
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Utilizing Parametric Systems For Detection of Pipeline Hazards

Lukáš Charvát · Aleš Smrčka · Tomáš Vojnar

Received: date / Accepted: date

Abstract The current stress on having a rapid development
cycle for microprocessors featuring pipeline-based execu-
tion leads to a high demand of automated techniques sup-
porting the design, including a support for its verification.
We present an automated approach that combines static anal-
ysis of data paths, SMT solving, and formal verification of
parametric systems in order to discover flaws caused by im-
properly handled data and control hazards between pairs of
instructions. In particular, we concentrate on synchronous,
single-pipelined microprocessors with in-order execution of
instructions. The paper unifies and better formalises our pre-
vious works on read-after-write, write-after-read, and write-
after-write hazards and extends them to be able to handle
control hazards in microprocessors with a single pipeline
too. The approach has been implemented in a tool called
Hades, and we present promising experimental results ob-
tained using the tool on multiple pipelined microprocessors.

Keywords Microprocessor · Data Hazard · Control
Hazard · Formal Methods · Parametric Systems

1 Introduction

As the complexity of hardware designs is growing over the
last decades and microprocessor development cycles are fac-
ing pressure on fast and low design costs, automation of
hardware development has become a crucial need. This trend
was further boosted by the recent rise of the so-called In-
ternet of Things (IoT) interconnecting embedded devices,
which often require specialised, power-efficient designs to
be used. To facilitate the automation, specialized processor

L. Charvát · A. Smrčka · T. Vojnar
Brno University of Technology, Faculty of Information Technology,
Božetěchova 2, 612 66 Brno, Czech Republic
E-mail: {icharvat,smrcka,vojnar}@fit.vutbr.cz

description languages [14,25] are used increasingly during
the design process. Various tool-chains, such as Synopsys
ASIP Designer [26], Cadence Tensilica SDK [8], or Co-
dasip Studio [15] can then take advantage of the availability
of such microprocessor descriptions and provide automatic
generation of HDL designs, simulators, assemblers, disas-
semblers, and compilers.

Nowadays, microprocessor design tool-chains typically
allow designers to verify designs by simulation and/or func-
tional verification. Simulation is commonly used to obtain
some initial understanding about the design (e.g., to check
whether an instruction set contains sufficient instructions).
Functional verification usually compares results of large num-
bers of computations performed by the newly designed mi-
croprocessor against a golden specification, which must be
provided manually by the developers.

However, even extensive functional verification can miss
some non-trivial bugs. Therefore, usage of formal verifica-
tion becomes more and more desirable in the recent years.
As opposed to testing and bug-hunting techniques that aim
at detection of flaws, the goal of formal verification is to rig-
orously prove that the system is indeed correct. That is, if no
issue is found by a formal method, the system is guaranteed
to conform to the given specification.

Formal verification is, however, a very demanding task,
and even though a lot of progress has been achieved in this
area, formal verification is far from being able to fully auto-
matically check all relevant properties of complex designs.
Typically, a lot of human intervention is needed in extracting
parts of the designs to be verified, constructing abstractions
of their environment, and/or helping the automated verifica-
tion tool in the verification itself. The latter help can come,
e.g., in the form of leading a proof when using interactive
theorem provers, choosing and fine-tuning the abstraction
and verification methods used by model checkers or static

2 L. Charvát · A. Smrčka · T. Vojnar

analysers, and/or checking possible false alarms produced
by such tools.

One way how to mitigate the complexity of automated
formal verification is to develop methods specialised in ver-
ifying specific features of hardware designs, which is the ap-
proach that we take in this work too. The main idea is that,
this way, a high degree of automation and scalability can be
achieved since only parts of a design related to a specific
error are to be investigated.

We, in particular, concentrate on checking the absence
of certain kinds of errors in pipeline-based execution of in-
structions in custom-built microprocessors. To be more pre-
cise, we restrict ourselves to synchronous microprocessors
with in-order execution of instructions that do not contain
analog components. Our focus on this area is motivated by
that implementation of pipeline-based execution of instruc-
tions in purpose-specific microprocessors with customized
data and control paths is a rather error-prone task, which
implies a special need of proper verification of the resulting
designs.

As our first step in the above area, we proposed a fully-
automated approach for checking whether pipelined micro-
processors execute each instruction correctly provided that
it is executing in isolation [9]. Later, we complemented the
approach by proposing a method for verifying the absence of
read-after-write (RAW) [11] and, subsequently, write-after-
read (WAR) and write-after-write (WAW) hazards [12] in
microprocessors with a single pipeline. In this paper, we
present a unified and better formalised approach of treat-
ment of all of the above mentioned hazard types. Moreover,
we extend the approach so that it can now address problems
that might be caused by control hazards as well.

Our approach starts by a static analysis of data paths
to detect anomalies and possible hazards. This analysis is
followed by a transformation of detected problematic data
paths to a parametric system: in particular, a system of a para-
metric (and hence not known in advance) number of instruc-
tions to be executed over the detected path, which can be
viewed as a linear array of concurrent processes. Finally,
we verify whether the detected potential hazards are real by
means of techniques for formal verification of parametric
systems. We have implemented our approach in a tool called
Hades [10] and present encouraging results from its exper-
imental evaluations on multiple pipelined microprocessors,
including real-life ones.

Plan of the Paper Section 2 presents an overview of the re-
lated work addressing validation of single-pipeline micro-
processors. Section 3 defines the needed notions. In Sec-
tion 4, we sketch the main idea of the proposed approach.
Sections 5 and 6 discuss pre-processing tasks that are needed
before the core steps of our verification approach are ap-
plied. These core steps are then described in Section 7. Sec-

tion 8 presents an experimental evaluation of the proposed
approach. Finally, Section 9 concludes the paper.

2 Related Work

Showing the absence of pipeline hazards is a native part
of checking conformance between a register transfer level
(RTL) design and a formally encoded instruction accurate
(ISA) description. The perhaps most cited approach to such
checking is the so-called flushing technique [7], which has
been extended, e.g., in [18,27,16], to handle rather compli-
cated designs with multi-cycle execution units, exceptions,
and branch prediction. The main challenge of these works
is to overcome the semantic gap between the different levels
of a processor description. Dealing with this issue typically
requires a significant user intervention in the form of provid-
ing various additional assertions about the design (as can be
seen, e.g., in the recent technical report [6]) or transforming
it to a purpose-specific description language.

In [17], the so-called self-consistency check that com-
pares possible executions of each instruction in two scenar-
ios is introduced. The comparison is made wrt a property
given by the user, e.g., a property concerning data hazards
which deals with (i) executions of an instruction enclosed by
any (random) instructions within the pipeline and (ii) execu-
tions of the same instruction surrounded by NOP instructions
only. If the self-consistency check succeeds, conformance of
the RTL and ISA descriptions of a processor can be estab-
lished by separately showing conformance of the RTL/ISA
descriptions of each individual instruction. The main draw-
back of the approach is that it requires the enclosing instruc-
tions from the first run not to violate a so-called consistent
state of the microprocessor, which has to be manually de-
fined by the user.

In [1], a formal model based on a notion of stages, parcels
(instructions), and hazards has been introduced. Once the
user defines predicates needed for describing the pipeline,
the design can be automatically formally proven correct un-
der a correctness criterion given in the work. Another, a bit
similar approach has been proposed in [19]. The approach
introduces an abstract formal model whose components are
to be linked by the user with the concrete cycle-accurate im-
plementation through a number of mappings. Afterwards,
interval property checking [23] is used to check several prop-
erties implying correctness of the pipeline behaviour. Again,
both of the above methods require a significant manual user
intervention.

Compared with the above approaches, we do not aim
at full conformance checking between RTL and ISA im-
plementations. Instead, we address one specific property—
namely, the absence of problems caused by data and con-
trol pipeline hazards. On the other hand, our approach is al-
most fully automated—the only step required from the user

Utilizing Parametric Systems For Detection of Pipeline Hazards 3

is to identify the architectural resources (such as registers
and memory ports) and the program counter.

3 Preliminaries

We now introduce various basic notions that we will build
on in the rest of the paper.

3.1 Processor Structure Graphs

In what follows, we expect a processor to be described in the
form of a so-called processor structure graph (PSG) which
can be represented by a tuple G = (V,E , s, t, ω). Here, V
is a finite set that is the union Vr ∪ Vf of a set Vr of reg-
isters and a set Vf of Boolean circuits, Vr ∩ Vf = ∅. We
distinguish two types of registers: namely, architectural reg-
isters Va and pipeline registers Vp such that Vr = Va ∪ Vp
and Va ∩ Vp = ∅. The set of architectural registers Va must
always contain exactly one program counter vpc . We expect
all registers to have a unit write and zero read delay. Longer
access times (e.g., for memory ports) can be modelled by
introducing sequentially connected registers emulating the
required delay. Boolean circuits represent common combi-
national logic circuits. For the rest of the paper, it is suffi-
cient to distinguish these circuits into multiplexers Vmx and
all other circuits Vg , referred to as generic circuits further on.
Hence, we let Vf = Vmx∪Vg while requiring Vmx∩Vg = ∅.

For registers, we use a well-known notation to character-
ize their connections: namely, we use d to denote the data-in,
q data-out, rst reset, and en write-enable connections. For
multiplexers, we denote by sel the inbound connection that
is the selector which selects one of the input cases ci to be
transferred from the input to the output of the multiplexer,
which is again denoted as q. We denote input connections
of generic Boolean circuits as generic inputs ai. As before,
the output is denoted as q. Together, this gives us the set
T = {d, q, rst, en, sel} ∪ {ai, ci | i ∈ N} of all connec-
tion types.

Next, we use E to denote a finite set of transfer edges.
Note that we do not define the set of edges as E ⊆ V × V
since we sometimes need more edges between two nodes.
Instead, we simply require that E is a finite set of some ab-
stract edges, and we assign each edge with its source, tar-
get, and type. Namely, we use s : E → V × T to assign
to each edge its source vertex and its connection type, and
t : E → V × T to assign to each edge its target vertex and
its type of connection.

The sets V and E and the functions s and t must fulfil
the following criteria. For each register vr ∈ Vr:

– There is exactly one inbound data-in edge ed ∈ E such
that t(ed) = (vr, d).

– There are arbitrarily many outbound data-out edges eiq ∈
E such that s(eiq) = (vr, q) where 0 ≤ i < n for some
n ∈ N. (For n = 0, we get a register that is only written.)

– There is exactly one inbound clear edge erst ∈ E, also
denoted as the synchronous reset edge, s.t. t(erst) =

(vr, rst).
– There is exactly one inbound enable edge een ∈ E s.t.
t(een) = (vr, en).

Next, for each Boolean circuit, the following criteria must
be satisfied.

– For each circuit vg ∈ Vg implementing a Boolean func-
tion g(a0, . . . , an−1), there is exactly one inbound edge
for each argument of g such that t(eai) = (vg, ai) for all
0 ≤ i < n where n ∈ N. (For n = 0, we get a constant
function without parameters.)

– Every multiplexer vmx ∈ Vmx that implements a case
selection function switch(sel, case0, . . . , casen−1) has
exactly one inbound edge for each of its arguments such
that t(esel) = (vmx, sel) and t(ecasei) = (vmx, ci) for
all 0 ≤ i < n where n ≥ 2.

– For each circuit vf ∈ Vf , there are arbitrarily many out-
bound result edges eiq ∈ E such that s(eiq) = (vf , q)

where 0 ≤ i < n for some n ∈ N+.
– There is no cycle in the graph consisting of vertices rep-

resenting Boolean circuits only.

Finally, there are no other types of edges other than the ones
described above.

Due to the above restriction to at most one inbound edge
for a single connection type, one can use a simpler nota-
tion to uniquely describe the edges. In particular, an edge
e ∈ E that satisfies t(e) = (v, c), v ∈ V , c ∈ T, can
be encoded using the expression v.c. Finally, the function
ω : E → N+ represents a mapping that assigns some bit-
width to all edges of the PSG. The mapping can be naturally
expanded to be defined over registers too—namely, we let
ω(vr) = ω(vr.d) for all vr ∈ Vr. Additionally, it must also
hold that ω(eout) = ω(vr.d) for any (vr, eout) ∈ Vr ×{e ∈
E | s(e) = (vr, q)}.

Since we propose the notion of PSGs to be as simple as
possible, it does not take into account memories and mem-
ory ports. Instead, it contains architectural registers, which
can be used to represent particular memory cells. In the pa-
per, we assume that a memory is modelled using a finite
number of architectural registers representing the cells of
the memory. Memory ports are then modelled using addi-
tional logic circuits that select the appropriate memory cell
using its address. In particular, for a memory with n address-
able units, there are architectural registers m0, . . . ,mn−1 ∈
Va. A read memory port of such a memory is modelled us-
ing a single multiplexer circuit vread ∈ Vmx connected to
each of the registers representing memory units—for each
mi, 0 ≤ i < n, there is an edge e = vread.ci connect-

4 L. Charvát · A. Smrčka · T. Vojnar

ing a multiplexer case with the corresponding memory unit
s(e) = (mi, q). The selector edge vread.sel then repre-
sents a memory address and vread.q represents the data-
out connection of the memory port. A write memory port
is modelled by n circuits used to enable writing to a given
memory-cell mi, 0 ≤ i < n. Each of these circuits imple-
ments a Boolean function (sel = i) ∧ en, 0 ≤ i < n, where
sel represents a memory port address and en enables writing
to the memory. A schematic of a write and a read memory
port is depicted in Fig. 1.

3.2 The Transition System Induced by a PSG

Let B = {0, 1} be the set of Boolean values, and let Bn
denote the set of bit-vectors of size n ≥ 1. A PSG G =

(V,E , s, t, ω) induces a (finite) transition system (C , ↪→)

whose set of states C =
⊗

v∈Vr
Bω(v) is the set of con-

figurations of the PSGG and whose transition relation ↪→⊆
C×C is defined later in this section.1 We use c[vr] to denote
the bit-vector value of the register vr ∈ Vr in a configuration
c ∈ C . We abuse the notation and write c[e] to denote the
value transferred over an edge e ∈ E in the configuration c
as well. Given an edge e ∈ E such that s(e) = (vf , q) where
vf ∈ Vf is a circuit computing a function fn(a0, . . . , an−1),
n ∈ N, the value of c[e] can be recursively expressed as
c[e] = fn(c[ea0], . . . , c[ean−1]) where eai ∈ E , 0 ≤ i < n,
corresponds to the edge of the i-th parameter of the function
fn . In the case that an edge e ∈ E is an outbound edge of
a register vr ∈ Vr, i.e., s(e) = (vr, q), we let c[e] = c[vr].

For each register vr ∈ Vr of a bit-width m, m ≥ 1, we
assume the standard next-state function fnextvr : B(2·m+2) →
Bm where the register vr is written a value transferred over
the vr.d edge iff the vr.rst edge transfers “0” and vr.en
transfers “1” in the given configuration. Next, the value of
the register vr is nullified if the vr.rst edge transfers “1”.
In the following, we will refer to such a transition as regis-
ter clearing. Finally, the register vr keeps the same value if
both vr.en and vr.rst transfer the value of “0”. This will
be referred as register stalling in the following explanation.
When put together, the next state function fnextvr can be for-
mally defined as follows:

fnextvr (curr ,new , en, rst) :=


curr en = 0 ∧ rst = 0,

new en = 1 ∧ rst = 0,

0 otherwise.

Then, the relation ↪→ contains a transition c ↪→ c′ iff c′[vr] =

fnextvr (c[vr], c[vr.d], c[vr.en], c[vr.rst]) for all vr ∈ Vr.
1 Note that we do not introduce any notion of initial states of the

transition system. This is because we will use the notion of transition
systems to help us explore which sequences of transitions of the system
(C, ↪→) are possible while restricting the exploration to relevant states
externally to the notion of transition systems (as we will later see in
Section 7.2).

Since our approach builds on analysing conditions that
hold in certain stages of the execution of a given instruc-
tion, we now introduce a notion of edge conditions. An edge
condition is a pair (e, b), denoted e b, meaning that the
edge e ∈ E transfers some value b ∈ Bω(e). By E, we de-
note the set of all such edge conditions. Further, we define
a mapping γ : E → 2C that assigns each edge condition
(e b) ∈ E the set of configurations from C in which the
edge e transfers the value b, i.e., γ(e b) := {c ∈ C |
c[e] = b}. Given a set K ⊆ E, we also use the point-wise
extension γ(K) :=

⋂
k∈K γ(k) of γ.

3.3 Parametric Systems

When checking presence of hazards in a processor repre-
sented by a PSG, our approach derives as an intermediate
model a parametric network of processes operating on a lin-
ear topology, which we denote as a parametric system in
what follows. In particular, we use a common notion of para-
metric systems where processes (which, in our case, repre-
sent instructions being executed) may perform local transi-
tions as well as universally or existentially guarded global
transitions [13,22,2]. Formally, a parametric system (PS)
is a pair P = (Q , ∆) where Q is a finite set of states of
a process and ∆ is a set of transition rules over Q . A global
transition rule is of the form Q◦ : G |= q → q′ where
Q ∈ {∀,∃}, ◦ ∈ {← “left”,→ “right”,↔ “left or right”},
G ⊆ Q , and q, q′ ∈ Q . A local transition rule is then of the
form q → q′ where q, q′ ∈ Q .

A PS induces an infinite transition system whose config-
urations are finite non-empty words over Q , i.e., elements
of the set Q+ := {q1 . . . qn | 1 ≤ i ≤ n ∧ qi ∈ Q}. For
any index 1 ≤ i ≤ n, the i-th process can change a configu-
ration q1 . . . qi . . . qn to a configuration q1 . . . q′i . . . qn when
it goes from its state qi to q′i using some of the transition
rules. The rule can be applied only if its guard is satisfied.
For example, the meaning of the guard ∃↔ : G is “for each
state q from the set G, there should be at least one process
in the linear topology including the current one so that the
process is in the state q”. Formally, the guard ∃↔ : G is sat-
isfied in the configuration q1 . . . qi . . . qn by the i-th process
iff ∀q ∈ G ∃1 ≤ j ≤ n : qj = q. Similarly, the mean-
ing of the guard ∃← : G is “for each state q from the set G,
there should be at least one process to the left of the current
one so that the process is in the state q”. Formally, the guard
∃← : G is satisfied in the configuration q1 . . . qi . . . qn by the
i-th process iff ∀q ∈ G ∃1 ≤ j < i : qj = q. The meaning
of the other guards is defined analogically.

In the following, we assume working with PSs equipped
with a fairness assumption requiring that every process must
perform a step during a transition between two configura-
tions. Intuitively, this corresponds to the fact that all the

Utilizing Parametric Systems For Detection of Pipeline Hazards 5

.d

m0

mn-1

Cmp0

Cmpn-1

.c1

.a0

.sel .a0

... M
x
M
e
m

.c0.q

.cn-1

.q

...

.q

.
s
e
l

Write Port Read Port

...

M
x
S
e
l
0

0

.sel

M
x
S
e
l
n
-
1

.en

.c0

.en

.sel

.en

0
.c0

.c1

.d

.d

Fig. 1: A schematic of a write and a read memory port.

instructions represented by processes must make a (possi-
bly idling) step in their execution. Moreover, we expect that
global transition rules have a higher priority than the local
ones.

We will reduce the problem of checking existence of
a hazard in a given PSG to a reachability problem given by
a PS P , a regular set I ⊆ Q+ of initial configurations, and
a regular set Bad ⊆ Q+ of bad configurations. In particu-
lar, we will define Bad as the upward closure of a finite set
B ⊆ Q+ of minimal bad configurations where some of the
instructions being executed got to an undesirable state. This
is, Bad = {c ∈ Q+ | ∃b ∈ B : b v c} where v is the
usual sub-word relation (i.e., u v s1...sn ⇔ u = si1 ...sik
for some 1 ≤ i1 ≤ ... ≤ ik ≤ n, 1 ≤ k ≤ n). Now, let
R ⊆ Q+ denote the set of all reachable configurations of
the given PS P , i.e., the set of all those configurations that
can be reached from some initial configuration from the set
I by applying a finite sequence of the transition rules such
that the fairness assumptions are respected. We say that the
PS P is safe wrt I and Bad iff no bad configuration is reach-
able, i.e., R ∩ Bad = ∅.

3.4 Data and Control Hazards

Hazards in the instruction pipeline of central processing units
(CPUs) are problems caused by inadequate synchronisation
of earlier and later instructions running concurrently through
the pipeline that may cause potential corruption of the data
used by the instructions, with some result of the compu-
tation that referred to such data eventually propagated to
a programmer-visible register [24]. Three common types of
hazards are data hazards, control hazards, and structural haz-
ards. In this article, we will further focus on the first two

types of the hazards and on CPU designs that do not use
out-of-order execution. We will now give informal defini-
tions of each of the considered hazard types, which we will
later formalize in Section 6.

Definition 1 A read-after-write (RAW) data hazard is a sce-
nario in which a later-started instruction uses data supposed
to be produced by an earlier-started instruction, but the ear-
lier instruction has not yet managed to proceed far enough
in the pipeline to write the data into the register used by the
later instruction. The later instruction then stores a poten-
tially wrong result of its execution, obtained by dealing with
obsolete data, into some programmer-visible register.

Definition 2 A write-after-read (WAR) data hazard is a sce-
nario in which some data that should be used by an earlier-
started instruction are overwritten by a later-started instruc-
tion before the earlier instruction manages to read the data.
The earlier instruction then stores a potentially wrong result
of its execution, obtained by dealing with data seemingly
coming from the future, into some programmer-visible reg-
ister.

Definition 3 A write-after-write (WAW) data hazard is a sce-
nario in which an earlier-started instruction overwrites the
result of a later-started instruction that is stored in some
programmer-visible register, which then ends up containing
obsolete data.

Definition 4 A control (CTL) hazard is a scenario where an
earlier-started control-flow instruction changes the flow of
the control, but some later, speculatively-started instruction
manages to store some data into a programmer-visible reg-
ister.

6 L. Charvát · A. Smrčka · T. Vojnar

In commonly used in-order execution designs, the above
specified hazards are eliminated by pipeline stalling and/or
operand forwarding. For pipeline stalling, it is necessary for
a processor to be equipped with a control logic that deter-
mines whether a hazard could/will occur. If such a situation
is detected, the control logic inserts no-operation (NOP) in-
struction, sometimes called bubble, into the pipeline. There-
fore, before the later instruction from the pair of instructions
which would cause the hazard executes, the earlier one will
have sufficient time to proceed far enough in the pipeline so
that the hazard does not happen.

In the case of operand forwarding, additional (redun-
dant) data-paths are introduced into the processor design.
These data-paths are aimed to provide an option to prop-
agate partially computed data2 from an earlier instruction
to a later one in order to minimize the number of NOP in-
structions that would otherwise have to be inserted using the
above mentioned stalling technique.

4 The Proposed Approach to Hazard Detection

Our approach for verifying that the pipeline logic prevents
hazards consists of the following steps: (i) a simple data-
flow analysis intended to distinguish particular stages of the
pipeline, (ii) a consistency check to make sure that the flow
logic guarantees an in-order execution of instructions through
the identified pipeline stages, (iii) a static analysis deriving
constraints over data-paths of instructions that can poten-
tially cause a pipeline hazard, (iv) generation of a parametric
system modelling mutual interactions between potentially
conflicting instructions allowed by the derived constraints,
and (v) an analysis of the constructed parametric system to
see whether the identified interactions may lead to a hazard.

We assume the processor under verification to be rep-
resented using a PSG, which can be easily obtained from
a description of the processor on the register transfer level
(RTL) written in common hardware description languages,
such as VHDL or Verilog.

Example 1. Throughout the following sections, we will be
illustrating the different steps of our approach on a running
example depicted in Fig. 2. The figure shows a PSG de-
scribing a part of a simple microprocessor with an accu-
mulator architecture with the following architectural regis-
ters: X (a memory index register), A (an accumulator), PC
(the program counter), Prog i (program memory cells), and
Memj (data memory cells) where 0 ≤ i ≤ `, 0 ≤ j ≤
k and k, resp. `, are the sizes of the memories3. The de-
picted part of the CPU is used when executing arithmetic

2 The data that have not been written to its final register.
3 We assume that the Impl , Or , and Not vertices of the PSG com-

pute the standard implication fimpl : B2 → B, disjunction for : B2 →
B, and negation fnot : B → B functions. That is, for instance,
fimpl(a0, a1) := a0 ⇒ a1 for a0, a1 ∈ B.

and load/store instructions. In order to keep the PSG eas-
ily readable, types of connections are shown for architec-
tural registers and case-c edges of multiplexers only. Also,
since enable (i.e., “en”) and clear (i.e., “rst”) connections
for pipeline registers4 are common for each stage, they are
left out up to the ones that are required in the further expla-
nation.

In the CPU, the computation starts in Stage 1 by using
the content of the program counter PC to address the ith cell
of the program memory Prog i. An instruction fetched from
the program memory cell is stored into the register IdIr that
represents the so-called fetch register. The fetched instruc-
tion word in IdIr is then decoded by an instruction decoder
in Stage 2. Boolean circuits that belong to the decoder are
shown in yellow. Next, an address stored in the index regis-
ter is used to fetch data from the jth cell of the data memory
Memj in Stage 3. Optionally, the index register can be auto-
incremented. The auto-incrementation logic is a feature al-
lowing for an early incrementation of the value of a register
for memory addressing just before or right after it is read.
We then speak about the so-called pre-/post-increment, re-
spectively. The auto-incrementation feature usually brings
a more efficient execution of sequences of instructions that
access the processor’s memory (for instance, when comput-
ing over long arrays or other juxtaposed data). This speed-
up results from removing the need of otherwise required
pipeline stalls. However, the feature also introduces poten-
tial WAW and WAR hazards that must be handled properly.
Finally, in Stage 4, the decoded opcode part of the instruc-
tion is used to determine the type of an ALU operation (with
the ALU itself colored in purple) and to select destination
registers by setting their enable connection “en” to logical
“1”.

The Boolean circuit Flow in Fig. 2 represents the flow
logic of the second pipeline stage. This logic is responsible
for dealing with WAR hazards on the index register X . The
flow logic implements the function

Flow(IncX ,OfWrMem) := ¬IncX ∨ ¬OfWrMem.

In case a later instruction wants to perform an auto-increment
of the index register X while an earlier instruction is going
to use the content of X for a memory write, the flow logic
uses the enable “en” and clear “rst” signals of pipeline reg-
isters to insert a pipeline bubble between the instructions
into Stage 3. /

5 Preprocessing a Processor Structure Graph

This section describes the first two steps of the proposed ap-
proach: namely, the data-flow analysis identifying pipeline

4 For a full list of pipeline registers, see Table 1 in Section 5.1.

Utilizing Parametric Systems For Detection of Pipeline Hazards 7

.a0

.c1

.cj

ExWrA ExWrX ExAlu

.sel

ExOp

A

.c0

ExMem

.a1

.a1

M
x
O
p

.c0
Eq

.c1

Add

M
x
A
l
u

.d
Memj

.d

MxMem

FlowIncX

ExWrMem

X

.a1

En

.en

.sel

OrMxInc

.d

Inc
.a0

.en
OfWrMem

.sel

OfWrA OfWrX OfAlu OfOp

IdIr

WrA WrMemWrX Alu Op

.c0

PC MxProg
.sel

Progi

.ci

IncPCMxPC

.c0

ExJmp

MxJmp

.a0

.a0

Zero'

.c0

Sign

.c1

.c1

.en

.a0

Stage 1

Rst

.c2

...

.sel

OfJmp

Jmp

.sel

Stage 5

.d

...
.c2

.sel

Arch. Storage

Decoder

ALU

Legend:

Not'

Or'

.en

.sel

.c1

Stage 2

.a0

Cmpj

MxSelj

.a0

Stage 4

Zero

.c1 .c0

Stage 3

Impl

.a1

...
.a1

Fig. 2: A processor structure graph of a part of a CPU with an accumulator architecture.

stages and the pipeline consistency check ensuring a proper
in-order execution of instructions within the pipeline.

5.1 Data-Flow Analysis Discovering Pipeline Stages

The input of the proposed verification method consists of
a PSG and a list of its architectural registers, including the
program counter vpc . On this input, the method starts by
a simple data flow analysis whose goal is to compute the
number of pipeline stages. We then map registers, logic func-
tions, and edges of the PSG into the pipeline stages. We
define a pipeline stage as the sub-graph of the PSG that is
responsible for executing a single-cycle step of an instruc-
tion. The pipeline stage that an edge or a vertex (represent-
ing a register or circuit) of a PSG belongs to is given by the
minimum number of cycles needed to propagate data from
the input of the program counter to the edge or the output
of the given vertex, respectively. Hence, as a particular case,
the program counter itself belongs to Stage 1.

The data-flow analysis that we use starts from the pro-
gram counter vpc and its Stage 1 and propagates the so-far

computed stages forward through the PSG. If several stage
values are propagated to a single vertex or edge, the min-
imum is taken. Whenever a propagated stage value passes
a register, it is incremented by one. If there is a register with
no path originating from the program counter, such as Prog i
in Fig. 2, then its stage is derived from the lowest stage that
reads from that register. For instance, Prog i is only read by
IdIr and so Prog i will be placed to the stage preceding the
one where IdIr is located. The analysis gives us a mapping
ϕ : V ∪E → S, S = {1, . . . , n}, n ≥ 1, which maps vertices
and edges of the PSG to pipeline stages.

Subsequently, we derive the so-called write stage map-
ping ϕwr : V ∪ E → 2S that maps each vertex or edge to
the set of stages that directly influence its value. Namely,
we include into ϕwr(x) the stage of every pipeline register
vp ∈ Vp from which there is a path to x that does not pass
through any further register from Vp. Likewise, we derive
the read stage mapping ϕrd : V ∪E → 2S for each vertex or
edge that describes which stages are directly influenced by
its value. In particular, we include into ϕrd(x) the stage of

8 L. Charvát · A. Smrčka · T. Vojnar

Table 1: Registers of the CPU from Fig. 2 and the corre-
sponding pipeline stages.

Register Stage Write stages Read stages Pivot

ϕ ϕwr ϕrd

PC 1 {1, 2, 3, 4} {1, 2} –

Progi 1 ∅ {2} –

X 3 {2, 3, 4} {3, 4, 5} –

A 5 {4} {1, 2, 3, 4, 5} –

Memj 5 {4} {4} –

IdIr 2 {1, 2, 3, 4} {1, 2, 3} X

OfJmp 3 {2, 3, 4} {1, 2, 3, 4} X

OfWrA 3 {2, 3, 4} {4} ×
OfWrX 3 {2, 3, 4} {1, 2, 3, 4} X

OfAlu 3 {2, 3, 4} {1, 2, 3, 4} X

OfOp 3 {2, 3, 4} {1, 2, 3, 4} X

OfWrMem 3 {2, 3, 4} {1, 2, 3, 4} X

ExJmp 4 {3, 4} {1, 2, 3, 4} X

ExWrA 4 {3, 4} {5} ×
ExWrX 4 {3, 4} {1, 2, 3} X

ExAlu 4 {3, 4} {1, 2, 3, 5} X

ExOp 4 {3, 4} {1, 2, 3, 5} X

ExWrMem 4 {3, 4} {1, 2, 3, 5} X

ExMem 4 {3, 4} {3, 5} X

every pipeline register vp ∈ Vp to which there is a path from
x that does not pass through any other register from Vp.

Pipeline stages of the registers from the PSG of Fig. 2
and the corresponding read and write stages, computed as
described above, are shown in Table 1. (The notion of pivots
will be introduced later on.)

5.2 Pipeline Consistency Checking

The second step of our approach is consistency checking
which checks whether the flow logic assures a correct in-
order execution of all instructions through all the identified
pipeline stages. This means that all instructions which are
fetched from the program memory should flow from the first
stage to the last stage while maintaining their execution or-
der with no loss or duplication of an instruction. To check
the above, we verify whether the flow logic obeys a set of
rules which expresses how the control connections (en, rst)
of registers in adjacent pipeline stages should be set. In par-
ticular, we use a strengthened variant of the rules proposed
in [20]. The rules have been strengthened since (as we will
see later on) our approach builds on an assumption that, if
some pipeline stage is stalled, then all predecessor stages
have to be stalled as well. This means that our approach rules

out some extreme ways of pipeline implementation allowed
by the original rules. An example of such a situation is an
optimization of the execution during stage stalling when an
instruction preceded by a series of NOP instructions is al-
lowed to proceed to the next stage in order to increase the
throughput.

For the following, assume a transition system (C , ↪→)

induced by the PSG being verified. We introduce mappings
st , rst : Vp → 2C defined as

st(vp) := γ({vp.en 0, vp.rst 0}),
rst(vp) := γ(vp.rst 1).

Intuitively, for any register vp ∈ Vp, st(vp) and rst(vp) are
the sets of configurations in which vp is stalled or cleared,
respectively. The pipeline consistency rules that we check
are then the following:

– Rule 1: If some pipeline register of a stage s ∈ S is
stalled, then all pipeline registers of the Stage s have to
be stalled, i.e., for all vp, v′p ∈ Vp:

ϕ(vp) = ϕ(v′p)⇒ st(vp) ⊆ st(v′p).

The rule follows the idea that an instruction carried by
a pipeline stage cannot be fragmented. The rule also re-
flects one of the fundamental assumptions about pipe-
lined execution from [20]: namely, at any given time, an
instruction is always in a single pipeline stage only. As
a corollary, by simply swapping vp and v′p, one can de-
rive a stronger statement ϕ(vp) = ϕ(v′p) ⇒ st(vp) =

st(v′p).
– Rule 2: If some pipeline register in a Stage s ∈ S \
{max(S)} is stalled, then all pipeline registers of the
Stage s + 1 have to be stalled or cleared, i.e., for all
vp, v

′
p ∈ Vp:

ϕ(vp) = ϕ(v′p)− 1⇒ st(vp) ⊆ st(v′p) ∪ rst(v′p).

This rule is a rephrased version of Equation (15) from [20]
and prevents duplication of an instruction.

– Rule 3: If some pipeline register in a Stage s ∈ S\{1} is
stalled, then all pipeline registers of the Stage s−1 have
to be stalled, i.e., for all vp, v′p ∈ Vp:

ϕ(vp) = ϕ(v′p) + 1⇒ st(vp) ⊆ st(v′p).

This rule is a rephrased version of Equation 16 from [20]
and prevents an instruction to be lost.

– Rule 4: If some pipeline register in a Stage s ∈ S is
cleared, then all pipeline registers of the Stage s have to
be cleared, i.e., for all vp, v′p ∈ Vp:

ϕ(vp) = ϕ(v′p)⇒ rst(vp) ⊆ rst(v′p).

Similarly to Rule 1, this rule prevents fragmentation of
an instruction and it is a part of the basic assumptions
about pipelined execution mentioned in [20].

Utilizing Parametric Systems For Detection of Pipeline Hazards 9

We check the above rules using an SMT solver [5,21,
3] for the bit-vector logic. To convert the rules into the bit-
vector logic, we first define an operator ? that maps edges of
a PSG to variables of the bit-vector logic (BVL) such that
e?1 = e?2 ⇔ s(e1) = s(e2) for each e1, e2 ∈ E. Intuitively,
edges with the same source must have the same value. Then,
for any e ∈ E, we define a BVL formula ψ(e) that encodes
how the value transmitted over e is computed from values
stored in registers. The formula ψ(e) is recursively defined
as

ψ(e) :=

e? = g(e?1, ..., e
?
m) ∧

m∧
i=1

ψ(ei)
s(e) = (v, q) ∧
v ∈ Vf ,

true otherwise

where g denotes the Boolean function computed by the cir-
cuit v ∈ Vf .

Now, the inclusion test st(vp) ⊆ st(v′p) from Rule 1 can
be reduced to checking validity of the following formula:

Φ(vp) := (ψ(vp.en) ∧ ψ(vp.rst) ∧ ψ(v′p.en) ∧
ψ(v′p.rst) ∧ vp.en? = 0 ∧ vp.rst? = 0)⇒

(v′p.en
? = 0 ∧ v′p.rst? = 0).

Intuitively, Φ(vp) says that if the values of vp.en, vp.rst,
v′p.en, and v′p.rst are computed according to the given flow
logic and vp is stalled, then v′p is stalled too. Instead of
checking validity of Φ(vp), one can check unsatisfiability
of the negation of the formula, i.e., ¬sat(¬Φ(vp)). More-
over, as ¬Φ(vp) = ψ(vp.en) ∧ ψ(vp.rst) ∧ ψ(v′p.en) ∧
ψ(v′p.rst) ∧ vp.en? = 0 ∧ vp.rst? = 0 ∧ (v′p.en

? =

1 ∨ v′p.rst? = 1), the check ¬sat(¬Φ(vp)) can be replaced
by the following two simpler checks:5

¬sat


ψ(vp.en) ∧ vp.en? = 0 ∧

ψ(vp.rst) ∧ vp.rst? = 0 ∧

ψ(v′p.en) ∧ v′p.en? = 1

 (1)

¬sat


ψ(vp.en) ∧ vp.en? = 0 ∧

ψ(vp.rst) ∧ vp.rst? = 0 ∧

ψ(v′p.rst) ∧ v′p.rst? = 1

 (2)

Hence, Rule 1 can be checked by applying the checks from
Equations 1 and 2 to all vp, v′p ∈ Vp such that ϕ(vp) =

ϕ(v′p).
Rules 2–4 can be checked in a very similar way as Rule 1.

5 Note that, in Equation 1, we may remove the ψ(v′p.rst) conjunct
since the constraint v′p.rst

? = 1 is not present, and likewise with
ψ(v′p.en) in Equation 2.

6 Static Detection of Potential Pipeline Hazards

According to Definitions 1–4, a pipeline hazard (of any of
the discussed kinds) occurs when two instructions access the
same architectural register and at least one of the accesses is
a write. We will further use the term spoiler whenever refer-
ring to the writing instruction causing the hazard. The other
involved instruction will then be called a victim instruction.
Finally, we will speak about a hazard case when referring to
the pair formed by a spoiler and a victim instruction.

In this section, we will first focus on identifying a finite
set of hazard cases potentially causing hazards in a given
processor. For that, we will use a static hazard analysis ex-
amining the PSG and pipeline stage mappings ϕ, ϕwr, ϕrd

determined by the data-flow analysis from Section 5.1. In or-
der to be able to describe a spoiler-victim pair forming a haz-
ard case, we will introduce several auxiliary notions, among
which the so-called forward execution, minimal transfer ex-
ecution, and maximal store execution are the most impor-
tant.

We begin by introducing a notion representing a generic
concept of a data transfer between two vertices within a given
PSG. Naturally, each such transfer must conform to the ϕwr

andϕrd mappings. We first formalize the notion of data trans-
fers in a broader form in Definition 5, which is narrowed
later on in Definition 6. In particular, Definition 5 is broader
in the sense that it may describe data transfers that can only
be achieved when multiple instructions are involved and some
of the instructions pass the data back to lower stages of the
pipeline where they are processed by instruction(s) that en-
tered the pipeline later. This would mean that a spoiler itself
(and likewise a victim) could consist of multiple instruc-
tions. Dealing with such situations is, of course, relevant, but
we will restrict ourselves to the case of the spoiler and victim
being single instructions each, generating the so-called for-
ward executions (Definition 6). Nevertheless, this does not
mean that we ignore multi-instruction hazards completely.
Instead, thanks to the concepts introduced in Definitions 7,
8, and 10, our approach is capable of generating alarms in
situations where the potentially erroneous value is not made
visible but ends up in a pipeline register from which an-
other instruction can make its effect visible. Such alarms
may, however, be false, and our approach will not be able
to see that.

Definition 5 Let G = (V,E , s, t) be a PSG and π an alter-
nating sequence 〈v1, e1, . . . , ek−1, vk〉, k > 1, of vertices
interconnected by edges, that is, v1, . . ., vk ∈ V , e1, . . .,
ek−1 ∈ E , s(ei) = (vi, ci), and t(ei) = (vi+1, ci+1) for
each 1 ≤ i < k and c1, . . ., ck ∈ T. Moreover, assume
that, in π, no vertex appears twice, i.e., i 6= j ⇒ vi 6= vj
for 1 ≤ i, j ≤ k. We say that a pair (π, τ) is an execu-
tion if there exists a valuation τ : {1, . . . , 2k − 1} → S s.t.
vi ∈ Vr ⇒ τ(j) − 1 ∈ ϕwr(vi) for all 1 < i ≤ k and

10 L. Charvát · A. Smrčka · T. Vojnar

j = 2i − 1. We denote π and τ as an execution path and
an execution plan, respectively. We will further use X to de-
note the set of all executions. Moreover, we use πfst and πlst

to denote the first v1, resp., the last vk of the path π. Ana-
logically, we will use shortcuts τ fst and τ lst in order to refer
to the valuation of the first τ(1) and last element τ(2k − 1)

of the execution path π, respectively, i.e., τ fst = τ(1) and
τ lst = τ(2k − 1).

Intuitively, given an execution, its execution plan repre-
sents a sequence of stages in which particular vertices are
written during a data transfer. Hence, taking into account
the unit delay of writing, the value written to a vertex vi
is obtained from a value computed in the stage τ(j) − 1,
j = 2i − 1 (with the first element of the path being special
and excluded from this requirement).

Example 2. Consider the PSG G depicted in Fig. 2. A pair
(π1, τ1) s.t. π1 = 〈X , MxMem.sel, MxMem , ExMem.d,
ExMem , MxOp.c0, MxOp, Eq .a1, Eq , MxAlu.c0, MxAlu ,
A.d, A〉 and τ1 = {1X 7→ 3, 2MxMem.sel 7→ 3, 3MxMem 7→
3, 4ExMem.d 7→ 3, 5ExMem 7→ 4, 6MxOp.c0 7→ 4, 7MxOp 7→
4, 8Eq.a1 7→ 4, 9Eq 7→ 4, 10MxAlu.c0 7→ 4, 11MxAlu 7→ 4,
12A.d 7→ 4, 13A 7→ 5} is an execution in G describing one
of the possible data transfers from the register X to the reg-
ister A. Note that we indexed the left-hand sides of the map-
pings by the corresponding registers to make the mappings
more readable and to allow the reader to check that the ex-
ecution indeed obeys the rules from Definition 5 when con-
sidering the ϕwr mapping from Table 1.

Another example of an execution is a pair (π2, τ2) where
π2 = 〈ExJmp, MxJmp.sel, MxJmp, MxPC .sel, MxPC ,
PC .d, PC , MxProg .sel, MxProg , IdIr .d, IdIr〉 and τ2 =

{1ExJmp 7→ 4, 2MxJmp.sel 7→ 4, 3MxJmp 7→ 4, 4MxPC .sel 7→
4, 5MxPC 7→ 4, 6PC .d 7→ 4, 7PC 7→ 5, 8MxProg.sel 7→ 1,
9MxProg 7→ 1, 10IdIr .d 7→ 1, 11IdIr 7→ 2}. /

To narrow our selection only to executions that are fea-
sible by a single instruction, one needs to only think of ex-
ecutions tied with execution plans where stages form a non-
decreasing sequence. Intuitively, a single instruction in the
pipeline can only move forward or stay in the same stage.
This leads us to the definition given next.

Definition 6 A forward execution is a special type of execu-
tion (〈v1, e1, . . . , vk〉, τ) ∈ X, k > 1, where the following
restrictions hold for all 1 < i ≤ k and all 1 ≤ j < k: (i) vi ∈
Vr ⇒ τ(2i−1) = τ(2i−2)+1, (ii) vi ∈ Vf ⇒ τ(2i−1) =

τ(2i− 2) , and (iii) ej ∈ E ⇒ τ(2j) = τ(2j − 1).

As can be seen, the constraints of Definition 6 require that
the stage associated with a register should increase (Condi-
tion (i)) and that the stage associated with a Boolean circuit
or an edge should remain the same (Conditions (ii) and (iii)).
Clearly, if any of the conditions is not met, there could not
be any single instruction capable of a data transfer described
by the execution.

Example 3. Consider the executions from Example 2. The
execution (π1, τ1) is a forward execution while (π2, τ2) is
not since τ2(8MxProg.sel) 6= τ2(7PC). /

For further explanation, it is important to be able to iden-
tify a register from which the transferred data can be passed
to another (later) instruction. Such an action occurs only if
there exists a path leading from a register in a higher stage
to a register that belongs to a lower one. This is formalized
in the next definition.

Definition 7 A pipeline register v ∈ Vp is a pivot if there
exist a stage sr ∈ ϕrd(v) s.t. sr ≤ ϕ(v).

We also need to establish a notion of a stage that can
be cleared without the previous stage being stalled. Such
a stage can be used to nullify the state of a partially executed
instruction.

Definition 8 A stage s ∈ S is independently clearable if
there exist pipeline registers vp, v′p ∈ Vp s.t. ϕ(vp) = s =

ϕ(v′p)+1 and rst(vp)∩ st(v′p) 6= ∅ where st and rst are the
mappings defined in Section 5.2.

We decide whether a stage satisfies the above given con-
strains for being independently clearable in a similar way
to Rules 1–4. More precisely, an SMT solver performs the
following check in this case:

sat

ψ(vp.rst) ∧ ψ(v′p.en) ∧ ψ(v′p.rst)

vp.rst
? = 1 ∧ (v′p.en

? = 1 ∨ v′p.rst? = 1)

 (3)

The above check can be further decomposed into two sim-
pler checks while it suffices that at least one is satisfiable:

sat

ψ(vp.rst) ∧ vp.rst? = 1

ψ(v′p.en) ∧ v′p.en? = 1

 (4)

sat

ψ(vp.rst) ∧ vp.rst? = 1

ψ(v′p.rst) ∧ v′p.rst? = 1

 (5)

In the next step, we define an execution that can be per-
formed by a single instruction and which may influence the
value stored in some register.

Definition 9 A store execution is a forward execution (〈v1,
e1, . . . , ek−1, vk〉, τ) for some k > 0, v1, vk ∈ Vr, so that
v2, . . . , vk−1 6∈ Vr. We also define a maximal store execu-
tion as a store execution that is not a suffix of any other store
execution.

As a final step, we define an execution that can be per-
formed by a single instruction and which may influence the
data stored in an architectural register va ∈ Va by reading
some data from a (potentially different) register v ∈ Vr and
transferring them to the register va.

Utilizing Parametric Systems For Detection of Pipeline Hazards 11

Definition 10 A transfer execution is a forward execution
(〈v1, e1, . . . , ek−1, vk〉, τ) for some k > 0, vk ∈ Vr that
satisfies the following two properties: (i) The register vk sat-
isfies one of the following: (a) it is an architectural register
vk ∈ Va, (b) it is a pipeline register vk ∈ Vp s.t. t(ek−1) =

(vk, rst) and ϕ(vk) is an independently clearable stage, or
(c) the register vk ∈ Vp is a pivot s.t. t(ek−1) = (vk, d).
(ii) Moreover, t(ei) 6∈ Vp × {en, rst} for all 1 ≤ i < k.
We also define a minimal transfer execution as a transfer
execution that does not contain any prefix that is a transfer
execution.

Condition (i-a) is straightforward as the execution af-
fects the architectural register directly in this case. Clear-
ing the target pipeline register vk ∈ Vp in an independently
clearable stage as described in Condition (i-b) causes can-
cellation of any partially executed instruction in Stageϕ(vk).
Such an event may indirectly influence any architectural reg-
ister va ∈ Va that belongs to a stage s ≥ ϕ(vk). Simi-
larly, concerning Condition (i-c), if the target pipeline reg-
ister vk ∈ Vp is a pivot, the value read from it—by a later
instruction—may also indirectly influence any architectural
register that the later instruction writes to. Next, as described
by Condition (ii), the transfer execution must not traverse
through enable connections of pipeline registers. Such exe-
cutions cannot influence the value of any architectural regis-
ter. Their only impact can be that they stall a stage. This also
holds for reset connections of pipeline registers in a stage
that is not independently clearable—in this case, an instruc-
tion cannot be lost since the previous stage is always stalled.
In such a case, the pipeline consistency given by Rules 1–4
from Section 5.2 assures correct preservation of all partially
executed instructions.

An incorrectly handled pipeline hazard manifests upon
the first write of improper data into some architectural reg-
ister of the design. Therefore, it suffices to further deal with
the minimal transfer executions only. We can now formalize
the notion of hazard cases in a unified way for all the differ-
ent kinds of hazards (restricted to the case when the spoiler
and victim consist of single instructions) as follows. In par-
ticular, we represent a hazard case as a tuple (χsp , χvi) ∈ X2

where χsp and χvi are spoiler and victim executions appro-
priate for the concerned kind of hazard. A more rigorous
description of each considered type of hazard cases is given
in the following definitions.

Definition 11 A RAW hazard case is a tuple (χsp , χvi) ∈
X2 consisting of a maximal store execution χsp = (〈vsp1 ,
esp1 , . . ., ek−1 = vspk−1.d, vspk = v〉, τsp) of a spoiler in-
struction and a minimal transfer execution χvi = (〈vvi1 = v,
evi1 , . . . , v

vi
` 〉, τvi) of a victim instruction where v ∈ Va \

{vpc}, k, ` > 1, and data in the architectural register v can
be read by the victim instruction before they are written by
the spoiler, i.e., τ fst

vi < τ lst
sp .

Definition 12 A WAR hazard case is a tuple (χsp , χvi) ∈
X2 consisting of a maximal store execution χsp = (〈vsp1 ,
esp1 , . . ., ek−1 = vspk−1.d, vspk = v〉, τsp) of a spoiler in-
struction and a minimal transfer execution χvi = (〈vvi1 = v,
evi1 , . . . , v

vi
` 〉, τvi) of a victim instruction where v ∈ Va \

{vpc}, k, ` > 1, and data in the architectural register v can
be written by the spoiler before they are read by the victim,
i.e., τ lst

sp < τ fst
vi .

Definition 13 A WAW hazard case is a tuple (χsp , χvi) ∈
X2 consisting of a maximal store execution χsp = (〈vsp1 ,
esp1 , . . ., e

sp
k−1 = v.d, vspk = v〉, τsp) of a spoiler instruction

and a maximal store execution χvi = (〈vvi1 , evi1 , . . . , e
vi
`−1 =

v.d, vvi` = v〉, τvi) of a victim instruction where v ∈ Va \
{vpc}, k, ` > 1, and data into the architectural register v can
be written from two different stages. In the following, with-
out a loss of generality (since the conflicting instructions can
always be swapped), we will assume the spoiler to perform
a write operation in an earlier stage, i.e., τ lst

sp < τ lst
vi .

One can observe that there is no need to include any min-
imal transfer execution in the case of WAW hazard since an
error that is caused by the hazard is manifested instantly by
writing an incorrect value to the register v.

Definition 14 A CTL hazard case is a tuple (χsp , χvi) ∈
X2 consisting of a maximal store execution χsp = (〈vsp1 ,
esp1 , . . ., ek−1 = vspk−1.d, vspk = vpc〉, τsp) of a spoiler in-
struction and a minimal transfer execution χvi = (〈vvi1 =

vpc, evi1 , . . . , v
vi
` 〉, τvi) of a victim instruction where k, ` >

1, vpc 6= vvi` . Moreover, the vpc register must be written
with data originating from a source other than the program
counter’s auto-increment logic, which we consider to appear
in Stage 1. Therefore, the spoiler must always write from
a stage other than the first one, i.e., τ lst

sp > 2.

Note that, since the definition of a particular hazard case
speaks about registers, their access stages, and the path along
which the problematic data are transferred, it is not defined
for a single concrete instruction only but for an entire class
of instructions that conform to the criteria given by the haz-
ard case. Further, note that the cases when τ lst

sp = τ fst
vi for

RAW, WAR, and CTL hazards as well as the cases when
τ lst
sp = τ lst

vi for WAW hazards are not covered by the above
definitions. This is because our approach assumes correct
execution of isolated instructions, which rules such cases
out. Such correctness can be checked separately using, e.g.,
methods described in [7,9]. Finally, albeit CTL hazards are
quite similar to RAW hazards (as CTL hazards could be con-
sidered a special kind of RAW hazards on the vpc register),
we prefer to keep them separate due to CTL hazards do still
come with some special constraints (such as the treatment of
the program counter’s auto-increment logic) and due to the
different nature of errors that may typically arise from them.

12 L. Charvát · A. Smrčka · T. Vojnar

In order to generate the set H of hazard cases, we pro-
ceed as follows. First, using results of the data-flow analysis
from Section 5.1, we find all registers va ∈ Va for which
there is a risk that some hazard situation may be initiated
between stages s1, s2 ∈ S. The conditions that must hold
for s1, s2 differ for different hazard cases. For instance, for
RAW hazards, we need the following conditions to hold:
s1 − 1 ∈ ϕwr(va), s2 + 1 ∈ ϕrd(va), and s2 < s1. The
condition s2 < s1 reflects the fact that the needed data are
read from va before they are written into va. The rest of the
condition reflects that it must be possible to write to va in
stage s1 and read in stage s2, i.e., it must have a predecessor
register in stage s1−1 and a successor register in stage s2+1.
The subtraction/addition of 1 is applied due to the unit write
delay that happens between the data are read from the previ-
ous register and written to va and then between reading the
data from va and writing them to the successor register. For
other kinds of hazards, the conditions are derived from the
kind of hazard analogously as for RAW hazards as shown
later on. Second, we find all maximal store executions that
terminate in the register va. Finally, we generate all mini-
mal transfer executions originating from the va vertex of the
given PSG G.6

The procedure for generating the set H is shown in Alg. 1.
The procedure first constructs auxiliary setsARAW ,AWAR,
and ACTL strictly following the constraints given by RAW,
WAR, and CTL hazard cases (see Definitions 11, 12, and 14).
The sets ARAW , AWAR, and ACTL consist of quintuples
characterising suspected hazards. They include the architec-
tural register va on which the hazard happens, the target
register vt through which the hazard manifests, and three
stages: namely, stages s1 and s2 in which the conflicting
read/write operations on va happen, and stage s3 in which
the hazard gets manifested. For WAW hazards, the proce-
dure later on proceeds similarly, but there is no vt and s3
needed since the hazard manifests immediately upon the
second write operation (Definition 13). The auxiliary sets
are then used for finding maximal store and minimal trans-
fer executions in the PSG. A standard breadth-first search al-
gorithm during which constraints from Definitions 5–10 are
checked on-the-fly can be used to obtain the minimal trans-
fer executions in G for the suspected hazards. Similarly, the
procedure may deploy the depth-first search algorithm while
checking constraints from Definitions 5, 6, and 9 in order to
find the maximal store executions.

Example 4. Consider the PSG from Fig. 2 and the mappings
shown in Table 1. One can see that there is a potential WAR
hazard on the index register X ∈ Va because, for example,
it can be written in Stage 3 (ϕwr(X) = {2, 3, 4}) and read

6 For WAW hazards, in the final step, we generate maximal store
executions instead. In this case, the error caused by the hazard is im-
mediately visible from the programmer’s point of view, and there is no
need of its propagation to another architectural register.

Algorithm 1 Procedure computing a set of hazard cases H.
Require: A PSG G = (V,E, s, t, ω), a set Va ⊆ V of architectural

registers, a program counter vpc ∈ Va, a set Vp ⊆ V of pipeline
registers, Va ∩ Vp = ∅, a set Vpivot ⊆ Vp of pivots, and a set
Sic ⊆ S of independently clearable stages.

Ensure: A set H ⊆ X×X of hazard cases in the CPU encoded by G.
1: Vt := Va ∪ Vpivot ∪ {v ∈ Vp | ϕ(v) ∈ Sic}
2: Let A denote Va × N× N× Vt × N
3: ARAW := {(va, s1, s2, vt, s3) ∈ A | s1 − 1 ∈ ϕwr(va) ∧
s2 + 1 ∈ ϕrd(va) ∧ s2 < s1 ∧ s3 − 1 ∈ ϕwr(vt) ∧ s2 ≤ s3}

4: AWAR := {(va, s1, s2, vt, s3) ∈ A | s1 − 1 ∈ ϕwr(va) ∧
s2 + 1 ∈ ϕrd(va) ∧ s1 < s2 ∧ s3 − 1 ∈ ϕwr(vt) ∧ s2 ≤ s3}

5: ACTL := {(vpc , s1, 1, vt, s3) ∈ A | s1 − 1 ∈ ϕwr(va) ∧
2 ∈ ϕrd(vpc)∧s1 > 2∧s3−1 ∈ ϕwr(vt)∧vpc 6= vt∧s3 > 1}

6: A := ARAW ∪AWAR ∪ACTL

7: H := ∅
8: for (va, s1, s2, vt, s3) ∈ A do
9: χsp := { (π, τ) ∈ X | π = 〈v1, e1, . . . , ek−1, vk〉 ∧

({vk} × N × N × Vt × N) ∩ A 6= ∅ ∧ t(ek−1) =
(vk, d) ∧ v2, . . . , vk−1 6∈ (Va ∪ Vp) ∧ τ lst = s1 ∧
(π, τ) is a maximal store execution }

10: χvi := { (π, τ) ∈ X | π = 〈v1, e1, . . . , ek−1, vk〉 ∧
({v1} × N× N× {vk} × N) ∩ A 6= ∅ ∧ τ fst = s2 ∧ τ lst =
s3 ∧ (π, τ) is a minimal transfer execution }

11: H := H ∪ (χsp × χvi)
12: end for
13: Let A′ denote Va × N× N
14: AWAW := {(va, s1, s2) ∈ A′ | s1 − 1, s2 − 1 ∈ ϕwr(va) ∧

s1 < s2}
15: for (va, s1, s2) ∈ AWAW do
16: χsp := { (π, τ) ∈ X | π = 〈v1, e1, . . . , ek−1, vk〉 ∧

({vk} × N × N) ∩ AWAW 6= ∅ ∧ t(ek−1) =
(vk, d) ∧ v2, . . . , vk−1 6∈ (Va ∪ Vp) ∧ τ lst = s1 ∧
(π, τ) is a maximal store execution }

17: χvi := { (π, τ) ∈ X | π = 〈v1, e1, . . . , ek−1, vk〉 ∧
({vk} × N × N) ∩ AWAW 6= ∅ ∧ t(ek−1) =
(vk, d) ∧ v2, . . . , vk−1 6∈ (Va ∪ Vp) ∧ τ lst = s2 ∧
(π, τ) is a maximal store execution }

18: H := H ∪ (χsp × χvi)
19: end for
20: return H

by Stage 5 (ϕrd(X) = {3, 4, 5}). By Definition 12, to form
a WAR hazard, the PSG must contain (i) a maximal store ex-
ecution of a spoiler instruction (πsp , τsp) ∈ X ending in X
and (ii) a minimal transfer execution (πvi , τvi) ∈ X leading
from X to some target register. There are multiple execu-
tions of spoiler and victim instructions that satisfy the above
criteria. Each of them must be considered in order to verify
that the design is free of WAR hazards. For instance, one
may consider a spoiler execution (πsp , τsp) with πsp = 〈X ,
Inc.a0, Inc, MxInc.c0, MxInc,X.d,X〉 and τsp = {1X 7→
2, 2Inc.a0 7→ 2, 3Inc 7→ 2, 4MxInc.c0 7→ 2, 4MxInc 7→ 2,
5X.d 7→ 2, 6X 7→ 3}. Further, we can consider a victim exe-
cution (πvi , τvi) with the target memory cell Memj written
in Stage 5 where πvi = 〈X , Cmpj .a0, Cmpj , MxSel j .c1,
MxSel j , Memj .en, Memj〉. An instance of an execution
plan τvi for the path πvi is {1X 7→ 4, 2Cmpj .a0 7→ 4,
3Cmpj 7→ 4, 4MxSelj .c1 7→ 4, 5MxSelj 7→ 4, 6Memj .en 7→
4, 7Memj 7→ 5}. The given pair of a spoiler and victim

Utilizing Parametric Systems For Detection of Pipeline Hazards 13

is clearly a candidate for a WAR hazard since the needed
data are overwritten before they are read (unless some con-
trol logic over the involved executions prevents the hazard,
which will be the subject of further checking). /

Example 5. Further, as an example of a control hazard,
one can consider a spoiler execution (πsp , τsp) with πsp =

〈ExAlu , MxAlu.sel, MxAlu , MxPC .c1, MxPC , PC .d,
PC 〉 and τsp = {1ExAlu 7→ 4, 2MxAlu.sel 7→ 4, 3MxAlu 7→
4, 4MxPC .c1 7→ 4, 5MxPC 7→ 4, 6PC .d 7→ 4, 7PC 7→ 5}.
As an instance of a victim execution (πvi , τvi), we can con-
sider an execution path πvi = 〈PC , MxProg .sel, MxProg ,
IdIr .d, IdIr〉 with an execution plan τvi = {1PC 7→ 1,
2MxProg.sel 7→ 1, 3MxProg 7→ 1, 4IdIr .d 7→ 1, 5IdIr 7→ 2}.
Note that, in this case, IdIr 6∈ Va, but we know from Ta-
ble 1 that the pipeline register IdIr is a pivot, and so it is
still a valid terminating element for a transfer execution. /

7 Parametric Systems for Potential Hazards

We will now describe how the potentially hazardous be-
haviour of a spoiler and a victim instruction described by
a hazard case can be modelled and checked for feasibility
using a parametric system P . Namely, the parametric sys-
tem P will be constructed such that if the behaviour is found
infeasible by analysing P , the hazard case does not describe
a real hazard (the suspected hazard gets prevented by the
pipeline flow logic). Intuitively, in the system P , we map
n ≥ 2 instructions in the pipeline to n concurrently running
processes in a linear array (with the earliest instruction on
the left).

Note that the notion of parametric systems does not limit
the value of n from above, and verification methods de-
signed for them must cope with that. Exploiting this fea-
ture of parametric verification is not necessary in our case
since the relevant values of n are limited by the length of
the pipeline. However, the use of parametric systems is still
beneficial since while there is a single spoiler and victim and
the number of “padding” instructions in between of them
is bounded, we still do not know how many “padding” in-
structions should be considered for the hazard to manifest.
Hence, instead of exploring all possible values of n, we use
parametric verification to perform the verification for any
value of n, building on that the efficiency of the parametric
verification approach we use is quite sufficient for us. More-
over, should our approach be extended to handle in a more
precise way even multi-instruction hazards, the value of n
could become unbounded, and the power of parametric ver-
ification could become truly needed.

In the parametric systems we construct, all instructions
are initially in a state saying that their execution has not
started. Then, they proceed through individual stages of the
pipeline during which they may interact with each other by

means of the pipeline flow logic, e.g., an earlier instruction
may force a later instruction to be stalled or cleared. Fi-
nally, the instructions end up in a state denoting that they
left the pipeline.

In the following explanation, we start by constructing
the set of states of the system P . Then, we proceed to cap-
turing the above mentioned influence of the pipeline flow
logic and reflect it in the transition relation of the system P .
Finally, we define the set of minimal bad configurations of
the system P that describes the prohibited interleavings of
instructions causing the hazard.

7.1 States and Edge Conditions of the Parametric System

Given a hazard case of the form (χsp , χvi) ∈ X2, χsp =

(πsp , τsp), χvi = (πvi , τvi), the parametric system P will
model interactions among four classes of processes K :=

{sp “spoiler”, vi “victim”, sf “stall-flow”, nf “normal-flow”}
(where each process represents an executing instruction of
some class). This follows the fact that each type of the con-
sidered pipeline hazard is caused by some pair of instruc-
tions. The sp class represents the spoiler part of the hazard
case, i.e., an instruction that writes to a register v ∈ Va in
a stage τsp(v). The vi class then represents an instruction
corresponding to the victim part of the hazard case, reading
or writing from/to v in a stage τvi(v). Further, the sf and nf

classes both denote any other instructions than the spoiler
and victim—we just differentiate two operating modes of
these instructions. As we will discuss later in Section 7.2,
the difference between the stall- and normal-flow operation
modes is that an sf -class instruction in a stage s0 ∈ S causes
that all pipeline stages s ∈ S s.t. s < s0 get stalled. Both the
sf and nf classes serve as a pipeline filler and a sink for
cleared (flushed) instructions.

To facilitate the construction of a parametric system al-
lowing us to verify whether a given hazard case corresponds
to a real hazard or not, we need to introduce an extended
set of stages. Let S̄ := S ∪ {⊥,>} be the set of stages ex-
tended with auxiliary initial “⊥” and final “>” stages. Intu-
itively, the initial stage “⊥” will represent instructions that
have not entered the pipeline yet. Likewise, the final stage
“>” will denote finished instructions that have already left
the pipeline.

We will then represent the behaviour of instructions given
by a hazard case h = (χsp , χvi) in the form of a labelled
parametric system, called a hazard system (HS), Ph = (Qh ,
∆h , αh) where Qh := K× S̄,∆h will be introduced in Sec-
tion 7.2, and αh : Qh → 2E is a state labelling function. The
labelling function αh associates each state with a set of edge
conditions that should hold in this state for the hazard to be
executable. We will show the construction of the labelling
below. Note that each state q ∈ Qh represents a unique in-
struction class and a stage in which an instruction of this

14 L. Charvát · A. Smrčka · T. Vojnar

class is supposed to be. Finally, for a proper understanding
of the rest of the section, we once again stress that particu-
lar states in Qh are states of individual instructions, not of
the entire system. A configuration of the system Ph is a se-
quence of such states.

Next, we define the mapping αh describing which edge
conditions must hold in a state q = 〈κ, s〉 ∈ Qh , which
is a state of an instruction of the class κ ∈ K in the stage
s ∈ S̄, for that instruction to execute in accordance with the
hazard case h . First, for instructions of the classes κ = sf

and κ = nf , we define αh(〈κ, s〉) := ∅ for every s ∈ S̄
since we do not expect any special behaviour from instruc-
tions of these classes, and, on every realistic processor, we
can always find instructions that do not interfere with the
spoiler and victim instructions and may serve as the needed
pipeline filler. Likewise, we define αh(〈κ, s〉) := ∅ for any
κ ∈ K and s ∈ {⊥,>}, i.e., for instructions that have not
yet started or that have already ended.

For the spoiler and victim instructions, the idea is to ex-
tract the edge conditions by looking for the necessary set-
tings of selector, enable, and clear edges so that the data
involved in the potential hazard are carried over the paths
πκ for κ ∈ {sp, vi} that are a part of the concerned spoiler
and victim executions χκ = (πκ, τκ). The mapping αh can
be constructed from three auxiliary mappings αh

sel, αh
en, and

αh
rst : X → 2E×S where αh

sel will be examining all edges
but the last one (hence covering all edges that route the data
through multiplexers) and the last edge will be covered by
exactly one of the two remaining mappings (related to en-
abling a write of the data to the target register or clearing the
register).

In order to define αh
sel, we will use an auxiliary map-

ping σ : Vmx × E → E. Given a multiplexer vmx ∈ Vmx,
the mapping σ captures the edge condition that must hold
over the multiplexer’s selector edge vmx.sel for the data on
the i-th inbound-case edge vmx.ci to be propagated to the
multiplexer’s outbound edge vmx.q. Hence,

σ(vmx, vmx.ci) := vmx.sel binω(vmx.sel)(i)

where binn : Z → Bn is the standard two’s complement
encoding of a decimal value on n bits.

Now, the αh
sel mapping is defined as

αh
sel(χ) := {(σ(vi, ei−1), τ(2i− 1)) | 1 < i < k ∧
vi ∈ Vmx ∧ χ = (〈v1, e1, . . . , ei−1, vi, . . . , vk〉, τ)}.

(6)

Intuitively, the αh
sel mapping produces a set of pairs consist-

ing of a condition σ(vi, ei−1) ∈ E over selector edges that
is required by the multiplexer vi ∈ Vmx to propagate the
data along the execution path π and the stage τ(vi) in which
the particular condition must be satisfied. Similarly, the αh

en

and αh
rst mappings establish the necessary condition for the

final edge of the execution’s target register, making sure that

either writing of the data into the register is enabled or the
register is cleared:

αh
en(χ) := {(vk.en 1, τ(2k − 1)) |

χ = (〈v1, e1, . . . , ek−1 = vk.d, vk〉, τ)},
(7)

αh
rst(χ) := {(vk.rst 1, τ(2k − 1) |

χ = (〈v1, e1, . . . , ek−1 = vk.rst, vk〉, τ)}.
(8)

In particular, αh
en ensures that the data transferred along the

path described by the execution χ are indeed written to its
destination register vk at the end of the execution. Therefore,
αh
en produces a singleton containing a pair consisting of the

condition vk.en 1 and the stage τ(2k − 1), which is
the stage where the data reside just prior to the write. Sim-
ilarly, αh

rst produces a singleton containing a pair consist-
ing from the condition vk.rst 1 and the stage τ(2k −
1) so that the target register is indeed cleared. Using the
above mappings, we can define αh for the given hazard case
h = (χsp , χvi) such that the following holds for any state
〈κ, s〉 ∈ {sp, vi} × S̄:7

αh(〈κ, s〉) := {c ∈ E | (c, s) ∈ αh
sel(χκ) ∪ αh

en(χκ) ∪
αh
rst(χκ)}.

(9)

Example 6. Assume the hazard case (χsp , χvi) shown in
Example 4 for the microprocessor from Example 1. First, we
focus on the spoiler execution χsp = (πsp , τsp). Since the
microprocessor contains five pipeline stages, the spoiler gets
associated with the set of states Qh

sp := {sp}× S̄ where S̄ =

{⊥, 1, . . . , 5,>}. We will now show how the αh mapping is
computed for the states of Qh

sp . From the definition of αh , it
directly follows that

αh(〈sp,⊥〉) = αh(〈sp,>〉) = ∅.

For the states 〈sp, 1〉, ..., 〈sp, 5〉, one has to first compute the
auxiliary mappings αh

sel, αh
en, and αh

rst from Equation 9. As
the X register is written via its d connection, it immediately
follows that

αh
rst(χsp) = ∅.

Next, since the path πsp of the spoiler store execution χsp

passes through a single multiplexer, namely, MxInc, via the
edge MxInc.c0 with τsp(4MxInc.c0) = 2, we get

αh
sel(χsp) = {(MxInc.sel 0, 2)}.

For αh
en, we only need to assure that the register X is written

at the end of the execution. Since τsp(5X .d) = 2, we let

αh
en(χsp) = {(X .en 1, 2)}.

7 Note that the executions can also end by an vk.en edge. However,
in this case, no matter what the value of the enable signal is a hazard
happens by enabling/not enabling a write of some data into an archi-
tectural register. Hence, no further condition is needed in this case.

Utilizing Parametric Systems For Detection of Pipeline Hazards 15

Finally, by uniting the above computed auxiliary mappings,
we get that

αh(〈sp, 2〉) = {MxInc.sel 0,X .en 1}

and ∀i ∈ S \ {2} : αh(〈sp, i〉) = ∅. Analogically, for the
victim execution χvi = (πvi , τvi) of the analyzed hazard
case, we would infer that

αh
sel(χvi) = {(MxSel j .sel 1, 4)}

and αh
rst(χvi) = αh

en(χvi) = ∅. Therefore, we get that

αh(〈vi , 4〉) = {MxSel j .sel 1}

and ∀i ∈ S \ {4} : αh(〈vi , i〉) = ∅. /

7.2 The Transition Relation of the Parametric System

For the construction of the transition relation ∆h presented
later on, we will first introduce three predicates that charac-
terise mutual interactions of pairs of instructions whose ex-
ecution has reached some states q1, q2 ∈ Qh of the verified
HS Ph . We stress that q1 and q2 are states of the execution
of two considered instructions, which are of course a part of
a single configuration of the HS Ph . Before providing rig-
orous definitions of the predicates, which are given later in
this section, we first provide some intuition behind them.

A pair of states q1, q2 ∈ Qh and a stage s ∈ S satisfy the
ternary stage stall predicate st←→

h
⊆ Qh × S × Qh provided

that the edge conditions associated with the states q1 and q2
ensure that the stage s is stalled, and thus the contents of all
pipeline registers of s stays unchanged. We will further use
the shorthand q1

st←→
h,s

q2 for (q1, s, q2) ∈ st←→
h

.

Further, a pair of states q1, q2 ∈ Qh and a stage s ∈ S
satisfy the ternary stage clear predicate cl←→

h
⊆ Qh ×S×Qh

provided that the stage s is cleared, i.e., the contents of all
pipeline registers of s is nullified. We will further use the
shorthand q1

cl←→
h,s

q2 for (q1, s, q2) ∈ cl←→
h

.

Finally, a pair of states q1, q2 ∈ Qh satisfies a binary

state conflict predicate
cf←→
h
⊆ Qh × Qh provided that the

given processor excludes a configuration where two instruc-
tions would appear in the states q1, q2 at the same time. We

will further use the shorthand q1
cf←→
h
q2 for (q1, q2) ∈ cf←→

h
.

For instance, one of the typical scenarios when two states
q1, q2 ∈ Qh are in a state conflict occurs when there exists
an edge e ∈ E so that e b1 ∈ αh(q1)∧e b2 ∈ αh(q2),
b1, b2 ∈ B, while b1 6= b2.

In order to formally define the above described predi-
cates, we first introduce two auxiliary notions: in particular,
(i) a mapping unwindh : Qh → 2C where C is the set of

configurations of the TS T h = (C , ↪→) induced by the PSG
and (ii) a predicate csath ⊆ 2E × 2Q

h

.
The purpose of the unwindh mapping is to compute all

configurations of the TS T h in which T h (and hence the pro-
cessor it represents) can be when the processor contains an
instruction of a class κ in a stage s while executing within
the given hazard case h. The considered configurations must
be such that the processor can reach them by going through
all preceding stages and such that the processor can finish
the execution of the instruction by going through all its fur-
ther stages, all the time executing within the hazard case h.
In particular, let m = max(S) be the number of stages and
let 〈κ, s〉 ∈ Qh be an instruction state representing an in-
struction of a class κ in a stage s within a hazard case h.
Then, unwindh(〈κ, s〉) consists of exactly all those config-
urations c0 ∈ C such that there is a sequence of consecutive
states 〈c−s+1, . . ., c0, . . ., cm−s〉 in T h that conforms to the
following rules:

∀ − s < i < m− s : ci ↪→ ci+1, (10)

∀ − s < i ≤ m− s : ci ∈ γ(αh(〈κ, s+ i〉)). (11)

Note that the negative/positive index in the above equations
simply means moving forward to/away from the pipeline
start when considering the origin given by the index of 0,
respectively. The first constraint above ensures that we in-
deed consider a trace in the TS T h . The second condition
then ensures that the trace passes all stages of an instruction
of the given class while the processor is executing within the
given hazard case.

The above described computation of the unwindh map-
ping can be implemented symbolically using a BVL for-
mula unwind?h(q) for any q ∈ Qh . To describe the com-
putation, we introduce the notation ↪→?

(i,i+1) to denote the
result of a (straightforward) conversion of the relation ↪→ to
a BVL formula where all variables representing the current
state of the TS T h are indexed with i and those represent-
ing the future state are indexed with i + 1. Moreover, as in
Section 5.2, we use e?i to denote the conversion of an edge
e ∈ E indexed with the trace index i to a BVL variable.
Then, given q = 〈κ, s〉 ∈ Qh \ K × {⊥,>}, the BVL for-
mula unwind?h(q) is obtained as follows:

F1 :=
m−s−1∧
i=−s+1

↪→?
(i,i+1),

F2(q) :=
m−s∧

i=−s+1

∧
e b∈αh(〈κ,s+i〉)

e?i = b,

F3 :=
∧
e∈E

e? = e?0,

unwind?h(q) := ∃E : F1 ∧ F2(q) ∧ F3.

(12)

16 L. Charvát · A. Smrčka · T. Vojnar

Above, the existential quantification ranges over the setE =

{e?i | e ∈ E ∧ −s < i ≤ m − s}. Its reason is to get rid
of the concrete past and future values of the variables that
appear in the execution, keeping only their impact on the
current values of the variables.8 Finally, in order to extend
the definition of unwindh for initial and final states q′ ∈
K× {⊥,>}, we define unwind?h(q′) := true .

Further, we proceed to the second auxiliary predicate:
csath . The csath predicate determines satisfiability of a set
of edge conditions I ⊆ E in a situation when the pipeline
contains instructions in states from a set S ⊆ Qh . Formally,
it is defined as follows:

csath(I, S)⇔
⋂
c∈I

γ(c) ∩
⋂
q∈S

unwindh(q) 6= ∅. (13)

The evaluation of csath(I, S) can be naturally reduced to
checking the satisfiability of a BVL formula as follows:

csath(I, S)⇔ sat
(∧
e b∈I

e? = b ∧
∧
q∈S

unwind?h(q)
)
.

(14)

Now, the predicate csath can be used to precisely define

the needed predicates st←→
h

, cl←→
h

, and
cf←→
h

as follows.

Definition 15 For any instruction states q1, q2 ∈ Qh and
any stage s ∈ S, the stage stall predicate q1

st←→
h,s

q2 is de-

fined as follows:

q1
st←→
h,s

q2 ⇐⇒ ∃ vp ∈ Vp : ϕ(vp) = s ∧

¬csath({vp.en 1}, {q1, q2}) ∧

¬csath({vp.rst 1}, {q1, q2}).

(15)

Intuitively, the definition requires that the presence of
some instructions in states q1 and q2 in the pipeline ensures
that there is a pipeline register vp in stage s, which we denote
as a representative register below, such that the value of vp
can neither be updated nor cleared, i.e., vp keeps its value.
Note that the already established validity of the consistency
Rules 1 and 4 implies that the setting of any control edge
(en, rst) is the same for all pipeline registers across the
given pipeline stage, and so the fact that some representative
register is stalled means that all registers of the given stage
are stalled (and the instruction that is now in stage s stays in
it).

In a similar fashion, we define the cl←→
h

predicate.

8 In our implementation of the approach, we replace the existential
quantification by simply pruning away all variables unrelated with any
e? for any e ∈ E and by renaming the remaining variables in a unique
way such that no conflicts arise when constructing more complex for-
mulae on top unwind?

h (q).

Definition 16 For any instruction states q1, q2 ∈ Qh and
any stage s ∈ S, the stage clear predicate q1

cl←→
h,s

q2 is

defined as follows:

q1
cl←→
h,s

q2 ⇐⇒ ∃ vp ∈ Vp : ϕ(vp) = s ∧

¬csath({vp.rst 0}, {q1, q2}).
(16)

Note that the definition requires that the representative
register must be cleared (since the formula cannot be satis-
fied with the vp.rst edge being zero). The consistency rules
then assure that the same holds for all registers of the given
stage.

To define the
cf←→
h

predicate, we only need to be able to

determine whether two given instruction states are prohib-
ited from occurring together in a single pipeline configura-
tion by the control logic of the considered processor. This is,
however, easy thanks to the csath predicate as shown below.

Definition 17 For any instruction states q1, q2 ∈ Qh , the

state conflict predicate q1
cf←→
h
q2 is defined as follows:

q1
cf←→
h
q2 ⇐⇒ ¬csath(∅, {q1, q2}). (17)

Intuitively, the expression csath(∅, {q1, q2}) does not
put any constraints on edge conditions, but it still checks
whether some concurrently executing instructions can si-
multaneously get into states q1 and q2. Hence, its negation
says that this is excluded in the given processor, allowing us

to define the
cf←→
h

predicate.

Example 7. In this example, we will demonstrate how the
predicate st←→

h
can be evaluated for a given pair of states and

a given stage. Let us consider states 〈sp, 2〉, 〈vi , 3〉, Stage 2,
and the hazard case h = (χsp , χvi) from Example 4. Here,
the spoiler instruction in state 〈sp, 2〉 writes into the reg-
ister X the (auto-incremented) value previously read from
the same register. The victim instruction in state 〈vi , 4〉 then
reads the value j from the register X and uses it as an index
to access the memory cell Memj .

From Definition 15, we know that, in order to determine
the value of 〈sp, 2〉 st←→

h,2
〈vi , 3〉, one has to (i) pick a rep-

resentative pipeline register vp ∈ {v ∈ Vp | ϕ(v) = 2},
(ii) evaluate Φ1 := ¬csat({vp.en 1}, {〈sp, 2〉, 〈vi , 3〉}),
and (iii) evaluate Φ2 := ¬csat({vp.rst 1}, {〈sp, 2〉,
〈vi , 3〉}). The representative register vp for Stage 2 can be
picked randomly—indeed, as we have already said, the con-
sistency Rules 1 and 4 (from Section 5.2) imply that the
setting of any control edges (en, rst) is the same for all
pipeline registers in a particular pipeline stage.

As for Step (i) above, it suffices to look in Table 1 and
choose, for instance, IdIr as the representative register. More-
over, in Example 1, we have pointed out that the value of the

Utilizing Parametric Systems For Detection of Pipeline Hazards 17

enable edge on the IdIr register is determined by the fol-
lowing expression in BVL:

IdIr .en? = ¬IncX .q? ∨ ¬OfWrMem.q?. (18)

Now, to address Step (ii), we know that, according to
Equation 14, Φ1 expands to

¬sat(unwind?h(〈sp, 2〉) ∧ unwind?h(〈vi , 3〉) ∧

IdIr .en? = 1).
(19)

We further concetrate on the expansion of unwind?h(〈sp, 2〉).
According to Equation 12, we need to construct formulae
F1,F2(〈sp, 2〉), andF3. First, the transition relation described
by Formula F1 contains the following conjuncts9:

Impl .q?0 = (IncX .q?0 ⇒ ExWrX .q?0) ∧

MxInc.sel?0 = Impl .q?0.
(20)

To see that the above holds, it suffices to check how the value
of MxInc.sel is computed from its predecesors in the PSG
shown in Fig. 2. The formula F2(〈sp, 2〉) then gives

MxInc.sel?0 = 0 ∧X .en?0 = 1, (21)

which is a direct consequence of the result that we have ob-
tained in Example 6 where we have shown

α(〈sp, 2〉) = {MxInc.sel 0, X.en 1}.

Finally, Formula F3 simply asserts equality between zero-
indexed and non-indexed variables. We can then apply the
existential quantification from Equation 12, which allows us
to get rid of the indexed variables, leading to that the below
equality must hold:

IncX .q? = 1. (22)

Now, we will apply a similar approach to expand the for-
mula unwind?h(〈vi , 3〉). In this case, the following conjuncts
of Formula F1 turn out to be relevant:

ExWrMem.d?0 = OfWrMem.q?0 ∧

ExWrMem.q?1 = fnextExWrMem(ExWrMem.q?0,

ExWrMem.d?0,ExWrMem.en?0,

ExWrMem.rst?0) ∧

MxSel j .sel
?
1 = ExWrMem.q?1.

(23)

Above, fnextExWrMem is the next-state function that was de-
fined in Section 3.2 and that propages the value on the data-
in edge d to the data-out edge q iff the enable edge en is

9 The entire formula is, of course, much bigger—indeed, it describes
the entire transition relation. When the satisfiability checking is done
automatically, the solver will consider the entire formula. However, we
select its relevant parts only so that the example is readable.

set and the reset edge rst is unset. Moreover, if rst is set,
then the data-out q is nullified. Otherwise, when both en and
rst are unset, the data-out edge q keeps the value from the
previous cycle. Further, in Example 6, we have seen that

α(〈vi , 4〉) = {MxSel j .sel 1},

which imples that the formula F2(〈vi , 3〉) must ensure

MxSel .sel?1 = 1. (24)

By combining the observations from Formulae 23 and 24,
and by adding Formula F3 and the existential quantification
of Equation 12, we obtain the following statement:(

(ExWrMem.en? = 1)⇒ (OfWrMem.q? = 1)
)
∧

ExWrMem.rst? = 0.

(25)

Here, the ExWrMem.rst? = 0 conjuct comes from the
fact that the data-out edge must not be zero because of the
constraint in Formula 24.

Next, according to the consistency Rule 3 from Sec-
tion 5.2, which holds globally at any pipeline cycle, any
pipeline stage that directly precedes the currently stalled one
must also be stalled. By induction, the rule can be general-
ized to any preceding stage. Therefore, the following expres-
sion must hold:

(ExWrMem.en? = 0 ∧ ExWrMem.rst? = 0)⇒

(IdIr .en? = 0 ∧ IdIr .rst? = 0).
(26)

In particular, the above comes from the fact that ϕ(IdIr) <

ϕ(ExWrMem).
By applying the modus tollens rule on Formula 26, we

get

(IdIr .en? = 1 ∨ IdIr .rst? = 1) ⇒

(ExWrMem.en? = 1 ∨ ExWrMem.rst? = 1).
(27)

Finally, if we put together our observations made in Formu-
lae 18, 22, 25, and 27, we can conclude that the expression

unwind?h(〈sp, 2〉) ∧ unwind?h(〈vi , 3〉) ∧ IdIr .en? = 1

is not satisfiable. Thus, the expression Φ1 evaluates to true .
Analogically, for Step (iii), we would also derive that

Φ2 is true , and therefore the predicate 〈sp, 2〉 st←→
h,2
〈vi , 3〉

necessarily holds. In other words, this means that the NOP

injection into Stage 3 takes place whenever there is a spoiler
defined by χsp in Stage 2 and a victim described by χvi in
Stage 3. /

18 L. Charvát · A. Smrčka · T. Vojnar

We can now define transitions that the transition relation
∆h of the HS Ph contains. First, for every instruction state
q = 〈κ, s〉 ∈ Qh , ∆h contains a transition q → q allowing
the instruction that is in q to stay in q whenever the state q
appears in a configuration of the pipeline of the given pro-
cessor (i.e., a configuration of the transition system induced
by Ph) that contains a combination of instruction states q1,
q2 ∈ Qh which causes the instruction in the state q to be
stalled. Formally, ∀q = 〈κ, s〉, q1, q2 ∈ Qh :

(∃↔ : {q1, q2} |= q → q) ∈ ∆h ⇔ q1
st←→
h,s

q2. (28)

As we have already mentioned at the beginning of Sec-
tion 7, we use the stall-flow sf and normal-flow nf instruc-
tion classes to model pipeline-filler instructions, i.e., to model
all other instructions than the spoiler and victim. The differ-
ence between the stall- and normal-flow operation modes
is that an sf -class instruction in a stage s′ ∈ S causes all
pipeline stages s ∈ S s.t. s < s′ to be stalled. In other words,
an instruction stays in a state q = 〈κ, s〉 ∈ Qh whenever q
appears in a configuration of the pipeline containing an ear-
lier instruction in the stall-flow operation mode. Formally,
∀q = 〈κ, s〉, q′ = 〈sf , s′〉 ∈ Qh :

(∃← : {q′} |= q → q) ∈ ∆h ⇔ s < s′. (29)

Including stalls caused by stall-flow instructions is neces-
sary as they may introduce otherwise unreachable configura-
tions of the verified HS Ph . Moreover, since a pipeline stall
caused by some filler instruction may occur at any proces-
sor cycle, we will always allow random transitions between
stall- and normal-flow operation modes of filler instructions
in the upcoming explanation.

Next, an instruction in a state q = 〈κ, s〉 ∈ Q̂h , Q̂h =

K× Ŝ, Ŝ = S \ {max(S)}, is cancelled, i.e., yields a transi-
tion q → 〈κ′, s+ 1〉, κ′ ∈ {nf , sf }, provided that q appears
in a configuration of the pipeline in which there exist in-
structions in states q1 and q2 that cause the stage s+ 1 to be
cleared. More formally, ∀q = 〈κ, s〉 ∈ Q̂h , ∀q1, q2 ∈ Qh ,
∀κ′ ∈ {nf , sf } :

(∃↔ : {q1, q2} |= q → 〈κ′, s+ 1〉) ∈ ∆h ⇔

q1
cl←−−→

h,s+1
q2 ∧ ¬

(
q1

st←→
h,s

q2

)
.

(30)

Note that for a successful clearing of an instruction in the
stage s, it is also required that s is not stalled at the same
time.

For the case when our over-approximating abstraction
allows two states q and q′ that are conflicting to be reached
in a single configuration of the transition system induced by
the HS Ph , we introduce the following solution to reduce
the number of possible false alarms. Namely, we kill the in-
struction that entered the pipeline later assuming that this
instruction is in the state q = 〈κ, s〉, i.e., we introduce the

transition q → 〈κ′, s+1〉, κ′ ∈ {nf , sf }, into∆h . Formally,
∀q = 〈κ, s〉 ∈ Q̂h , ∀q′ ∈ Qh , ∀κ′ ∈ {nf , sf } :

(∃← : {q′} |= q → 〈κ′, s+ 1〉) ∈ ∆h ⇔ 〈κ, s〉 cf←→
h
q′.

(31)

As for the possibility of new instructions entering the
pipeline, only the left-most instruction in a given configura-
tion that has so far not entered the pipeline is allowed to en-
ter it. Moreover, new instructions cannot enter the first stage
if it is stalled. More precisely, ∀q = 〈κ,⊥〉, q′ = 〈κ′,⊥〉,
q1, q2 ∈ Qh :

(∃← : {q′} |= q → q) ∈ ∆h , (32)

(∃↔ : {q1, q2} |= q → q ∈ ∆h)⇔ q1
st←→
h,1

q2. (33)

Next, an instruction can proceed to the next stage iff
none of the above rules is applicable. To model this fact,
we use local transitions, building on that we define all global
transitions (used above) to be of a higher probability than the
local ones. Further, we add transitions reflecting that once
finalized instructions stay in their final state forever. More
rigorously, ∀〈κ, s〉 ∈ Q̂h :

(〈κ, s〉 → 〈κ, s+ 1〉) ∈ ∆h , (34)

(〈κ,⊥〉 → 〈κ, 1〉) ∈ ∆h , (35)

(〈κ,max(S)〉 → 〈κ,>〉) ∈ ∆h , (36)

(〈κ,>〉 → 〈κ,>〉) ∈ ∆h . (37)

To ensure a possibility of the pipeline being stalled by
some filler instruction, we allow switching between stall-
and normal-flow operation modes. More formally, ∀〈sf , s〉,
〈nf , s〉 ∈ Q̂h :

(〈nf , s〉 → 〈sf , s+ 1〉) ∈ ∆h , (38)

(〈sf , s〉 → 〈nf , s+ 1〉) ∈ ∆h . (39)

Finally, we recall that global (i.e., guarded) transitions
have a higher priority than local (i.e., unguarded) ones. That
is, only if no global transition can be applied (such as a stall),
a local one may be applied (e.g., proceeding to the next
stage). Additionally, the transition relation∆h is constructed
under the assumption that, in each step of the transition sys-
tem induced by the HS Ph , each instruction whose state is
a part of the given configuration of Ph must make a step.
This is, if we take, e.g., a configuration q1q2q3 consisting of
three states of three instructions, all of the three instructions
must synchronously fire some of the above described transi-
tions such that we get the successor configuration q′1q

′
2q
′
3.

Utilizing Parametric Systems For Detection of Pipeline Hazards 19

Table 2: Roles of e-/`-class instructions in hazards cases.

Hazard e-class Role `-class Role

RAW writes spoiler (too slow) reads victim

WAR reads victim writes spoiler (too fast)

WAW writes victim writes spoiler (too fast)

CTL writes spoiler (too slow) jumps victim

7.3 Construction of the Minimal Bad Set

In the previous section, we have constructed a hazard sys-
tem Ph = (Qh , ∆h , αh) that models possible interactions
of a spoiler and a victim instruction, forming a hazard case
h = (χsp , χvi) ∈ H ⊆ X2, surrounded by other instruc-
tions during a pipelined execution. We now need to be able
to check whether some kind of data or control hazard occurs.

To facilitate detection of possible hazards from the con-
structed HS, we will construct a set Bh

> of minimal bad con-
figurations describing minimal illegal configurations whose
reachability (within possibly larger configurations) will mean
that the given hazard case h does indeed lead to a hazard.
We define the set Bh

> wrt an extended hazard system Ph
>

(defined later in this section), which is obtained by apply-
ing four transformations, described also later in the section,
on the input system Ph . Since the ordering of instructions
within a hazard case h ∈ H is an important factor in the
following explanation, we will be speaking about pairs of
instruction classes consisting of an e (“earlier”) instruction
class and an ` (“later”) instruction class such that either e =

sp ∧ ` = vi or e = vi ∧ ` = sp, meaning that an earlier
instruction always enters the pipeline sooner than the later
one. For the e- and `-class instructions, one of the following
statements always holds: (a) For RAW and CTL hazards,
the e-class instruction is a spoiler that enters the pipeline
first and should write data to be read by the later instruction,
but it is too slow and the later victim instruction uses obso-
lete data. (b) For WAR and WAW hazards, the spoiler sp is
an `-class instruction that enters the pipeline later, but it is
too fast and it either destroys data to be read by the earlier
victim instruction (WAR), or it stores its result too early and
the result is overwritten by the obsolete result of the earlier
instruction (WAW). To formalize the above for later use in
this section, we define functions E ,L : H→ K so that E(h)

gives the meaning of the e class in a hazard case h ∈ H
while L(h) gives the meaning of the ` class. All these sce-
narios are summarized in Table 2.

We are going to build the set Bh
> such that it will contain

so-called hazard pairs q1eq
1
` , . . . , q

n
e q

n
` of states of the earlier

and later instruction such that a hazard described by the haz-
ard case h may occur iff there exists a configuration of the
system Ph

> that contains as a subword some hazard pair from

the set Bh
> and that is reachable from the set of initial config-

urations LC: I h>. Note, however, that the control states of the
earlier/later instructions that signify that something relevant
for the hazard has happened (some critical value has been
written or read) do not necessarily occur at the same time.
On the other hand, hazard pairs consist of pairs of states that
should be reached at the same time. To resolve this discrep-
ancy, we will pass information that the critical control state
of an instruction has been reached to its successor states. For
that, we will introduce several auxiliary notions, which will
be introduced such that the detection of the different kinds of
hazards may be described in an as uniform way as possible.

We first introduce the hazard distance δ that, intuitively,
determines the maximum delay (measured in pipeline cy-
cles) with which the later instruction can still cause a hazard.
Intuitively, the basis of the distance is the difference in the
number of the stages in which the colliding read/write oper-
ations happen within the concerned instructions. However,
sometimes, this basic difference has to be decreased by one
since one of the colliding operations must appear by at least
one cycle earlier than the other, while in other cases a hazard
appears even when they occur at the same time. More details
on that are given below the definition, and an illustration is
provided in Fig. 3.

Definition 18 The hazard distance δ : X×X→ N is defined
as follows for all hazards h = (χsp , χvi) ∈ X × X where
χk = (πk, τk) for k ∈ {sp, vi}:

δ(h) =


τ lst
sp − τ fst

vi − 1 if h is a RAW or CTL hazard,
τ fst
vi − τ lst

sp if h is a WAR hazard, and
τ lst
vi − τ lst

sp − 1 if h is a WAW hazard.

Notice that the hazard distance is indeed always non-
negative as the definitions of RAW and CTL hazard cases
(Definitions 11, 14) imply that τ fst

vi < τ lst
sp , and the defini-

tions of WAR and WAW hazards (Definitions 12, 13) imply
that τ lst

sp < τ fst
vi (and, for the case of WAW hazards, one can

add the fact that τ fst
vi < τ lst

vi). For RAW and CTL hazard
cases, the distance is decremented by one because reading
a value at a cycle when its writing was finished, which is
what the corresponding value of τ records (recall that the
writing starts one cycle earlier), is safe. On the other hand, in
WAR hazards, overwriting the value that is read by the ear-
lier instruction at the same time is an error. Finally, WAW
hazards are special in that the conflict arises between two
write operations where the most extreme case arises when
the write operation in the spoiler appears one cycle before
the write in the victim: that is why, we have the decrement
by one in the formula of WAW hazards.

We will next introduce the so-called spoiler/victim gap
and detection windows. Intuitively, the gap window gsp /gvi
of a spoiler/victim instruction ιwill tell us for how many cy-
cles one has to wait within the execution of ι, starting from

20 L. Charvát · A. Smrčka · T. Vojnar

6 71 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1

𝛿(ℎ) = 2

RAW

RAW

𝜏
lst
𝑠𝑝

𝜏
fst
𝑣𝑖 𝜏

lst
𝑣𝑖

𝜏
fst
𝑣𝑖 𝜏

lst
𝑣𝑖

𝑑𝑣𝑖

𝑑𝑠𝑝𝑔𝑠𝑝

6 7

6 7

(a) Detection of a RAW hazard using a delay in the spoiler:
δ(h) = τ lst

sp − τ fst
vi − 1 = 4 − 1 − 1 = 2, gsp = τ lst

vi −
τ lst
sp +1 = 5− 4+ 1 = 2, gvi = 0, dsp = δ(h) = 2, and
dvi = 1.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1

𝛿(ℎ) = 2

3

RAW

RAW

OK

𝜏
lst
𝑠𝑝

𝜏
fst
𝑣𝑖 𝜏

lst
𝑣𝑖

𝜏
fst
𝑣𝑖 𝜏

lst
𝑣𝑖

𝜏
fst
𝑣𝑖 𝜏

lst
𝑣𝑖

𝑑𝑠𝑝

𝑔𝑣𝑖 𝑑𝑣𝑖

(b) Detection of a RAW hazard using a delay in the victim:
δ(h) = τ lst

sp − τ fst
vi − 1 = 4 − 1 − 1 = 2, gsp = 0,

gvi = τ lst
sp − τ lst

vi − 1 = 4− 2− 1 = 1, dsp = δ(h) = 2,
and dvi = 1.

61 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1

𝛿(ℎ) = 2

WAR

WAR

𝜏
lst
𝑠𝑝

𝜏
lst
𝑣𝑖

𝑑𝑣𝑖

𝑑𝑠𝑝

6

6

𝜏
fst
𝑣𝑖

𝜏
lst
𝑠𝑝

1 2 3 4 5 6
𝜏

lst
𝑠𝑝

𝑔𝑠𝑝

3

OK

(c) Detection of a WAR hazard using a delay in the spoiler:
δ(h) = τ fst

vi − τ lst
sp = 4 − 2 = 2, gsp = τ lst

vi − τ fst
vi =

6− 4 = 2, gvi = 0, dsp = δ(h) = 2, and dvi = 1.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1

𝛿(ℎ) = 2

WAW

WAW

𝜏
lst
𝑠𝑝

𝜏
lst
𝑣𝑖

𝑑𝑣𝑖

𝑑𝑠𝑝

𝜏
lst
𝑠𝑝

1 2 3 4 5
𝜏

lst
𝑠𝑝

𝑔𝑠𝑝

3
OK

(d) Detection of a WAW hazard using a delay in the
spoiler: δ(h) = τ lst

vi − τ lst
sp −1 = 5−2−1 = 2, gsp = 1,

gvi = 0, dsp = δ(h) = 2, and dvi = 1.

Fig. 3: An illustration of hazard distances together with gap and detection windows used to construct minimal bad sets.

its critical write operation, until the detection of a possible
hazard may start. In some cases, the gap will be zero while
in some other cases it will be positive. The latter case will
happen when the victim/spoiler instruction ι′, possibly col-
liding with ι, has no chance to perform its write operation
before the moment when the write operation of ι happens
even if ι′ starts right after ι. The detection window (of size
at least one) will then tell us for how many cycles the detec-
tion of a possible hazard should be performed within a given
instruction after the gap window passes.

In particular, we will define all the windows such that the
detection window of victim instructions, denoted dvi , will be
fixed to one, i.e., dvi = 1. Intuitively, the hazard detection
will always be performed as soon as the victim instruction
writes (and hence “publishes”) the wrong data and the gap
window of that instruction is over.

The detection window of a spoiler instruction will be
possibly longer, in particular, it will correspond to the haz-
ard distance, i.e., dsp = δ(h) where h = (χsp , χvi) is the
considered hazard case. The definition of the gap windows

must then be done in such a way that any hazard may be
detected with the detection windows defined as above, i.e.,
the detection within the particular instructions must be post-
poned such that the hazard can always be caught within the
detection windows. This definition is more complex and is
given below separately for different types of hazards.

Gap Windows for RAW and CTL Hazards

First, notice that τ fst < τ lst holds for each forward execution
(π, τ) ∈ X where πfst, πlst ∈ Vr. Second, recall that the
definitions of RAW and CTL hazard cases (Definitions 11,
14) imply that τ fst

vi < τ lst
sp . If put together, one can see that

there are two possible orderings of τ fst
vi , τ lst

vi , and τ lst
sp :

τ fst
vi < τ lst

sp ≤ τ lst
vi (40)

τ fst
vi < τ lst

vi < τ lst
sp (41)

We start with the ordering (40), which is illustrated by
the scenarios in Fig. 3(a). In this case, the spoiler finishes

Utilizing Parametric Systems For Detection of Pipeline Hazards 21

its write operation earlier, and the RAW hazard occurs as
soon as the victim performs its write operation. Hence, in
order to be able to detect the hazard via states simultane-
ously reached in the spoiler and the victim, the detection
needs to be put off in the spoiler. Provided that the we con-
sider a victim that starts right after the spoiler, τ lst

vi − τ lst
sp + 1

cycles need to be skipped in the spoiler (including the cycle
in which the write operation of the spoiler happens), and so
gsp = τ lst

vi − τ lst
sp + 1.10 On the other hand, no cycles need

to be skipped before the detection starts in the victim, and
so gvi = 0. Note that the detection of hazards with victims
that start later than one cycle behind the spoiler is handled
through the detection window dsp .

Next, we consider the ordering (41), which is illustrated
in Fig. 3(b). In this case, the victim performs the write op-
eration first, and the hazard occurs as soon as the spoiler
performs its write operation. Hence, this time, the detection
needs to be put off in the victim. Using a similar reasoning
as above, we define gsp = 0 and gvi = τ lst

sp − τ lst
vi − 1.11

Gap Windows for WAR Hazards

For an illustration of the gap and detection windows of WAR
hazards, see Fig. 3(c). As above, we can use the fact that
τ fst < τ lst holds for each forward execution (π, τ) ∈ X
where πfst, πlst ∈ Vr. Moreover, the definition of WAR haz-
ards (Definition 12) implies that τ lst

sp < τ fst
vi . Hence, for WAR

hazards, τ fst
vi , τ lst

vi , and τ lst
sp can be ordered as follows only:

τ lst
sp < τ fst

vi < τ lst
vi (42)

Intuitively, after the spoiler instruction writes, the WAR
hazard does not occur until the victim performs its write as
well. Unlike for RAW/CTL hazards, we now consider as the
base case not the situation when the later instruction starts
right after the earlier, but the case when the later instruction
starts as late as possible to be still able to cause a hazard,
i.e., the case when the spoiler starts δ(h) cycles after the
victim. Then, it is easy to see that the detection needs to
be put off by τ lst

vi − (τ lst
sp + δ(h)) cycles. Hence, we define

gsp = τ lst
vi−(τ lst

sp+δ(h)) = τ lst
vi−(τ lst

sp+τ fst
vi −τ lst

sp) = τ lst
vi−τ fst

vi

while gvi = 0. The cases of the spoiler that start sooner are
then handled appropriately by using the detection window
dsp = δ(h) as also illustrated in Fig. 3(c).

Gap Windows in WAW Hazards

As with WAR hazards, for WAW hazards, the ordering be-
tween writes given in Equation 42 is the only possible. Af-

10 Intuitively, the addition of 1 is needed since the victim starts by
one cycle later. Further, note that the gap is appropriately defined also
for the case when τ lst

sp = τ lst
vi when a gap window of size 1 is needed to

compensate the fact that the victim starts by one cycle later.
11 The subtraction of 1 comes from that the spoiler starts by one cycle

earlier.

ter the spoiler instruction writes, the WAW hazard does not
occur until the victim performs its write as well. This can-
not happen sooner than after passing through at least one
pipeline stage. Therefore, we put the spoiler gap distance
equal to one and the victim gap distance equal to zero, i.e.,
gsp = 1 and gvi = 0.

Tracking Passage through Gap and Detection Windows

To facilitate tracking whether a spoiler/victim instruction is
inside a gap or detection window and, if so, how far inside
the window it is, we will introduce a notion of extended haz-
ard systems (EHS). In an EHS, each state of the execution of
a spoiler/victim instruction will be labelled by a set of tags
saying whether the write operation of the spoiler/victim has
already happened and, if so, how many cycles have passed
since then. The universe of tags T will therefore include all
couples from the set {winsp , winvi} × N. The universe of
tags is, however, not defined to be equal to the above set
since we will need to add some more tags into it later on
when we examine the effect of stalling of an instruction,
which we will need to reflect in the tags as well. We defer
the discussion of the stalling-related tags after we properly
explain the basic spoiler/victim tags.

Below, we will introduce the EHSs step-wise by first
adding tracking of spoiler windows, then victim windows,
and then adding tracking of stalled instructions. This will
lead to introduction of EHSs of various levels, with the zero
level being the original hazard system, level one being the
extension by tracking spoilers, etc.

More formally, for a hazard case h = (χsp , χvi) and
the associated HS Ph = (Qh , ∆h , αh), the correspond-
ing extended hazard system (EHS) of level n ≥ 0 is a tuple
Ph
n = (Qh

n , ∆
h
n, α

h
n, β

h
n) where:

1. Qh
n is a finite subset of the set Qh × (N ∪ {⊥,>})n.12

We let Qh
0 = Qh , and we give the precise construc-

tion of the set Qh
n for n ≥ 1 below. Intuitively, the ad-

ditional components of the states will allow us to track
the passage of the spoiler/victim instructions through the
gap and detection windows, for which some states of the
original HS will need to be split to multiple occurrences
to reflect whether an instruction in that state is in the
window and, if so, how far. Moreover, some further split-
ting will be needed when some of the tracked instruc-
tions are stalled some number of times. The finiteness
of Qh

n will stem from that the tracked gap and detec-
tion windows are finite, that we are tracking a pair of
instructions, and that the stalling can happen for finite
time only.

12 For convenience, by a slight abuse of the notation, we let (Qh ×
(N∪{⊥,>}))×(N∪{⊥,>}) = Qh×(N∪{⊥,>})×(N∪{⊥,>})
and ((q, i1), i2) = (q, i1, i2) for any q ∈ Qh and i1, i2 ∈ N ∪
{⊥,>}, and likewise for higher values of n.

22 L. Charvát · A. Smrčka · T. Vojnar

2. The transition relation ∆h
n and the labelling function αh

n

lift the transition relation ∆h and the labelling function
αh to the extended set of states. We have ∆h

0 = ∆h and
αh
0 = αh , and the construction of the relations for n ≥ 1

is described in detail below.
3. Finally, βh

n : Qh
n → 2T is the new tag function. We let

βh
0 (q) = ∅ for any q ∈ Qh

0 . For n ≥ 1, the construction
of the function will also be shown below.

For n ≥ 1, the construction of the EHS Ph
n will be

based on applying Alg. 2 and 3 several times on the EHS
Ph
0 . We start by presenting Alg. 2 that implements a pro-

cedure denoted as window . Given a set S of starting states,
this procedure extends the input EHS such that it allows for
tracking a spoiler/victim instruction, which performs some
critical operation w (such as a write to its target register) in
a state q′ ∈ S, and then passes through the tracked gap and
detection windows whose combined length is k. Here, note
that we monitor the gap and detection windows joint into
one window which is possible since the latter follows im-
mediately after the former (and we can distinguish in which
of the original windows we are by just looking at how deep
into the combined window we are).

Intuitively, the algorithm extends all states of the input
EHS by one more component that ranges over the set I :=

{⊥,>, 0, . . . , k − 1}. When the additional component is ⊥,
the tracked instruction has not yet entered the gap/detection
window. If the additional component i is from the set {0, . . . ,
k − 1}, the instruction is in the tracking window for i + 1

cycles. If the additional component is >, the instruction has
already got out of the window.

The transition relation is updated straightforwardly such
that the monitoring phase can be entered whenever an in-
struction is in some state from the given set S (and the mon-
itoring has not yet started). If the monitoring is started, every
executed transition increases the number of cycles spent in
the window (recorded in the additional component of states)
until the end of the window is reached. Note that, for transi-
tions with guards, the states used in the guards must be lifted
to the new set of states, which is done by allowing them to
appear with any value of the additional component. Indeed,
satisfaction of the guard is not subject to the cycle in which
it is reached.

The α function does not depend on the additional com-
ponent, and so it is lifted to the new set of states by ignoring
the additional component. On the other hand, the β func-
tion is extended such that states that are inside the monitored
window will be tagged by a couple (w, i), which says that
the operation w is in the (i+ 1)-th cycle of its gap/detection
window.

Now, before we can apply the window transformations,
we need to identify the set S of states where the critical
write operations happen and the tracking of the passage of
the gap/detection windows starts. Therefore, we introduce

Algorithm 2 The window procedure transforming an EHS
Ph
n to an EHS Ph

n+1 to facilitate tracking of the execution
of an instruction that performs a critical write operation w
in a state from some given set S through a window of some
given length k.

Require: An EHS Ph
n = (Qh

n, ∆h
n, αh

n, βh
n) of any level n ≥ 0,

a set S ⊆ Qh
n of states to start the transformation from, a tag w ∈

{winsp , winvi}, and the length of the tracking window k ∈ {1,
. . ., max(S)}.

Ensure: An EHS Ph
n+1 = (Qh

n+1,∆
h
n+1, αh

n+1, βh
n+1) where

each state based on q ∈ S together with its k reachable successors
is tagged by a pair (w, i) where 0 ≤ i < k denotes the distance
of the successor from the original occurrence of q.

1: I := {⊥,>, 0, . . . , k − 1}.
2: Qh

n+1 := Qh
n × I .

3: ∆h
n+1 is defined as the minimal relation such that the following

two conditions hold:
(a) For every global transition Q◦ : G |= q1 → q2 ∈ ∆h

n and
for every injection Γ : Qh

n → I , the following transitions are in
∆h

n+1:

– Q◦ : Γ̂ (G) |= (q1,⊥)→ (q2,⊥),
– Q◦ : Γ̂ (G) |= (q1,⊥)→ (q2, 0) if q2 ∈ S,
– Q◦ : Γ̂ (G) |= (q1, i)→ (q2, i+ 1) for all 0 ≤ i < k − 1,
– Q◦ : Γ̂ (G) |= (q1, i)→ (q2,>) for i = k − 1,
– Q◦ : Γ̂ (G) |= (q1,>)→ (q2,>)

where Γ̂ : 2Q
h
n → 2Q

h
n+1 is defined such that ∀Q′ ⊆ Qh

n :

Γ̂ (Q′) := {(q, Γ (q)) | q ∈ Q′}.
(b) For every local transition q1 → q2 ∈ ∆h

n, the following tran-
sitions are in ∆h

n+1:

– (q1,⊥)→ (q2,⊥),
– (q1,⊥)→ (q2, 0) if q2 ∈ S,
– (q1, i)→ (q2, i+ 1) for all 0 ≤ i < k − 1,
– (q1, i)→ (q2,>) for i = k − 1,
– (q1,>)→ (q2,>).

4: ∀(q, i) ∈ Qh
n × I : αh

n+1(q, i) = αh
n(q).

5: ∀(q, i) ∈ Qh
n × {⊥,>} : βh

n+1(q, i) = βh
n(q).

6: ∀(q, i) ∈ Qh
n × {0, . . . , k − 1} : βh

n+1((q, i)) = βh
n(q) ∪

{(w, i)}.

the following auxiliary mapping. Given an EHS Ph
n = (Qh

n ,
∆h
n, αh

n, βh
n) of level n, we define wrPh

n
: K × X → 2Q

h
n

as the function that maps a class κ ∈ K and any execu-
tion (π, τ) ∈ X to the set {q ∈ Qh

n | q = 〈κ′, s, i1, . . .,
in〉 ∧ κ′ = κ ∧ s = τ(πlst)} of all the states of Ph

n where
a κ-class instruction makes the write to its target register πlst

in the execution (π, τ). From the definition of the execution,
we know that such a write occurs in the stage τ(πlst).

We can now proceed to the transformation of the origi-
nal Ph

0 to the EHS Ph
1 that is extended to track the spoiler

gap and detection windows. With the above notation and al-
gorithm in hand, the EHS Ph

1 can be obtained simply as:

Ph
1 := window

(
Ph
0 ,wrPh

0
(sp, χsp), winsp , gsp + dsp

)
.

Utilizing Parametric Systems For Detection of Pipeline Hazards 23

Indeed, the critical operation is writing in a spoiler, which
we denote as winsp . The write operation can happen in one
of the states returned by wrPh

0
(sp, χsp). These states thus

serve as the initial states for tracking the gap and detection
windows. Their sizes are gsp and dsp , respectively, which
gives the length gsp + dsp of the combined window whose
tracking is ensured in Ph

1 by Alg. 2.
The EHS Ph

2 extended to track the victim gap and de-
tection windows can be obtained from Ph

1 in a very similar
way as follows:

Ph
2 := window

(
Ph
1 ,wrPh

1
(vi , χvi), winvi , gvi + dvi

)
.

An example of a computation of the tracking window is
demonstrated in Fig. 4.

Tracking Windows in Stalled Instructions

Since our approach builds on counting the exact number of
cycles spent within the tracking windows, we also need to
deal with any scenario when an `-class instruction is stalled
while the corresponding e-class instruction is not.13 This
scenario breaks the counting scheme introduced in the pre-
vious paragraphs as the later instruction can get delayed and
the earlier instruction might get out of the detection window
before the later one gets into its detection window. The goal
of the following transformations is to compensate such mis-
alignments by (1) using so-called slack tags to count how
many times the later instruction gets stalled and (2) by ex-
panding the detection window of the earlier instruction cor-
respondingly.

The introduction of slack tags, which are drawn from
the set {sl} × N, is implemented in Alg. 3, which takes us
from the EHS Ph

2 obtained by the previous transformations
to EHS Ph

3 as follows:

Ph
3 := slack(Ph

2 ,max(S)).

Intuitively, all states from the EHS Ph
2 are considered to

have the initial slack zero. Then, whenever a self-loop on
any such state is possible, the self-loop is changed into a tran-
sition going to a new copy of the concerned state with the
slack being one. More generally, a self-loop on a state with
the slack being i is transformed into a transition to a new
copy of that state with the slack being i+1 (unless the num-
ber of slack steps reaches the maximum number of pipeline
stages—going to such a number and beyond is not neces-
sary since such behaviours are ruled out by the initial sanity
checks). The number of stalls (slack transitions) performed
by an instruction is thus remembered in the structure of the
states, and, in addition, we add it into the tags of the states
at the end of Alg. 3 so that the slack information is easier to

13 The converse cannot happen due to the basic consistency checks
that we perform.

𝑠𝑝0 𝑠𝑝1 𝑠𝑝2

𝑛𝑓1
...

...

:
∃↔

𝐺𝑐𝑙

...

:∃↔ 𝐺𝑠𝑡

𝑛𝑓2

(a) A part of an EHS Ph
n = (Qh

n,∆
h
n, α

h
n, β

h
n) modeling the be-

havior of a spoiler instruction before an application of the window
procedure. Note that the spoiler instruction in the state sp0 might
stall (if there are instructions from the set Gst), be cleared (if there
are instructions from the setGcl), or proceed to the next stage (repre-
sented by the state sp1). The different styles of the lines representing
global transitions are used to allow for better matching with the coun-
terparts of the transitions in Fig. 4 (b).

𝑠𝑝0
0

𝑠𝑝1
1

𝑛𝑓 1
1

...

𝑠𝑝1
0

𝑠𝑝⊤

0
𝑠𝑝⊤

1

𝑠𝑝⊤

2

𝑛𝑓 ⊤

1

...

...

𝑛𝑓 ⊤

2

: ()∃↔ Γ𝑖
ˆ 𝐺𝑐𝑙

Legend:

: ()∃
↔

Γ𝑖
ˆ 𝐺𝑠𝑡

(b) A part of the EHS Ph
n+1 = window(Ph

n, {sp0}, winsp , 2) that
correponds to the same part of Ph

n depicted in Part (a). States spj
i ,

0 ≤ i ≤ 2, 0 ≤ j < 2, for which (winsp , j) ∈ βh
n(sp

j
i), are high-

lighted in red. Please note that each global transition from the orignal
EHS Ph

n corresponds to a family of transitions given by all possible
injections Γ1, . . . , Γk : Qh

n → {⊥, 0, 1,>} with the mappings Γ̂i,
1 ≤ i ≤ k, defined such that ∀Q′ ⊆ Qh

n : Γ̂i(Q′) := {(q, Γi(q)) |
q ∈ Q′}. These families of transactions are denoted by the dashed
and dotted lines in the figure. In particular, the dashed lines are used
for the ∃← : Γ̂i(Gst) family. The dotted lines then correspond with
the ∃← : Γ̂i(Gcl) family.

Fig. 4: An illustration of an application of the window pro-
cedure on a fragment of an EHS Ph

n .

access. An example of an application of the slack mapping
is demonstrated in Fig. 5.

What remains to be done is to adjust the tracking win-
dow of the earlier instruction, which has to be done such that
the extension corresponds to the number of the slack transi-
tions taken by the later instruction. For that, we will again
use the window procedure from Alg. 2, but we will instruct
it to add special tags of the form win

(i)
vi/sp meaning that the

tracking window of the earlier instruction is extended by i
cycles. The definition of the bad configurations will then

24 L. Charvát · A. Smrčka · T. Vojnar

Algorithm 3 A procedure for computing the slack mapping.

Require: An EHS Ph
n = (Qh

n, ∆h
n, αh

n, βh
n) of any level n ≥ 0 and

the total number of pipeline stages m ≥ 1.
Ensure: An EHS Ph

n+1 = (Qh
n+1,∆

h
n+1, αh

n+1, βh
n+1) whose

states Ph
n+1 are tagged by pairs (sl, i) where 0 ≤ i < m de-

notes the number of self-loop transitions taken by the later tracked
instruction in the EHS Ph

n.
1: I := {>, 0, . . . ,m− 1}.
2: Qh

n+1 := Qh
n × I .

3: ∆h
n+1 is defined as the minimal relation such that the following

two conditions hold:
(a) For every global transition Q◦ : G |= q1 → q2 ∈ ∆h

n and
for every injection Γ : Qh

n → I , the following transitions are in
∆h

n+1:

– Q◦ : Γ̂ (G) |= (q1, i) → (q2, i + 1) if q1 = q2 for all
0 ≤ i < m− 1,

– Q◦ : Γ̂ (G) |= (q1, i) → (q2, i) if q1 6= q2 for all 0 ≤ i <
m,

– Q◦ : Γ̂ (G) |= (q1, i)→ (q2,>) if q1 = q2 and i = m− 1,
– Q◦ : Γ̂ (G) |= (q1,>)→ (q2,>)

where Γ̂ : 2Q
h
n → 2Q

h
n+1 is defined such that ∀Q′ ⊆ Qh

n :

Γ̂ (Q′) := {(q, Γ (q)) | q ∈ Q′}.
(b) For every local transition q1 → q2 ∈ ∆h

n, the following tran-
sitions are in ∆h

n+1:

– (q1, i)→ (q2, i+ 1) if q1 = q2 for all 0 ≤ i < m− 1,
– (q1, i)→ (q2, i) if q1 6= q2 for all 0 ≤ i < m,
– (q1, i)→ (q2,>) if q1 = q2 and i = m− 1,
– (q1,>)→ (q2,>).

4: ∀(q, i) ∈ Qh
n × I : αh

n+1(q, i) = αh
n(q).

5: ∀(q, i) ∈ Qh
n × {>} : βh

n+1(q, i) = βh
n(q).

6: ∀(q, i) ∈ Qh
n × {0, . . . ,m − 1} : βh

n+1((q, i)) = βh
n(q) ∪

{(sl, i)}.

match states of the earlier instruction tagged by win
(i)
vi/sp

with winsp/vi -tagged states of the later instruction that are
at the same time tagged by such sl tags which show that the
later instruction went through i slack transitions more than
the earlier one.

With all the notation at hand, it is now easy to derive the
EHSs Ph

3+i of levels 3 + i for 1 ≤ i ≤ m with m = max(S)

being the maximum number of pipeline stages that extend
the tracking window of the earlier instruction by i cycles.
For i iterating from 1 to m, we get

Ph
3+i := window

(
Ph
3+i−1,wrPh

3+i−1
(κ, χκ),

win(i)κ , gκ + dκ + i
)

where κ = E(h). As the final step, we put Ph
> := Ph

3+m.

Initial and Bad Configurations

Above, we have finished the construction of the EHS Ph
>

designed to facilitate the construction of the set Bh
> of min-

imal bad configurations describing minimal illegal configu-

𝑠𝑝0 𝑠𝑝1 𝑠𝑝2
... ...𝑠𝑝3

:∃↔ 𝐺𝑠𝑡 :∃↔ 𝐺′
𝑠𝑡

(a) A part of an EHS Ph
n modeling the behavior of a spoiler in-

struction before an application of the slack mapping. Note that the
spoiler instruction in the states sp1 and sp2 might be stalled (if there
are instructions from the set Gst , resp. G′st). The different styles of
the lines representing global transitions are used to allow for better
matching with the counterparts of the transitions in Fig. 5 (b).

: ()∃↔ Γ𝑖
ˆ

𝐺′

𝑠𝑡

Legend:

: ()∃
↔

Γ𝑖
ˆ 𝐺𝑠𝑡

𝑠𝑝0
0

𝑠𝑝0
1

𝑠𝑝0
2

𝑠𝑝1
1

𝑠𝑝⊤

1
𝑠𝑝⊤

2

...𝑠𝑝0
3

...

𝑠𝑝1
2

...𝑠𝑝1
3

...𝑠𝑝⊤

3

(b) A part of an EHS Ph
n+1 = slack(Ph

n, 2) that correponds to
the same part of Ph

n depicted in Part (a). States spj
i , 0 ≤ i ≤ 3,

0 ≤ j < 2, for which (sl, j) ∈ βh
n(sp

j
i) with the same value of

j, indicating that the instructions passed the same number of self-
loops, share the same color. Please note that each global transition
from the orignal EHS Ph

n corresponds to a family of transitions given
by all possible injections Γ1, . . . , Γk : Qh

n → {⊥, 0, 1,>} with
the mappings Γ̂i, 1 ≤ i ≤ k, defined such that ∀Q′ ⊆ Qh

n :

Γ̂i(Q′) := {(q, Γi(q)) | q ∈ Q′}. Analogically to Fig. 4, these
families of transactions are denoted by the dashed and dotted lines in
the figure—the dashed lines are used for the ∃← : Γ̂i(Gst) family
while the dotted lines correspond with the ∃← : Γ̂i(G′st) family.

Fig. 5: An illustration of an application of the slack mapping
on a fragment of an EHS Ph

n .

rations whose reachability (within possibly larger configu-
rations) will mean that the given hazard case h does indeed
lead to a hazard. It now remains to define the set Bh

> along
with the corresponding set of initial configurations between
which reachability will have to be checked.

We first define the regular set I h> of initial configurations
of Ph

> that consists solely of instructions in the state ⊥, i.e.,
before entering the pipeline. An initial configuration may
be of an arbitrary length, and it may contain exactly one
spoiler sp and one victim instruction vi , interleaved by any
other instructions in any order, modelled using the nf class.
Formally, the set I h> of the initial states of EHS Ph

> is defined
as follows

I h> := I h1 ∪ I h2

where

I h1 := {〈nf ,⊥〉}∗{〈vi ,⊥〉}{〈nf ,⊥〉}∗{〈sp,⊥〉}{〈nf ,⊥〉}∗

and

I h2 := {〈nf ,⊥〉}∗{〈sp,⊥〉}{〈nf ,⊥〉}∗{〈vi ,⊥〉}{〈nf ,⊥〉}∗.

Utilizing Parametric Systems For Detection of Pipeline Hazards 25

Next, we define the set Bh
> of minimal bad configura-

tions that describe hazardous configurations. The main chal-
lenge behind the construction of Bh

> is to correctly match de-
tection states of the earlier and later instructions. For that, we
will use the tracking mechanism that we have provided by
the winsp/vi tags. Namely, we will construct Bh

> to include
all configurations that contain pairs of states qe , q` ∈ Qh

>,
consisting of a state qe of an e-class instruction and a state
q` of an `-class instruction, for which the win tags corre-
spond to the detection part of the tracking window. This is,
we will consider the states qe = 〈κhe , . . .〉 ∈ Qh

> obeying

βh
>(qe) ∈ {(winκh

e
, i) | gκh

e
≤ i < gκh

e
+ dκh

e
},

for κhe = E(h), and, dually, the states q` = 〈κh` , . . .〉 ∈ Qh
>

satisfying

βh
>(q`) ∈ {(winκh

`
, i) | gκh

`
≤ i < gκh

`
+ dκh

`
},

for κh` = L(h).
It now remains to deal with situations when some of the

instructions are stalled. This is monitored using the sl tags.
First, we can observe that we do not have to further elaborate
cases when both (earlier and later) instructions are stalled
together. Clearly, any hazard that would occur after these
cases would also occur in the case when the instructions are
not stalled. Second, the case when the earlier instruction is
stalled while the later is not is excluded by the consistency
of the pipeline. Therefore, it suffices to only consider those
states of the earlier instruction qe for which (sl, 0) ∈ β(qe).
Next, let i be a counter that increases each time the later
instruction is stalled while the earlier one is not. Since the
consistency Rules 1–4 from Section 5.2 guarantee that each
instruction leaves the pipeline in a final number of steps, the
value of the counter i may only range from 0 to max(S).
Every time the counter i is increased, the detection in the
earlier instruction is postponed by a single pipeline cycle.

Taken all together, the set Bh
> of minimal bad configura-

tions describing hazardous configurations is defined as

Bh
> :=

max(S)⋃
i=0

Bh
i (43)

where

Bh
i := {qeq` | {(sl, 0), (win

(i)

κh
e
, i+ j)} ⊆ βh

>(qe) ∧

{(sl, i), (winκh
`
, k)} ⊆ βh

>(q`) ∧

gκh
e
≤ j < gκh

e
+ dκh

e
∧

gκh
`
≤ k < gκh

`
+ dκh

`
∧

qe = 〈κhe , . . .〉 ∈ Qh
> ∧ κhe = E(h) ∧

q` = 〈κh` , . . .〉 ∈ Qh
> ∧ κh` = L(h)}.

(44)

With the EHS Ph
> and the sets of initial I h> and minimal

bad configurations Bh
> at hand, checking whether the haz-

ard h is feasible reduces to checking whether there is some
configuration in Bh

> that is reachable from some configura-
tion in I h>, for which one can use techniques described, e.g.,
in [2,4].

8 Experimental Evaluation

We have implemented the above described method in a pro-
totype tool called Hades [10]. Hades is written in C++ com-
bined with Python and consists of several components de-
picted in Fig. 6. The tool first reads an RTL description of
the processor to be verified and converts it into its internal
PSG representation. Currently, Hades supports the RTL for-
mat expressed in CodAL which is an architectural descrip-
tion language used in the processor design IDE [15]. For
other RTL languages like VHDL and Verilog where archi-
tectural registers are not explicitly identified, a list of archi-
tectural registers with an explicit identification of the pro-
gram counter must be provided.

The obtained PSG representation is then normalised and
simplified. This step includes, for instance, a replacement
of conditional branching by multiplexors, an application of
value propagation, and a removal of redundant nodes and
edges. The normalisation is done using an internal compo-
nent of Hades called as the RTL query engine (RQE), which
allows one to search for data-paths and substitute parts of
the microprocessor RTL design described via a PSG. Subse-
quently, pipeline stages are identified by the data-flow anal-
ysis discussed in Section 5.1. Next, pipeline consistency is
checked using Rules 1–4 from Section 5.2 by an SMT solver
for bit-vector logic. Hades is compatible with all SMT solvers
accepting the SMT2 formula format. In particular, for the
below experiments, recent versions of Z3 (v4.8.8) [21] and
CVC4 (v1.9) [3] were used. Further, after the PSG is anno-
tated by pipeline stages identified by the data-flow analysis,
Hades repeatedly utilizes the RQE and the SMT solver to ex-
tract potential hazard cases as described in Section 6 and to
generate the appropriate hazard systems (HSs) for each haz-
ard case as we have seen in Section 7. The generated HSs
are then checked using the abstract regular model checker
(ARMC) of [4]. The process of evaluation of the inputs and
generation of the results by the above mentioned subsystems
is orchestrated by the so-called “core” component of Hades.

We have tested the tool on the following processors14:
TinyCPU is a small 8-bit processor with 3 pipeline stages
that we use mainly for testing new verification methods.

14 Most of the processors are available together with our tool. How-
ever, SPP8 and Codea2 were provided by the Codasip company [15]
and are not publicly available at the time of writing this article—
likewise for SPP16, which we derived from SPP8.

26 L. Charvát · A. Smrčka · T. Vojnar

Table 3: Experimental results obtained using the Z3 SMT solver on processors whose names are given in the table.

Name (Stages) Simpl. Data Flow Consistency Parametric System Total Hazard

Variant Time [s] Analysis [s] Checking [s] Generation and Verification [s] Time [s] Cases [#]

rqe smt core rqe smt armc core pot. real

TinyCPU (3)

SCR 0.02 0.01 <0.01 0.54 0.30 0.01 1.11 12.23 2.29 16.51 6 0

SACRWV 0.03 0.01 <0.01 0.63 0.36 0.03 3.29 32.36 6.35 43.06 10 1

BCR 0.01 0.01 <0.01 0.50 0.26 0.01 1.09 10.20 2.54 14.62 6 0

BACRWV 0.01 0.01 <0.01 0.66 0.37 0.03 3.48 32.35 8.07 44.98 10 1

SFCR 0.02 0.01 <0.01 0.51 0.32 0.02 2.52 31.16 4.70 39.26 14 0

SFACRWV 0.02 0.01 <0.01 0.68 0.46 0.05 6.50 81.16 13.27 102.15 22 1

SPP (3)

SCR 0.07 0.01 0.01 0.83 0.59 0.04 5.24 32.67 9.73 49.19 29 0

BCR 0.06 0.01 0.01 0.82 0.60 0.04 5.72 32.68 14.16 54.10 29 0

SPP16 (3)

SCR 0.07 0.01 0.01 0.94 0.63 0.04 5.51 32.39 9.93 49.53 29 0

BCR 0.07 0.01 0.01 0.90 0.64 0.04 6.03 32.86 14.53 55.09 29 0

Codea2 (4)

SFCR 0.19 0.04 0.01 1.19 0.67 0.33 74.96 247.17 128.48 453.04 243 4

CompAcc (4)

SFACRWV 0.06 0.01 0.01 1.14 0.72 0.13 28.36 248.78 36.52 315.73 44 0

BFACRWV 0.07 0.02 0.01 1.14 0.67 0.16 34.97 249.45 49.99 336.48 59 0

DLX5 (5)

SFCR 0.10 0.03 0.01 2.18 1.32 0.11 24.03 189.67 42.58 260.03 27 1

SFACRWV 0.10 0.03 0.01 2.36 1.42 0.20 46.82 292.63 81.04 424.61 62 2

BFCR 0.10 0.04 0.01 2.29 1.31 0.13 57.79 190.03 143.21 394.91 27 1

BFACRWV 0.12 0.02 0.01 2.34 1.43 0.23 91.20 292.95 361.14 749.44 62 2

S Stalling Logic B Bypassing Logic F Flag Register(s) A Auto-increment Logic

C CTL Hazards R RAW Hazards W WAR Hazards V WAW Hazards

PSG PSG
with stages

SMT
solver

RTL
query engine

Consistency
checks

Stage
identification

ARMC

Parameterized
systems

HADES
core

RTL
+ list of

architectural storages

Potential
hazard cases

Fig. 6: A schematic of the Hades verification tool.

SPP8 is a 3-staged 8-bit ipcore with 16 general-purpose reg-
isters and a RISC instruction set consisting of 9 instructions.
SPP16 is a 16-bit variant of the previous processor with
a more complex memory model (allowing, for instance, un-
aligned access). Codea2 is a 16-bit processor with 4 pipeline
stages dedicated for signal processing applications. The pro-
cessor is equipped with 16 general-purpose registers, 15 spe-

cial registers, a flag register, and an instruction set including
41 instructions where each may use up to 4 available ad-
dressing modes. CompAcc is an 8-bit processor with 4 stages
that is based on an accumulator architecture with a very sim-
ilar structure as the one shown in Fig. 2. Finally, DLX5 is
a 5-staged 32-bit processor able to execute a subset of the
instruction set of the DLX architecture [24] (with no float-
ing point instructions).

We consider multiple variants of the above introduced
processors, which gives us 17 unique test cases in total. In
particular, the variants of the particular processors differ in
the following aspects: (i) the way how data hazards are avoid-
ed (pipeline stalling and clearing or data bypassing), (ii) the
presence of flag/status registers, and (iii) utilization of the
auto-increment logic.

We conducted a series of experiments on a PC with Intel
Core i7-3770K @3.50GHz and 32 GB RAM whose results

Utilizing Parametric Systems For Detection of Pipeline Hazards 27

are shown in Table 3. In these experiments, we used Hades
backed by the Z3 solver. The first column gives the name
of the verified processor and its variant. The specifics of
each variant typically influence the types of potential haz-
ards that may occur. Therefore, we have also encoded the
hazard types into the variant’s name (e.g., “C” for “contains
potential control hazards”—we give a full list of the codes
used below the table). The second and third columns give
the time needed for the PSG simplification and its data flow
analysis. The fourth and fifth columns (both split to a num-
ber of sub-columns) then give the duration of the consis-
tency checking and the time spent by verification of the para-
metric systems that are created for each hazard case. In the
sub-columns, the times given in the fourth and fifth columns
are split to the times consumed by the different parts of our
tool’s architecture.

The sixth column provides the overall verification time,
which remains in the order of minutes even for complex de-
signs. Moreover, the tool also scales well with the growing
width of the processor data-path as can be seen by compar-
ing the times obtained for SPP8 and SPP16.

From the obtained data, we further see that the verifi-
cation time grows with the number of stages of the proces-
sor. Naturally, such an increase comes from the fact that,
in CPUs with deeper pipelines, longer spoiler/victim execu-
tions are likely to occur. We have not analysed this growth
from a complexity-theoretic point of view, but our experi-
ments show that the average verification time required for
verification of a single hazard case approximately doubles
with each additional stage—it is 2.86 sec. for the considered
processors with 3 pipeline stages, 4.91 sec. for the 4-staged
ones, and 10.8 sec. for the 5-staged ones15.

Since the current Hades implementation relies on ex-
porting formulas in the smt2 file format, the tool does not
depend on any particular SMT solver. We took this oppor-
tunity and conducted the same set of experiments with the
CVC4 solver too where we observed a similar pattern in
which the average verification time per hazard case dou-
bles with each added stage. We have also noticed that for
certain tested designs (especially the less complex ones like
TinyCPU) the CVC4 solver delivers results approximately
5-10 % faster than Z3. Therefore, utilization of a portfo-
lio solver, which would run multiple SMT solvers in par-
allel and report the answer that is first returned by any one
of them, should lead to even better verification times. How-
ever, we do not consider extensive benchmarking with SMT
solvers a goal of this article.

15 The considered processors differ from each other not only in the
length of the pipeline but also in the overall structural complexity.
However, the overall structural complexity is bigger for those pro-
cessors that have a longer pipeline. Hence, the influence of solely the
length of the pipeline can be even smaller than two-fold.

Finally, the two sub-columns of the last column give
(i) the number of potential data and control hazard cases
that had to be checked and (ii) the number of cases that
were proven to be real, respectively. Note that each hazard
case represents a separate task, and so the generation and
verification of the parametric systems can be parallelized
in the future. Even though the number of hazard cases is
higher when compared to our previous work [12] (because
of control hazards), the runtimes (in Table 3) have improved
for most of the columns. A majority of this improvement is
caused by an implementation of a mechanism that efficiently
pre-computes and reuses the formulae F1, F2, and F3 from
Eq. 12. A drawback of this approach (compared to the one
used in [12]) is a higher utilization of the SMT solver, which
is, however, compensated by the lower verification time con-
sumed by the Hades core component.

During the experiments, we identified a flaw in the RAW
hazard resolution when accessing the data memory in a de-
velopment version of the SPP8 processor. Further, compared
to our previous results from [12], we have extended our
TinyCPU and DLX5 processor models so that they can now
handle a majority of control hazards. The different number
of potential hazard cases is a side-effect of this change. All
the remaining real hazard cases (shown in the last column)
are control hazards.

Notice that each processor with the auto-increment logic,
which typically resides in early pipeline stages, contains at
least one instance of a control hazard. The auto-increment
logic is a feature of addressing modes where a register used
for computing a memory address is incremented once its
value is obtained. Such an increment is not guarded even if
the instruction itself will be discarded in later stages, e.g.,
due to an unsuccessful speculative execution. This is not
considered a design error; instead, software compilers are
instructed not to place instructions with an auto-increment
near jumping instructions (they resolve the problem by ex-
plicitly generating a series of NOP instructions after a condi-
tional branch). A similar situation occurs in the DLX proces-
sor where the fourth pipeline stage, designated for memory
accesses, writes to memory whenever a store instruction is
executed even if the branch condition of an earlier instruc-
tion is not yet evaluated (therefore the memory access can-
not be prevented). This situation adds an extra occurrence of
a control hazard and must also be taken into account when
compiling a program. Finally, in Codea2, the logic that deals
with control hazards is left out intentionally (by design),
again relying on the compiler to take this into account.

9 Conclusion

We have presented an approach that harnesses methods for
formal verification of parametric systems in order to dis-
cover incorrectly handled data and control pipeline hazards

28 L. Charvát · A. Smrčka · T. Vojnar

in the RTL implementation of pipeline-based execution. The
approach was developed with the aim to be highly auto-
mated, not requiring any additional efforts from the devel-
opers (apart from specifying the architectural registers). We
have implemented the approach and successfully tested it
on several non-trivial microprocessors where the approach
was able to discover previously unknown flaws caused by
unhandled hazards.

Acknowledgements This work was supported by the Czech Science
Foundation under the project 20-07487S.

References

1. M. D. Aagaard. A hazards-based correctness statement for
pipelined circuits. In Proc. of Correct Hardware Design and Ver-
ification Methods (CHARME’03), volume 2860 of LNCS, pages
66–80. Springer, 2003.

2. P. A. Abdulla, F. Haziza., and L. Holı́k. All for the price of few
(parameterized verification through view abstraction). In Proc. of
Verification, Model Checking, and Abstract Interpretation (VM-
CAI’13), volume 7737 of LNCS, pages 476–495. Springer, 2013.

3. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanovi’c, Tim King, Andrew Reynolds, and
Cesare Tinelli. CVC4. In Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV’11), volume
6806 of LNCS, pages 171–177. Springer, 2011.

4. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model
checking. In Proc. of 16th International Conference on Computer
Aided Verification (CAV’04), volume 3114 of LNCS, pages 197–
202. Springer, 2004.

5. R. Brummayer and A. Biere. Boolector: An efficient SMT solver
for bit-vectors and arrays. In Proc. of International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’09), volume 5505 of LNCS, pages 174–177. Springer,
2009.

6. Randal E. Bryant. Formal verification of pipelined Y86-64 mi-
croprocessors with UCLID5. Technical Report CMU-CS-18-122,
2018.

7. J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessor control. In Proc. of Computer Aided Verification
(CAV’94), volume 818 of LNCS, pages 68–80. Springer, 1994.

8. Cadence. Tensilica Software Development Toolkit (SDK), 2014.
9. L. Charvát, A. Smrčka, and T. Vojnar. Automatic formal corre-

spondence checking of ISA and RTL microprocessor description.
In Proc. of Microprocessor Test and Verification (MTV’12), pages
6–12. IEEE, 2012.

10. L. Charvát, A. Smrčka, and T. Vojnar. HADES Hades Hard-
ware Verification Tool. www.fit.vutbr.cz/research/
groups/verifit/tools/hades/, 2014.

11. L. Charvát, A. Smrčka, and T. Vojnar. Using formal verification
of parameterized systems in RAW hazard analysis in microproces-
sors. In Proc. of Microprocessor Test and Verification (MTV’14),
pages 83–89. IEEE, 2014.

12. L. Charvát, A. Smrčka, and T. Vojnar. HADES: Microprocessor
hazard analysis via formal verification of parameterized systems.
In Proc. of 11th Doctoral Workshop on Mathematical and Engi-
neering Methods in Computer Science (MEMICS’16), 233, pages
87–93. EPTCS, 2016.

13. E. Clarke, M. Talupur, and H. Veith. Environment abstraction
for parameterized verification. In Proc. of Verification, Model
Checking, and Abstract Interpretation (VMCAI’06), volume 3855
of LNCS, pages 126–141. Springer, 2006.

14. CodAL architecture description language. www.codasip.
com/custom-processor, 2019.

15. Codasip Studio for rapid processor development. www.
codasip.com, 2019.

16. K. Hao, S. Ray, and F. Xie. Equivalence checking for function
pipelining in behavioral synthesis. In Proc. of Design, Automation
and Test in Europe (DATE’14), pages 1–6. IEEE, 2014.

17. R. B. Jones, C. H. Seger, and D. L. Dill. Self-consistency check-
ing. In Proc. of Formal Methods in Computer-Aided Design (FM-
CAD’96), volume 1166 of LNCS, pages 159–171. Springer, 1996.

18. A. Koelbl, R. Jacoby, H. Jain, and C. Pixley. Solver technology
for system-level to RTL equivalence checking. In Proc. of Design,
Automation and Test in Europe (DATE’09), pages 196–201. IEEE,
2009.

19. U. Kuhne, S. Beyer, J. Bormann, and J. Barstow. Automated
formal verification of processors based on architectural models.
In Proc. of Formal Methods in Computer-Aided Design (FM-
CAD’10), pages 129–136. IEEE, 2010.

20. P. Mishra, H. Tomiyama, N. Dutt, and A. Nicolau. Automatic veri-
fication of in-order execution in microprocessors with fragmented
pipelines and multicycle functional units. In Proc. of Design,
Automation and Test in Europe (DATE’02), pages 36–43. IEEE,
2002.

21. L. De Moura and N. Bjorner. Z3: An efficient SMT solver. In
Proc. of International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’08), volume 4963
of LNCS, pages 337–340. Springer, 2008.

22. K. S. Namjoshi. Symmetry and completeness in the analysis of
parameterized systems. In Proc. of Verification, Model Checking,
and Abstract Interpretation (VMCAI’07), volume 4349 of LNCS,
pages 299–313. Springer, 2007.

23. M. Ngyuen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel,
and W. Kunz. Unbounded protocol compliance verification usign
interval property checking with invariants. IEEE Transactions on
Computer-Aided Design of Integrated Circuits, 27(11), 2008.

24. D. A. Patterson and J. L. Hennessy. Computer Organization and
Design: The Hardware / Software Interface. Morgan Kaufmann,
Boston, fourth edition, 2012.

25. J. Van Praet, D. Lanneer, W. Geurts, and G. Goossens. nML: A
Structural Processor Modeling Language for Retargetable Com-
pilation and ASIP Design, volume 1 of Systems on Silicon, pages
65–93. Morgan Kaufmann, Burlington, 2008.

26. Synopsys. ASIP Designer: Design Tool for Application Specific
Instruction-Set Processors, Designer Datasheet, 2018.

27. M. N. Velev and P. Gao. Automatic formal verification of mul-
tithreaded pipelined microprocessors. In Proc. of International
Conference on Computer Aided Design (ICCAD’11), pages 679–
686. IEEE, 2011.

