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Abstract. The paper describes a technique for automatic generation of abstract
models of memories that can be used for efficient formal verification of hardware
designs. Our approach is able to handle addressing of different sizes of data, such
as quad words, double words, words, or bytes, at the same time. The technique
is also applicable for memories with multiple read and write ports, memories
with read and write operations with zero- or single-clock delay, and it allows the
memory to start with a random initial state allowing one to formally verify the
given design for all initial contents of the memory. Our abstraction allows large
register-files and memories to be represented in a way that dramatically reduces
the state space to be explored during formal verification of microprocessor de-
signs as witnessed by our experiments.

1 Introduction

As the complexity of hardware is growing over the last decades, automation of its de-
velopment is crucial. This also includes automation of the process of verification of
the designed systems. Verification of current microprocessor designs is typically per-
formed by simulation, functional verification, and/or formal verification (often using
various forms of model checking or theorem proving). The complexity of the verifica-
tion process is usually significantly influenced by the presence and size of the memories
used in the design because of an exponential increase in the size of the state space of the
given system with each additional memory bit. Therefore the so-called efficient mem-
ory modeling (EMM) techniques that try to avoid explicit modeling of the memories
are being developed.

In this work, we present an approach to automatic generation of abstract memory
models whose basic idea comes from the fact that formal verification often suffices with
exploring a limited number of accesses to the available memory, and it is thus possible
to reduce the number of values that are to be recorded to those that are actually stored in
the memory (abstracting away the random contents stored at unused memory locations).
Around this basic idea, we then build an approach that allows one to represent memo-
ries with various advanced features, such as different kinds of endianness (big or little),
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read and write delays, multiple read and write ports, and different sizes of addressable
units (e.g., bytes, words, double words). As far as we know, the ability to handle all
of the above mentioned features differentiates our approach from the currently used
ones. Moreover, our technique is applicable in environments requiring a very high level
of automation (e.g., processor development frameworks), and it is suitable for formal
verification approaches that aim at verifying a given design for an arbitrary initial con-
tents of the memory. Moreover, our abstract memory models can be used within formal
verification in a quite efficient way as proved by our experiments.

2 Related Work

Numerous works have focused on memory abstraction, notably within the area of for-
mal verification. Some of the proposed abstractions are tightly coupled with the veri-
fication procedure used: for instance, many of them rely on that SAT-based bounded
model checking (BMC) [1] or BDD-based model checking [2] are used.

More general approaches, i.e., approaches not tailored for a specific verification
procedure, often exploit theories for reasoning about safety properties of systems with
arrays, such as [3, 4] and especially the work on an extensional theory of arrays [5].
Intuitively, this theory formalizes the idea that two arrays are equivalent if they have
the same value at each index. An example of such an approach has been presented
in [7]. In the work, an automatic algorithm for constructing abstractions of memories is
presented. The algorithm computes the smallest sound and complete abstraction of the
given memory.

In [6], the authors introduce a theory of arrays with quantifiers which is an extension
of [5]. Moreover, they define the so-called array property fragment for which the au-
thors supplement a decision procedure for satisfiability. A modification of the decision
procedure for purposes of correspondence checking is proposed in [8] and implemented
in [9].

Another method of large memory modeling is described in [10]. The memory state
is represented by an ordered set containing triples composed of (i) an expression de-
noting the set of conditions for which the triple is defined, (ii) an address expression
denoting a memory location, and (iii) a data expression denoting the contents of this
location. For this set, a special implementation of write and read operations is provided.
The abstracted memory interacts with the rest of the circuit using standard enable, ad-
dress, and data signals. The size of the set is proportional to the number of memory
accesses. Further, in [11], the same author extends the approach such that it can be used
for correspondence checking by applying the so-called shadowing technique for read
operations (we will get back to this issue in Section 3.4).

A recently published work [12] formally specifies and verifies a model of a large
memory that supports efficient simulation. The model is tailored for Intel x86 imple-
mentations only in order to offer a good trade-off between the speed of simulation and
the needed computational resources.

A common disadvantage of [7, 8, 10, 11] is the fact that they omit a support for
addressing of different sizes of data which is considered, e.g., in [12]. On the other
hand, in [12], the authors assume starting from the nullified state of the memory, not
from a random state.
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Fig. 1. Memory interface
Fig. 2. Memory mapping

Some of the other proposed works describe a smarter encoding of formulas, includ-
ing a description of memories, into CNF [13, 14]. In this work, the problems linked to
the CNF transformation are not discussed, however, the ideas in [13, 14] can be poten-
tially applied here. An example of a tool based on the method coupled with CNF is
the Bit Analysis Tool [13] (BAT) which automatically builds abstraction of memories
to be used in BMC of a certain depth. As its input, BAT uses a custom LISP-based
language. A model of the verified system using abstracted memories is created in the
following steps: (1) The design to be verified is simplified through pre-defined rewrite
rules applied on the level of terms of the BAT language. (2) An equality test relation that
relates memories that are directly compared for equality is built over the set of mem-
ory variables. (3) The transitive closure of the test relation is computed. The closure
is an equivalence relation. (4) An address set is computed for each of the equivalence
classes. The address set contains only the addresses that are relevant for the given class.
(5) For all addresses in an address set, a shorter bit vector for addressing the abstract
memories is created. The size of the vector is proportional to the number of memory
accesses. (6) The behavior of memories is changed to be compatible with the new ad-
dressing style. (7) Original memories and addresses are replaced with their abstract
counterparts. A description of a system together with the checked properties is then ef-
ficiently transformed to a CNF formula. Similarly to previous approaches, there is no
support for addressing different sizes of data.

To sum up, our approach can generate abstractions of memories that support ad-
dressing of arbitrary addressable units, such as bytes and words (unlike [7, 8, 10, 11]),
with multiple read and write ports (in contrast with [7, 8]), and it allows the memory to
start from a random initial state (not available in [12]). The algorithm is not bound to
any specific verification technique (unlike [13, 14]).

3 Large Memory Abstraction
We are now going to describe our technique of automated memory abstraction. As we
have already said, its basic idea is to record only those values in the memory that are ac-
tually used (abstracting away the random contents stored at unused memory locations).

3.1 Memories To Be Abstracted

In our approach, we view a memory as an item of the verified design with the interface
depicted in Fig. 1. The interface consists of (possibly multiple) read and write ports.
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Each port is equipped with Enable, Address, Data, and Unit signals. When the
Enable signal is down, the value of the Data signal of a read port is undefined. When
dealing with a write port, no value is stored into the memory through this port. On the
other hand, when the Enable signal is up, the memory returns/stores data from/into
the cell associated with the value of the Address signal. In the special case when
multiple ports are enabled for writing into the same memory cell, the result depends
on the implementation of the memory. We support two variants: (i) either a prioritized
port is selected or (ii) an undefined (random) value is stored to the multiply addressed
memory cell.

The size of the addressed unit can be modified by the Unit signal. When the size
of the accessed unit is smaller than the size of the greatest addressable unit, the most
significant bits of the Data signal are filled up with zeros. It is also assumed that the
size of any addressable unit is divisible by the size of the least addressable unit, and thus
for the Data signal it is sufficient to transfer the size of the addressed unit expressed as
a multiple of the least addressable unit only (instead of the actual number of bits of the
unit). Finally, if the memory allows addressing of a single kind of units only, then the
Unit signal can be omitted.

3.2 Abstraction of the Considered Memories

Our abstraction preserves the memory interface, and hence concrete memories can be
easily substituted with their abstract counterparts. We will first describe the basic prin-
ciple of our abstraction on memories with a single addressable unit only. An extension
of the approach for multiple addressable units will be discussed later. Moreover, we
assume reading with no delay and writing with a delay of one cycle. An extension to
other timings will be described in Section 3.4.

The abstract memory effectively remembers only the memory cells which have been
accessed. Internally, the memory is implemented as a table consisting of some number
d of couples of variables storing corresponding pairs of addresses and values (a, v).
When using bounded model checking (BMC) as the verification technique, the needed
number d of address-value pairs can be easily determined from the depth k of BMC as
the following holds d = k ∗ (m + n) where m and n denote the number of read and
write ports, respectively. For unbounded verification, the number d can be iteratively
incremented until it is sufficient. The incrementation is finite since the number of mem-
ory cells is finite. The memory also remembers which of the pairs are in use by tracking
the number r ∈ {0, ..., d} of couples that were accessed (and hence the number of the
rows of the table used so far).

When the memory is accessed for reading, the remembered address-value pairs
(a1, v1), ..., (ar, vr) that are in use are searched first. If a location ard that is read has
been accessed earlier, then the value vi associated with the appropriate address ai = ard
is simply returned. On the other hand, if a location that has never been accessed is read,
a corresponding pair is not found in the table, and a new couple (ard, vrd) is allocated.
Its address part ard will store the particular address that is accessed while the value vrd
is initialized as unconstrained. However, the variable representing the value vrd asso-
ciated with the accessed location ard is kept constant in the future (unless there occurs
a write operation to the ard address). This ensures that subsequent reads from ard return
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the same value. In case of writing, the address awr and value vwr are both known. When
writing to a location that has not been accessed yet, a new address-value pair (awr, vwr)
is allocated to store the given address-value pair. Otherwise, a value vi associated with
the given address awr = ai is replaced by vwr.

3.3 Dealing with Differently Sized Data

In order to support dealing with different sizes of addressable data (including read-
ing/writing data smaller than the contents of a single memory cell of the modeled mem-
ory), we split our abstract memory into a low-level memory model and a set of functions
mapping accesses to ports of the modeled memory to ports of the low-level memory.
The idea of this approach is shown in Fig. 2 and further discussed below.

The low-level memory consists of cells whose size equals the size of the least ad-
dressable unit of the modeled memory, and therefore, for low-level memory, the Unit
signal can be omitted. In the low-level memory, values of units that are larger than the
least addressable unit are stored on succeeding addresses. In order to allow for read-
ing/writing the allowed addressable units (including the greatest one) in one cycle, the
number of read and write ports of the low-level memory is appropriately increased. The
resulting number of ports of the low-level memory is equal to m ∗ n where m is the
number of interface ports and n is the number of distinct addressable units. The latter
can be expressed as the quotient of bit-widths of the greatest (wgau) and the least (wlau)
addressable unit. In other words, for each port of the memory interface there are n cor-
responding ports of the low-level memory model. Therefore, we use double indices for
the low-level memory ports in our further description.

In particular, let enablei, datai, addressi, and uniti be values of signals of the port
i of the memory interface, and let enablei,j , datai,j , and addressi,j have the analogical
meaning for the low-level memory port i, j. Then, the value of the enablei,j ∈ B signal
can be computed as enablei ∧ uniti ≥ j where enablei ∈ B and 1 ≤ uniti ≤ n. This
means that the required number of low-level memory ports are activated only. Next, the
value of addressi,j can be expressed as addressi + j − 1 for the little endian version
of the memory and addressi+uniti− j for the big endian version, respectively. These
expressions follow from the fact that larger units of the original memory are stored
as multiple smallest addressable units stored at succeeding addresses in the low-level
memory.

Further, for transfers of data, separate mappings for read ports and write ports must
defined. In the case of a write port, the data flow into the low-level memory, and the
value of the datai,j signal can be computed as slice(datai, uniti ∗wlau − 1, (uniti −
1) ∗ wlau) where slice is a function extracting the part of the first argument (on the bit
level) that lies within the range given by the second and third arguments (with the bit
indices being zero-based). Finally, for a read port, for which data flow from the low-
level memory, the value of the datai signal can be expressed as concat(ite(enablei,n∨
¬enablei,1, datai,n, 0), ..., ite(enablei,2∨¬enablei,1, datai,2, 0), datai,1) where con-
cat is a bit concatenation and ite (“if-then-else”) is the selection operator. Thus, the data
value is composed from several ports of the low-level memory, and the most significant
bits are zero-filled when the read unit is smaller than the greatest one. Note that accord-
ing to the semantics of the Enable and Data signals (described in Section 3.1), in
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the case when enablei,1 is false (i.e., no unit is read), the value of the datai signal is
undefined.

3.4 Further Extensions of the Abstract Memory Model

To broaden the range of memories that we can abstract, we further added a support
for more memory timing options, in particular for one-cycle-delay reading and zero-
delay writing. The former can be achieved by simply connecting a unit buffer to the
data signal of the memory interface. For the latter case, a special attention must be paid
to the situation when both read and write operations over the same address are zero-
delayed. In such a situation, it is required to append an additional logic that ensures that
written data are propagated with zero delay to a given read port.

Moreover, for a practical deployment in correspondence checking, our model has
also been extended by applying the shadowing technique described in [11]. In particular,
during correspondence checking, both models are executed in a sequence. The shadow-
ing technique deals with potential inconsistencies that can arise when both models read
from the same uninitialized memory cell—indeed, in this case, a random value is to be
returned, but the same one in both models. To ensure this, when shadowing is used, the
return value of the read operation is obtained from the memory in the design executed
first whenever the value is not available in the second design.

4 Implementation and Experiments

The memory abstraction that we generate in the above described way can be encoded
in any language for which the user can provide templates specifying (i) how to ex-
press declarations of state and nonstate variables, (ii) how to encode propositional logic
expressions over state and nonstate variables, (iii) and how to define initial and next
states of state variables. We currently created these templates for the Cadence SMV
language [15].

In order to prove usefulness of the described abstraction technique, we used our
abstract memory generator within the approach proposed in [16] for checking corre-
spondence between the ISA and RTL level descriptions of microprocessors, which we
applied to several embedded microprocessors. Briefly, in the approach of [16], the ISA
specification and VHDL model of a processor are automatically translated into behav-
ioral models described in the language of a model checker (the Cadence SMV language
in our case). These models are then equipped with an environment model, including
architectural registers and memories, which can be abstracted using the technique pro-
posed in this article. All these models are composed together, and BMC is used to check
whether if both of the processor models start with the same state of their environment
(including the same instruction to be executed), their environments equal after the exe-
cution too. The described approach was integrated into the Codasip IDE [17] processor
development framework.

Our approach was tested on three processors: TinyCPU is a small 8-bit test proces-
sor with 4 general-purpose registers and 3 instructions that we developed mainly for
testing new verification approaches. SPP8 is an 8-bit ipcore with 16 general-purpose
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Table 1. Verification results

Processor Reg. File Memory Explicit Abs. Abs. All
Size Size Memory Reg. File Memory Abs.

TinyCPU 4 x 8bit - 0.151 s 0.41 s - -

SPP8 16 x 8bit 256 x 8bit 5.06 s 1.11 s 3.66 s 0.452 s

SPP16 16 x 16bit 2048 x 8bit 266 s 92.2 s 1.23 s 0.822 s

Codea2 single 32 x 16bit 32768 x 16bit o.o.m. o.o.m. 4.30 s 4.44 s

Codea2 mult 32 x 16bit 65536 x 8bit o.o.m. o.o.m. 4.75 s 4.89 s

registers and a RISC instruction set consisting of 9 instructions. SPP16 is a 16-bit vari-
ant of the previous processor with a more complex memory model allowing one, e.g.,
to load/store both bytes and words from/to the memory. Codea2 is a 16-bit processor
with 4 pipeline stages partially based on the MSP430 microcontroller developed by
Texas Instruments [18]. The processor is dedicated for signal processing applications.
It is equipped with 16 general-purpose registers, 15 special registers, a flag register,
and an instruction set including 41 instructions, where each may use up to 4 avail-
able addressing modes. Our experiments were evaluated for two modifications of the
processor—using memory with and without multiple addressable units.

Our experiments were run on a PC with Intel Core i7-3770K @3.50GHz and 32
GB RAM using Cadence SMV (the build from 05-25-11) and GlueMinisat (version
2.2.5) [19] as an external SAT solver. The results can be seen in Table 1. The first
three columns give the processor being verified, the size of its register file, and the
size of the memory. The next columns give the results obtained from the verification—
in particular, the average time needed for verification of a single instruction with the
abstraction applied or not-applied in different combinations on the register file and the
memory. In the first case, both the register file and the memory were modeled explicitly
which, for larger designs such as Codea2, led to out-of-memory errors (“o.o.m.”). Next,
the abstraction was only used for register files. Even though better results were obtained
this way for the SPP8 and SPP16 processor designs, the verification still ran out of
system resources for Codea2 because of the explicitly modeled memory. In the last two
cases when either only memories or both memories and register files of the verified
processors were abstracted, verification was able to finish even for larger designs. We
explain the 10 % deterioration between verification times for the Codea2 processor with
and without presence of multiple addressable units by the complexity of the additional
logic.

Finally, we note that for very small memories and memories with many possible ac-
cesses (caused by, e.g., a higher verification depth during BMC), the overhead brought
by the abstraction can result in worse verification times as can be seen in the case of the
register file of the TinyCPU and Codea2 processors. Moreover, for SPP8, where only
a few instructions directly access the memory, and thus only a few instructions influence
the average verification times, the overhead caused by the abstraction introduces worse
than expected average verification time when abstracting the memory only. In practice,
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we deal with this problem by defining a heuristics that computes whether or not it is
better to use an explicit or abstract description of a given memory.

5 Conclusion

We have presented an approach of memory abstraction that exploits the fact that formal
verification often suffices with exploring a limited number of accesses to the available
memory, and it is thus possible to reduce the number of values that are to be recorded
to those that are actually stored in the memory. Our approach allows one to abstract
memories with various advanced features, such as different kinds of endianness, read
and write delays, multiple read and write ports, and different sizes of addressable units.
The techniques is fully automated and suitable for usage within processor development
frameworks where it can bring a significant improvement in verification times.
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