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Abstract. We present a novel method allowing one to approximate complex
arithmetic circuits with formal guarantees on the worst-case relative error, abbre-
viated as WCRE. WCRE represents an important error metric relevant in many
applications including, e.g., approximation of neural network HW architectures.
The method integrates SAT-based error evaluation of approximate circuits into
a verifiability-driven search algorithm based on Cartesian genetic programming.
We implement the method in our framework ADAC that provides various tech-
niques for automated design of arithmetic circuits. Our experimental evaluation
shows that, in many cases, the method offers a superior scalability and allows us
to construct, within a few hours, high-quality approximations (providing trade-
offs between the WCRE and size) for circuits with up to 32-bit operands. As
such, it significantly improves the capabilities of ADAC.

1 Introduction
In the recent years, reduction of power consumption of computer systems and mobile
devices has become one of the biggest challenges in the computer industry. Approxi-
mate computing has been established as a new research field aiming at reducing system
resource demands by relaxing the requirement that all computations are always per-
formed correctly. Approximate computing can be conducted at different system levels
with arithmetic circuit approximation being one of the most popular as such circuits
are frequently used in numerous computations. Approximate circuits exploit the fact
that many applications, including image and multimedia processing, machine learning,
or neural networks, are error resilient, i.e., produce acceptable results even though the
underlying computations are performed with a certain error. Chippa et al. [3] claims
that almost 80 % of runtime is spent in procedures that could be approximated.

Circuit approximation can be formulated as an optimisation problem where the er-
ror and non-functional circuit parameters (such as power consumption or chip area)
are conflicting design objectives. Designing complex approximate circuits is a time-
demanding and error-prone process, and its automation is challenging too since the
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design space is huge and evaluating candidate solutions is computationally demand-
ing, especially if formal guarantees on the error have to be ensured. In our previous
work [10], we proposed a scalable evolutionary circuit optimisation algorithm inte-
grating a SAT-based circuit evaluation method that provides formal guarantees on the
worst-case absolute error (WCAE).

In this paper, we extend the algorithm towards the worst-case relative error (WCRE)
that represents another important error metric capturing the worst-case behaviour of the
approximate circuits. Bounds on WCRE, in contrast to WCAE, require that the ap-
proximate circuits provide results that are close to the correct values even for small
input values. This is essential for many application domains including, e.g., approxima-
tion of neural network hardware architectures [5]. Designing approximate circuits with
WCRE bounds, however, represents a more challenging problem (when compared to
WCRE) as the approximation has to preserve a larger part of the circuit logic and the
circuit evaluation requires a more complicated procedure. To mitigate these challenges,
we propose a novel construction of an auxiliary circuit (so-called miter) enabling an
efficient SAT-based circuit evaluation against WCRE bounds. We integrate this eval-
uation procedure into the verifiability-driven circuit optimisation [10] implemented in
our tool ADAC [1] and thus significantly extend the existing capabilities of automated
techniques for the circuit approximation. Our experiments on circuits with up to 32-bit
operands show that, in many cases, the proposed approach offers a superior scalabil-
ity compared to alternative methods and allows us to construct, within a few hours,
high-quality approximate circuits.

2 Search-Based Circuit Approximation
This section briefly summarises state-of-the-art methods for functional approximation
with the focus on search-based approaches with formal error guarantees.

In functional approximation, the original system is replaced by a less complex one
which exhibits some errors but reduces power consumption, delay, etc. Functional ap-
proximation can then be formulated as an optimisation problem where the error and
energy efficiency/performance are conflicting design objectives. The approximation
process either (1) tries to build an approximate solution from scratch or (2) tries to
gradually modify the original system. The goal of the design process is to obtain an ap-
proximate solution with the best trade-off between the approximation error and resource
savings.

Functional approximation can be performed manually by experts, but the current
trend is to develop fully automated functional approximation methods that can be in-
tegrated into computer-aided design tools for digital circuits. There exist systematic
approaches such as SALSA [11] or SASIMI [12], however, their drawback is an inabil-
ity to generate novel logic structures. Search-based approximation techniques overcame
this problem, and existing literature shows that this approach offers good performance
and scalability [7].

Search-based approximation techniques typically iterate over two basic steps until
a certain termination criterion is satisfied. The first step is the generation of candidate
approximate solutions, and the error of these solutions is evaluated during the second
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step. Eventually, the method produces a solution (or a set of solutions) providing a good
trade-off between the approximation error and resource consumption.

Our search-based approach builds, in particular, on the Cartesian genetic program-
ming [6]—a specialised version of evolutionary algorithms suitable for circuit approx-
imation [8]. The circuits are represented as an oriented acyclic graph where nodes are
located in a fixed-size two-dimensional matrix. New solutions are obtained from exist-
ing ones by simply changing the functionality and interconnections of the nodes.

To obtain a near-optimal solution, search-based techniques typically have to explore
and evaluate a high number of candidate approximations [8]. Therefore, the efficiency
of the methods used to evaluate the approximation error of the candidates is essential
for the performance of the overall approach.

There exist several error metrics characterising different types of errors such as the
worst-case error, the mean error, or the error rate. In this work, we primarily focus on
the worst-case error that is essential when guarantees on the worst behaviour of the
approximate circuits are required. For arithmetic circuits, the worst-case behaviour is
typically captured either by the worst-case absolute error (WCAE) or by the worst-case
relative error (WCRE), defined as follows.

For an original golden circuit G computing a function fG and its approximation C
computing a function fC , we define:

WCAE(G,C) =
maxx∈{0,1}n |int(fG(x))− int(fC(x))|

2m
(1)

WCRE(G,C) = max
n∈N

|fG(n)− fC(n)|
fG(n)

(2)

Figure 1 illustrates the difference between the approximation process targeting at WCAE
and WCRE. This difference, in fact, motivates our work. It shows two sets of circuits
approximating 8-bit multipliers optimised for WCRE (green squares) and WCAE (red
circles), respectively. The plots show the trade-off between the circuit area (directly
effecting the power consumption) and WCRE (left) and WCAE (right), respectively.
First, we observe that circuits optimised for WCAE have very bad WCRE (red dots
left) and vice versa (green squares right). Second, the plots demonstrate that when opti-
mising 8-bit multipliers circuits for WCAE, we achieve about 50 % area reduction with
WCAE = 1 % while we need to set WCRE = 40 % to obtain similar area improvements
when optimising for WCRE. This is indeed caused by the fact that a larger part of the
circuit logic has to be preserved to obtain approximations with low WCRE.

Methods evaluating the approximation error have a crucial impact on the perfor-
mance of the approximation process. A popular class of methods employs circuit sim-
ulation on a set of inputs to evaluate the error. Such methods typically suffer from low
scalability (when an exhaustive simulation is applied) or a lack of guarantees (when
the circuits are simulated for a subset of the possible inputs only). In order to pro-
vide guarantees on the approximation error and scale to complex circuits at the same
time, various formal verification techniques, such as model-checking, SAT solving, or
BDDs have recently been integrated to the approximation process [4, 9]. They typically
employ auxiliary circuits, so-called miters, that combine the original circuit and the ap-
proximate circuit and evaluate the error [2]. In our previous work [10], we proposed
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Fig. 1. A comparison of 8-bit multipliers approximated for WCRE and WCAE.
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Fig. 2. The approximation miter used for WCAE evaluation (left) and the novel construction for
WCRE evaluation (right).

a miter construction allowing one to subsequently use an efficient SAT-based procedure
to check whether the approximate circuit satisfies a given WCAE bound. Moreover, we
proposed a verifiability-driven search-strategy that drives the search towards promptly
verifiable approximate circuits. The strategy introduces a limit on resources that the
underlying SAT solver can use to prove that the WCAE bound is met. This approach
currently provides the best performance for the circuit approximation with WCAE guar-
antees.

3 SAT-based WCRE Evaluation
To evaluate whether the given approximate circuit meets the required bound on WCRE,
we adapt and extend the miter we designed for WCAE [10]. As shown in Figure 2
(left), the miter interconnects the golden circuit G and the candidate circuit C that both
share identical inputs. The subtractor and absolute value blocks allow us to quantify
the approximation error between C and G. Finally, the error is compared to a given
threshold value T , and the output of the comparator is set to logical true if and only if
the threshold T is violated. Thus the miter construction allows us to evaluate whether
WCAE(C,G) > T in a single SAT query. Note that, for a given approximation sce-
nario, the threshold T is constant and can therefore be built into the structure of the
comparator.

3.1 A Generic WCRE Miter
To obtain a WCRE miter, we extend the WCAE miter by adding some components.
Recall that we need to check the satisfiability of the following formula:

max
n∈N

|fG(n)− fC(n)|
fG(n)

> T. (3)
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Note that we do not need to find the maximum of the left-hand side of the formula,
but rather determine if there exists a single input combination for which the bound T is
violated. Therefore, we can replace Formula 3 by the following constraint

∃n ∈ N : |fG(n)− fC(n)| ∗me > fG(n) ∗mG (4)

where T = mG/me. Based on this formula, we build a general WCRE miter using two
multipliers by a constant and a generic comparator, see Figure 2 (right).

3.2 Variants of the WCRE Miter
Observe that the resulting WCRE miter is larger and more complex than the WCAE
miter. This indeed slows down its evaluation and thus reduces the overall performance
of the approximation process. To improve the performance and scalability with respect
to the circuit complexity, we simplify the general WCRE miter and propose three vari-
ants of the miter that are smaller but can be used for certain values of the bound T
only.

As we work with the binary representation of integers, multiplication by the powers
of 2 is identical to a bit shift operation. Thus, each of the constants mG and me can
be expressed using two values: namely, mcx denoting a multiplicative constant and bsx
denoting a number of shifted bits. The original values of mG and me are then computed
as:

mG = mcG ∗ 2bsG me = mce ∗ 2bse

In combinational circuits, a shift by a constant number of bits is represented by a re-
connection of wires only and does not contain any logical gates. This setting allows us
to remove one or even both of the constant multiplications for a subset of target WCRE
error bounds T . If we restrict the values of mg and me to powers of two, we suffice
with utilising bit shifts only. This restricts the obtainable values of T to 1/2bse , e.g.,
50 %, 25 %, or 12.5 %. Adding one multiplier by a constant significantly broadens
the range of supported target values. These can be expressed by one of the formulas:
2bsG/(mce ∗ 2bse) or (mcG ∗ 2bsG)/2bse . However, the constants should be kept small.
Using higher values leads to larger bit widths representing the compared numbers, and
therefore a more complex comparator, thus negating the contribution of this optimisa-
tion.

4 Experimental Evaluation
We have integrated the proposed WCRE miters into our tool ADAC [1] and evaluated
its performance on a benchmark of circuit approximation problems.

4.1 Comparison of the WCRE Miters
In Table 1, we compare the size of the proposed WCRE miters. We select three target
WCRE bounds T for the bit-shift variant and four target error values for one and two
multiplier miter designs. The table shows the average sizes of the different variants of
the miter obtained for the three chosen bit widths in adder and multiplier approximation.
The size is measured in the number of nodes in the AIG graph representation of the
miter. Note that AIG is a basic representation of circuits in ADAC and is directly used
as the input for the SAT solving procedure. A larger size of AIGs negatively affects the
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Table 1. Numbers of AIG nodes for different miters and WCAE bounds T .

Bit shifts One multiplier Two multipliers
T [%] 12.5 25.0 50.0 10.0 33.3 66.7 80.0 30.0 42.9 71.4 85.7

add8 226 228 233 324 327 342 360 447 510 506 519
add16 497 501 502 770 755 773 756 1079 1225 1181 1220
add32 1120 1090 1114 2074 2116 2084 2106 3125 3249 3315 3354
mult4 268 267 273 335 347 356 347 464 499 492 513
mult8 1175 1177 1183 1393 1421 1436 1414 1685 1833 1803 1841
mult12 2617 2621 2622 3032 3057 3060 3051 3512 3748 3726 3756
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Fig. 3. Performance of the circuit evaluation using different WCRE miters, the WCAE miter, and
simulation. Left: Adders. Right: Multipliers.

performance of the solver. We can see that the bit-shift variant is about a factor 2 smaller
than the general construction using two multipliers. For multipliers, the differences in
the size between the variants are less significant as the circuits themselves form a bigger
part of the miter. Note that the average size of the WCAE miter for a 32-bit adder and
12-bit multiplier is 810 and 2437 AIG nodes, respectively, which is smaller than even
the bit-shift variant of the WCRE miters for the corresponding circuits. This clearly
indicates that the evaluation against WCRE is considerably harder.

Figure 3 illustrates how the size of the miters affects the performance of the can-
didate circuit evaluation. In particular, it shows the average number of evaluations per
second (taken from 20 independent runs) when the approximation of adders (left) and
multipliers (right) with different bit-widths (the x-axis) is performed. We also compare
the miter-based methods with full simulation and WCAE miter evaluation.

We can observe that the simulation is considerably faster for small bit-widths, how-
ever, its performance significantly drops for circuits with operands larger than 10-bits.
The proposed-SAT based approach scales much better. For the adders, it provides very
good performance (around 100 evaluations per second) even for 32-bit operands. For
the multipliers (representing structurally more complex circuits), the performance is
much lower and drops to 10 evaluations per second for 12-bit operands. As expected,
the speed of the miter evaluation slows down with increasing miter complexity—the
bit-shift variant is the fastest while the version with two multipliers is the slowest. The
difference in the evaluation speed is negligible for smaller circuits but becomes more
significant for larger bit-widths. Note that the evaluation of the WCAE miters is sig-
nificantly faster due their smaller sizes (e.g. 4-times smaller for the 32-bit adders and
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Fig. 4. The median circuit area of approximate adders (left) and multipliers (right). The red line
indicates the area of the original circuit.

1.5-times smaller for the 12-bit multipliers in comparison to the two multiplier imple-
mentation).

For larger miters, the bounds on the SAT solver resources get applied, and a small
number of circuit evaluation tasks is skipped (e.g., for the WCRE mitters, 0.7 % for the
32-bit adders and 6% for the 12-bit multipliers). The idea is to skip candidates for which
the evaluation takes too long because their successors typically have the same problem
and thus they reduce the performance of the overall approximation process. For more
details, see our previous work [10], where we introduced this, so-called verifiability-
driven strategy.

4.2 Circuit Approximation
In this section, we study how the proposed SAT-based circuit evaluation can be lever-
aged in circuit approximation. Recall that we integrate the evaluation procedure into the
verifiability-driven circuit approximation based on Cartesian genetic programming. The
optimisation is formulated as a single-objective optimisation, i.e., for a given threshold
on the WCRE bound T , the approximation seeks for a circuit satisfying the bound and
having the smallest circuit area1. For every value of T , we run a 2-hours-long approxi-
mation process. To take into account the randomness of the evolutionary optimisation,
we report the median of the circuit area obtained from 20 independent runs. Figure 4
illustrates the results of the approximation process, in particular, the obtained approx-
imate circuits for the 16-bit adders (left) and the 8-bit multipliers (right). The circuits
form a Pareto front that captures the trade-offs between the area and the approximation
error. The red line shows the area of the golden circuit.

For the adders, the proposed approximation method works very well and is able to
successfully approximate circuits up to 32-bit operands (not presented here). Figure 4
(left) shows that, for 16-bit adders, the most interesting solutions in the terms of ac-
curacy and area savings are located in the interval between 30 % and 60 % WCRE.
For smaller target error values, the reduction of the circuit size is negligible. On the
other hand, the solutions with larger approximation errors do not feature further im-
provements. We can also observe a dramatic area reduction between 40 % and 50 %
WCRE.

1 We estimate the area as the sum of sizes of the gates (in the target 45 nm technology) used in
the circuit. The estimation tends to be accurate and also adequately captures the circuit power
consumption [9].
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Approximation of the multipliers represents a significantly harder problem. Recall
that the size of multipliers (and thus also of the miters) grows quadratically with re-
spect to their bit-widths. Therefore, the design space is larger and candidate evaluation
is more complicated as discussed in the previous section. Figure 4 (right) compares the
approximate 8-bits multipliers obtained using the simulation-based and SAT-based eval-
uation procedure. The SAT-based approach slightly lags behind the simulation mainly
in the interval between 25 % and 40 % WCRE. This can be explained by the worse per-
formance of the SAT-based evaluation on the 8-bit multipliers (recall Figure 3 (right)).

As the performance of the simulation-based evaluation is very low beyond 10-bit
multipliers, the approximation process is not able to provide a good approximation of
these circuits within a 2-hours-long run. Although the SAT-based approach (namely
the bit-shift solution) is able to evaluate around 10 candidates per second (for the 12-
bit multipliers), the approximation process also fails to provide good Pareto sets. This
is probably caused by the candidates that are skipped during the evaluation due to the
resource limits on the underlying SAT solver. Note that this behaviour was not observed
for the WCAE approximation that works very well even for 16-bit multipliers despite
many skipped solutions [10]. This again indicates that the WCRE approximation is very
challenging, and future research is necessary in this area.
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