
CPALIEN: Shape Analyzer for CPAChecker
(Competition Contribution)?

Petr Muller and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. CPALIEN is a configurable program analysis framework instance. It
uses an extension of the symbolic memory graphs (SMGs) abstract domain for
shape analysis of programs manipulating the heap. In particular, CPALIEN ex-
tends SMGs with a simple integer value analysis in order to handle programs
with both pointers and integer data. The current version of CPALIEN is an early
prototype intended as a basis for a future research in the given area. The version
submitted for SV-COMP’14 does not contain any shape abstraction, but it is still
powerful enough to participate in several categories.

1 Verification Approach

CPALIEN is an analyzer of pointer manipulating programs written in the C language.
It intends to handle industrial, often highly optimized code. CPALIEN is able to detect
common memory manipulation errors like invalid dereferences, invalid deallocations,
and memory leaks.

CPALIEN is an offspring of the successful Predator shape analyzer [1]. Predator
implements a sound shape analysis of programs manipulating list-like data structures
of various kinds. While Predator’s ability to handle programs with complex lists is great
(as witnessed by the tool winning gold medals in the appropriate categories in the first
two SV-COMP competitions), we were unsuccessful with extending Predator to handle
other data structures than lists and to also handle data other than pointers.

Therefore, we decided to redesign Predator’s abstract domain of Symbolic Memory
Graphs (SMGs) within the extensible framework of CPAChecker, another successful
verification framework [4], which, however, so far lacked a support for shape analysis.
Consequently, CPALIEN is implemented as an extension of CPAChecker and hence as
an instance of the underlying Configurable Program Analysis (CPA) [3] framework.

Compared with the use of SMGs in Predator [2], the abstract domain of CPALIEN
does not yet use any shape abstractions, which means the analysis will not terminate on
programs building unbounded dynamic data structures (unless an error is found). On
the other hand, CPALIEN combines usage of SMGs with a simple integer value anal-
ysis. Where possible, integer values are tracked explicitly for variables. When explicit
values are not available, we infer information about value equality or nonequality from
assumptions. The combination of this light-weight explicit integer value analysis and

? This work was supported by the Czech Science Foundation project 14-11384S and the
EU/Czech IT4Innovations Centre of Excellence project CZ.1.05/1.1.00/02.0070.



pointer analysis based on SMGs works well for enough test cases from the SV-COMP
benchmark to get a positive score in categories where we participate.

The CPA framework allows one to merge the encountered states to reduce the gen-
erated state space. This feature is, however, not used in CPALIEN. To compute the cov-
ering relation, which is used by the high-level CPA reachability algorithm to determine
the end of the state space search, CPALIEN uses the SMG join operation. CPALIEN
also uses several specialized helper analyses provided by the CPAChecker framework
to deal with certain specific tasks. These helper analyses are the Location, CallStack,
and FunctionPointer CPAs.

2 Software Architecture

CPALIEN builds upon the CPAChecker framework for implementation, execution, and
combination of instances of the CPA formalism. CPAChecker implements a reachabil-
ity analysis algorithm over a generic CPA and also provides several other algorithms.
CPALIEN is an implementation of a CPA instance, consisting of the abstract domain
definition and the transfer relation between the states. Symbolic execution is driven by
CPAChecker. CPAChecker also provides a C language parsing capability, wrapping a C
parser present in the Eclipse CDT. Both CPAChecker and CPALIEN are written in Java.

3 Strengths and Weaknesses

A general strength of CPALIEN comes with implementation in the generic CPAChecker
framework, offering a potential for the future in terms of combining the SMG-based
shape analysis with other analyses.

Currently, CPALIEN is, however, mainly focused on heap manipulating programs
as its integer value analysis plays just a supporting role without an ambition to handle
harder problems. Moreover, CPALIEN is an early prototype, and it so far lacks any
shape abstraction. Therefore, CPALIEN does not terminate on many of the benchmark
test cases from the Memory Safety category for which CPALIEN is suited otherwise.
For the Heap Manipulation category, the results are better: there are significantly more
correct answers, with just a few timeouts and only a single false positive reported. Even
the simple integer value analysis combined with the SMG domain managed to provide
a correct answer for many test cases from the Control Flow and Integer Value category,
especially those in the Product Lines sub-category.

Generally, the results correspond with the prototype status of the tool. Apart from
the already mentioned missing abstraction, the tool still has many implementation is-
sues. It also has deficiencies to handle some C language elements, like implicit type
conversions. Another roadblock is CPALIEN’s handling of external functions (functions
with the body unavailable to the verifier). CPALIEN takes a stance that any unknown
function can contain incorrect code, therefore the memory safety of programs calling
unknown functions cannot be proved. An UNKNOWN answer is given for these cases.
Therefore, CPALIEN’s results could be improved by modeling the common C library
functions, because many programs use them.

With these limitations being reflected by the results, we still argue that after their
resolution, CPALIEN will form a promising base for further research on shape analysis



and its integration with other specialized analyses, providing heap analysis capabilities
still missing in the CPAChecker ecosystem.

4 Tool Setup and Configuration

CPALIEN is available online at the project page:

http://www.fit.vutbr.cz/research/groups/verifit/tools/cpalien/

It is a modified version of the upstream CPAChecker, containing code not yet present
in the upstream repository. For the participation in the competition, we have prepared a
tarball. The only dependency needed to run CPALIEN is Java version 7.

For running the verifier, we have prepared a wrapper script to provide the output
required by the competition rules. The script is run in the following way:

$ ./cpalien.sh target_program.c

Upon completion, a single line with the answer is provided. More information about
the verification result, such as the error path, is provided in the output directory. The
tool does not adhere to competition requirements with respect to property files: it does
not allow a property file to be passed as a parameter. This was caused by our incorrect
reading of the requirements. The property file is expected to be present in the same
directory as the verification task.

CPALIEN participates in the Heap Manipulation, Memory Safety and Control Flow
and Integer Variable categories. We opt out from the remaining ones.

5 Software Project and Contributors

CPALIEN is an extension of the CPAChecker project, building on the CPAChecker
heavily. CPALIEN is developed by the VeriFIT 1 group at the Brno University of Tech-
nology. A significant part of the SMG code was contributed by Alexander Driemeyer
from University of Passau, whom we would like to thank. CPAChecker is a project
developed mainly by the Software Systems Lab2 at the University of Passau. Both
CPALIEN and CPAChecker are distributed under the Apache 2.0 license.

References

1. K. Dudka, P. Peringer, and T. Vojnar. Predator: A Practical Tool for Checking Manipula-
tion of Dynamic Data Structures Using Separation Logic. In Proc. of CAV’11, LNCS 6806,
Springer, 2011.

2. K. Dudka, P. Peringer, and T. Vojnar. Byte-Precise Verification of Low-Level List Manipu-
lation. In Proc. of SAS’13, LNCS 7935, Springer, 2013.

3. D. Beyer, T.A. Henzinger, and G. Theoduloz. Configurable Software Verification: Concretiz-
ing the Convergence of Model Checking and Program Analysis. In Proc. of CAV’07, LNCS
4590, Springer, 2007.

4. D. Beyer and M.E. Keremoglu. CPAChecker: A Tool for Configurable Software Verification.
In Proc. of CAV’11, LNCS 6806, Springer, 2011.

1 http://www.fit.vutbr.cz/research/groups/verifit/
2 http://www.sosy-lab.org/

http://www.fit.vutbr.cz/research/groups/verifit/tools/cpalien/
http://www.fit.vutbr.cz/research/groups/verifit/
http://www.sosy-lab.org/

	CPAlien: Shape Analyzer for CPAChecker

