
Byte-Precise Verification of Low-Level List Manipulation?

Kamil Dudka, Petr Peringer, and Tomáš Vojnar

FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. We propose a new approach to shape analysis of programs with linked
lists that use low-level memory operations. Such operations include pointer arith-
metic, safe usage of invalid pointers, block operations with memory, reinterpre-
tation of the memory contents, address alignment, etc. Our approach is based
on a new representation of sets of heaps, which is to some degree inspired by
works on separation logic with higher-order list predicates, but it is graph-based
and uses a more fine-grained (byte-precise) memory model in order to support
the various low-level memory operations. The approach was implemented in the
Predator tool and successfully validated on multiple non-trivial case studies that
are beyond the capabilities of other current fully automated shape analysis tools.

1 Introduction
Dealing with programs with pointers and dynamic linked data structures belongs among
the most challenging tasks of formal analysis and verification due to a need to cope with
infinite sets of reachable program configurations having the form of complex graphs.
This task becomes even more complicated when considering low-level memory oper-
ations such as pointer arithmetic, safe usage of pointers with invalid targets, block op-
erations with memory, reinterpretation of the memory contents, or address alignment.
Despite the rapid progress in the area of formal program analysis and verification, fully
automated approaches capable of efficiently handling sufficiently general classes of dy-
namic linked data structures in the form used in low-level code are still missing.

In this paper, we propose a new fully automated approach to formal verification of
list manipulating programs designed to cope with all of the above mentioned low-level
memory operations. Our approach is based on a new representation of sets of heaps,
which is to some degree inspired by works on separation logic with higher-order list
predicates [1], but it is graph-based and uses a much more fine-grained memory model.
In particular, our memory model allows one to deal with byte-precise offsets of fields
of objects, offsets of pointer targets, as well as object sizes. Together with the new
heap representation, we propose original algorithms for all the operations needed for
a use of the new representation in a fully automated shape analysis. As our experiments
show, these algorithms allow our analysis to successfully handle many programs on
which other state-of-the-art fully automated approaches fail (by not terminating or by
producing false positives or even false negatives).

In particular, we represent sets of heap graphs using the so-called symbolic memory
graphs (SMGs) with two kinds of nodes: objects and values. Objects represent allocated
memory and are further divided into regions representing individual memory areas and
? This work was supported by the Czech Science Foundation (project P103/10/0306), the Czech

Ministry of Education (project MSM 0021630528), the EU/Czech IT4Innovations Centre of
Excellence project CZ.1.05/1.1.00/02.0070, and the BUT FIT project FIT-S-12-1.

list segments encoding linked sequences of n or more regions uninterrupted by exter-
nal pointers (for some n ≥ 0). Values represent addresses and other data stored inside
objects. Objects and values are linked by two kinds of edges: has-value edges from ob-
jects to values and points-to edges from value nodes representing addresses to objects.
For efficiency reasons, we represent equal values by a single value node. We explicitly
track sizes of objects, byte-precise offsets at which values are stored in them, and we
allow pointers to point to objects with an arbitrary offset, i.e., a pointer can point inside
as well as outside an object, not just at its beginning as in many current analyses.

We are capable of handling possibly cyclic, nested (with an arbitrary depth), and/or
shared singly- as well as doubly-linked lists (for brevity, below, we concentrate on
doubly-linked lists only). Our analysis can fully automatically recognise linking fields
of the lists as well as the way they are possibly hierarchically nested. Moreover, the
analysis can easily handle lists in the form common in system software (in particular,
the Linux kernel), where list nodes are linked through the middle of them, pointer arith-
metic is used to get to the beginning of the nodes, pointers iterating through such lists
can sometimes safely point to unallocated memory, the forward links are pointers to
structures while the backward ones are pointers to pointers to structures, etc.

To reduce the number of SMGs generated for each basic block of the analysed pro-
gram, we propose a join operator working over SMGs. Our join operator is based on
simultaneously traversing two SMGs while trying to merge the encountered pairs of ob-
jects and values according to a set of rules carefully tuned through many experiments to
balance precision and efficiency (see Section 3.2 for details). Moreover, we use the join
operator as the core of our abstraction, which is based on merging neighbouring objects
(together with their sub-heaps) into list segments. This approach leads to a rather easy to
understand and—according to our experiments—quite efficient abstraction algorithm.
In the abstraction algorithm, the join is not applied to two distinct SMGs, but a single
one, starting not from pairs of program variables, but the nodes to be merged. Further,
we use our join operator as a basis for checking entailment on SMGs too (by observing
which kind of pairs of objects and values are merged when joining two SMGs). In or-
der to handle lists whose nodes optionally refer to some regions or sub-lists (which can
make some program analyses diverge and/or produce false alarms [16]), our join and
abstraction support the so-called 0/1 abstract objects.

Since on the low level, the same memory contents can be interpreted in different
ways (e.g., via unions or type-casting), we incorporate into our analysis the so-called
read, write, and join reinterpretation. In particular, we formulate general conditions on
the reinterpretation operators that are needed for soundness of our analysis, and then
instantiate these operators for the quite frequent case of dealing with blocks of nullified
memory. Due to this, we can, e.g., efficiently handle initialization of structures with
tens or hundreds of fields commonly allocated and nullified in practice through a single
call of calloc, at the same time avoiding false alarms stemming from that some field
was not explicitly nullified. Moreover, we provide a support for block operations like
memmove or memcpy. Further, we extend the basic notion of SMGs to support pointers
having the form of not just a single address, but an interval of addresses. This is needed,
e.g., to cope with address alignment or with list nodes that are equal up to their incoming
pointers arrive with different offsets (as common, e.g., in memory allocators).

We have implemented the proposed approach in a new version of our tool Preda-
tor [7]. Predator automatically proves absence of various memory safety errors, such as

invalid dereferences, invalid free operations, or memory leaks. Moreover, Predator can
also provide the user with the derived shape invariants. Due to SMGs provide a rather
detailed memory model, Predator produces fewer false alarms compared with other
tools, and on the other hand, it can discover bugs that may be undetected by other state-
of-the-art tools (as illustrated by our experimental results). In particular, Predator can
discover out-of-bound dereferences (including stack smashing or buffer overflows) as
well as nasty bugs resulting from dealing with overlapping blocks of memory in op-
erations like memcpy. We have successfully validated the new version of Predator on
a number of case studies, including various operations on lists commonly used in the
Linux kernel as well as code taken directly from selected low-level critical applications
(without any changes up to adding a test environment). In particular, we considered the
memory allocator from the Netscape portable runtime (NSPR), used, e.g., in Firefox,
and the lvm2 logical volume manager. All of the case studies are available within the
distribution of Predator. To the best of our knowledge, many of our case studies are out
of what other currently existing fully automated shape analysis tools can handle.

Related Work. Many approaches to formal analysis and verification of programs with
dynamic linked data structures have been proposed. They differ in their generality, level
of automation, as well as the formalism on which they are based. As said already above,
our approach is inspired by the fully automated approaches [1, 17] based on separation
logic with higher-order list predicates implemented in two well-known tools, namely,
Space Invader and SLAyer [2]. Compared with them, however, we use a purely graph-
based memory representation. In fact, a graph-based representation was used already
in the older version of our tool Predator [7]. However, that representation was a rather
straightforward graph-based encoding of separation logic formulae, which is no more
the case for the representation proposed in this paper. Our new heap representation is
much finer, which on one hand complicates its formalization, but on the other hand, it
allows us to treat the different peculiarities of low-level memory manipulation. More-
over, somewhat surprisingly, despite our new heap representation is rather detailed, it
still allowed us to propose algorithms for all the needed operations such that they are
quite efficient. Indeed, the new version of Predator is much faster than the old one
while at the same time producing fewer false positives. Compared with Space Invader
and SLAyer, Predator based on the new memory representation and new algorithms is
not only faster, but also terminates more often, avoids false positives and, in particular,
is able to detect additional classes of program errors that the other tools silently ignore
(as illustrated in the section on experiments).

Both Space Invader and SLAyer provide some support for pointer arithmetic, but
its systematic description is (to the best of our knowledge) not available, and moreover,
the support seems to be rather basic as illustrated by our experimental results. The same
is the case with some other fully automated tools for verification of programs with
dynamic linked data structures based on other formalisms, such as Forester [9] based
on automata. A support for pointer arithmetic in combination with separation logic
appears in [5], which is, however, highly specialised for a particular kind of linked lists
with variable length entries used in some memory allocators.

As for the memory model, probably the closest to our work is [11], which uses the
so-called separating shape graphs. They support tracking of the size of allocated mem-
ory areas, pointers with byte-precise offsets wrt. addresses of memory regions, dealing

with offset ranges, as well as multiple views on the same memory contents. A major
difference is that [11] and the older work [6], on which [11] is based, use the so-called
summary edges annotated by user-supplied data structure invariants to summarize parts
of heaps of an unbounded size. This approach is more general in terms of the supported
shapes of data structures but less automatic because the burden of describing the shape
lies on the user. We use abstract objects (list segments) instead, which are capable of
encoding various forms of hierarchically nested lists (very often used in practice) and
are carefully designed to allow for fully automatic and efficient learning of the concrete
forms of such lists (the concrete fields used, the way the lists are hierarchically nested,
their possible cyclicity, possibly shared nodes, optional nodes, etc.). Also, the level
of nesting is not fixed in advance—our list segments are labelled by an integral nest-
ing level, which allows us to represent hierarchically nested data structures as flattened
graphs. Finally, although [11] points out a need to reinterpret the memory contents upon
reading/writing, the corresponding operations are not formalized there. One of our con-
tributions is thus also a definition of read/write reinterpretation operators in a way that
can be used by a fully automatic shape analysis algorithm.

A graph-based abstraction of sets of heap configurations is used in [12] too. On one
hand, the representation allows one to deal even with tree-like data structures, but on the
other hand, the case of doubly-linked lists is not considered. Further, the representation
does not consider the low-level memory features covered by our symbolic memory
graphs. Finally, the abstraction and join operations used in [12] are more aggressive
and hence less precise than in our case.

The work [10], which is based on an instantiation of the TVLA framework [14],
focuses on analysis of Linux-style lists, but their approach relies on an implementation-
dependent way of accessing list nodes, instead of supporting pointer arithmetics, unions,
and type-casts in a generic way. Finally, the work [15] provides a detailed treatment
of low-level C features such as alignment, byte-order, padding, type-unsafe casts, etc.
in the context of theorem proving based on separation logic. Our reinterpretation opera-
tors provide a lightweight treatment of these features designed to be used in the context
of a fully automated analysis based on abstraction.

2 Symbolic Memory Graphs

...

hfo nfo pfolist_head custom_record

next
prev

next
prev

next
prev

2+ DLS hfo,lst

hfo,fst0,ptr0,reg

pfo,ptr

size(ptr),ptr

nfo,ptr

Fig. 1. A cyclic Linux-style DLL (top) and its SMG (bottom),
with some SMG attributes left out for readability.

We encode sets of program
configurations using the so-
called symbolic memory
graphs (SMGs) together
with a mapping from global
(static) and local (stack)
variables to nodes of the
SMGs. In particular, SMGs
have a form of node-
and edge-labelled directed
graphs. Below, we start by
an informal description of SMGs, followed by their formalisation. For an illustration
of the notions discussed below, we refer the reader to Fig. 1, which shows how SMGs
represent cyclic Linux-style DLLs (with a head node without any data part, other nodes
including the head structure as well as custom data, and with the next/prev pointers

pointing inside list nodes, not at their beginning). Some more examples illustrating the
notion of SMGs, including its use for encoding various low-level Linux-style lists, can
be found in [8].

2.1 The Intuition behind SMGs

An SMG consists of two kinds of nodes: objects and values (in Fig. 1, they are repre-
sented by boxes and circles, respectively). Objects are further divided to regions and
(doubly-linked) list segments (DLSs)1. A region represents a contiguous area of mem-
ory allocated either statically, on the stack, or on the heap. Each consistent SMG con-
tains a special region called the null object, denoted #, which represents the target of
NULL. DLSs arise from abstracting sequences of doubly-linked regions that are not in-
terrupted by any external pointer. For example, in the lower part of Fig. 1, the left box
is a region corresponding to the list head from the upper part of the figure whereas the
right box is a DLS summarizing the sequence of custom record objects from the
upper part. Values are then used to represent addresses and other data stored in objects.
All values are abstract in that we only distinguish whether they represent equal or possi-
bly different concrete values. The only exception is the value 0 that is used to represent
sequences of zero bytes of any length, which includes the zeros of all numerical types,
the address of the null object, as well as nullified blocks of any size. Zero values are
supported since they play a rather crucial role in C programs. In the future, a better
distinction of values can be easily added.

SMGs have two kinds of edges: namely, has-value edges leading from objects to
values and points-to edges leading from addresses to objects (cf. Fig. 1). Intuitively, the
edges express that objects have values and addresses point to objects. Has-value edges
are labelled by the offset and type of the field in which a particular value is stored within
an object. Note that we allow the fields to overlap. This is used to represent different
interpretations that a program can assign to a given memory area in order not to have to
recompute them again and again. Points-to edges are labelled by an offset and a target
specifier. The offset is used to express that the address from which the edge leads may, in
fact, point before, inside, or behind an object. The target specifier is only meaningful for
list segments to distinguish whether a given edge represents the address (or addresses)
of the first, last, or each concrete region abstracted by the segment. The last option is
used to encode links going to list nodes from the structures nested below them (e.g., in
a DLL of DLLs, each node of the top-level list may be pointed from its nested list).

A key advantage of representing values (including addresses) as a separate kind of
nodes is that a single value node is then used to represent values which are guaranteed
to be equal in all concrete memory configurations encoded by a given SMG. Hence,
distinguishing between equal values and possibly different values reduces to a simple
identity check, not requiring a use of any prover. Thanks to identifying fields of objects
by offsets (instead of using names of struct/union members), comparing their addresses
for equality simplifies to checking identity of the address nodes. For example, (x ==
&x->next) holds iff next is the first member of the structure pointed by x, in which
case both x and &x->next are guaranteed to be represented by a single address node
in SMGs. Finally, the distinction of has-value and points-to edges saves some space

1 Our tool Predator supports singly-linked list segments too. Such segments can be viewed as
a restriction of DLSs, and we omit them from the description in order to simplify it.

since the information present on points-to edges would otherwise have to be copied
multiple times for a single target.

Objects and values in SMGs are labelled by several attributes. First, each object is
labelled by its kind, allowing one to distinguish regions and DLSs. Next, each object
is labelled by its size, i.e., the amount of memory allocated for storing it. For DLSs,
the size gives the size of their nodes. All objects and values have the so-called nesting
level which is an integer specifying at which level of hierarchically nested structures
the object or value appears (level 0 being the top level). All objects are further labelled
by their validity in order to allow for safe pointer arithmetic over freed regions (which
are marked invalid, but kept as long as there is some pointer to them).

Next, each DLS is labelled by the minimum length of the sequence of regions repre-
sented by it.2 Further, each DLS is associated with the offsets of the “next” and “prev”
fields through which the concrete regions represented by the segment are linked for-
ward and backward. Each DLS is also associated with the so-called head offset at which
a sub-structure called a list head is stored in each list node (cf. Fig. 1). The usage of
list heads is common in system software. They are predefined structures, typically con-
taining the next/prev fields used to link list nodes. When a new list is defined, its node
structure contains the list head as a nested structure, its nodes are linked by pointers
pointing not at their beginning but inside of them (in particular, to the list head), and
pointer arithmetic is used to get to the beginning of the actual list nodes.

Global and stack program variables are represented by regions like heap objects
and can thus be manipulated in a similar way (including their manipulation via point-
ers, checking for out-of-bounds accesses leading to stack smashing, etc.). Regions cor-
responding to program variables are tagged by their names and hence distinguishable
whenever needed (e.g., when checking for invalid frees of stack/global memory, etc.).

2.2 Symbolic Memory Graphs

Let B be the set of Booleans, T a set of types, size(t) the size of instances of a type
t ∈ T, ptr ∈ T a unique pointer type3, K = {reg, dls} the set of kinds of objects
(distinguishing regions and DLSs), and S = {fst, lst, all, reg} the set of points-to
target specifiers. A symbolic memory graph is a tuple G = (O, V, Λ,H, P) where:

– O is a finite set of objects including the special null object #.
– V is a finite set of values such that O ∩ V = ∅ and 0 ∈ V .
– Λ is a tuple of the following labelling functions:
• The kind of objects kind : O → K where kind(#) = reg, i.e., # is formally

considered a region. We letR = {r ∈ O | kind(r) = reg} be the set of regions
and D = {d ∈ O | kind(d) = dls} be the set of DLSs of G.

• The nesting level of objects and values level : O ∪ V → N.
• The size of objects size : O → N.
• The minimum length of DLSs len : D → N.
• The validity of objects valid : O → B.
• The head, next, and prev field offsets of DLSs hfo, nfo, pfo : D → N.

2 Later, in Section 4, special list segments of length 0 or 1 are mentioned too.
3 We assume size(ptr) to be a constant, which implies that separate verification runs are needed

for verifying a program for target architectures using different address sizes.

– H is a partial edge functionO×N×T⇀ V which defines has-value edges o of,t−−→v
where o ∈ O, v ∈ V , of ∈ N, and t ∈ T. We call (of, t) a field of the object o that
stores the value v of the type t at the offset of .

– P is a partial injective edge function V ⇀ Z×S×O which defines points-to edges
v of,tg−−→o where v ∈ V , o ∈ O, of ∈ Z, and tg ∈ S such that tg = reg iff o ∈ R.
Here, of is an offset wrt. the base address of o.4 If o is a DLS, tg says whether the
edge encodes pointers to the first, last, or all concrete regions represented by o.

We define the first node of a list segment such that the next field of the node
points inside the list segment (and the last node such that the prev field of the node
points inside the list segment). As already mentioned, the all target specifier is used
in hierarchically nested list structures where each nested data structure points back to
the node of the parent list below which it is nested. Fig. 2 illustrates how the target

1+ DLS

r1 r2

ap an

level(r')=1

of,all

hfo(d),fst hfo(d),lst

hfo(d),reghfo(d),reg
nfo(d),ptr
pfo(d),ptr

of,regof,reg

nfo(d),ptrpfo(d),ptr

r'

r'1 r'2

af al

af al

d

an

nfo(d),ptr

ap

pfo(d),ptr

a1 a2

ad level(ad)=1

Fig. 2. An SMG and its possible concreti-
sation for the case when the DLS d repre-
sents exactly two regions (only important
attributes are shown).

specifier affects the semantics of points-to
edges (and the corresponding addresses): The
DLS d is concretized to the two regions r1
and r2, and the nested abstract region r′ to the
two concrete regions r′1 and r′2. Note that if r′

was not nested, i.e., if it had level(r′) = 0, it
would concretise into a single region pointed
by both r1 and r2.

LetG = (O, V, Λ,H, P) be an SMG with
a set of regions R and a set of DLSs D.
We denote a DLS d ∈ D of minimum
length n, for which len(d) = n, as an
n+ DLS. We use ⊥ to denote cases where
H or P is not defined. For any v ∈ V for
which P (v) 6= ⊥, we denote by of(P (v)),
tg(P (v)), and o(P (v)) the particular items
of the triple P (v). Further, for o ∈ O, we
let H(o) = {H(o, of, t) | of ∈ N, t ∈ T, H(o, of, t) 6= ⊥}. We let
A = {v ∈ V | P (v) 6= ⊥} be the set of all addresses used in G. Next, a path in G
is a sequence (of length one or more) of values and objects such that there is an edge
between every two neighbouring nodes of the path. An object or value x2 ∈ O ∪ V is
reachable from an object or value x1 ∈ O ∪ V iff there is a path from x1 to x2.

We call G consistent iff the following holds:

– Basic consistency of objects. The null object is invalid, has size and level 0, and its
address is 0, i.e., valid(#) = false, size(#) = level(#) = 0, and 0 0,reg−−−→#. All
DLSs are valid, i.e., ∀d ∈ D : valid(d). Invalid regions have no outgoing edges.

– Field consistency. Fields do not exceed boundaries of objects, i.e., ∀o ∈ O ∀of ∈ N
∀t ∈ T : H(o, of, t) 6= ⊥ ⇒ of + size(t) ≤ size(o).

– DLS consistency. Each DLS d ∈ D has a next pointer and a prev pointer, i.e., there
are addresses an, ap ∈ A s.t. H(d, nfo(d), ptr) = an and H(d, pfo(d), ptr) = ap
(cf. Fig. 2). The next pointer is always stored in memory before the prev pointer,
i.e., the next and prev offsets are s.t. ∀d ∈ D : nfo(d) < pfo(d). Points-to edges
encoding links to the first and last node of a DLS d are always pointing to these

4 Note that the offset can even be negative, which happens, e.g., when traversing a Linux list.

nodes with the appropriate head offset, i.e., ∀a ∈ A : tg(P (a)) ∈ {fst, lst} ⇒
of(P (a)) = hfo(d) where d = o(P (a)).5 Finally, there is no cyclic path containing
0+ DLSs (and their addresses) only in a consistent SMG since its semantics would
include an address not referring to any object.

– Nesting consistency. Each nested object o ∈ O of level l = level(o) > 0 has
precisely one parent DLS, denoted parent(o), that is of level l − 1 and there is
a path from parent(o) to o whose inner nodes are of level l and higher only (e.g., in
Fig. 2, d is the parent of r′). Addresses with fst, lst, and reg targets are always of
the same level as the object they refer to (as is the case for af , al, a1, a2 in Fig. 2),
i.e., ∀a ∈ A : tg(P (a)) ∈ {fst, lst, reg} ⇒ level(a) = level(o(P (a))). On the
other hand, addresses with the all target go up one level in the nesting hierarchy,
i.e., ∀a ∈ A : tg(P (a)) = all⇒ level(a) = level(o(P (a))) + 1 (cf. ad in Fig. 2).
Finally, edges representing back-pointers to all nodes of a list segment can only lead
from objects (transitively) nested below that segment (e.g., in Fig. 2, such an edge
leads from region r′ back to the DLS d, but it cannot lead from any other regions).
Formally, for any o, o′ ∈ O, a ∈ H(o), o(P (a)) = o′, and level(o) > level(o′),
tg(P (a)) = all iff o′ = parentk(o) for some k ≥ 1.

From now on, we assume working with consistent SMGs only. Let GVar be a finite
set of global variables, SVar a countable set of stack variables such that GVar∩SVar = ∅,
and let Var = GVar ∪ SVar. A symbolic program configuration (SPC) is a pair C =
(G, ν) where G is an SMG with a set of regions R, and ν : Var→ R is a finite injective
map such that ∀x ∈ Var : level(ν(x)) = 0 ∧ valid(ν(x)). Note that ν gives the
regions in which values of variables are stored, not directly the values themselves. We
call each object o such that ν(x) = o for some x ∈ GVar a static object, and each object
o such that ν(x) = o for some x ∈ SVar a stack object. All other objects are called heap
objects. An SPC is called garbage-free iff all its heap objects are reachable from static
or stack objects.

We define the empty SMG to consist solely of the null object, its address 0, and the
points-to edge between them. The empty SPC then consists of the empty SMG and the
empty variable mapping. An SMG G′ = (O′, V ′, Λ′, H ′, P ′) is a sub-SMG of an SMG
G = (O, V, Λ,H, P) iff (1)O′ ⊆ O, (2) V ′ ⊆ V , and (3)H ′, P ′, andΛ′ are restrictions
of H , P , and Λ to O′ and V ′, respectively. The sub-SMG of G rooted at an object or
value x ∈ O ∪ V , denoted Gx, is the smallest sub-SMG of G that includes x and all
objects and values reachable from x. Given F ⊆ N, the F -restricted sub-SMG of G
rooted at an object o ∈ O is the smallest sub-SMG of G that includes o and all objects
and values reachable from o apart from the addresses AF = {H(o, of, ptr) | of ∈ F}
and nodes that are reachable from o throughAF only. Finally, the sub-SMG ofG nested
below d ∈ D, denoted Ĝd, is the smallest sub-SMG of G including d and all objects
and values of level higher than level(d) that are reachable from d via paths that, apart
from d, consist exclusively of objects and values of a level higher than level(d).

2.3 The Semantics of SMGs

We define the semantics of SMGs in two steps, namely, by first defining it in terms of the
so-called memory graphs whose semantics is subsequently defined in terms of concrete

5 The last two requirements are not necessary, but they significantly simplify the below presented
algorithms (e.g., the DLS materialisation given in Section 2.3).

memory images. In particular, a memory graph (MG) is defined exactly as an SMG up to
it is not allowed to contain any list segments. An SMG then represents the class of MGs
that can be obtained (up to isomorphism) by applying any number of times the following
two transformations: (1) materialisation of fresh regions from DLSs (i.e., intuitively,
“pulling out” concrete regions from the beginning or end of segments) and (2) removal
of 0+ DLSs (which may have become 0+ due to the preceding materialisation).

Materialisation and Removal of DLSs. LetG = (O, V, Λ,H, P) be an SMG with the
sets of regions R, DLSs D, and addresses A. Let d ∈ D be a DLS of level 0. Further,
let an, ap ∈ A be the next and prev addresses of d, i.e., H(d, pfo(d), ptr) = ap and
H(d, nfo(d), ptr) = an. The DLS d can be materialised as follows—for an illustration
of the operation, see the upper part of Fig. 3:

1. G is extended by a fresh copy G′r of the sub-SMG Ĝd nested below d. In G′r,
d is replaced by a fresh region r such that size(r) = size(d), level(r) = 0, and
valid(r) = true. The nesting level of each object and value in G′r (apart from r) is
decreased by one.

2. Let af ∈ A be the address pointing to the beginning of d, i.e., such that P (af) =
(hfo(d), fst, d). If af does not exist in G, it is added. Next, A is extended by
a fresh address ad that will point to the beginning of the remaining part of d after
the concretisation (while af will be the address of r). Finally,H and P are changed
s.t. P (af) = (hfo(d), reg, r), H(r, pfo(d), ptr) = ap, H(r, nfo(d), ptr) = ad,
P (ad) = (hfo(d), fst, d), and H(d, pfo(d), ptr) = af .

3. For any object o of Ĝd, let o′ be the corresponding copy of o in G′r (for o = d, let
o′ = r). For each field (of, t) ∈ (N × T) of each object o in Ĝd whose value is of
level 0, i.e., level(H(o, of, t)) = 0, the corresponding field of o′ in G′r is set to the
same value, i.e., the set of edges is extended such that H(o′, of, t) = H(o, of, t).

4. If len(d) > 0, len(d) is decreased by one.

DLS DLS

level>0
Gd

af an

ap

level>0
Gd

level≥0

G'r

r
d d

(a) (b)

an

ap

ad
af

0+DLS

level>0
Gd

an

ap

d

(c) (d)

an

ap

af

al

al al

^ ^

^

Fig. 3. Materialisation of a DLS: (a) input, (b) output (re-
gion r got materialised from DLS d). Removal of a DLS:
(c) input, (d) output. Sub-SMGs Ĝd and G′

r are highlighted
without their roots.

Next, let d ∈ D be a DLS
as above with the additional re-
quirement of len(d) = 0 with
the addresses an, ap, af , and al
defined as in the case of mate-
rialisation. The DLS d can be
removed as follows—for an il-
lustration, see the lower part
of Fig. 3: (1) Each has-value
edge o of,t−−→af is replaced by the
edge o of,t−−→an. (2) Each has-
value edge o of,t−−→al is replaced
by the edge o of,t−−→ap. (3) The
subgraph Ĝd is removed to-
gether with the addresses af ,
al, and the edges adjacent with
the removed objects and values.

Given an SMG G = (O, V, Λ,H, P) with a set of DLSs D, we denote by MG(G)
the class of all MGs that can be obtained (up to isomorphism) by materializing each
DLS d ∈ D at least len(d) times and by subsequently removing all DLSs.

Concrete Memory Images. The semantics of an MG G = (R, V, Λ,H, P) is the set
MI(G) of memory images µ : N → {0, . . . , 255} mapping concrete addresses to bytes
such that there exists a function π : R → N, called a region placement, for which the
following holds:

1. Only the null object is placed at address zero, i.e., ∀r ∈ R : π(r) = 0⇔ r = #.
2. No two valid regions overlap, i.e., ∀r1, r2 ∈ R : valid(r1) ∧ valid(r2)⇒ 〈π(r1),
π(r1) + size(r1)) ∩ 〈π(r2), π(r2) + size(r2)) = ∅.

3. Pointer fields are filled with the concrete addresses of the regions they refer to. For-
mally, for each pair of has-value and points-to edges r1 of1,ptr−−−−→a of2,reg−−−−→r2 inH and
P , resp., addr(bseq(µ, π(r1)+of1, size(ptr))) = π(r2)+of2 where bseq(µ, p, size)
is the sequence of bytes µ(p)µ(p + 1)...µ(p + size − 1) for any p, size > 0, and
addr(σ) is the concrete address encoded by the byte sequence σ.

4. Fields having the same values are filled with the same concrete values (up to nul-
lified blocks that can differ in their length), i.e., for every two has-value edges
r1

of1,t1−−−→v and r2 of2,t2−−−→v in H , where v 6= 0, bseq(µ, π(r1) + of1, size(t1)) =
bseq(µ, π(r2) + of2, size(t2)).

5. Finally, nullified fields are filled with zeros, i.e., for each has-value edge r of,t−−→0 in
H , µ(π(r) + of + i) = 0 for all 0 ≤ i < size(t).

For an SMG G, we let MI(G) =
⋃

G′∈MG(G) MI(G′). Note that it may happen that it is
not possible to find concrete values satisfying the needed constraints. In such a case, the
semantics of an (S)MG is empty. Note also that we restrict ourselves to a flat address
space, which is, however, sufficient for most practical cases.

3 Operations on SMGs
In this section, we propose algorithms for all the operations on SMGs that are needed
for their application in program verification. In particular, we discuss data reinterpreta-
tion, join of SMGs (which we use for entailment checking, too), abstraction, inequality
checking, and symbolic execution of C programs. Due to limited space, the description
is mostly informal. More details can be found in [8].

Below, we denote by I(of, t) the right-open integer interval 〈of, of + size(t)), and
for a has-value edge e : o of,t−−→v, we write I(e) as the abbreviation of I(of, t).

3.1 Data Reinterpretation
SMGs allow fields of a single object to overlap and even to have the same offset and
size, being distinguishable by their types only. In line with this feature of SMGs, we
introduce the so-called read reinterpretation that can create multiple views (interpreta-
tions) of a single memory area without actually changing the semantics. On the other
hand, if we write to a field that overlaps with other fields, we need to reflect the change
of the memory image in the overlapping fields, for which the so-called write reinter-
pretation is used. These two operations form the basis of all operations reading and
writing memory represented by SMGs. Apart from them, we also use join reinterpreta-
tion which is applied when joining two SMGs to preserve as much information shared
by the SMGs as possible even when this information is not explicitly represented in the
same way in both the input SMGs.

Defining reinterpretation for all possible data types (and all of their possible values)
is hard (cf. [15]) and beyond the scope of this paper. Instead of that, we define minimal

requirements that must be met by the reinterpretation operators so that our verification
approach is sound. This allows different concrete instantiations of these operators to be
used in the future. Currently, we instantiate the operators for the particular case of deal-
ing with nullified blocks of memory, which is essential for handling low-level pointer
manipulating programs that commonly use functions like calloc() or memset()
to obtain large blocks of nullified memory.6

Read Reinterpretation. A read reinterpretation operator takes as input an SMG G
with a set of objects O, an object o ∈ O, and a field (of, t) to be read from o such that
of + size(t) ≤ size(o). The result is a couple (G′, v) where G′ is an SMG with a set
of has-value edges H ′ such that (1) H ′(o, of, t) = v 6= ⊥ and (2) MI(G) = MI(G′).
The operator thus preserves the semantics of the SMG but ensures that it contains a has-
value edge for the field being read. This edge can lead to a value already present in the
SMG but also to a new value derived by the operator from the edges and values existing
in the SMG. In the extreme case, a fresh, completely unconstrained value node can be
added, representing an unknown value, which can, however, become constrained by the
further program execution. In other words, read reinterpretation installs a new view on
some part of the object o, but it cannot modify the semantics of the SMG in any way.

For the particular case of dealing with nullified memory, we use the following con-
crete read reinterpretation (cf. [8]). If G contains an edge o of,t−−→v, (G, v) is returned.
Otherwise, if each byte of the field (of, t) is nullified by some edge o of ′,t′−−−→0 present
inG, (G′, 0) is returned whereG′ is obtained fromG by adding the edge o of,t−−→0. Other-
wise, (G′, v) is returned with G′ obtained from G by adding an edge o of,t−−→v leading to
a fresh value v (representing an unknown value). It is easy to see that with the current
support of types and values in SMGs, this is the most precise read reinterpretation that
is possible from the point of view of reading nullified memory.

Write Reinterpretation. The write reinterpretation operator takes as input an SMG G
with a set of objects O, an object o ∈ O, a field (of, t) within o, i.e., such that of +
size(t) ≤ size(o), and a value v that is to be written into the field (of, t) of the object o.
The result is an SMG G′ with a set of has-value edges H ′ such that (1) H ′(o, of, t) = v
and (2) MI(G) ⊆ MI(G′′) where G′′ is the SMG G′ without the edge e : o of,t−−→v. In
other words, the operator makes sure that the resulting SMG contains the edge e that
was to be written while the semantics of G′ without e over-approximates the semantics
of G. Indeed, one cannot require equality here since the new edge may collide with
some other edges, which may have to be dropped in the worst case.

For the case of dealing with nullified memory, we propose the following write rein-
terpretation (cf. [8], which include an illustration too). IfG contains the edge e : o of,t−−→v,
G is returned. Otherwise, all has-value edges leading from o to a non-zero value whose
fields overlap with (of, t) are removed. Subsequently, if v = 0, the edge e is added, and
the obtained SMG is returned. Otherwise, all remaining has-value edges leading from
o to 0 that define fields overlapping with (of, t) are split and/or shortened such that
they do not overlap with (of, t), the edge e is added, and the resulting SMG is returned.
Again, it is easy to see that this operator is the most precise write reinterpretation from
the point of view of preserving information about nullified memory that is possible with
the current support of types and values in SMGs.

6 Apart from the nullified blocks, our implementation also supports tracking of uninitialized
blocks of memory and certain manipulations of null-terminated strings.

3.2 Join of SMGs
Join of SMGs is a binary operation that takes two SMGsG1, G2 and returns an SMGG
that is their common generalisation, i.e., MI(G1) ⊆ MI(G) ⊇ MI(G2), and that satisfies
the following further requirements intended to minimize the involved information loss:
If both input SMGs are semantically equal, i.e., MI(G1) = MI(G2), denoted G1 ' G2,
we require the resulting SMG to be semantically equal to both the input ones, i.e.,
MI(G1) = MI(G) = MI(G2). If MI(G1) ⊃ MI(G2), denotedG1 A G2, we require that
MI(G) = MI(G1). Symmetrically, if MI(G1) ⊂ MI(G2), denotedG1 @ G2, we require
that MI(G) = MI(G2). Finally, if the input SMGs are semantically incomparable, i.e.,
MI(G1) + MI(G2) ∧ MI(G1) * MI(G2), denoted G1 on G2, no further requirements
are put on the result of the join (besides the inclusion stated above, which is required
for the soundness of our analysis). In order to distinguish which of these cases happens
when joining two SMGs, we tag the result of our join operator by the so-called join
status with the domain J = {', A, @, on} referring to the corresponding relations
above. Moreover, we allow the join operation to fail if the incurred information loss
becomes too big. Below, we give an informal description of our join operator, for a full
description see [8].

The basic idea of our join algorithm is the following. The algorithm simultaneously
traverses a given pair of source SMGs and tries to join each pair of nodes (i.e., objects
or values) encountered at the same time into a single node in the destination SMG.
A single node of one SMG is not allowed to be joined with multiple nodes of the other
SMG. This preserves the distinction between different objects as well as between at
least possibly different values.

The rules according to which it is decided whether a pair of objects simultaneously
encountered in the input SMGs can be joined are the following. First, they must have
the same size, validity, and in case of DLSs, the same head, prev, and next offsets. It is
possible to join DLSs of different lengths as well as DLSs with regions (approximated
as 1+ DLSs). The result is a DLS whose length is the minimum of the lengths of the
joined DLSs (hence, e.g., joining a region with a 2+ DLS gives a 1+ DLS). The levels
of the joined objects must also be the same up to the following case. When joining
a sub-SMG nested below a DLS with a corresponding sub-SMG rooted at a region
(restricted by ignoring the next and prev links), objects corresponding to each other
appear on different levels: E.g., objects nested right below a DLS of level 0 are on level
1, whereas the corresponding objects directly referenced by a region of level 0 are on
level 0 (since for regions, nested and shared sub-SMGs are not distinguished). This
difference can, of course, increase when descending deeper in a hierarchically nested
data structure as it is essentially given by the different numbers of DLSs passed on the
different sides of the join. This difference is tracked by the join algorithm, and only the
objects whose levels differ in the appropriate way are allowed to be joined.

When two objects are being joined, a join reinterpretation operator is used to en-
sure that they share the same set of fields and hence have the same number and labels of
outgoing edges (which is always possible albeit sometimes for the price of introducing
has-value edges leading to unknown values). A formalization of join reinterpretation
is available in [8], including a concrete join reinterpretation operator designed to pre-
serve maximum information on nullified blocks in both of the objects being joined. The
join reinterpretation allows the fields of the joined objects to be processed in pairs of
the same size and type. As for joining values, we do not allow joining addresses with

unknown values.7 Moreover, the zero value cannot be joined with a non-zero value.
Further, addresses can be joined only if the points-to edges leading from them are la-
belled by the same offset, and when they lead to DLSs, they must have the same target
specifier. On the other hand, apart from the already above expressed requirement of not
joining a single value in one SMG with several values in the other SMG, no further re-
quirements are put on joining non-address values, which is possible since we currently
track their equalities only.

To increase chances for successfully joining two SMGs, the basic algorithm from
above is extended as follows. When a pair of objects cannot be joined and at least one
of them is a DLS (call it d and the other object o), the algorithm proceeds as though o
was preceded by a 0+ DLS d′ that is up to its length isomorphic with d (including the
not yet visited part of the appropriate sub-SMG nested below d). Said differently, the
algorithm virtually inserts d′ before o, joins d and d′ into a single 0+ DLS, and then
continues by trying to join o and the successor of d. This extension is possible since the
semantics of a 0+ DLS includes the empty list, which can be safely assumed to appear
anywhere, compensating a missing object in one of the SMGs.

Note, however, that the virtual insertion of a 0+ DLS implies a need to relax some
of the requirements from above. For instance, one needs to allow a join of two different
addresses from one SMG with one address in the other (the prev and next addresses
of d get both joined with the address preceding o). Moreover, the possibility to insert
0+ DLSs introduces some non-determinism into the algorithm since when attempting
to join a pair of incompatible DLSs, a 0+ DLS can be inserted into either of the two
input DLSs, and we choose one of them. The choice may be wrong, but for performance
reasons, we never backtrack. Moreover, we use the 0+ DLS insertion only when a join
of two objects fails locally (i.e., without looking at their successors). When a pair of ob-
jects can be locally joined, but then the join fails on their successors, one could consider
backtracking and trying to insert a 0+ DLS, which we again do not do for performance
reasons (and we did not see a need for that in our cases studies so far).

The described join algorithm is used in two scenarios: (1) When joining garbage-
free SPCs to reduce the number of SPCs obtained from different paths through the
program, in which case the traversal starts from pairs of identical program variables.
(2) As a part of the abstraction algorithm for merging a pair of neighbouring objects
(together with the non-shared parts of the sub-SMGs rooted at them) of a doubly-linked
list into a single DLS, in which case the algorithm is started from the neighbouring ob-
jects to be merged. In the join algorithm, the join status is computed on-the-fly. Initially,
the status is set to'. Next, whenever performing a step that implies a particular relation
between G1 and G2 (e.g., joining a 0+ DLS from G1 with a 1+ DLS from G2 implies
thatG1 A G2, assuming that the remaining parts ofG1 andG2 are semantically equal),
we appropriately update the join status.

3.3 Abstraction
Our abstraction is based on merging uninterrupted sequences of neighbouring objects,
together with the {nfo, pfo}-restricted sub-SMGs rooted at them, into a single DLS.
This is done by repeatedly applying a slight extension of the join algorithm on the

7 Allowing a join of an address and an unknown value could lead to a need to drop a part of the
allocated heap in one of the SMGs (in case it was not accessible through some other address
too), which we consider to be a too big loss of information.

{nfo, pfo}-restricted sub-SMGs rooted at the neighbouring objects. The sequences to be
merged are identified by the so-called candidate DLS entries that consist of an object oc
and next, prev, and head offsets such that oc has a neighbouring object with which it can
be merged into a DLS linked through the given offsets. The abstraction is driven by the
cost to be paid in terms of the loss of precision caused by merging certain objects and
the sub-SMGs rooted at them (in particular, we distinguish joining of equal, entailed,
or incomparable sub-SMGs). The higher the loss of precision is, the longer sequence of
mergeable objects is required to enable a merge of the sequence.

In the extended join algorithm used in the abstraction (cf. [8]), the two simultaneous
searches are started from two neighbouring objects o1 and o2 of the same SMG G
that are the roots of the {nfoc, pfoc}-restricted sub-SMGs G1, G2 to be merged. The
extended join algorithm constructs the sub-SMG G1,2 that is to be nested below the
DLS resulting from the join of o1 and o2. The extended join algorithm also returns the
sets O1, V1 and O2, V2 of the objects and values of G1 and G2, respectively, whose
join gives rise to G1,2. Unlike when joining two distinct SMGs, the two simultaneous
searches can get to a single node at the same time. Clearly, such a node is shared by G1

and G2, and it is therefore not included into the sub-SMG G1,2 to be nested below the
join of o1 and o2.

Below, we explain in more detail the particular steps of the abstraction. For the
explanation, we fix an SPC C = (G, ν) where G = (O, V, Λ,H, P) is an SMG with
the sets of regions R, DLSs D, and addresses A.

Candidate DLS Entries. A quadruple (oc, hfoc, nfoc, pfoc) where oc ∈ O and hfoc,
nfoc, pfoc ∈ N such that nfoc < pfoc is considered a candidate DLS entry iff the fol-
lowing holds: (1) oc is a valid heap object. (2) oc has a neighbouring object o ∈ O with
which it is doubly-linked through the chosen offsets, i.e., there are a1, a2 ∈ A such that
H(oc, nfoc, ptr) = a1, P (a1) = (hfoc, tg1, o) for tg1 ∈ {fst, reg},H(o, pfoc, ptr) =
a2, and P (a2) = (hfoc, tg2, oc) for tg2 ∈ {lst, reg}.

Longest Mergeable Sequences. The longest mergeable sequence of objects given by a
candidate DLS entry (oc, hfoc, nfoc, pfoc) is the longest sequence of distinct valid heap
objects whose first object is oc, all objects in the sequence are of level 0, all DLSs
that appear in the sequence have hfoc, nfoc, pfoc as their head, next, prev offsets, and
the following holds for any two neighbouring objects o1 and o2 in the sequence (for
a formal description, cf. [8]): (1) The objects o1 and o2 are doubly linked through their
nfoc and pfoc fields. (2) The objects o1 and o2 are a part of a sequence of objects that
is not pointed from outside of the detected list structure. (3) The {nfoc, pfoc}-restricted
sub-SMGs G1 and G2 of G rooted at o1 and o2 can be joined using the extended join
algorithm into the sub-SMG G1,2 to be nested below the join of o1 and o2. Let O1,
V1 and O2, V2 be the sets of non-shared objects and values of G1 and G2, respectively,
whose join gives rise toG1,2. (4) The non-shared objects and values ofG1 andG2 (other
than o1 and o2 themselves) are reachable via o1 or o2, respectively, only. Moreover, the
sets O1 and O2 contain heap objects only.

Merging Sequences of Objects into DLSs. Sequences of objects are merged into
a single DLS incrementally, i.e., starting with the first two objects of the sequence, then
merging the resulting new DLS with the third object in the sequence, and so on. Each of
the elementary merge operations is performed as follows (see Fig. 4 for an illustration).

1+ DLS

o1

(a)

2+ DLS

o2

rs (b) rs

3+ DLS

d

af

al

af

al

Fig. 4. The elementary merge operation: (a) input (b) output

Assume that G is the
SMG of the current SPC
(i.e., the initial SPC or
the SPC obtained from the
last merge) with the set of
points-to edges P and the
set of addresses A, o1 is ei-
ther the first object in the
sequence or the DLS ob-
tained from the previous elementary merge, o2 is the next object of the sequence to be
processed, and hfoc, nfoc, pfoc are the offsets from the candidate DLS entry defining the
sequence to be merged. First, we merge o1 and o2 into a DLS d using hfoc, nfoc, and pfoc
as its defining offsets (cf. [8]). The sub-SMG nested below d is created using the above
mentioned extended join algorithm. Next, the DLS-linking pointers arriving to o1 and
o2 are redirected to d. In particular, if there is af ∈ A such that P (af) = (o1, hfoc, tg)
for some tg ∈ {fst, reg}, then P is changed such that P (af) = (d, hfoc, fst). Simi-
larly, if there is al ∈ A such that P (al) = (o2, hfoc, tg) for some tg ∈ {lst, reg}, then
P is changed such that P (al) = (d, hfoc, lst). Finally, each heap object and each value
(apart from the null address and null object) that are not reachable from any static or
stack object of the obtained SPC are removed from its SMG together with all the edges
adjacent to them.

The Top-level Abstraction Algorithm. Assume we are given an SMG G, and a can-
didate DLS entry (oc, hfoc, nfoc, pfoc) defining the longest mergeable sequence of ob-
jects σ = o1o2 . . . on in G of length |σ| = n ≥ 2. We define the cost of merging
a pair of objects o1, o2, denoted cost(o1, o2), as follows. First, cost(o1, o2) = 0 iff the
{nfoc, pfoc}-restricted sub-SMGs G1 and G2 rooted at o1, o2 are equal (when ignor-
ing the kinds of o1 and o2). This is indicated by the ' status returned by the modi-
fied join algorithm applied on G1, G2. Further, cost(o1, o2) = 1 iff G1 entails G2, or
vice versa, which is indicated by the status A or @. Finally, cost(o1, o2) = 2 iff G1

and G2 are incomparable, which is indicated by status on. The cost of merging a se-
quence of objects σ = o1o2 . . . on, denoted cost(σ), is defined as the maximum of
cost(o1, o2), cost(o2, o3), ..., cost(on−1, on).

Our abstraction is parameterized by associating each cost c ∈ {0, 1, 2} with the
length threshold, denoted lenThr(c), defining the minimum length of a sequence of
mergeable objects allowed to be merged for the given cost. Intuitively, the higher is the
cost, the bigger loss of precision is incurred by the merge, and hence a bigger number of
objects to be merged is required to compensate the cost. In our experiments discussed
in Section 5, we, in particular, found as optimal the setting lenThr(0) = lenThr(1) = 2
and lenThr(2) = 3. Our tool, however, allows the user to tweak these values.

Based on the above introduced notions, the process of abstracting an SPC can now
be described as follows. First, all candidate DLS entries are identified, and for each of
them, the corresponding longest mergeable sequence is computed. Then each longest
mergeable sequence σ for which |σ| < lenThr(cost(σ)) is discarded. Out of the remain-
ing ones, we select those that have the lowest cost. From them, we then select those that
have the longest length. Finally, out of them, one is selected arbitrarily. The selected
sequence is merged, and then the entire abstraction process is repeated till there is a
sequence that can be merged taking its length and cost into account.

3.4 Checking Equality and Inequality of Values
Checking equality of values in SMGs amounts to simply checking their identity. For
checking inequality, we use an algorithm which is sound and efficient but incomplete.
It is designed to succeed in most common cases, but in order not to harm its efficiency,
we allow it to fail in some exceptional cases (e.g., when comparing addresses out of
bounds of two distinct objects). The basic idea of the algorithm is as follows (cf. [8]):
Let v1 and v2 be two distinct values of level 0 to be checked for inequality (other levels
cannot be directly accessed by program statements). First, if the same value or object
can be reached from v1 and v2 through 0+ DLSs only (using the next/prev fields when
coming through the fst/lst target specifiers, respectively), then the inequality between
v1 and v2 is not established. This is due to v1 and v2 may become the same value when
the possibly empty 0+ DLSs are removed (or they may become addresses of the first and
last node of the same 0+ DLS, and hence be equal in case the list contains a single node).
Otherwise, v1 and v2 are claimed different if the final pair of values reached from them
through 0+ DLSs represents different addresses due to pointing (1) to different valid
objects (each with its own unique address) with offsets inside their bounds, (2) to the
null object and a non-null object (with an in-bound offset), (3) to the same object with
different offsets, or (4) to the same DLS with length at least 2 using different target
specifiers. Otherwise, the inequality is not established.

3.5 A Brief Note on Symbolic Execution

The symbolic execution algorithm based on SMGs is similar to [1]. It uses the read rein-
terpretation operator for memory lookup (as well as type-casting) and the write reinter-
pretation operator for memory mutation. Whenever a DLS is about to be accessed (or
its address with a non-head offset is about to be taken), a materialisation (as described
in Section 2.3) is performed so that the actual program statements are always executed
over concrete objects. If the minimum length of the DLS being materialised is zero, the
computation is split into two branches—one for the empty segment and one for the non-
empty segment. In the former case, the DLS is removed (as described in Section 2.3)
while in the latter case, the minimum length of the DLS is incremented. When exe-
cuting a conditional statement, the algorithm for checking (in)equality of values from
Section 3.4 is used. If neither equality nor inequality are established, the execution is
split into two branches, one of them assuming the compared values to be equal, the
other assuming them not to be equal. This may again involve removing 0+ DLSs in one
of the branches and incrementing their length in the other (cf. [8]).

A Note on Soundness of the Analysis. In the described analysis, program statements
are always executed on concrete objects only, closely following the C semantics. The
read reinterpretation is defined such that it cannot change the semantics of the input
SMG, and the write reinterpretation can only over-approximate the semantics in the
worst case. Likewise, our abstraction and join algorithms are allowed to only over-
approximate the semantics—indeed, when joining a pair of nodes, the semantics of the
resulting node is always generic enough to cover the semantics of both of the joined
nodes (e.g., the join of a 2+ DLS with a compatible region results in a 1+ DLS, etc.).
Moreover, the entailment check used to terminate the analysis is based on the join op-
erator and consequently conservative. Hence, it is not difficult to see that the proposed
analysis is sound (although a full proof of this fact would be rather technical).

4 Extensions of SMGs
In this section, we point out that the notion of SMGs can be easily extended in various
directions, and we briefly discuss several such extensions (including further kinds of
abstract objects), most of which are already implemented in our tool Predator.

Explicit Non-equivalence Relations. When several objects have the same concrete
value stored in their fields, this is expressed by that the appropriate has-value edges
lead from these objects to the same value node in the SMG. On the other hand, two
different value nodes in an SMG do not necessarily represent different concrete values.
To express that two abstract values represent distinct concrete values, SMGs can be
extended with a symmetric, irreflexive relation over values, which we call an explicit
non-equivalence relation. Clearly, SMGs can be quite naturally extended by allowing
more predicates on data, which is, however, beyond the scope of this paper (up to a small
extension by tracking more concrete values than 0 that is mentioned below).

Singly-linked List Segments (SLSs). Above, we have presented all algorithms on
SMGs describing doubly-linked lists only. Nevertheless, the algorithms work equally
well with singly-linked lists represented by an additional kind of abstract objects, SLSs,
that have no pfo offset, and their addresses are allowed to use the fst and all target
specifiers only. The algorithm looking for DLS entry candidates then simply starts look-
ing for SLS entry candidates whenever it does not discover the back-link.

0/1 Abstract Objects. In order to enable summarization of lists whose nodes can op-
tionally point to some region or that point to nested lists whose length never reaches
2 or more, we introduce the so-called 0/1 abstract objects. We distinguish three kinds
of them with different numbers of neighbour pointers. The first of them represents 0/1
SLSs with one neighbour pointer, another represents 0/1 DLSs with two neighbour
pointers. These objects can be later joined with compatible SLSs or DLSs. The third
kind has no neighbour pointer, and its address is assumed to be NULL when the region
is not allocated. This kind is needed for optionally allocated regions referred from list
nodes but never handled as lists themselves. The 0/1 abstract objects are created by the
join algorithm when a region in one SMG cannot be matched with an object from the
other SMG and none of the above described join mechanisms applies.

Offset Intervals and Address Alignment. The basic SMG notion labels points-to
edges with scalar offsets within the target object. This labelling can be generalized
to intervals of offsets. The intervals can be allowed to arise by joining objects with
incoming pointers compatible up to their offset. This feature is useful, e.g., to handle
lists arising in higher-level memory allocators discussed in the next section where each
node points to itself with an offset depending on how much of the node has been used
by sub-allocation. Offset intervals also naturally arise when the analysis is allowed to
support address alignment, which is typically implemented by masking several lowest
bits of pointers to zero, resulting in a pointer whose offset is in a certain interval wrt. the
base address. Similarly, one can allow the object size to be given by an interval, which
in turn allows one to abstract lists whose nodes are of a variable size.

Integral Constants and Intervals. The basic SMG notion allows one to express that
two fields have the same value (by the corresponding has-value edges leading to the
same value node) or that their values differ (using the above mentioned explicit non-
equivalence relation). In order to improve the support of dealing with integers, SMGs

can be extended by associating value nodes with concrete integral numbers. These can
be respected by the join algorithm (at least up to some bound), or they can be abstracted
to intervals or some other abstract numerical domains.

5 Implementation
We have implemented the above described algorithms (including the extensions) in
a new version of our tool called Predator.8 Predator is a GCC plug-in, which allows one
to experiment with industrial source code without manually preprocessing it first. The
verified program must, however, be closed in that it must allocate and initialize all the
data structures used. Modular verification of code fragments is planned for the future.
By default, Predator disallows calls to external functions in order to exclude any side
effect that could potentially break memory safety. The only allowed external functions
are those that Predator recognizes as built-in functions and properly models them wrt.
proving memory safety. Besides malloc and free, the set of supported built-in func-
tions includes certain memory manipulating functions defined in the C standard, such
as memset, memcpy, or memmove. Predator uses the same style of error and warning
messages as GCC itself, and hence it can be used with any IDE that can use GCC. It
also supports error recovery to report multiple program errors during one run. For ex-
ample, if a memory leak is detected, Predator only reports a warning, the unreachable
part of SMG is removed, and the symbolic execution then continues.

Predator implements an inter-procedural analysis based on [13]. It does not support
recursive programs yet, but it supports indirect calls, which is necessary for verification
of programs with callbacks (e.g., Linux drivers). Regions for stack variables are cre-
ated automatically as needed and destroyed as soon as they become dead according to a
static live variables analysis, performed before running the symbolic execution. When
working with initialized variables, we take advantage of our efficient representation
of nullified blocks—we first create a has-value edge o 0,char[size(o)]−−−−−−−−→0 for each initial-
ized variable represented by a region o, then we execute all explicit initializers, which
themselves automatically trigger the write reinterpretation. The same approach is used
for calloc-based heap allocation. Thanks to this, we do not need to initialize each
structure member explicitly, which would not scale for complex structures.

The algorithms for abstraction and join implemented in Predator use some further
optimizations of the basic algorithms described in Section 3. While objects in SMGs
are type-free, Predator tracks their estimated type given by the type of the pointers
through which objects are manipulated. The estimated type is used during abstraction
to postpone merging a pair of objects with incompatible types. Note, however, that this
is really a heuristic only—we have a case study that constructs list nodes using solely
void pointers, and it can still be successfully verified by Predator. Another heuristic
is that certain features of the join algorithm (e.g., insertion of a non-empty DLS or
introduction of an 0/1 abstract object) are disabled when joining SMGs while enabled
when merging nodes during abstraction. Predator tracks integral values precisely up
to a certain bound (±10 by default) and once the bound is reached, the values are
abstracted out. Predator also supports intervals aligned to a power of two as well as
tracking of simple dependences between intervals, such as a shift by a constant and
a multiplication by −1. All these features are optional and can be easily disabled.

8 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/

Predator iteratively computes sets of SMGs for each basic block entry of the control-
flow graph of the given program, covering all program configurations reachable at these
program locations. Termination of the analysis is aided by the abstraction and join algo-
rithms described above. Since the join algorithm is expensive, it is used at loop bound-
aries only. When updating states of other basic block entries, we compare the SMGs
for equality only, which makes the comparison way faster, especially in case a pair
of SMGs cannot be joined. Similarly, the abstraction is by default used only at loop
boundaries in order not to introduce abstract objects where not necessary (reducing the
space for false positives that can arise due to breaking assumptions sometimes used by
programmers for code inside loops as witnessed by some of our case studies).

Predator is able to discover or prove absence of various kinds of memory safety er-
rors, including various forms of illegal dereferences (null dereferences, dereferences of
freed or unallocated memory, out-of-bound dereferences), illegal free operations (dou-
ble free operations, freeing non-heap objects), as well as memory leakage. Moreover,
Predator also uses the fact that SMGs allow for easy checking whether a given pair of
memory areas overlap. Indeed, if both of them are inside of two distinct valid regions,
they have no overlaps, and if both of them are inside the same region, one can simply
check their offset ranges for intersection. Such checks are used for reporting invalid
uses of memcpy or the C-language assignment, which expose undefined behavior if the
destination and source memory areas (partially) overlap with each other.

6 Experiments
The new version of Predator based on the above proposed method was successfully
tested on a number of case studies. Among them there are more than 256 case studies
(freely available with Predator) illustrating various programming constructs typically
used when dealing with linked lists. These case studies include various advanced kinds
of lists used in the Linux kernel and their typical manipulation, typical error patterns that
appear in code operating with Linux lists, various sorting algorithms (insert sort, bubble
sort, merge sort), etc. These case studies have up to 300 lines of code, but they consist
almost entirely of complex memory manipulation (unlike larger programs whose big
portions are often ignored by tools verifying memory safety). Next, we successfully
tested Predator on the driver code snippets distributed with SLAyer [2] as well as on the
cdrom driver originally checked by Space Invader [17]. As discussed below, in some
of these examples, we identified errors not found by the other tools due to their more
abstract (not byte-precise) treatment of memory.

Further, we also considered two real-life low-level programs (which, to the best of
our knowledge, have not yet been targeted by fully automated formal verification tools):
a memory allocator from the Netscape portable runtime (NSPR) and a module taken
from the lvm2 logical volume manager. The NSPR allocator allocates memory from
the operating system in blocks called arenas, grouped into singly-linked lists called
arena pools, which can in turn be grouped into lists of arena pools (giving lists of lists
of arenas). User requests are then satisfied by sub-allocation within a suitable arena of
a given arena pool. We have considered a fixed size of the arenas and checked safety of
repeated allocation and deallocation of blocks of aligned size randomly chosen up to the
arena size from arena pools as well as lists of arena pools. For this purpose, a support
for offset intervals as described above was needed. The intervals arise from abstracting
lists whose nodes (arenas) point with different offsets to themselves (one byte behind

Table 1. Selected experimental results showing either the verification time or one of the following
outcomes: FP = false positive, FN = false negative, T = time out (900 s), x = parsing problems

Test Origin Test Invader SLAyer Predator Predator
2011-10 2013-02

SLAyer

append.c <0.01 s 10.47 s <0.01 s <0.01 s
cromdata add remove fs.c <0.01 s FN <0.01 s <0.01 s
create kernel.c T FN <0.01 s <0.01 s
cromdata add remove.c T FN <0.01 s <0.01 s
reverse seg cyclic.c FP 0.68 s <0.01 s <0.01 s
is on list via devext.c T 34.43 s 0.20 s 0.02 s
callback remove entry list.c T 71.46 s 0.14 s 0.10 s

Invader cdrom.c FN x 2.44 s 0.66 s

Predator

five-level-sll-destroyed-top-down.c FP x FP 0.05 s
linux-dll-of-linux-dll.c T x 0.41 s 0.05 s
merge-sort.c FP x 1.08 s 0.21 s
list-of-arena-pools-with-alignment.c FP x FP 0.50 s
lvmcache add orphan vginfo.c x x FP 1.07 s
five-level-sll-destroyed-bottom-up.c FP x FP 1.14 s

the last sub-allocated block within the arena) and from address alignment, which the
NSPR-based allocator is also responsible for. Our approach allowed us to verify that
pointers leading from each arena to its so-far free part never point beyond the arena and
that arena headers never overlap with their data areas, which are the original assertions
checked by NSPR arena pools at run-time. Our lvm2-based case studies then exercise
various functions of the module implementing the volume metadata cache. As in the
case of NSPR arenas, we use the original (unsimplified) code of the module, but (for
now) we use a simplified test harness where the lvm2 implementation of hash tables is
replaced by the lvm2 implementation of doubly-linked lists.

We have compared the capabilities and performance of Invader, SLAyer, and Preda-
tor on the above case studies on an Intel R© CoreTM i7-3770K machine. The memory
consumption was below 128 MB in all cases. As we can see in Table 1, Predator suc-
cessfully verified even the test-cases that were causing problems to Invader or SLAyer.
We have also revealed issues of memory safety violation in the examples distributed
with Invader and SLAyer because Invader did not check memory manipulation via ar-
ray subscripts and SLAyer did not check size of the blocks allocated on the heap.9 All
the tools were run in their default configurations. Better results can sometimes be ob-
tained for particular case studies by tweaking certain configuration options (abstraction
threshold, call cache size, etc.). However, while such changes may improve the perfor-
mance in some case studies, they may harm it in others, trigger false positives, or even
prevent the analysis from termination.

We have also compared the new version of Predator with its older version that par-
ticipated in the 1st International Competition on Software Verification (SV-COMP’12).
The old Predator produced false positives on many of the more advanced case studies,
including NSPR arenas and lvm2, and it was also slower. For example, the merge-sort
case study, presented as the most expensive in [7] (Predator 2011-02), now runs approx-
imately 25× faster on the same machine (5× due to the algorithms presented above and
5× due to an improved live variable analysis). The new Predator participated in the 2nd
International Competition on Software Verification (SV-COMP’13) [4], where it won

9 We used the latest publicly available version of SLAyer from [2]. The version from [3] was
not available, but [3] targets mainly checking of spuriousness of counterexamples.

three categories. Moreover, the fact that Predator did not have any false negative over
the whole SV-COMP’13 benchmark confirms the soundness of our analysis algorithm.

7 Conclusion and Future Work
We have presented a new approach to fully automated formal verification of list ma-
nipulating programs capable of handling various features of low-level memory manip-
ulation. We have experimentally validated the approach on a number of case studies
showing its efficiency and capability of handling program behaviour that is beyond
what current fully automated shape analysis tools can handle. In the future, a number of
extensions of our approach are possible. We are planning a support of (low-level) tree
structures, a better support of integer data, a support of arrays and hash tables, as well
as a support for modular verification in order to remove the burden of having to write
environments for the code to be verified.

References
1. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and H. Yang. Shape

Analysis for Composite Data Structures. In Proc. CAV’07, LNCS 4590, Springer, 2007.
2. J. Berdine, B. Cook, and S. Ishtiaq. Memory Safety for Systems-level Code. In Proc. of

CAV’11, LNCS 6806, Springer, 2011.
3. J. Berdine, A. Cox, S. Ishtiaq, and C.M. Wintersteiger. Diagnosing Abstraction Failure for

Separation Logic-Based Analyses. In Proc. of CAV’12, LNCS 7358, Springer, 2012.
4. D. Beyer. Second Competition on Software Verification (Summary of SV-COMP 2013). To

appear in Proc. of TACAS’13, LNCS 7795, Springer, 2013.
5. C. Calcagno, D. Distefano, P.W. O’Hearn, H. Yang. Beyond Reachability: Shape Abstraction

in the Presence of Pointer Arithmetic. In Proc. of SAS’06, LNCS 4134, Springer, 2006.
6. B.-Y.E. Chang, X. Rival, and G.C. Necula. Shape Analysis with Structural Invariant Check-

ers. In Proc. of SAS’07, LNCS 4634, Springer, 2007.
7. K. Dudka, P. Peringer, and T. Vojnar. Predator: A Practical Tool for Checking Manipulation

of Dynamic Data Structures Using Separation Logic. In Proc. of CAV’11, LNCS 6806, 2011.
8. K. Dudka, P. Peringer, and T. Vojnar. Byte-Precise Verification of Low-Level List Manipu-

lation. Technical report FIT-TR-2012-04, FIT BUT, 2012.
http://www.fit.vutbr.cz/˜idudka/pub/FIT-TR-2012-04.pdf

9. P. Habermehl, L. Holı́k, A. Rogalewicz, J. Šimáček, and T. Vojnar. Forest Automata for
Verification of Heap Manipulation. In Proc. of CAV’11, LNCS 6806, Springer, 2011

10. J. Kreiker, H. Seidl, and V. Vojdani: Shape Analysis of Low-Level C with Overlapping
Structures. In Proc. of VMCAI’10, LNCS 5944, Springer, 2010.

11. V. Laviron, B.-Y.E. Chang, and X. Rival. Separating Shape Graphs. In Proc. of ESOP’10,
LNCS 6012, Springer, 2010.

12. M. Marron, M. Hermenegildo, D. Kapur, D. Stefanovic. Efficient Context-Sensitive Shape
Analysis with Graph Based Heap Models. In Proc. of CC’08, LNCS 4959, Springer, 2008.

13. T. Reps, S. Horwitz, and M. Sagiv. Precise Interprocedural Dataflow Analysis via Graph
Reachability. In Proc. of POPL’95, ACM Press, 1995.

14. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. In ACM
Transactions on Programming Languages and Systems (TOPLAS), 24(3), ACM, 2002.

15. H. Tuch. Formal Verification of C Systems Code. In Journal of Automated Reasoning,
42(2–4), Springer, 2009.

16. H. Yang, O. Lee, C. Calcagno, D. Distefano, and P.W. O’Hearn. On Scalable Shape Analysis.
Technical report RR-07-10, Queen Mary, University of London, 2007.

17. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P.W. O’Hearn. Scalable
Shape Analysis for Systems Code. In Proc. of CAV’08, LNCS 5123, Springer, 2008.

