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Abstract. The MapReduce framework for data-parallel computation was first
proposed by Google [10] and later implemented in the Apache Hadoop project.
Under the MapReduce framework, a reducer computes output values from a se-
quence of input values transmitted over the network. Due to non-determinism
in data transmission, the order in which input values arrive at the reducer is not
fixed. In relation to this, the commutativity problem of reducers asks if the output
of a reducer is independent of the order of its inputs. Indeed, there are several
advantages for a reducer to be commutative, e.g., the verification problem of a
MapReduce program can be reduced to the problem of verifying a sequential pro-
gram. We present the tool J-ReCoVer (Java Reducer Commutativity Verifier) that
implements effective heuristics for reducer commutativity analysis. J-ReCoVer is
the first tool that is specialized in checking reducer commutativity. Our exper-
imental results over 118 benchmark examples collected from open repositories
are very positive; J-ReCoVer correctly handles over 97 % of them.

1 Introduction

MapReduce belongs among the most popular frameworks for data parallel computation.
A MapReduce program [10] consists of several pairs of mappers and reducers running
on a machine cluster for handling big data in parallel. Usually, mappers and reducers are
the only components in a MapReduce program that involve concurrency. Mappers read
data from a distributed database and output a sequence of key-value pairs. The elements
of the sequence (i.e., key-value pairs) with the same key are sent to the same reducer
for further processing. Due to scheduling policies and network latency, the same inputs
may arrive at a reducer in different orders in different executions. Therefore, reducers
are typically required to be commutative, that is, the output of a reducer is required to be
independent of the order of its inputs. The problem of checking whether this is indeed
the case is known as the commutativity problem of reducers [9, 17, 6, 8].

If a reducer is commutative, it will have the same external behaviour under all pos-
sible schedules, and one then suffices with considering any chosen interleaving of input
values when examining its behaviour instead of having to consider all of them. By
fixing a schedule, the verification problem of a MapReduce program reduces to the ver-
ification problem of a sequential program, which is known to be much easier than the
verification problem of concurrent programs.
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On the other hand, the non-commutative behaviour of a reducer is often the source
of very tricky bugs. A study conducted by Microsoft investigated the commutativity
problem of 508 reducers running on their MapReduce server [17]. These reducers were
carefully checked using all traditional means such as code review, testing, and experi-
ments with real data for months. Still, five of these programs contained very subtle bugs
caused by non-commutativity (which was confirmed by the programmers).

However, checking reducer commutativity is a difficult problem on its own right [6,
8, 7]. Even for a simple case in which all values are mathematical integers, it is proved
undecidable in [6]. For the case when all values are machine integers (e.g., 64-bits in-
tegers), the problem is decidable, but the only available algorithm, which was proposed
in [6] too, is of very high complexity and hence of theoretical interest only.

In this paper, we present the J-ReCoVer tool (Java Reducer Commutativity Verifier),
which is available at http://www.jrecover.tk/. The tool implements a heuristic
approach for checking the commutativity problem that—despite its simplicity—works
very efficiently on a large set of practical integer reducer programs as shown by our
experiments. The main ingredient of the approach is a reduction from the commutativity
problem to an SMT problem. The reduction is incomplete but sound. It is accompanied
with several heuristics which enable the approach to scale to real-world examples. For
the case when the reducer is not proven commutative, we complement the approach by
using testing to find concrete counterexamples.

We collected benchmarks from open repositories such as GitHub and Bitbucket
to evaluate J-ReCoVer. With the help of a search engine searchcode.com over those
repositories, we collected 118 programs. We provide this collection of programs to
other interested researchers as a side contribution of the paper. Our tool J-ReCoVer is
able to correctly analyse all but three of the programs.

Related Work. The reducer commutativity problem can be reduced to a program equiv-
alence problem. One creates another program R′ that first non-deterministically swaps
two consecutive input values and then executes the code of R. If R′ and R are equivalent,
using the fact that all permutations of a list can be obtained by swapping consecutive
list elements finitely many times4, R can be proved to be commutative. A series of re-
search works address program equivalence checking (or closely related topics such as
regression verification and translation validation), cf. [15, 11, 3, 13] to name a few.

From a high-level view, checking equivalence of two programs P and P′ can be re-
duced to a sequential verification problem by executing P′ after P, followed by checking
whether the two programs always produce the same outputs. The approach can be made
more efficient by finding the right synchronization points and combining the code of P
and P′ in an interleaved manner. A lot of research effort have been invested into finding
good synchronization points. In this work, we propose the head of the top-level reducer
loop as the synchronization point suitable for reducer commutativity analysis. Accord-
ing to our experience, discussed later on, the reducers usually contain just a single such
loop. Moreover, for the case when there are more top-level loops in a reducer, we pro-
pose a way of breaking the reducer into several ones to be checked independently.

4 Here is an example to produce [3;2;5;1;4] from [1;2;3;4;5] by swapping consecutive elements:
[1;2;3;4;5]→ [2;1;3;4;5]→ [2;3;1;4;5]→ [2;3;1;5;4]→ [2;3;5;1;4]→ [3;2;5;1;4].



However, we observe that if one naively reduces the commutativity problem to an
equivalence problem and checks it in a precise manner, many reducers cannot be veri-
fied. Therefore, J-ReCoVer uses an over-approximation of the reducer’s behaviour. This
approximation allows for a much more efficient, yet—according to our experiments—
precise enough commutativity analysis.

Our approach can be seen as using some form of sequentialisation of the concur-
rent behaviour. Sequentialisation is the key approach behind many current successful
approaches for verifying multithreaded programs [14, 12]. However, our sequentialisa-
tion approach is specialised for the case of reducers and quite different from what is
used in sequentialisation of multithreaded programs: indeed, in MapReduce programs
there is no notion of threads nor context switches.

Various forms of sequentialisation are also used in works dealing with the con-
cept of robustness of event-driven asynchronous programs [5] or works dealing with
programs running under some relaxed memory models [4, 2, 1]. However, their compu-
tation models are again quite different from that of reducers, and their results cannot
be directly applied. Besides verification, another interesting research direction, using
commutativity analysis as a component, is synthesis of MapReduce programs [16].

2 Notations and Definitions

We use [n,m] to denote the set of integers {k | n≤ k≤m} and lift the equality predicate
= to tuples in the standard, component-wise, way.

s := 0;c := 0;
Loop{

s := s+ cur();
c := c+1

}
; o := s/c;
out(o)

Fig. 1: A reducer that
computes the average
value.

To present our approach, we introduce a highly simplified
language for describing reducers. Let Var be a set of integer
variables. An integer expression in Exp can either be a vari-
able from Var, a constant value, a call to the cur() function
that reads and consumes an input value of the reducer, a non-
deterministically chosen integer value ∗, or a combination of in-
teger expressions over basic arithmetic operations. A command
in Cmd can be an assignment, a branch statement, a sequence
of commands, or an out(v) statement that outputs the value
of v ∈ Var. A reducer program is defined as s1;Loop{s2};s3
where s1,s2,s3 ∈ Cmd. According to our observation over hun-
dreds of reducer programs in open repositories, reducer pro-
grams are almost always in this form. The Loop{s2} statement enters the loop body to
execute s2 repeatedly for each input element until the entire input list is consumed. An
example of a reducer is shown in Figure 1. In the paper, to simplify the presentation, we
assume that a reducer does never produce any output in the loop body s2. J-ReCoVer
implements an algorithm to deal with an output inside the loop (as briefly mentioned at
the end of Section 4.2).

Some reducers use two (or more) top-level loops to compute the output, possibly
interleaved with some non-looping code. These loops are executed sequentially, repeat-
edly iterating over the input list from its beginning. For example, for calculating the
standard deviation, one first computes the average of inputs and then uses it to compute
the final result (using two passes over the input list). In that case, we suggest to verify



the reducer by first partitioning it into two (or more) reducers, each containing a single
top-level loop, and then verifying these reducers separately.5 The top-level loops com-
municate through shared variables. After the transformation, reducers corresponding
to the second top-level loop (and possibly further such loops) will work with random
initial values of the shared variable, which over-approximates the original behaviour.
In our experience, the second (or further) top-level loop are usually commutative even
with arbitrary initial shared variable values, and so J-ReCoVer can be used to handle
such reducers.

3 Overview of the J-ReCoVer Tool

The input of J-ReCoVer is a reducer program written in Java, which is the most popu-
lar programming language used in the Hadoop MapReduce framework. The J-ReCoVer
tool has three main components, Preprocessor, Prover, and BugFinder. As the name
suggests, Preprocessor reads as input a reducer program and performs the required pre-
processing. The goal of Prover is to show that a given reducer is commutative, and
the goal of BugFinder is the opposite. The architecture of J-ReCoVer can be found in
Figure 2. The user can input a reducer program to J-ReCoVer either through our web-
interface or use a binary application installed on his/her own machine.
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Fig. 2: Overview of the J-ReCoVer tool.

The Preprocessor component
first compiles a reducer program to
bytecode and uses the tool Soot6 to
further convert it to the so-called
“Jimple” format, which is an in-
termediate language designed to
simplify the analysis of Java pro-
grams. Under the Hadoop MapRe-
duce framework, the permutation
of the input is handled by the
scheduler/shuffler component and
is affected by issues like network
latency, which are not controllable
by programmers. In order to deal
with such issues, we wrote our
own dummy Hadoop environment
for the reducer as a part of the Preprocessor component so that the input order of the
reducer is now controlled by J-ReCoVer. Finally, the Preprocessor performs a program
transformation to simplify the analysis.

The BugFinder component generates random pairs of lists, with the list of each
pair being permutations of each other. A concrete counterexample is reported if the
reducer outputs different results for the two lists of a generated pair. Our procedure for

5 Nested loops can be removed by adding additional branch statements since both the inner and
outer loop are over the same input list. In fact, such a program construct has never occurred in
the examples we have seen.

6 https://github.com/Sable/soot



generating random pairs is quite naive. We use five different input list of lengths 5, 7, 9,
11, and 13. For each length, we generate 100 lists and pick uniformly at random one of
its permutations. Although the approach is simple; in practice, it finds counterexamples
in all of our non-commutative benchmarks in few seconds.

The Prover component reduces the commutativity problem to an SMT problem.
From a high-level point of view, we are checking equivalence between a reducer pro-
gram and its variant that has two consecutive inputs swapped. We show that this equiv-
alence check can be reduced to a first-order formula and give it to the SMT solver Z3
for solving. In case that Z3 proves the formula unsatisfiable, we know that swapping
any two consecutive inputs of the reducer will not change its output. Since all permuta-
tions of a list can be obtained by swapping consecutive elements finitely many times, it
follows that the reducer outputs the same value for all permutations of the same list of
inputs. In this case, J-ReCoVer stops and reports that the reducer is commutative.

4 The Preprocessor and the Prover

Before entering the Prover component, the Preprocessor first performs a program trans-
formation to simplify the verification task (Section 4.1). The output of the preprocessor
is a commutativity-equivalent reducer program. The algorithm of the Prover is then
explained in Section 4.2.

4.1 The Program Transformation in the Preprocessor

In real-world reducers, it is often the case that the s1 part of the reducer reads from
the input. Since our reduction of the commutativity problem to SMT solving, which is
presented in Section 4.2, concentrates on the influence of the input on the loop s2 only,
we need to transform the reducer such that any input happens in the loop only.

m := cur()+10;
Loop{

t := cur()
if t > m then

m := t
}
; out(m)

Fig. 3: The max+ re-
ducer with input before
the main loop.

To illustrate the issue, we consider the reducer shown in
Figure 3. The reducer presented in the figure remembers the
first input value in the variable m, increases its value by 10,
and then updates its value to bigger ones if any occur in the
loop. The main loop of the reducer is commutative in this
case, but the reducer is not commutative. A counterexample
can be easily found. With the list [1,2,3,4,5] and its permu-
tation [5,4,3,2,1] as the inputs, the reducer outputs 11 and
15, respectively.

Our transformation will handle the example from Fig-
ure 3 as follows. We move the prefix s1 into the loop body
and use a new variable s to force that the execution of s1 is
always before the original loop body. The result after the
transformation is demonstrated in Figure 4. The new re-
ducer program has the same inputs/outputs as the original
one. Therefore, if the new reducer is commutative, the orig-
inal one is also commutative.



s := 1;
Loop{

if s = 1 then
m := cur()+10;s := 2

else
t := cur()
if t > m then

m := t
}
; out(m)

Fig. 4: The max+fix reducer.

In general, the problem with the in-
put before the loop can be handled as fol-
lows, including the case where cur() oc-
curs multiple times in s1. Assume that the
s1 part of the reducer s1;Loop{s2};s3 has
the form c0;x1:=cur();c1; . . . ;xm:=cur();cm
where cur() does not occur in c0,c1, . . . ,cm.
In the transformed reducer, the part before the
loop will be c0;s := 1, and the loop body will
contain several new branch statements. In par-
ticular, for all j ∈ [1,m], we add the branch
statement if s = j then x j := cur();c j;s :=
s+1. Moreover, we transform the original loop
body into the branch if s = m+1 then s2.

4.2 The Prover: Reduce Commutativity Checking to SMT Solving

After the transformation described above, the reducer s1;Loop{s2};s3 never calls the
cur() function in the s1 part before entering the loop. Further, we assume w.l.o.g. that
the reducer reads exactly one input in one loop iteration. When multiple reads from the
input occur in a single execution path from the begin to the end of the loop body, we can
use additional variables and branch statements to break the path into several auxiliary
ones, each reading just once.

The command s2 can be viewed as a function F that reads the values of all variables
and the current input before executing s2 and outputs the values of all variables after s2.
Note that s2 contains no nested loop structure. Hence, a bounded summary in quantifier-
free linear integer arithmetic is sufficient for describing F .

Formally, the function F(n,x1,x2, . . . ,xk) : Zk+1 → Zk returns a tuple of values
x′1,x

′
2, . . . ,x

′
k where n is the current input value of the reducer, xi and x′i are the val-

ues of the variables before and after the execution of s2, respectively, for i ∈ [1,k]. The
construction of F from s2 can be done in the standard way.

We reduce the reducer commutativity verification to checking validity of the fol-
lowing formula for all possible values of n1,n2,x1,x2, . . . ,xk:

F(n1,F(n2,x1,x2, . . . ,xk)) = F(n2,F(n1,x1,x2, . . . ,xk)). (1)

Intuitively, the formula says that starting from the same initial valuations of variables
and with two different input orders, [n1;n2] and [n2;n1], the values of all program vari-
ables are the same after we execute the loop body twice. The first execution reads n1
and then reads n2. The other execution reads the two inputs in the reverse order. Since
any permutation of the input can be obtained by a sequence of permutations of neigh-
bouring inputs, the validity of Formula 1 implies that the permutations will not change
the final variable valuation and hence the output in s3.

Consider the reducer computing the average value (Figure 1) as an example. The
reducer has two variables s and c. We get that Faverage(n,s,c) = (s+ n,c+ 1). In this
case, Formula 1 is valid since Faverage(n1,Faverage(n2,s,c)) =Faverage(n1,s+n2,c+1) =



(s+n1 +n2,c+2) = Faverage(n2,s+n1,c+1) = Faverage(n2,Faverage(n1,s,c)). This im-
plies that the reducer is commutative.

A note on dealing with output in the main loop. So far we have assumed that there was
no output in the main loop and mentioned that this restriction is lifted in J-ReCoVer.
Due to space restrictions, a proper explanation of the way of handling this issue is
beyond the scope of this paper, but we give at least a brief sketch of the solution. In par-
ticular, the Preprocessor performs one more transformation which adds an assignment
v := e for every out(e) statement in the main loop where v is a fresh variable assigned
just once in the loop body. This makes the output visible for our analysis since v ap-
pears in Formula 1. The Prover then makes an additional check whether the value of
F(n,x1,x2, . . . ,xk) projected on v stays the same for any input value n and any initial
values of the variables xi.

4.3 An Optimisation by Live Variable Analysis

We now explain how a simple live variable analysis is used in J-ReCoVer to significantly
improve the precision of commutativity checking.

In our initial experiments, we realised that Formula 1 is too strong, too often violated
by reducers that are commutative. To illustrate the issue, we present a simple example.
In the loop body, the input is first stored in a variable t and this is then assigned to s, i.e.,
t := cur();s := s+ t. After the loop, the value of s is output. In this case, the function
F returns the updated values of both s and t after the execution of the loop body. Ob-
serve that F(c1,F(c2,s, t)) = (s+c1+c2,c1) and F(c2,F(c1,s, t)) = (s+c1+c2,c2). It
follows that Formula 1 is invalid. The second component of the returned tuples, which
causes the invalidity, corresponds to the value of t after executing the loop body twice.
Their values are c1 and c2, respectively, in F(c1,F(c2,s, t)) and F(c2,F(c1,s, t)). How-
ever, in this case, the value of t will not affect the output of the reducer.

To handle the above issue, we perform a simple backward live variable analysis
to collect all variables whose value may propagate to the output command after the
loop execution. Only these variables are then required to be equivalent. For the exam-
ple above, the variable t will be ignored in the equivalence checking and hence the
program can be proven commutative. In our evaluation, the ratio of reducers that our
approach can successfully analyse is significantly increased—in particular, from 6.8 %
to 97.5 %—by using this optimisation.

5 Evaluation

J-ReCoVer is implemented in Java and built on top of Soot 2.5.0 and Z3 4.7.1. We ran
J-ReCoVer on a virtual machine with 4GB of memory running Ubuntu 16.04.5 LTS on
a server with AMD Opteron 6376 CPU.



Table 1: Size of the reducers.

Line Variable Branch
Min. 5 4 0
Avg. 20.5 14.7 1.2
Max. 58 37 5

Benchmark collection In order to properly evaluate the
performance of J-ReCoVer, we used the search engine
searchcode.com to collect Java programs containing the
key strings “public void reduce” or “protected void re-
duce”. Since there is an upper bound on the number of
results returned from the search engine, we added dif-
ferent search filters in order to get more data. We tried
all 12 combinations of six filters on the code length {< 50, 50 ∼ 250, 250 ∼ 450,
450 ∼ 650, 650 ∼ 850, 850 ∼ 1050, 1050 ∼ 1250} and two filters for data sources
{github.com,bitbuckect.com}. In total, we got 11,346 Java programs. We excluded
cases that were not Hadoop MapReduce reducer programs (those do not import the
Hadoop library, do not extend or implement the reducer interface) and obtained 1,273
examples. We further removed duplicates, those that could not be compiled, and those
with non-numerical data types (e.g., strings). We obtained 118 reducers as the final
benchmarks. Table 1 contains more details of the considered reducer functions.

Results J-ReCoVer successfully handled 115 cases (97.5 %) out of the considered ones.
Among them, 106 cases are commutative, while 9 are not. The analysis time ranged
between 9.8 and 8.6 seconds. On average, 72 % of the execution time was spent in
compiling Java source code to bytecode, which is the input of the Soot tool. Further,
27 % of the execution time was spent in the Preprocessor, in which Soot is used to
transform Java bytecode to Jimple and perform the program transformation. The time
spent in Solver is quite limited (< 1 %) since the real-world integer reducer programs
are usually not that big.

There is no other tool that could handle the reducers as they are. Perhaps some
other tools could be applied on the transformed programs, but the transformation would
still be needed, and our SMT-based back-end verifier (the Solver) turned out to work
efficiently. Hence, we did not feel a need to replace it by another verification tool. Of
course, in the future, this can be done if need be.

J-ReCoVer failed in three cases out of the considered ones because the three reduc-
ers use more complicated control structures than what J-ReCoVer currently supports.
Namely, they use a branch statement before entering the loop, i.e., they have the form
of if g then (s1;Loop{s2};s3) else (s′1;Loop{s′2};s′3). In theory, such a program can
be handled by more sophisticated program transformation. For example, we can merge
the two loops and push the outer branch condition into the merged loop. Extensions of
J-ReCoVer to be able to handle such constructions, together with a support for more
data types, is among our future directions.
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