo)
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bg ﬁbb}:ﬁ—l<wN—1
A =wioA Xill = Wj1,1 AW = Wi g INUER Wi171/ Atick(iz,iz) Ayr =X AXp =y>

A ConS(VILVl?WN?VIZ?VZ)

bo @ {igizf <wy—1
A OG =W AXY = Wh g AWE G = WR AWy = wh o Atick(is,iz) Ayr =3¢ AXe =2

A cons{Vy, Vi, Wn, Vb, V)

10 : Aigizf=wn—-1
A= W(1)70/\X|1/ =W /\"\’(1)70/ =Wy /\"\’(1)71/ = Wl171/ Atick(iz,iz) Ay1 =X AXp =Yo

gl

N ConS(VILVl:WN?VIZvVZ)

C.3.1 Postcondition computation

We unfold theds loop once. Then, we translate the ticks before the unfoldep:|

03AD5HT) © d3AWS; =wh AXY =35 AXy =y
To(d3A D5 (T)) : a[0] = bp A&y[0] = ap[1]

dsADsH(T) 05X =X AXY =y
T(dsAOH(T)) @ aufl] = ap[2]

Now we translate the loop:

b2=0s5(T)Ads :© dsAWE,; = Wj171
T(03) : afi] =apli+1]
To(d2") : n+2=Dbp—1

Here we used the initial value ofn the unfolded loop and the exit conditidn= b, — 1.
Putting it all together we obtain:

dn. a0 =az[l Aay[l] = a2 A(Vi.2<i<n+2—afi| =afi+1)An+2=bp—1
By straightforward simplifications:

Vi.0<i <b2—1ea1[i]:a2[i+1]
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C.4 Zero Array

Input: An arraya, parameteb; denoting the number of used cellsan
Output: All used cells ina are equal to 0.

[* LUpre5blZO |
while gzi—o(i <b;—1) do
afi] :=0;
i+ +;
end
*|

I* Wpost: Vi.(0<i<by—1)= (a]ij=0)
Algorithm 4 : Zero array

) i r_
i<wy —1AX =0A i <wn AXY =wg oA

X = w8 o/ Atick(i) Ay =x0'A X = w8 o Atick(i) Ay = X"
cons{vy, vy, wi, wy) cons(vy, vy, w1, wy)
Wy > 0AV < 1AW = \/"1/\
i=0AX =wf oA i>wp— 1AW = VA i =wnA
@ cons(i,xi,xo,wg_o,y I cons(i,xi,xo,wg_o,y < cons(i,xi.xo,wg_o,y @
- 1100 - 1SU -
Vi, V1, W, W ) Vi, V1, W, W ) U Vi, V1, W, W )

Figure 20: Automata representation of the post-image oténe array program’s loop
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