
Microprocessor Hazard Analysis via
Formal Verification of Parameterized Systems?

Lukáš Charvát, Aleš Smrčka, and Tomáš Vojnar

Brno University of Technology, FIT, IT4Innovations Centre of Excellence
Božetěchova 2, 612 66 Brno, Czech Republic

{icharvat,smrcka,vojnar}@fit.vutbr.cz

Abstract. The current stress on having a rapid development cycle for micro-
processors featuring pipeline-based execution leads to a high demand of auto-
mated techniques supporting the design, including a support for its verification.
We present an automated technique exploiting static analysis of data paths and
formal verification of parameterized systems in order to discover flaws caused by
improperly handled data hazards. In particular, as a complement of our previous
work on read-after-write hazards, we focus on write-after-write and write-after-
read hazards in microprocessors with a single pipeline.

1 Introduction
Implementation of pipeline-based execution of instructions in purpose-specific micro-
processors is an error prone task, which implies a need of proper verification of the
resulting designs. Therefore, our long-term goal is to develop a set of verification tech-
niques with formal roots, each of them specialised in checking absence of a certain kind
of errors in pipeline-based execution of such microprocessors. The main idea is that,
this way, a high degree of automation and scalability can be achieved since only parts
of a design related to a specific error are to be investigated. In our previous works [4,
5], we proposed, with the above goal in mind, fully automated approaches for check-
ing correctness of the implementation of instructions when executing in isolation and
for verifying absence of read-after-write (RAW) hazards. In this paper, we extend our
approach to handle also write-after-write (WAW) and write-after-read (WAR) hazards in
microprocessors with a single pipeline. We have implemented our approach and present
encouraging results from its experimental evaluations.

Related Work Showing absence of data hazards is a native part of checking confor-
mance between an RTL design and a formally encoded ISA description. The perhaps
most cited approach to such checking is the so-called flushing technique [3], which has
been extended, e.g., in [9, 13, 7], to handle rather complicated designs with multi-cycle
execution units, exceptions, and branch prediction. The main challenge of these works
is to overcome the semantic gap between the different levels of a processor description.
Dealing with this issue typically requires a significant user intervention in the form of
providing various additional assertions about the design or transforming it to a purpose-
specific description language.

In [8], the so-called self-consistency check that compares possible executions of
each instruction in two scenarios is introduced. The comparison is made wrt. a property
? This work was supported by the Czech Science Foundation under the project 14-11384S, the EU/Czech IT4Innovations

Centre of Excellence project CZ.1.05/1.1.00/02.0070, and the internal BUT project FIT-S-14-2486.

2 Lukáš Charvát, Aleš Smrčka, and Tomáš Vojnar

given by the user, e.g., a property concerning data hazards which deals with (i) execu-
tions of an instruction enclosed by any (random) instructions within the pipeline and
(ii) executions of the same instruction surrounded by NOP instructions only. If the self-
consistency check succeeds, conformance of the RTL and ISA descriptions of a proces-
sor can be established by separately showing conformance of the RTL/ISA descriptions
of each individual instruction. The main drawback of the approach is that it requires the
enclosing instructions from the first run not to violate a so-called consistent state of the
microprocessor, which has to be manually defined by the user.

In [1], a formal model based on a notion of stages, parcels (instructions), and haz-
ards has been introduced. Once the user defines predicates needed for describing the
pipeline, the design can be automatically formally proven correct under a correctness
criterion given in the work. Another, a bit similar approach has been proposed in [10].
The approach introduces an abstract formal model whose components are to be linked
by the user with the concrete cycle-accurate implementation through a number of map-
pings. Afterwards, the validity of several properties based on the established mappings
and together implying correctness of the pipeline behaviour is checked. Again, both of
the above methods require a significant manual user intervention.

Compared with the above approaches, we do not aim at full conformance checking
between RTL and ISA implementations. Instead, we address one specific property—
namely, absence of problems caused by data hazards. On the other hand, our approach
is almost fully automated—the only step required from the user is to identify the archi-
tectural resources (such as registers and memory ports) and the program counter.

2 Preliminaries
Our approach expects a processor to be described in the form of a so-called processor
structure graph (PSG) which can be represented by a tuple G = (V,E, s, t). Here, V
is a finite set that is the union Vs ∪ Vf of a set Vs of storages and a set Vf of Boolean
circuits, Vs ∩ Vf = ∅. The set Vs further consists of a set Va of architectural and a set
Vp of pipeline storages, Va ∩ Vp = ∅. To simplify the explanation, we will not deal
with micro-architectural registers, memories and their ports in this paper, however as
we show in [5], designs including these entities can be easily verified by the proposed
approach as well. Without a loss of generality, we can also expect all storages of the set
Vs to have a unit write and zero read delay since longer access times can be modelled
by introducing sequentially connected registers emulating the required delay. The set
Vf of Boolean circuits is the union Vmx ∪ Vg of a set Vmx of circuits implementing
multiplexers and a set Vg of the remaining (generic) circuits, Vmx ∩ Vg = ∅.

Next, E denotes a finite set of transfer edges. Then, mappings s, t : E → V × T
assign to each edge its source (resp., target) vertex where T = {d, q, en, st, cl,
sel}∪{ai, ci | i ∈ N} is a set of connection types. It is required that a PSG contains no
cycle formed only by vertices representing Boolean circuits. The d, q, and en connec-
tion types represent commonly used input, output, and enable connections of flip-flop
registers with their usual semantics. Pipeline registers do also have st (stall) and cl

(clear) connections. In case of stalling, each stalled register keeps its current value to
the next cycle. Clearing a register sets its value to zero. The ai connection types repre-
sent arguments of functional vertices vg ∈ Vg . Further, sel and ci are connection types

Microprocessor Hazard Analysis via Formal Verification of Parameterized Systems 3

related to multiplexers only. The value transferred through the sel connection selects
which of its ci inputs is propagated to the q output of a multiplexer. Since each vertex
v ∈ V can have at most one inbound edge for a single connection type, one can use
a notation v.c to uniquely describe an edge e ∈ E that satisfies t(e) = (v, c).

In this paper, we will work with an annotated version of a PSG. The annotation can
be given via a stage mapping ϕ : Vs → S, S = {0, ..., n}, n ∈ N, assigning storages
to pipeline stages. The annotation can be given manually or techniques such as data-
flow analysis [5] can be used to obtain one. From a stage mapping ϕ, we can easily
get the write stage ϕwr (read stage ϕrd, respectively) mapping, ϕwr, ϕrd : Vs → 2S,
describing which stages directly influence (use) the content of the given storage.

Our approach further uses the common notion of a parameterized system operating
on a linear topology where processes (i.e., executed instructions) may perform local
transitions or universally/existentially guarded global transitions [6, 2]. A parameter-
ized system is a pair P = (Q,∆) where Q is a finite set of states of a process and ∆
is a set of transition rules over Q. A transition rule is of the form Qj ◦ i : G |= q → q′

where Q ∈ {∀,∃}, ◦ ∈ {<,>,=}, G ⊆ Q, and q, q′ ∈ Q. A parameterized system in-
duces a transition system whose configurations are finite words overQ. A configuration
q1...qi...qn, 1 ≤ i ≤ n, changes to q1...q′i...qn when the ith process goes from its state
qi to q′i using some of the transition rules. The rule can be applied only if its guard is
satisfied. For example, the meaning of the guard ∃j < i : G is “there should be at least
one process j to the left of i (in the linear topology) so that the jth process is in a state
that belongs to the set G”.

We will work with the reachability problem given by a parameterized system P ,
a regular set I ⊆ Q+ of initial configurations, and a regular set Bad ⊆ Q+ of bad con-
figurations. In particular, we assume Bad to be given as the upward closure of a finite
set B ⊆ Q+ of minimal bad configurations, this is, Bad = {c ∈ Q+ | ∃b ∈ B : b v c}
where v is the usual sub-word relation (i.e., u v s1...sn ⇔ u = si1 ...sik for some
1 ≤ i1 ≤ ... ≤ ik ≤ n, 0 ≤ k ≤ n). Now, let R ⊆ Q∗ denote the set of all reachable
configurations. We say that the system P is safe wrt. I and Bad iff no bad configuration
is reachable, i.e., R ∩ Bad = ∅.

3 Description of The Proposed Data Hazard Verification Method

We assume the processor under verification to be represented using a PSG, which can be
easily obtained from a description of the processor on the register transfer level (RTL)
written in common hardware description languages, such as VHDL or Verilog.

Our approach consists of the following steps: (i) a static detection of instructions
that can potentially cause a data hazard, (ii) generation of a parameterized system mod-
elling mutual interaction among the instructions, and (iii) an analysis of the constructed
parameterized system identifying whether some unhandled data hazard may occur.

Example 1. Fig. 1 shows a PSG describing a part of a simple microprocessor with an
accumulator architecture with two architectural registers: X (a memory index register)
and A (an accumulator). For the sake of brevity, the PSG exhibits only the parts of the
microprocessor that are used during execution of arithmetic and instructions with an
auto-increment. Moreover, it also omits control connections (en, st, and cl) of pipeline

4 Lukáš Charvát, Aleš Smrčka, and Tomáš Vojnar

Boolean
circuit

Pipeline
storage

...

ALU

.a1

decoder

id_ir...

Stage 2

imm

incX

oper

dstA

+

||

Stage 3

...

.q

.q

.d

.a1 .q

.a1 .q

.a1 .q

.a1 .q

X

.a2

of_oper

of_dstA

.a1 .q

.a2

Stage 4

+

mux

ex_oper

ex_dstA

Stage 5

A

.d

.en

.q

.q.d

.q.d

.q

.d

.q.d

.en

.q

.d

.a1 .a2

.q

.c2

.c1

.sel

.q

Architectural
storage

Legend:

Fig. 1: A processor structure graph of a part of a CPU with an accumulator architecture.

registers. In the CPU, an instruction fetched from the memory is stored into the storage
id ir representing the instruction register. The opcode part is sent to the decoder to
determine the type of the ALU operation to be performed and to select its destination
by activation of the appropriate enable (en) connection of the X or A register. An early
auto-increment of register X can be performed in stage 3. Such a feature allows the
CPU to execute sequences of instructions working with juxtaposed data in the memory
without a penalty (brought, e.g., by unnecessary stalls of the pipeline) which would be
present if the update of X was done in a later stage. /

3.1 Static Detection of Data Hazards

A static hazard analysis examines the PSG and its annotation in the form of the pipeline
stage mappings ϕ, ϕwr, and ϕrd to identify a finite set of so-called hazard cases, each
of them describing one potential source of a data hazard. In order to construct the hazard
cases, we will use a notion of an influence path.

We define an influence path as a path 〈v1, e1, ..., vk〉 in a PSG where the value
read from an architectural storage v1 ∈ Va can influence a value stored to an archi-
tectural storage va ∈ Va by writing to a target storage vk ∈ Vs. Each influence path
must fulfill the following set of properties: (i) The target storage vk must either be
(a) an architectural register, i.e., the case when vk = va, or (b) a pipeline register s.t.
t(ek−1) = (vk, cl). Indeed, clearing of the pipeline register vk will surely influence all
programmer visible storages that belong to stages s ≥ ϕ(vk). Next, (ii) the influence
path must not traverse through stall connections of pipeline registers. Such paths cannot
influence the value of any programmer visible register. Their only impact can be stalling
a stage which does not influence a proper execution of instructions if one assumes cor-
rectness of in-order execution of instructions (that can be automatically checked by the
method described in [11]). Finally, (iii) there must exist an execution plan τ : V → S
which assigns elements of the path to stages from which they are accessed by an in-
struction that performs a computation over the given influence path.

The access stage of each element that is given by the execution plan has to conform
to ϕrd and ϕwr, i.e., (a) vi ∈ Vs ⇒ τ(vi) + 1 ∈ ϕrd(vi) for all 1 ≤ i < k and
(b) vj ∈ Vs ⇒ τ(vj) ∈ ϕwr(vj) for all 1 < j ≤ k. Moreover, the stages of the

Microprocessor Hazard Analysis via Formal Verification of Parameterized Systems 5

execution plan must form a non-decreasing sequence, i.e., (c) τ(vi−1) ≤ τ(vi) which
increases at each path element with a write delay, i.e., (d) τ(vi) = τ(vi−1) + 1 if
vi ∈ Vs. Otherwise, in the case that any of the rules (a–d) fails, there could not be any
instruction capable of a data transfer along the influence path.

Table 1: The access stage map-
pings for architectural registers.

Register Stage Write stages Read stages

ϕ ϕwr ϕrd

X 3 {2, 4} {2, 4}
A 5 {4} {4}

An incorrectly handled data hazard is mani-
fested upon the first write of improper data into
some programmer visible storage of the design.
Therefore, it suffices to further deal with the min-
imal influence path which is an influence path
where vi 6∈ Va and t(ei−1) 6∈ Vp × {cl} for all
1 < i < k. A standard breadth-first search algo-
rithm with rules (i–iii) and the minimality checked
on-the-fly can be used to obtain the minimal influence paths in the given PSG.

A WAR hazard case is a tuple (va, sw, sr, vt, st, π) consisting of (i) an architectural
storage va ∈ Va, (ii) its write stage sw ∈ ϕwr(vw), and (iv) read stage sr ∈ ϕrd(va)
such that sw < sr in order that the storage is written before it is read to evoke a WAR
hazard, (v) a target storage vt where the potentially incorrect value read from va is
stored, (vi) a stage st ∈ ϕwr(vt), sr ≤ st, in which the incorrect value is stored,
and (vii) a minimal influence path π describing how data are propagated from va to vt
between the stages sr and st. Similarly, a WAW hazard case (va, sw1

, sw2
) consists of

an architectural storage va ∈ Va and its two different write stages sw1
, sw2

∈ ϕwr(vw),
sw2 < sw1 so the WAW hazard may occur. There is no need to include any influence
path in this case since an error in WAW hazard case handling would be demonstrated
instantly by writing an incorrect value to the storage va. Note that, since the definitions
of a hazard cases speak about storages, their access stages, and the path along which
the problematic data is transferred, it is not related to a single instruction only but to an
entire class of instructions.

Example 2. Consider the PSG from Fig. 1 and the mappings shown in Table 1. One
can see that there is a potential WAR hazard on register X because, for example, it can
be written in stage 2 (ϕwr(X) = {2, 4}) and read in stage 4 (ϕrd(X) = {2, 4}). By
the definition, to form a WAR hazard, there must also exist an influence path π in the
PSG leading from X to some target storage. For instance, we can assume the register
A (written in stage 4) as a target with π = 〈X , +.a1, +, mux.c1, mux, A.d, A〉. This
observation gives us a WAR hazard case hc = (X , 2, 4, A, 4, π). A similar reasoning
can applied to derive WAW hazard cases as well. /

3.2 Construction of Parameterized Systems Modelling the Potential Hazards
As we have shown in [5], the behaviour of the instructions given by constraints of
a hazard case can be modelled using a parameterized system P = (Q,∆) which
maps n instructions in the pipeline to n processes in a linear array. Initially, they are
in a state saying that their execution has not started. Then, they proceed through indi-
vidual stages of the pipeline during which they may interact with each other by means
of the pipeline flow logic, e.g., an earlier instruction may force a later instruction to
be stalled or cleared. Finally, the instructions end up in a state denoting that they left
the pipeline. The structure of the generated parameterized system depends on the type

6 Lukáš Charvát, Aleš Smrčka, and Tomáš Vojnar

of the hazard case. The system P models interactions among three classes of processes
(and hence 3 types of instructions) for both WAR and WAW hazard case. For a WAR
hazard case (va, sw, sr, vt, st, π), a w -class of processes is used to model every instruc-
tion that writes to the storage va in the stage sw. An rw -class models instructions that
read from the storage va in the stage sr, perform a data computation that involves the
data path π, and write to the storage vt in the stage st. Finally, any-class instructions
are used as pipeline fillers representing any other instructions. For a WAW hazard case
(va, sw1

, sw2
), we use processes of the w1-class (w2-class, respectively) which model

instructions writing to the storage va in the stage sw1
(sw2

). The purpose of the any-
class instructions remains the same as in the previous case.

rw -class instruction:
...

qrw2

qrw3

qrw4

qrw5

...

read reg. X

write reg. A

write

committed

w -class instruction:
...

qw2

qw3

qw4

qw5

...

∃j < i : {qrw3 }

write reg. X

data

propagation

hazardous

state

Fig. 2: A part of the control automata of processes
representing rw /w -class instructions involved in
the hazard case hc from Example 2.

The set Q of states of a param-
eterized system P is then given by
pairs (k, s) where k gives a class
of an instruction and s gives the
stage in which the instruction is
currently executed. We will use
the notation qks to denote a state
(k, s) ∈ Q. For a pipeline of
length m, the sequence qk1 , ..., q

k
m

records each step of a k-class in-
struction in the pipeline. Transition
rules ∆ of a system P are then
constructed by reasoning over con-
straints given in the from of bit-
vector logic formulae. These for-
mulae describe behaviour in each
state of the execution of a k-class
instruction. The required reasoning
is done automatically by utilizing
an SMT solver (for additional technical details regarding the construction of ∆, please
see [5]). Such a system is then checked whether there exists some sequence of instruc-
tions that could reach hazardous conditions. In parameterized systems, hazard condi-
tions can in particular be expressed by the regular set Bad of bad configurations. The
most crucial part for the construction of the Bad set is determination of the so-called
commit and hazardous states, which is discussed below.

Given a WAR hazard case (va, sw, sr, vt, st, π), sw < sr ≤ st, one can infer that
the data supposed to be written to va are computed in the stage sw, and the computed
value is committed to va in the next cycle, thus in the stage sw + 1. To ensure that the
value read in stage the sr is correct, no write to va can occur for h = sr − (sw +1) cy-
cles which is the difference between reading and commitment of the value from/to va.
Otherwise, an rw -class instruction would necessarily read and compute with incorrect
data that were written too early (in stage sw) by a later w -class instruction. The WAR
hazard is exhibited only after commitment of the incorrectly fetched data from the reg-
ister va in the stage sr to the register vt which happens in the stage st + 1. Such a data
propagation lasts p = (st +1)− sr cycles. Note that, if the rw -class instruction is can-

Microprocessor Hazard Analysis via Formal Verification of Parameterized Systems 7

celed during the propagation period of p, there is no further write to vt caused by the
instruction. Thus, for a w -class instruction, we denote the states {qwsw+p+i | 1 ≤ i ≤ h}
as hazardous. A configuration of the parameterized system P is then considered as bad
if it includes an occurrence of a commit state qrwst+1 of an rw -class instruction followed
by a hazard state.

An analogical reasoning can be performed also for a WAW hazard case (va, sw1 ,
sw2), sw2 < sw1 . Here, no write to va can occur for h = sw2 − sw1 cycles. Otherwise,
the execution of an earlier w1-class instruction would overwrite the value storage va that
was already set by a later w2-class instruction. Therefore, we tag the states {qw2

sw2
+i |

1 ≤ i ≤ h} as hazardous. Finally, we include a configuration into Bad if it contains
a commit state qw1

sw1+1 of a w1-class instruction followed by a hazard state.

Example 3. Consider the hazard case hc described in Example 2 and the inferred pro-
cesses shown in Fig. 2. The execution of the rw -class instructions readingX and writing
to A is passing through the sequence of states qrw0 , qrw1 , qrw2 , qrw3 , qrw4 , qrw5 , qrw6 . Here,
X is read andAwritten in the state qrw4 . Because the value ofA is committed in the state
qrw5 (in stage 5) and X is read in the state qrw4 (in stage 4) the length of the data propa-
gation p is 5−4 = 1. The execution of a w -class instruction writing to the X register is
described by a process going through the sequence of states qw0 , q

w
1 , q

w
2 , q

w
3 , q

w
4 , q

w
5 , q

w
6

where X is written in the state qw2 and q0, q6 denote initial, resp. final, state. Because
a w -class instruction commits the value toX in stage 3, the distance h (between reading
and commitment from/toX) is 4−3 = 1. Thus, the set of minimal bad configurations is
{qrw5 qw4 }. A chosen parametric verification method can then be used to check whether
a bad configuration, e.g., qany6 qrw5 qw4 q

any
3 qany2 qany1 qany0 , is reachable. /

4 Experimental Evaluation
Table 2: Verification times.

Processor / Static Parametric model Total time Hazard

features Analysis [s] verification [s] [s] Cases [#]

TinyCPU S 1 24 25 14

SF 1 25 26 14

B 1 38 39 24

CompAcc SF 2 70 72 31

BF 2 61 63 33

DLX5AI S 5 418 423 69

B 384 420 804 69

S stalling logic B bypassing logic F flag reg.

We have implemented the above
described method in a prototype
tool called Hades and tested it on
three kinds of processors: Tiny-
CPU is a small 8-bit processor that
we mainly use for testing of new
verification methods. CompAcc is
an 8-bit processor based on an
accumulator architecture. Finally,
DLX5AI is a 5-staged 32-bit pro-
cessor able to execute a subset of
the instruction set (without floating
point instructions) of the DLX architecture which differs from commonly known im-
plementation [12] by having an auto-increment logic. Some of the processors were in
multiple variants that differ from each other, e.g., in the way how data hazards are
avoided, yielding seven test cases in total.

We conducted a series of experiments on a PC with Intel Core i7-3770K @3.50GHz
and 16 GB RAM with results presented in Table 2. The columns give the verified pro-
cessor, its variant, the time needed for the static analysis, and the time spent by veri-
fication of the parameterized systems that are created based on each hazard case, and

8 Lukáš Charvát, Aleš Smrčka, and Tomáš Vojnar

the overall verification time. The last column represents the number of hazard cases
that had to be verified during the model verification phase. Note that each hazard case
represents a separate task so the part of model verification can be run in parallel. As can
be seen, the results look promising in that the verification times are in minutes for all
types of the presented microprocessors. The longer time of static analysis encountered
for DLX is mainly due to the larger number of paths that have to be considered (by the
BFS algorithm) during the computation of the sets of hazard cases.

5 Conclusion
We have presented an approach that harnesses methods for formal verification of pa-
rameterized systems in order to discover incorrectly handled data hazards in the RTL
implementation of pipeline-based execution. The approach was developed with the aim
to be highly automated, not requiring any additional efforts from the developers (apart
from specifying the architectural registers). We have implemented the approach and
successfully tested it on several non-trivial microprocessors.

In the future, we plan to further extend the approach presented in the paper by
techniques suitable for verification of other processor features, such as control hazards.
This is motivated by our general idea of trying to split processor verification into several
simpler, more specialised tasks.

References
1. M. D. Aagaard. A hazards-based correctness statement for pipelined circuits. In Proc. of

CHARME’03, volume 2860 of LNCS, pages 66–80. Springer, 2003.
2. P. A. Abdulla, F. Haziza., and L. Holik. All for the price of few. In Proc. of VMCAI’13,

volume 7737 of LNCS, pages 476–495. Springer, 2013.
3. J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor control. In

Proc. of CAV’94, volume 818 of LNCS, pages 68–80. Springer, 1994.
4. L. Charvat, A. Smrcka, and T. Vojnar. Automatic formal correspondence checking of ISA

and RTL microprocessor description. In Proc. of MTV’12, pages 6–12. IEEE, 2012.
5. L. Charvat, A. Smrcka, and T. Vojnar. Using formal verification of parameterized systems in

RAW hazard analysis in microprocessors. In Proc. of MTV’14, pages 83–89. IEEE, 2014.
6. E. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized verification.

In Proc. of VMCAI’06, volume 3855 of LNCS, pages 126–141. Springer, 2006.
7. K. Hao, S. Ray, and F. Xie. Equivalence checking for function pipelining in behavioral

synthesis. In Proc. of DATE’14, pages 1–6. IEEE, 2014.
8. R. B. Jones, C. H. Seger, and D. L. Dill. Self-consistency checking. In Proc. of FMCAD’96,

volume 1166 of LNCS, pages 159–171. Springer, 1996.
9. A. Koelbl, R. Jacoby, H. Jain, and C. Pixley. Solver technology for system-level to RTL

equivalence checking. In Proc. of DATE’09, pages 196–201. IEEE, 2009.
10. U. Kuhne, S. Beyer, J. Bormann, and J. Barstow. Automated formal verification of processors

based on architectural models. In Proc. of FMCAD’10, pages 129–136. IEEE, 2010.
11. P. Mishra, H. Tomiyama, N. Dutt, and A. Nicolau. Automatic verification of in-order execu-

tion in microprocessors with fragmented pipelines and multicycle functional units. In Proc.
of DATE’02, pages 36–43. IEEE, 2002.

12. D. A. Patterson and J. L. Hennessy. Computer Organization and Design: The Hardware /
Software Interface. Morgan Kaufmann, Boston, fourth edition, 2012.

13. M. N. Velev and P. Gao. Automatic formal verification of multithreaded pipelined micropro-
cessors. In Proc. of ICCAD’11, pages 679–686. IEEE, 2011.

