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Abstract. Pattern-based verification trying to abstract away the concrete num-
ber of repeated memory structures is one of the approaches that have recently
been proposed for verification of programs using dynamic data structures linked
with pointers. It proved to be very efficient and promising onextended linear
data structures. In this paper, we overview some possibilities how to extend this
approach to programs over tree structures.

1 Introduction

This paper addresses the problem of formal verification ofprograms manipulating dy-
namic data structures linked by pointers(such as lists, trees, etc.). In such programs,
many mistakes can be easily made since the source code is usually not very transpar-
ent, and the functionality of the program is not apparent at the first sight. Consequently,
a possibility of proving correctness of such programs is highly desirable. However, the
verification of these programs is also quite complex as (1) they are infinite-state due to
working with unbounded data structures, and (2) the objectsthat are manipulated here
are in general unrestricted graphs.

The research on formal verification of programs with dynamicdata structures is
nowadays quite live, and there have appeared many differentapproaches in this area,
such as [10, 11, 1, 5, 2, 9], differing in their formal roots, degree of automation, and the
kind of program data structures and properties they can verify. Among the recently pro-
posed methods for verification of programs with dynamic datastructures there is also
the so-calledpattern-based verification[12, 4]. This method is based on detecting re-
peated adjacent subgraphs in heap graphs and collapsing them into a single summary
occurrence (thus ignoring their precise number). The method has especially been stud-
ied in the context of verifying extended linear data structures, i.e. data structures with a
linear skeleton and possibly some additional edges on top ofit. Such structures, includ-
ing non-circular as well as circular singly-linked and doubly-linked lists, possibly with
additional pointers to the head, tail, etc., are very commonin practice. Pattern-based
verification on these structures has been made fully automated [4, 8, 7, 3]. The method
can verify properties like absence of null pointer dereferences, dangling pointers, ab-
sence of garbage, but also more complex safety properties (e.g. shape invariance).

On the above described kind of extended linear structures, pattern-based verification
turned out to be quite efficient. A natural question is then whether and how it can be
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extended to programs over tree-like structures. That is why, in this paper, we discuss
the problems that appear in pattern-based verification whenone proceeds from linear
structures to tree-like ones (including tree structures with parent pointers and perhaps
other additional pointers, such as root pointers, pointersto separately allocated data
nodes, etc.). These problems include a need to work with a different kind of patterns and
also a state space explosion problem that appears when one tries to straightforwardly
transform the methods from the linear setting into the tree setting. We outline a way
of how to cope with this state explosion. The results we describe do not yet provide a
fully satisfying solution, but provide a significant and promising improvement over the
trivial generalisation of pattern-based verification fromlinear structures to trees. Due to
space limitations, the paper provides just an overview of the results—more details can
be found in [6].

Plan of the Paper.The paper is organized as follows. In Section 2, the main principle of
the original linear variant of pattern-based verification is briefly recalled. In Section 3,
the extension of the method to trees is discussed. In Section4, some early experimental
results are presented. Finally, we conclude by a discussionof the achieved results in
Section 5.

2 Pattern-Based Verification

In pattern-based verification, sets of memory configurations are represented asabstract
shape graphs(ASGs) which are abstract memory graphs with basically two types of
nodes: simple nodes corresponding to particular concrete nodes allocated in the mem-
ory (a list node, a tree node, etc.) andsummary nodesbehind which two or more “sim-
ilar” concrete nodes are hidden (the exact number is abstracted away—note that such
nodes cannot be, e.g., pointed by a pointer variable as this would clearly make them
distinguishable from each other). The simple nodes are labelled with pointer variables
pointing to them whereas summary nodes are labelled by the associatedpattern. The
pattern represents a memory subgraph whose two or more adjacent, mutually intercon-
nectedinstances(or occurrences) are hidden behind the summary node. The nodes are
linked by edges corresponding to the pointer links binding them in the memory and
are labelled by the selectors (likenext, previous, left, right, etc.) to which the
appropriate pointer links correspond.

When verifying a program within pattern-based verification, one iteratively com-
putes the set of all ASGs reachable at each program line. Particular program statements
are performed on ASGs in three phases: (1) The given ASG is first (partially) materi-
alisedif the manipulation would cause a pointer variable point to asummary node (e.g.,
via a statement likex = y->next), which must not happen as the target of the pointer
variable in such a case would not be well defined. That is why one concrete occurrence
of the appropriate pattern hidden behind the summary node isexplicitly instantiated
and then used. (2) The statement is performed on concrete memory nodes as usual. (3)
The resulting graph issummarised, i.e. searched for repeated adjacent occurrence of
patterns that are then merged into a single summary node.

The idea of pattern-based verification has first appeared in [12] in a semi-automated
framework whose user had to supply not only the input configurations and the pro-
gram to be verified, but also the patterns to be used for abstraction. In the work, linear



structures extended with possibly additional pointers to some shared nodes (like singly-
linked or doubly-linked lists with head/tail pointers) were considered. The approach
was able to handle only a single pattern which restricted itsapplicability to dynamic
structures with a simple, fixed inner structure. In [4, 8, 7, 3], several extensions were
introduced which made pattern-based verification over extended linear structures fully
automated (by providing an automated discovery of patterns) and enhanced its general-
ity (through a more general definition of a pattern and a possibility to work with more
than one pattern).

In the rest of the section, we will say a bit more on the principles of automated
pattern-based verification on extended linear structures in order to be able to contrast
them with the tree case presented in Section 3.

2.1 The Main Principles of Linear Pattern-Based Verification

Memory patternsconsidered in [4] for extended linear structures are definedas a 5-
tupleP = (NP

,eP
,xP

,SP
,EP) whereNP is a set of nodes,eP ∈ NP is an entry node,xP

is an exit node (eP 6= xP), SP ⊂ NP is a set of the so-calledsharednodes, andEP ⊆
NP×Sel×NP is a set of edges of the memory pattern (labelled by pointer selectors).
The entry and exit nodes delimit the linear skeleton of the pattern and represent the
main connection points of instances of the pattern in concrete memory graphs to their
surroundings. The shared nodes are shared among all instances of the patterns (like the
head element of a list pointed to by head pointers) and play a somewhat similar role
as global variables in programs with recursive procedures.The remaining nodes are
internal to the pattern and thus also to its instances.

An automatic discovery of patternsis activated before every summarisation attempt
(in [4], this holds only till some pattern is found since [4] is still restricted to a sin-
gle pattern; this restriction is relaxed in [3]). The discovery of patterns consists in ex-
ploring all nodes of encountered shape graphs and searchingfor subgraphs that can
be delimited by an entry and exit node (and perhaps shared nodes) and that appears
at least twice in the given shape graph (before and after its original occurrence). For
illustration, the pattern detected when working with singly-linked lists (with data ab-
stracted away) isP1 = ({e,x},e,x,{},{(e,next,x)}). The pattern discovered in doubly-
linked lists with data stored in separately allocated nodesand with tail pointers isP2 =
({e,x,t,d},e,x,{t},{(e,next,x),(x,prev,e),(e,data,d),(e,tail,t),(x,tail,t)}.

Summarisationconsists in searching a given shape graph for subgraphs isomor-
phic with known patterns. If at least two adjacent instancesof some patterns are found
(linked via the exit/entry nodes), all nodes belonging to these instances are replaced
with a single summary node (apart from the exit node of the last instance). Some further
restrictions apply ensuring correctness and reversibility of the summarisation—e.g., no
program variable can point to any node of any of the detected instances of the pattern.

We then distinguish a complete and a partialmaterialisation. In a complete materi-
alisation, the summary node is replaced by two new instancesof the pattern, while in
a partial materialisation, one new instance of the pattern is inserted into the graph (fol-
lowed by the summary node). The former case corresponds to having just two instances
of the pattern hidden behind the summary node whereas the latter to having three or
more. Both of these variants must always be explored as we do not record the exact
number of summarised instances. In the case of a partial materialisation, we further dis-



tinguish a forward and a backward materialisation depending on the mutual positioning
of the preserved summary node and the materialised instanceof the pattern.

3 Pattern-Based Verification on Trees

The main contribution of this paper is an extension of pattern-based verification to pro-
grams manipulatingtree structures. This extension implies changes in all parts of the
method and also a need for some optimisations as a serious state space explosion prob-
lem appears. Due to space restrictions, all the changes are only briefly outlined in the
section, a detailed description together with formal definitions can be found in [6].

3.1 Patterns and Their Discovery

While in the linear variant of pattern-based verification there was just one exit node in
a memory pattern, for trees there must be more exit nodes to allow us to cope with the
branching of the structure. So, now, a pattern is a tupleP = (NP

,eP
,XP

,SP
,EP) where

XP ⊂ NP is the set of exit nodesand other symbols keep their original meaning. The
pattern of a binary tree would have two exit nodes, in case of ternary trees, there will be
three exit nodes, etc.
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Fig. 1.Patterns in binary trees with parent pointers

The algorithm of dis-
covering patterns is very
similar to the linear case
with the difference that
it is needed to recognise
and distinguish theparent
nodes. While in the linear
case, it was not necessary
to distinguish predecessors
and successors (and, e.g.,
in the case of doubly-linked
lists, this would even lack
sense as predecessors and successors are structurally indistinguishable), in trees, the
role of a parent is much different than that of successors. Its identification is needed
in order for the search of patterns to be restricted to the nodes below the parent only.
The reason is illustrated in Fig. 1. For simplicity, the names of selectors are omitted. In
Fig. 1(a), a pattern that we would like to be discovered in common binary trees with
parent pointers is shown. Entry and exit nodes are named aseandx1,x2, respectively. A
repeated materialisation of the pattern from a single summary node leads to the struc-
ture shown in Fig. 1(b). However, if we do not distinguish therole of parent nodes, in
such trees, we can also detect the undesirable pattern shownin Fig. 1(c). If we tried
to materialise this pattern repeatedly, we would obtain thestructure shown in Fig. 1(d)
which is not sensible as there would be two edges (marked withcrosses) with the same
selector leading out of a single node.

3.2 Summarisation

A major change in summarisation in pattern-based verification on trees comes from the
fact that trees of different sizes have different numbers ofleaves. While summarisation



of any (long enough) linear structure results in one and the same abstract shape graph
with one exit node (the end of a list), summarisation of two trees of a different size, if
done in the same way as for linear structures, results in different abstract structures that
differ in the number of exit nodes (i.e. leaves), which are not summarised. These exit
nodes together with the graphs rooted at them will be furthercalledtails. Note that tails
may really be subgraphs more complex than a single node: For example, they can have
the form of a node with a self-loop, a node with an attached data node, a node pointed
by a program variable, a beginning of a linear list attached to a tree, or generally an
arbitrary subgraph that cannot be summarised.

To cope with the above, we propose a two-phase summarisationfor trees. The first
phase is equal to summarisation on linear structures (up to minor changes related to a re-
definition of the pattern). The second phase consists in clustering the same tails into the
so-calledmulti-tails which representtwo or more equal tails. The heart of the second
phase of the summarisation is the equivalence relation on the tails. Let us outline the
main idea of the equivalence here—its formal definition is rather technical and can be
found in [6]. Two tails are equivalent iff they are both linked to the same summary node
in the same way (i.e. via the same edges in both directions), they are isomorphic, and
no pointer variable points to any node of any of the tails (tails with a program variable
pointing into them are always unique).

After the first phase of summarisation, the tails are partitioned according to the de-
scribed equivalence. Unique tails are then left unchanged,while the others are treated
in the following way. From every non-singleton set of the partition, one random repre-
sentative is chosen and kept in the shape graph (just the typeof the edges leading to it is
changed to a special value specific for multi-tails), and theother tails are deleted. In this
way, it is ensured that arbitrary sets of reachable trees of arbitrary forms will always
summarise to a finite number of (finite) abstract shape graphs.

3.3 Materialisation

The changes in materialisation when using patterns over trees are the most complex and
are related mainly to the multi-tail concept and to the increased number of exit nodes.
Materialisation of a summary node with a left and a right multi-tail, which represents
the simplest binary tree structure (and which we consider asan illustration example in
the rest of the section), results in over 40 new shape graphs.Why such a high number?

Like in the linear case of a partial materialisation, a new, concrete instance of a
pattern is inserted into the place of the original summary node. However, as the pattern
has multiple exit nodes, its materialised instance will notbe followed by a single new
summary node as in the linear case, but by several new summarynodes (two for binary
trees) where each of them represents a subtree of the materialised node. Each of these
new summary nodes can have various combinations of tails andmulti-tails since it
is needed to cover all possible irregularities of subtrees of the materialised node. For
example, in the materialisation mentioned above, the new summary nodes may have
two multi-tails (the subtrees rooted at them are again proper trees with at least two left
and two right tails), or a left multi-tail and a right tail (the subtrees have two or more
left tails, but only one right tail), or just a right multi-tail (the subtrees have at least
two right tails and no left tails), etc. This is the main reason of the high number of the
resulting shape graphs.



Moreover, analogously to a complete materialisation in thelinear case, one has to
also consider replacing the new summary nodes by a concrete instance of the pattern.
Finally, we have to even consider a new possibility specific for the tree setting, namely,
the possibility of completely omitting the new summary node: If there are only two
instances of a pattern hidden behind a summary node, one of them takes the place of the
summary node, one goes to one of the branches, and the other branch is left empty).

Let us note that not all combinations of tails and multi-tails arising as described
above are admissible—e.g., if both new summary nodes possible in the discussed ex-
ample are replaced with single concrete nodes, the condition thatone multi-tail repre-
sents two or more tailswill not hold. In the original abstract shape graph there wasa
left multi-tail, and so in all resulting graphs there must beat least one left multi-tail, or
at least two left tails. Otherwise, some left successors arelost. The same holds for the
right tails too.

As we already mentioned, materialisation of the simplest tree structure results in
over 40 new shape graphs. In the case of one additional pointer pointing to one of the
tails, the number gets almost 100, and in the case of ternary trees with one additional
pointer, it becomes over 2000 structures resulting from onematerialisation operation.
This would make the verification infeasible, and so some optimisations are needed.

3.4 Optimisations of the Materialisation

The reason of the state explosion within the basic materialisation on trees mentioned
above lays in a too precise representation of the various irregularities of trees. But, our
experiments show that in practical programs, it is usually not necessary to distinguish
between, e.g., a tree with one right leaf (i.e. a leaf that is the right son of its father) and
a tree with two right leaves, which is, however, a distinction that we enforce by defining
multi-tails as covering two or more tails.

If we change the understanding of a multi-tail fromtwo or more tailsto one or
more tails, we achieve a significant reduction of the materialisation state space. A ma-
terialisation of a summary node with two multi-tails (the same case that we used as an
illustrative example in Section 3.3) would then not result in shape graphs where the new
summary nodes can have normal tails (e.g. a summary node witha left tail and a right
multi-tail is fully covered with a more general summary nodewith two multi-tails since
this summary node now represents a subtree with one or more left and one or more right
tail). The number of the resulting shape graphs is reduced to10.

How would the situation look like if we continue in the above direction and set the
meaning of the multi-tail tozero or more tails? A materialisation of the summary node
with two multi-tails that we considered above would result in only two structures. In
the first resulting shape graph, the materialised summary node would be replaced by
an instance of the pattern where all exit nodes are summary nodes with two multi-tails
(an analogy to the partial materialisation), and in the second resulting graph, the mate-
rialised summary node would be replaced by a single tail (an analogy to the complete
materialisation). There would not be needed any combinations of tails and multi-tails
of summary nodes since a new summary node with two multi-tails would cover all pos-
sibilities of concrete subtrees (even the irregular ones like a tree reduced to a list and
so on). Thanks to this reduction of the materialisation state space, the verification time
is cut from hours or days down to seconds or minutes in the examples we consider in



Section 4. The optimisations cause a slight increase of imprecision of the abstraction,
but in the practical examples we considered, it does not makeany difference.

4 Experiments

After the optimisations mentioned in the previous section,the verification times become
reasonable for most library procedures manipulating binary trees. The times in seconds
(if not explicitly declared otherwise) that we obtained from an initial implementation of
our method are shown in Table 1. The prototype was implemented in SWI Prolog, and
the tests were run on a PC with an AMD Athlon 2GHz processor.

procedure Binary treesBinary trees
with parents

search 1.22 2.26
deleteAll - 1.80
deleteAll* 4.26 6.58
insertLast 1.42 2.64
deleteLast 8.00 12.30
tree2list 52.40 77.44
insert 6.00 12.30
delete 459.2 840.7
DSWtraversal 2.6h 5.1h

Table 1.Verification times for some proce-
dures manipulating trees (in seconds if not
stated otherwise)

The procedures mentioned in Table 1
are the following:search performs a ran-
dom search in a tree (as the data contents
is abstracted). ThedeleteAll(*) proce-
dures delete all nodes of a tree, for which
deleteAll exploits the parent pointers,
while deleteAll* does not—in its case,
the deletion consists in a repeated deletion
of the leftmost leaf (repeatedly searched
starting from the root). TheinsertLast
and deleteLast procedures insert and
delete a random leaf, respectively. The
tree2list procedure converts a tree to
the linear list via the postfix traversal. The
insert anddelete procedures insert and
delete random node into/from a tree, respectively. Finally, DSWtraversal performs the
Deutsch-Schorr-Waite tree traversal, namely the Lindstrom variant.

In all the cases, we automatically verified that no null dereference and no memory
leakage can occur. Moreover, using the generated reachableabstract shape graphs, we
were able to manually verify various other safety properties (such as shape invariance,
etc.). Let us note that the time needed to verify thedelete procedure was higher due
to the nodes manipulations used when a node with both children is deleted. The right-
most leaf of the left subtree has to be found, exchanged with the node which should be
deleted, and then the node can be deleted as a leaf. The verification ofDSWtraversal
needed even more time because of its vast abstract state space caused by its use of four
program variables pointing to the tree with a large number ofcombinations of positions
of these variables in the tree.

5 Conclusion

In this paper, we briefly introduced an extension of the pattern-based verification method
from programs over extended linear data structures to programs over tree structures, in-
cluding tree structures with parent pointers and perhaps some other additional pointers
(like root pointers, pointers to separate data nodes, etc.). We have especially discussed
the state explosion in the materialisation (i.e. concretisation) step, which occurs in this
setting due to having to deal with all various irregularities of trees, and ways how to
deal with this problem.



The verification times that we obtain from our early prototype implementation are
one to two orders of magnitude higher than when handling linear structures. They are
still not yet fully satisfactory, but they are several orders of magnitude better than when
using a straightforward extension of the principles of pattern-based verification from
linear structures to trees. Other existing tools capable ofhandling programs over trees
can sometimes provide better verification times, but are often less general (like the
grammar-based shape analysis [9]) or less automated (like PALE based on the WSkS
logic and tree automata [10] or TVLA based on first-order predicate logic with transitive
closure [11]).

The remaining efficiency problem of the analysis is that it still preserves relatively
a lot of information about the various irregularities that may arise in trees. If pattern-
based verification is to achieve similarly nice results on trees as on extended linear
structures, some further optimisations are still needed, perhaps in the form of some
sort of a counterexample-guided abstraction refinement loop allowing one to drop more
information about the structure and then reclaim it on demand.

Interestingly, the feature of our analysis of keeping a relatively precise information
about the structures handled could become an advantage if the analysis was applied to
a dynamic data structure with a complicated internal scheme(e.g. trees whose nodes
have an attached linked substructure of a fixed form such as a circular list with four
nodes, etc.). Such structures could be handled by our analysis with no additional need
of a manual intervention or a dramatic increase of the verification time.
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