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Abstract. Pattern-based verification trying to abstract away the m@amum-
ber of repeated memory structures is one of the approachehale recently
been proposed for verification of programs using dynamie datictures linked
with pointers. It proved to be very efficient and promising etiended linear
data structures. In this paper, we overview some possdsilitow to extend this
approach to programs over tree structures.

1 Introduction

This paper addresses the problem of formal verificatioproframs manipulating dy-
namic data structures linked by pointgiguch as lists, trees, etc.). In such programs,
many mistakes can be easily made since the source code i§yusatavery transpar-
ent, and the functionality of the program is not apparerti@fitst sight. Consequently,
a possibility of proving correctness of such programs idlyiglesirable. However, the
verification of these programs is also quite complex as @y Hre infinite-state due to
working with unbounded data structures, and (2) the objbetisare manipulated here
are in general unrestricted graphs.

The research on formal verification of programs with dynadata structures is
nowadays quite live, and there have appeared many diffagmbaches in this area,
such as [10,11, 1,5, 2, 9], differing in their formal rootsgdee of automation, and the
kind of program data structures and properties they cafiwémong the recently pro-
posed methods for verification of programs with dynamic d#tactures there is also
the so-callecbattern-based verificatiofiL2, 4]. This method is based on detecting re-
peated adjacent subgraphs in heap graphs and collapsimgrit@a single summary
occurrence (thus ignoring their precise number). The ntelias especially been stud-
ied in the context of verifying extended linear data struesyi.e. data structures with a
linear skeleton and possibly some additional edges on tdgpSdich structures, includ-
ing non-circular as well as circular singly-linked and diyulinked lists, possibly with
additional pointers to the head, tail, etc., are very cominopractice. Pattern-based
verification on these structures has been made fully auemhids 8, 7, 3]. The method
can verify properties like absence of null pointer derafess, dangling pointers, ab-
sence of garbage, but also more complex safety propertgss{gape invariance).

On the above described kind of extended linear structuegtenm-based verification
turned out to be quite efficient. A natural question is theretlibr and how it can be
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extended to programs over tree-like structures. That is, Wwhthis paper, we discuss
the problems that appear in pattern-based verification vemenproceeds from linear
structures to tree-like ones (including tree structureh warent pointers and perhaps
other additional pointers, such as root pointers, pointerseparately allocated data
nodes, etc.). These problems include a need to work witHerdiit kind of patterns and
also a state space explosion problem that appears whenies¢atistraightforwardly
transform the methods from the linear setting into the tetérgy. We outline a way
of how to cope with this state explosion. The results we dieeato not yet provide a
fully satisfying solution, but provide a significant and prising improvement over the
trivial generalisation of pattern-based verification friimear structures to trees. Due to
space limitations, the paper provides just an overview efrdsults—more details can
be found in [6].

Plan of the Paper.The paper is organized as follows. In Section 2, the maircipia of
the original linear variant of pattern-based verificatisiriefly recalled. In Section 3,
the extension of the method to trees is discussed. In Settwwme early experimental
results are presented. Finally, we conclude by a discussidime achieved results in
Section 5.

2 Pattern-Based Verification

In pattern-based verification, sets of memory configurateme represented abstract
shape graphg$ASGs) which are abstract memory graphs with basically type$ of
nodes: simple nodes corresponding to particular concredesallocated in the mem-
ory (a list node, a tree node, etc.) ssuinmary nodelsehind which two or more “sim-
ilar” concrete nodes are hidden (the exact number is altettaway—note that such
nodes cannot be, e.g., pointed by a pointer variable as thiddiclearly make them
distinguishable from each other). The simple nodes ardlé&abwith pointer variables
pointing to them whereas summary nodes are labelled by Swr@tedpattern The
pattern represents a memory subgraph whose two or moresadjacutually intercon-
nectednstanceqor occurrences) are hidden behind the summary node. Thesrard
linked by edges corresponding to the pointer links bindimgnt in the memory and
are labelled by the selectors (likext, previous, | eft, right, etc.) to which the
appropriate pointer links correspond.

When verifying a program within pattern-based verificatione iteratively com-
putes the set of all ASGs reachable at each program lineéc@artprogram statements
are performed on ASGs in three phases: (1) The given ASG iqbiastially) materi-
alisedif the manipulation would cause a pointer variable point sommary node (e.g.,
via a statement like = y->next), which must not happen as the target of the pointer
variable in such a case would not be well defined. That is wheyammcrete occurrence
of the appropriate pattern hidden behind the summary noégphcitly instantiated
and then used. (2) The statement is performed on concret®ryemdes as usual. (3)
The resulting graph isummarisedi.e. searched for repeated adjacent occurrence of
patterns that are then merged into a single summary node.

The idea of pattern-based verification has first appeareiif a semi-automated
framework whose user had to supply not only the input conditioms and the pro-
gram to be verified, but also the patterns to be used for aibistna In the work, linear



structures extended with possibly additional pointer®tae shared nodes (like singly-
linked or doubly-linked lists with head/tail pointers) weconsidered. The approach
was able to handle only a single pattern which restrictedpiglicability to dynamic
structures with a simple, fixed inner structure. In [4, 8,]7 several extensions were
introduced which made pattern-based verification overmabdd linear structures fully
automated (by providing an automated discovery of patjennd enhanced its general-
ity (through a more general definition of a pattern and a jd&gito work with more
than one pattern).

In the rest of the section, we will say a bit more on the pritegpof automated
pattern-based verification on extended linear structuresder to be able to contrast
them with the tree case presented in Section 3.

2.1 The Main Principles of Linear Pattern-Based Verification

Memory patternsonsidered in [4] for extended linear structures are defased 5-
tupleP = (NP, " x”, §° EP) whereNP is a set of nodes” € NP is an entry nodex”
is an exit noded” # x°), S ¢ NP is a set of the so-callesharednodes, and&EP C
NP x Selx NP is a set of edges of the memory pattern (labelled by pointecses).
The entry and exit nodes delimit the linear skeleton of thiteepa and represent the
main connection points of instances of the pattern in caaareemory graphs to their
surroundings. The shared nodes are shared among all iastahthe patterns (like the
head element of a list pointed to by head pointers) and playnmees/hat similar role
as global variables in programs with recursive proceduris. remaining nodes are
internal to the pattern and thus also to its instances.

An automatic discovery of patterisactivated before every summarisation attempt
(in [4], this holds only till some pattern is found since [4] still restricted to a sin-
gle pattern; this restriction is relaxed in [3]). The disepyvof patterns consists in ex-
ploring all nodes of encountered shape graphs and searfirirsyibgraphs that can
be delimited by an entry and exit node (and perhaps shareesh@hd that appears
at least twice in the given shape graph (before and afterriggnal occurrence). For
illustration, the pattern detected when working with syalijhked lists (with data ab-
stracted away) iB1 = ({e,x},e x,{},{(enext,x)}). The pattern discovered in doubly-
linked lists with data stored in separately allocated n@adekwith tail pointers i$> =
({e,x,t,d},ex {t}, {(enext,x),(x,prev,e),(edata,d),(etail t),(xtail,t)}.

Summarisatiorconsists in searching a given shape graph for subgraphisom
phic with known patterns. If at least two adjacent instarafesome patterns are found
(linked via the exit/entry nodes), all nodes belonging testh instances are replaced
with a single summary node (apart from the exit node of theitasance). Some further
restrictions apply ensuring correctness and reversilofithe summarisation—e.g., no
program variable can point to any node of any of the detecistdinces of the pattern.

We then distinguish a complete and a pantiaterialisation In a complete materi-
alisation, the summary node is replaced by two new instaott®e pattern, while in
a partial materialisation, one new instance of the patemserted into the graph (fol-
lowed by the summary node). The former case correspondsiodjast two instances
of the pattern hidden behind the summary node whereas tiee tathaving three or
more. Both of these variants must always be explored as weotcenord the exact
number of summarised instances. In the case of a partiatialéation, we further dis-



tinguish a forward and a backward materialisation dependimthe mutual positioning
of the preserved summary node and the materialised instdrtice pattern.

3 Pattern-Based Verification on Trees

The main contribution of this paper is an extension of patteased verification to pro-
grams manipulatingree structuresThis extension implies changes in all parts of the
method and also a need for some optimisations as a seridesptce explosion prob-
lem appears. Due to space restrictions, all the changesirdefly outlined in the
section, a detailed description together with formal d&éns can be found in [6].

3.1 Patterns and Their Discovery

While in the linear variant of pattern-based verificatioarthwas just one exit node in
a memory pattern, for trees there must be more exit nodesoiw ab to cope with the
branching of the structure. So, now, a pattern is a tépte(N”, e, XP S EP) where
XP < NP is the set of exit nodeand other symbols keep their original meaning. The
pattern of a binary tree would have two exit nodes, in caseroftry trees, there will be
three exit nodes, etc.

The algorithm of dis-
covering patterns is very
similar to the linear case /
with the difference that Q
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to distinguish predecessor
and successors (and, e.g.,
in the case of doubly-linked
lists, this would even lack
sense as predecessors and successors are structuratingdshable), in trees, the
role of a parent is much different than that of successogsdkntification is needed
in order for the search of patterns to be restricted to theesddlow the parent only.
The reason is illustrated in Fig. 1. For simplicity, the naméselectors are omitted. In
Fig. 1(a), a pattern that we would like to be discovered in cam binary trees with
parent pointers is shown. Entry and exit nodes are namediadx;, X2, respectively. A
repeated materialisation of the pattern from a single surymade leads to the struc-
ture shown in Fig. 1(b). However, if we do not distinguish tbke of parent nodes, in
such trees, we can also detect the undesirable pattern shawig. 1(c). If we tried
to materialise this pattern repeatedly, we would obtairsthecture shown in Fig. 1(d)
which is not sensible as there would be two edges (markedondatsses) with the same
selector leading out of a single node.

(b) (© C)
Fig. 1. Patterns in binary trees with parent pointers

3.2 Summarisation

A major change in summarisation in pattern-based veriticatn trees comes from the
fact that trees of different sizes have different numbeils@fes. While summarisation



of any (long enough) linear structure results in one and dmeesabstract shape graph
with one exit node (the end of a list), summarisation of tveet of a different size, if
done in the same way as for linear structures, results iergifft abstract structures that
differ in the number of exit nodes (i.e. leaves), which areswommarised. These exit
nodes together with the graphs rooted at them will be furthéiedtails. Note that tails
may really be subgraphs more complex than a single nodexaon@e, they can have
the form of a node with a self-loop, a node with an attached datle, a node pointed
by a program variable, a beginning of a linear list attacted tree, or generally an
arbitrary subgraph that cannot be summarised.

To cope with the above, we propose a two-phase summaridatitrees. The first
phase is equal to summarisation on linear structures (ufrtorrchanges related to a re-
definition of the pattern). The second phase consists itesing the same tails into the
so-calledmulti-tails which representwo or more equal tailsThe heart of the second
phase of the summarisation is the equivalence relation enails. Let us outline the
main idea of the equivalence here—its formal definition theatechnical and can be
found in [6]. Two tails are equivalent iff they are both lirki the same summary node
in the same way (i.e. via the same edges in both directidmay, dre isomorphic, and
no pointer variable points to any node of any of the taildgtaith a program variable
pointing into them are always unique).

After the first phase of summarisation, the tails are partéd according to the de-
scribed equivalence. Unique tails are then left unchanghde the others are treated
in the following way. From every non-singleton set of thetjpian, one random repre-
sentative is chosen and kept in the shape graph (just thefythe edges leading to itis
changed to a special value specific for multi-tails), andotier tails are deleted. In this
way, it is ensured that arbitrary sets of reachable treeshitrary forms will always
summarise to a finite number of (finite) abstract shape graphs

3.3 Materialisation

The changes in materialisation when using patterns oves tiee the most complex and
are related mainly to the multi-tail concept and to the iasesl number of exit nodes.
Materialisation of a summary node with a left and a right mataltl, which represents
the simplest binary tree structure (and which we considanaiustration example in
the rest of the section), results in over 40 new shape gr&phg.such a high number?

Like in the linear case of a partial materialisation, a nesnarete instance of a
pattern is inserted into the place of the original summaenélowever, as the pattern
has multiple exit nodes, its materialised instance will m@tfollowed by a single new
summary node as in the linear case, but by several new sunmodeg (two for binary
trees) where each of them represents a subtree of the nliatgtinode. Each of these
new summary nodes can have various combinations of tailsnart-tails since it
is needed to cover all possible irregularities of subtrdgb® materialised node. For
example, in the materialisation mentioned above, the nemnsary nodes may have
two multi-tails (the subtrees rooted at them are again prispes with at least two left
and two right tails), or a left multi-tail and a right tail @subtrees have two or more
left tails, but only one right tail), or just a right multiit{the subtrees have at least
two right tails and no left tails), etc. This is the main reasd the high number of the
resulting shape graphs.



Moreover, analogously to a complete materialisation inlitthear case, one has to
also consider replacing the new summary nodes by a concistnice of the pattern.
Finally, we have to even consider a new possibility specifictie tree setting, namely,
the possibility of completely omitting the new summary notiehere are only two
instances of a pattern hidden behind a summary node, onerftdkes the place of the
summary node, one goes to one of the branches, and the céimehbis left empty).

Let us note that not all combinations of tails and multigaikising as described
above are admissible—e.g., if both new summary nodes gesailthe discussed ex-
ample are replaced with single concrete nodes, the condhiaone multi-tail repre-
sents two or more tailsill not hold. In the original abstract shape graph there was
left multi-tail, and so in all resulting graphs there mustbéeast one left multi-tail, or
at least two left tails. Otherwise, some left successordoste The same holds for the
right tails too.

As we already mentioned, materialisation of the simplest structure results in
over 40 new shape graphs. In the case of one additional pgiateting to one of the
tails, the number gets almost 100, and in the case of ternegeg tith one additional
pointer, it becomes over 2000 structures resulting fromragerialisation operation.
This would make the verification infeasible, and so somenoigtitions are needed.

3.4 Optimisations of the Materialisation

The reason of the state explosion within the basic matsadin on trees mentioned
above lays in a too precise representation of the varioagutarities of trees. But, our
experiments show that in practical programs, it is usuatiymecessary to distinguish
between, e.g., a tree with one right leaf (i.e. a leaf thatésright son of its father) and
a tree with two right leaves, which is, however, a distinctibat we enforce by defining
multi-tails as covering two or more tails.

If we change the understanding of a multi-tail framo or more tailsto one or
more tails we achieve a significant reduction of the materialisattatesspace. A ma-
terialisation of a summary node with two multi-tails (thereacase that we used as an
illustrative example in Section 3.3) would then not resuklhape graphs where the new
summary nodes can have normal tails (e.g. a summary nodewéthtail and a right
multi-tail is fully covered with a more general summary ned# two multi-tails since
this summary node now represents a subtree with one or nfoaemtéone or more right
tail). The number of the resulting shape graphs is reducéf.to

How would the situation look like if we continue in the aboveedtion and set the
meaning of the multi-tail taero or more tail® A materialisation of the summary node
with two multi-tails that we considered above would resalbnly two structures. In
the first resulting shape graph, the materialised summaaie meould be replaced by
an instance of the pattern where all exit nodes are summatgswith two multi-tails
(an analogy to the partial materialisation), and in the sdaesulting graph, the mate-
rialised summary node would be replaced by a single tail (ehagy to the complete
materialisation). There would not be needed any combinataf tails and multi-tails
of summary nodes since a new summary node with two muls-tedluld cover all pos-
sibilities of concrete subtrees (even the irregular orlesdi tree reduced to a list and
so on). Thanks to this reduction of the materialisatiorestptace, the verification time
is cut from hours or days down to seconds or minutes in the pleamwe consider in



Section 4. The optimisations cause a slight increase oféoigion of the abstraction,
but in the practical examples we considered, it does not raaialifference.

4 Experiments

After the optimisations mentioned in the previous sectiba verification times become
reasonable for most library procedures manipulating itr@es. The times in seconds
(if not explicitly declared otherwise) that we obtainedifran initial implementation of
our method are shown in Table 1. The prototype was implerdant8WI Prolog, and

the tests were run on a PC with an AMD Athlon 2GHz processor.

The procedures mentioned in Table

1
Zre the foII(r)]vyingsear (Eh pehrfo(;ms aran- procedure |[Binary tree ﬁ:?ha;)é'trreer;at
om search in a tree (as the data contergs
is abstracted). Theel et eAl | (*) proce- gtz?er;:efkn 1'_22 igg
dures delete all nodes of a tree, for whicljglete Al 2.6 6.58
del eteAl | exploits the parent pointersfinserilast 147 264
while del et eAl | * does not—in its case,[deleteLast 8.00 12.30
the deletion consists in a repeated deletiofee2list 52.40 77.44
of the leftmost leaf (repeatedly searchethsert 6.00 12.30
starting from the root). ThensertLast |delete 459.2 840.7
and del et eLast procedures insert andDSWtraversd 2.6h 5.1h

delete a random leaf, respectively. The
tree?list procedure converts a tree toTable 1. Verification times for some proce-

the linear list via the postfix traversal. Thélures manipulating trees (in seconds if not
i nsert anddel et e proceduresinsert angstated otherwise)

delete random node into/from a tree, respectively. FinB8W r aver sal performs the
Deutsch-Schorr-Waite tree traversal, namely the Lindstvariant.

In all the cases, we automatically verified that no null derefice and no memory
leakage can occur. Moreover, using the generated reachbstiect shape graphs, we
were able to manually verify various other safety propsrtgich as shape invariance,
etc.). Let us note that the time needed to verify dbket e procedure was higher due
to the nodes manipulations used when a node with both chiidrdeleted. The right-
most leaf of the left subtree has to be found, exchanged witimbde which should be
deleted, and then the node can be deleted as a leaf. The atwifiof DSW r aver sal
needed even more time because of its vast abstract statecgased by its use of four
program variables pointing to the tree with a large numbepafbinations of positions
of these variables in the tree.

5 Conclusion

In this paper, we briefly introduced an extension of the patt@sed verification method

from programs over extended linear data structures to prmguover tree structures, in-
cluding tree structures with parent pointers and perhapesather additional pointers

(like root pointers, pointers to separate data nodes, 8t )have especially discussed
the state explosion in the materialisation (i.e. conca¢iti®) step, which occurs in this

setting due to having to deal with all various irregulasti trees, and ways how to

deal with this problem.



The verification times that we obtain from our early prot@&ymplementation are
one to two orders of magnitude higher than when handlin@lirstructures. They are
still not yet fully satisfactory, but they are several oslef magnitude better than when
using a straightforward extension of the principles of grattbased verification from
linear structures to trees. Other existing tools capableaoflling programs over trees
can sometimes provide better verification times, but arenoféss general (like the
grammar-based shape analysis [9]) or less automated @ke& Based on the WSKS
logic and tree automata [10] or TVLA based on first-order prai@ logic with transitive
closure [11]).

The remaining efficiency problem of the analysis is thatiit gteserves relatively
a lot of information about the various irregularities thaayrarise in trees. If pattern-
based verification is to achieve similarly nice results @es$ras on extended linear
structures, some further optimisations are still neededhaps in the form of some
sort of a counterexample-guided abstraction refinemeptadtiowing one to drop more
information about the structure and then reclaim it on dednan

Interestingly, the feature of our analysis of keeping atieddy precise information
about the structures handled could become an advantageahtiysis was applied to
a dynamic data structure with a complicated internal sch@ne trees whose nodes
have an attached linked substructure of a fixed form such axaar list with four
nodes, etc.). Such structures could be handled by our asalith no additional need
of a manual intervention or a dramatic increase of the vatibo time.
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