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Abstract. Testing of concurrent programs is difficult since the scheduling non-

determinism requires one to test a huge number of different thread interleavings.

Moreover, a simple repetition of test executions will typically examine similar

interleavings only. One popular way how to deal with this problem is to use the

noise injection approach, which is, however, parametrized with many parameters

whose suitable values are difficult to find. To find such values, one needs to run

many experiments and use some metric to evaluate them. Measuring the achieved

coverage can, however, slow down the experiments. To minimize this problem,

we show that there are correlations between metrics of different cost and that one

can find a suitable test and noise setting to maximize coverage under a costly

metrics by experiments with a cheaper metrics.

1 Introduction

With the current massive use of multicore processors, concurrent programming has

become widespread. Such programming is, however, far more challenging since apart

from errors that one can cause in sequential code, there is a number of synchronization-

related errors specific for concurrent code. What is worse, such errors are easy to cause

but difficult to find since they often manifest under some very specific conditions only.

Therefore, advanced approaches for finding such errors are highly needed.

A traditional, yet still dominating approach to finding errors is testing. However, for

testing to be effective in the context of concurrent code, a special care must be taken to

cope well with the nondeterminism of thread scheduling.

First, to steer the testing process, various coverage metrics are often used. When

testing concurrent code, traditional coverage metrics (such as statement coverage) are

not sufficient as they do not reflect how well the concurrent behaviour of the program

under test has been exercised. Instead, one needs to use specialised metrics, such as

coverage of concurrently executing instructions [4], synchronisation coverage [21], or

coverage of internal states of dynamic analysers while chasing for various concurrency-

related bugs [15]. Sometimes, maximizing coverage under several metrics at the same

time is even used since they characterize different aspects of concurrent behaviour.

To maximize coverage under a chosen concurrency coverage metric (or a combi-

nations of such metrics), the space of possible thread schedules has to be properly ex-

amined. For that, simple repetitive execution of the same tests in the same environment

does not help much [9]. Indeed, despite the scheduling is nondeterministic, some sched-

ules may prevail. To deal with this problem, one can use the approach of noise injection

[7, 9] which influences the thread scheduling by injecting different kinds of noise (e.g.,
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context switches or delays) into a program execution. However, there are many different

heuristics for generating noise and for deciding where to place it, which are, moreover,

heavily parametrized. This, in turn, leads to a need of solving the so-called test and

noise configuration setting (TNCS) problem, which consists in finding the right param-

eters of noise generation together with the right test cases and suitable values of their

possible parameters [11].

If the TNCS problem is not solved properly, the usage of noise can even decrease

the obtained coverage [9]. However, solving the TNCS problem is not an easy task.

Sometimes, its solution is not even attempted, and purely random noise generation is

used. Alternatively, one can use genetic algorithms or data mining [11, 12, 1]. These

approaches can outperform the purely random approach, but finding suitable test and

noise settings this way can be quite costly. The aim of this paper is to make the cost of

this process cheaper.

The approach which we propose builds on the facts that (1) maximizing coverage

under different metrics may have different costs, and that (2) one can find correlations

between test and noise settings that are suitable for maximizing coverage under different

metrics. Moreover, such correlations may link even metrics for which the process of

maximizing coverage is expensive but which are highly informative for steering the

testing process and metrics for which the process of maximizing coverage is cheaper

but which are less efficient when used for steering the testing process. We confirm all

these facts through a set of our experiments. In particular, we identify the correlations

by building a predictive model between several expensive metrics (under which one

may want to simultaneously maximize coverage) and several cheap metrics.

Using the above facts, we suggest to optimize the testing process in the following

way. Given some expensive but informative metrics, one may find suitable values of test

and noise parameters for maximizing coverage under these metrics by experimenting

with coverage under some cheap metric (or a combination of such metrics) and then

use this setting for testing with the expensive metrics. We show on a set of experiments

that this approach can indeed increase the efficiency of noise-based testing.

Our contribution is thus threefold: (1) An experimental categorisation of various

concurrency-related metrics to cheap and expensive ones according to the price of max-

imizing coverage under these metrics. (2) The observation and experimental confirma-

tion of correlations between test and noise settings suitable for testing under metrics of

different cost. (3) The idea of exploiting the above facts for more efficient noise-based

testing of concurrent programs and its experimental evaluation.

Related Work. There exist many ways how to verify concurrent programs such as sys-

tematic testing [13], coverage-driven testing [22], or various kinds of static analysis and

model checking [16]. Compared with these techniques, noise-based testing, considered

in this paper, is probably the most light-weight. In our previous works [11, 12, 1], we fo-

cused on solving the TNCS problem via genetic algorithms and data mining. Here, we

propose an orthogonal optimisation based on solving the TNCS problem for expensive

concurrency metrics by using cheaper ones, which is justified by existence of a predic-

tive model between the expensive and cheap metrics. Prediction is used in various other

areas of software testing, e.g., to predict bug severity [17] or to link concurrency-related

code revisions with the corresponding issues and characterize bugs [5]. None of these

works, however, builds on prediction in a similar way as this work.
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2 Preliminaries

In this section, we briefly introduce noise injection, concurrency coverage metrics, as

well as the benchmark programs and experimental setting used in the rest of the paper.

2.1 Noise Injection

The main principle of noise injection when testing concurrent programs is to influence

the scheduling of concurrently executing threads by inserting various delays, context

switches, temporary blocking of some threads, and/or additional synchronization into

the execution. Two main questions to be resolved when applying noise injection are

how to generate noise and when to generate it, which are referred to as the so-called

noise seeding and noise placement problems. For solving these problems, a number of

heuristics has been proposed [9]. In this work, we, in particular, use noise seeding and

noise placement heuristics implemented within IBM ConTest [6] or on top of it.

2.2 Concurrency Coverage Metrics

A number of concurrency coverage metrics has been proposed in the literature. We build

primarily on a selection of those discussed in [15], including both metrics concentrating

on various generic aspects of concurrency behaviour as well as on metrics focusing

on behavioural aspects relevant when chasing for various synchronisation defects. The

former are represented by the ConcurPairs, Synchro, WSynchro, and HBPair metrics

while the latter by Avio, Avio∗, GoodLock, WEraser∗, GoldiLockSC∗, and Datarace.

Below, we briefly characterize those of these metrics that we use the most.

Coverage tasks of the ConcurPairs metric [4] consist of pairs of program locations

that are checked to be reached in the given order and a Boolean flag indicating whether a

context switch happened in between. Coverage tasks of the Avio metric are based on the

Avio atomicity violation detector [18] and track which pairs of locations of one thread

were interleaved with which locations reached in another thread. The Avio∗ metric is

the same as Avio up its tasks are enriched with an abstract identification of the involved

threads (reflecting, e.g., their type).

The WEraser∗ and GoldiLockSC∗ metrics are based on coverage of internal states

of the Eraser [19] and GoldiLocks [8] data race detectors (the latter with the so-called

short-circuit checks), both of them extended with an abstract identification of the in-

volved threads. The Datarace metric measures the number of data race notifications

raised by the GoldiLock detector.

2.3 Benchmarks and Experimental Setting

The experimental results presented below are based on the following 10 multithreaded

benchmark programs written in Java: Airlines (0.3 kLOC), Cache4j (1.7 kLOC), An-

imator (1.5 kLOC), Crawler (1.2 kLOC), Elevator (0.5 kLOC), HEDC (12.7 kLOC),

Montecarlo (1.4 kLOC), Rover (5.4 kLOC), Sor (7.2 kLOC) and TSP (0.4 kLOC). More

details about these benchmarks can be found in [1, 2]. All these benchmarks are avail-

able on the Internet1. All our experiments were performed using the IBM ConTest tool

[6] on a machine with Intel Xeon E3-1240 v3 processors at 3.40GHz, 32GiB RAM,

running Linux Debian 3.16.36, and using OpenJDK version 1.8.0 111.
1 http://www.fit.vutbr.cz/research/groups/verifit/benchmarks/
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3 Distinguishing Cheap and Expensive Metrics

We now explain our way of distinguishing cheap and expensive metrics, i.e., metrics

for which collecting coverage is cheaper or more expensive, respectively.

For the classification of the cost of the metrics, we first ran a series of 1000 test

runs of each of our benchmark programs without collecting any coverage. These tests

were, however, run already in the ConTest environment, using its random noise setting,

which already slows the programs down. This way, we obtained the so-called bottom

case. The running time of the tests in the bottom case was around 93 seconds for one

execution when averaging over all our case studies.

Second, for each metric, we performed 100 test runs while collecting coverage un-

der the given metric, again using ConTest with random noise injection. We then com-

pared the time needed for the bottom case with the times of the experiments with each

single metric. We classify metrics into three groups: cheap metrics, expensive metrics,

and others (i.e., metrics with medium slowdown). In particular, we mark metrics with

the slowdown between 10 % and 30 % as cheap metrics and those with the slowdown

50 % and more as expensive metrics.

Experimental Results The obtained classification is shown in Table 1 and used in the

further experiments.

Table 1. Cheap and expensive metrics.

Slowdown in % Metrics

Cheap metrics 10% ≤ x < 30% Avio, Avio∗, Concurpairs, HBPair,

GoodLock, ShvarPair∗, Synchro, WSynchro

Expensive metrics 50% ≤ x Datarace, WEraser∗, GoldiLockSC∗

4 Discovering Correlations between Cheap and Expensive Metrics

Next, we aim at automatically finding correlations between metrics that will allow us to

find suitable test and noise settings for testing under expensive metrics by experiment-

ing with cheaper ones. Due to multiple metrics are often used in testing of concurrent

programs (each of them stressing somewhat different aspects of the behaviour), we, in

fact, aim at correlations between sets of expensive metrics and sets of cheap metrics.

For the above, one can use multi-variable regression on the cumulative coverage of

the different metrics obtained from multiple test runs (i.e., coverage based on a union of

the sets of coverage tasks covered in the different runs). However, we, instead, decided

to use the so-called lasso (least absolute shrinkage and selection operator) algorithm

[14, 10] to build a predictive model between cheap and expensive metrics. The algo-

rithm selects suitable cheap metrics and constructs their linear combination capable of

predicting a given expensive metric, hence showing correlation among the metrics. In

our experience, this approach gives more stable results than normal correlation.

In more detail, we use the lasso algorithm to search for a combination of cheap

metrics which has a high partial correlation coefficient with a chosen expensive metric.

The algorithm iteratively increases the partial correlation and selects a subset of cheap
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metrics with the highest partial correlation. The obtained predictive model then looks

as follows: expMetric = β0 + β1 ∗ cheapMetric1 + · · ·+ βn ∗ cheapMetricn.

Note that the above model predicts a single expensive metric based on several cheap

ones. However, we said that, in general, we aim at maximizing coverage under several

expensive metrics based on settings suitable for several cheap metrics. To cope with

this, we propose to replace the role of the single expensive metric in the above model

by using a fitness function representing a weighted combination of the chosen expensive

metrics (as often done in genetic algorithms).

Such a combination can have the following form:

fitness =
expMetric1

expMetric1
max

+ · · ·+
expMetricn

expMetricn
max

.

Here, expMetrici is the cumulative coverage under the i-th metric obtained in the given

series of test runs with the same test and noise setting while expMetrici
max

is the max-

imum of all cumulative coverage values under the given metric in all so far performed

experiments even with different test and noise settings (this way of approximating the

maximum is used since there is no exact way of computing it).

Experimental Results We have decided to experiment with finding suitable test and

noise settings maximizing simultaneously coverage under all the three identified ex-

pensive metrics, i.e., GoldiLockSC∗, WEraser∗, and Datarace. The first step is to

construct the fitness function combining these three metrics for the lasso algorithm.

For that, we generated 100 random test and noise settings, ran 5 tests with each of the

configurations, cumulating the coverage obtained in these runs. Finally, we took the

maximum values of the cumulated coverage from the 100 experiments. This way, we

obtained the following fitness function:

fitness =
GoldiLockSC∗

1443
+

WEraser∗

3862
+

Datarace

267
.

Second, we used the lasso algorithm with forward regression as implemented in the

glmnet() function from glmnet package [14] of the R-project tool to obtain the predictive

model. We created the predictive model from a cumulation of results from five runs on

all the considered case studies.

In the forward lasso algorithm, one can choose how many cheap metrics one wants

for the prediction. It is because the algorithm starts with an empty model, and, in each

step, it adds one cheap metric to the previously built prediction model. Thus, one can

see which cheap metrics form the model in each iteration. For our case, we choose to

predict three expensive metrics by only two cheap metrics. In the future, it could be

interesting to compare prediction using two, three, or four cheap metrics. We suppose

that using more cheap metrics for the prediction could be more precise but also more

time consuming.

Using the above approach, we obtained the following predictive model:

fitness = 2.9e− 01 + 2.2e− 06 ∗ ConcurPairs+ 1.8e− 03 ∗Avio∗.

This predictive model and also the above mentioned fitness function are used in all

further experiments described below.
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5 Using Correlations of Metrics to Optimize Noise-based Testing

Once the predictive model is created and we know which set of cheaper metrics can

be used to predict coverage under a given (set of) expensive metrics, this knowledge

can be used to optimize the noise based testing process. In particular, we can try to find

suitable test and noise settings for the given expensive metrics by experimenting with

the cheap ones. The experiments can be controlled using a genetic algorithm [11, 12],

or data mining on the test results can be used [1], all the time evaluating the performed

experiments via the chosen cheap metrics, or, more precisely, through the predictive

model built. In the simplest case, one can perform just a number of random experiments

with different test and noise settings and choose the settings that performed the best in

these experiments wrt the predictive model. This is the approach we follow below to

show that our approach can indeed improve the noise-based testing process.

Experimental Results We randomly generated 100 test and noise configurations and

executed 5 test runs with each of them for each of our case studies while collecting cov-

erage under the selected cheap metrics (leading to 500 executions for each case study).

We cumulated results within the 5 executions of one configuration and then worked

with the obtained cumulative value. We chose 20 configurations with the best results

wrt the derived predictive model. These 20 configurations were used for further test

runs under the three considered expensive metrics. Each of the chosen 20 configura-

tions was executed 200 times, leading to 4000 test executions under the three expensive

metrics for each case study. Finally, to compare the efficiency of this approach with

the purely random one, we also performed 4500 test runs with random test and noise

settings while directly collecting coverage under the expensive metrics for each of the

case studies. Hence, both of the approaches were given the same number of test runs.

In Table 2, we compare the random approach with our prediction-based approach.

In particular, we aim at checking whether the proposed approach can help to increase

the obtained coverage of the expensive metrics when weighted by the consumed testing

time. From the table, we can see that this is indeed the case: the coverage over time

increased in most of the cases. The average improvement of the obtained cumulative

coverage over the testing time across all our case studies ranges from 46 % to 62 %.

Finally, Figure 1 (left) compares how the obtained cumulative coverage, averaged

over all of our case studies, increases when increasing the number of performed test

runs under the purely random noise-based approach and under our optimized approach.

Our approach wins despite it has some initial penalty due to using some number of test

runs to find suitable test and noise parameters via cheap metrics. The right part of the

figure then compares the average time needed by the two approaches over all the case

studies. Again, the optimized approach is winning.

6 Conclusion and Future Work

We have proposed an approach that uses correlations between cheap and expensive

concurrency metrics to optimize noise-based testing under the expensive metrics by

finding suitable values of test and noise parameters for such testing through experiments

with the cheap metrics. Our experiments showed that such an approach can improve

noise-based testing. In the future, we would like to combine the proposed optimization

with previously proposed optimizations of noise-based testing via genetic optimizations
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Table 2. A comparison of random and prediction-optimized noise-based testing.

GoldiLockSC∗ WEraser∗ Datarace

CaseStudies Random Predict Random Predict Random Predict

Airlines 9.46 22.42 74.92 182.59 0.28 0.72

Animator 817.82 1451.35 233.20 291.42 0.35 0.46

Cache4j 0.93 2.62 4.14 10.98 0.03 0.10

Crawler 54.93 88.69 351.85 547.41 1.90 2.86

Elevator 297.09 286.30 756.72 733.91 2.31 2.23

HEDC 27.50 19.93 67.37 48.73 0.50 0.36

Montecarlo 4.24 5.19 9.03 11.35 0.02 0.03

Rover 37.62 62.89 174.14 292.18 0.08 0.08

Sor 3.19 7.16 4.93 12.69 0.00 0.00

TSP 1.86 1.40 15.36 11.74 1.14 0.86

Average Impr. 1.62 1.59 1.46
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Fig. 1. Cumulative coverage (left) and testing time (right) for an increasing number of test runs.

and/or data mining. Moreover, it is interesting to generalize the idea of finding suitable

noise settings maximizing coverage under an expensive metric via experiments with

a cheap one to a context of dealing with other kinds of cheap and expensive analyses

some of whose parameters may also be correlated.
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