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Abstract: This paper investigates capabilities of two advanced state-of-the-art tools—
namely Pale and TVLA—for automated formal verification of programs manipulating
unbounded dynamic data structures. We consider verification of operations dealing with
binary search trees over which we want to verify the basic correctness of pointer manipu-
lations (no null pointer dereferences, etc.) as well as the sortedness requirement of binary
search trees. Unlike in other works, we want to verify the full sortedness requirement, i.e.
that all nodes in the left subtree of a node n are smaller than n, and all nodes in the right
subtree of n are bigger than n (and not just the relation between a node and its direct
subnodes). For the needs of verifying this property in the TVLA tool, we provide a new
kind of instrumentation predicate that allows one to handle such a property.

1 Introduction

We address the problem of automated formal verification of programs handling dynamic
recursive data structures via pointers (or references). Such programs are generally diffi-
cult to write and understand, and so the possibility of their formal verification is highly
desirable. Formal verification of such programs is, however, a very difficult task too—it is
easy to show it is undecidable. This is caused by the fact that such programs work with
unbounded structures, which leads to a necessity of dealing with infinite state spaces.
To be able to cope with them, we need a suitable finite representation of infinite sets of
states, which in the worst case can have a complex graph structure, and (semi-)algorithms
working over these structures and capable of returning as precise as possible results and
terminating as often as possible.

There have been proposed several (though still not yet fully satisfactory) approaches
to formal verification of programs manipulating pointers. One of the least automatic is
the use of Separation Logic [7] which is an extension of Hoare logic. PALE [6] works on
a similar basis but the verification is more automatic. Only pre- and post-conditions and
loop invariants need to be supplied and the rest is done automatically using the MONA
decision procedures. There is a more detailed description of PALE in Section 3.

Even more automatic is the approach of the parametric shape analysis implemented
in the TVLA tool [8]. The approach is based on an automatic abstraction of memory
configurations (denoted as stores) using 3-valued logic wrt. a given set of instrumenta-
tion predicates and on an automatic computation of sets of abstract stores reachable at
particular program points. We discuss this approach in more detail in Section 4.

An alternative approach [1] is based on abstract regular model checking in which fi-
nite automata encode sets of configurations of the given program viewed as words over
� FIT, Brno University of Technology, Božetěchova 2, CZ-61266, Brno, Czech Republic



a suitable alphabet and finite transducers are used to implement the particular program
statements. Via a repeated application of the transducers accelerated by abstraction over
automata, overapproximations of sets of configurations reachable at particular program
points are obtained fully automatically. Unlike TVLA and PALE, the approach is cur-
rently usable for dealing with linear (or linearisable) data structures only though its
generalizations are in development.

Representations of linked memory structures based (at least partially) on automata
are used in [4, 3, 9, 2] too. In [3, 9], the special problem of may-alias analysis is primarily
considered, and automata are combined with various classes of constraint systems. In [2],
an alias logic with a Hoare-like proof systems is introduced. In [10], the automata part
of the encoding is dropped and a semantic model of the execution of a program is used
in which every allocated object is identified by a timestamp representing the state of the
program at the instant of the object creation. Relations of the timestamps and various
program variables are then encoded via automatically derived constraints.

In this paper, we concentrate on the approaches of PALE and TVLA for which a
solid tool support is available, which handle even non-linear structures, and are capa-
ble of verifying both basic pointer-related properties (no memory leakage, no work with
uninitialized pointers, etc.) as well as more complex properties of the considered data
structures (e.g., sortedness). To compare these approaches, we choose working with the
non-linear structure of binary search trees and we want to verify the basic consistency of
pointer manipulation over them as well as—unlike in other works—their full sortedness
requirement, i.e. that all nodes in the left subtree of a node n are smaller than n, and
all nodes in the right subtree of n are bigger than n (and not just the relation between
a node and its direct subnodes). To be able to verify the full sortedness property in the
TVLA tool, we then provide a new kind of instrumentation predicate that allows one to
handle such a property.

The paper is organized as follows. In Section 2, we briefly recall some of the code for
dealing with binary search trees. In Sections 3 and 4, we discuss verification of the code
in PALE and TVLA. We discuss the results and our future plans in Section 5.

2 Binary search trees

Binary search tree is a binary tree in which each node has a key, which is unique. For
every node n, all keys in the left (or right) subtree are smaller (or greater) than key
of n, respectively. The basic operations include SearchBST, InsertBST, and DeleteBST.
The sortedness of the tree is supposed to hold before and after executing each of these
procedures. InsertBST inserts a new node to a tree or does nothing when a node with the
same key is found. DeleteBST deletes a given node from a tree. This operation is the most
complicated since deleting a non-leaf node causes rotations of adjacent nodes. SearchBST
searches a given node in the tree in a logarithmic time (wrt. the number of nodes).

In this paper, we concentrate mostly on the verification of the InsertBST procedure.
To recall the way it may be implemented, here is the code of this procedure:

Tree { Tree *left;

Tree *right;

data d;

};



InsertBST(Tree *x, Tree *y) {

Tree *z, *t;

z = x;

while (z != NULL) {

t = z;

if (z->d == y->d) exit;

if (z->d > y->d) z = z->left;

else z = z->right;

}

if (t->d > y->d) t->left = y;

else t->right = y;

}

3 Verification in PALE

Pointer Assertion Logic is a notation for expressing pre- and post-conditions of procedures,
loop invariants, and other assertions in Weak Monadic Second-order Logic of Graph Types
[6]. These annotations are appended to the code of the verified program, and PALE (the
Pointer Assertion Logic Engine) analyses it and reports null-pointer dereferences, memory
leaks, and violations of assertions and graph type errors. Validity of conditions and other
formulae is checked by the MONA tool which can provide explicit counterexamples to
invalid formulae.

To make the verification decidable, the technique requires explicit loop and function
call invariants to be provided manually, which is a significant disadvantage of PALE com-
pared to TVLA. On the other hand, thanks to the provided information, every statement
of the program is analyzed only once, so the verification time is relatively short.

We present here a more abstract and simpler version of the verification—we check
whether the new node is inserted properly into the tree regardless of whether it is initially
sorted or not. Then, in the PALE notation, the node of the tree may be defined as follows:

type Node = { data left,right:Node;

bool le; }

It has a left and right child and an attribute describing the relation of its key to the key
of the new node being inserted into the tree—if le is true for the node, then this node is
less than or equal to the new node).

Now, we write a precondition that describes the initial state of the variables and the
memory such that we have a tree pointed to by x and a new node not reachable from x
that is pointed to by y. (Below, we denote the node pointed to by a pointer x as x.)

[x!=null & y!=null & y.left=null & y.right=null & !x<(left+right)*>y]

We add a postcondition which describes the desired property that we want to verify, i.e.
that y is reachable from the root and was inserted properly. The latter means that all its
parents are greater (or less) than y if y is reachable from the left (or right) child of that
parent, respectively.

[x<(left+right)*>y & allpos t of Node: t<(left+right)*>y =>

((t.left<(left+right)*>y => t.ge) & (t.right<(left+right)*>y => !t.ge))]



Both the precondition and postcondition are quite short and simple. However, since
there is a loop within the InsertBST procedure, we must add a quite difficult loop invari-
ant. The invariant we were able to come up is approximately five times longer than the
pre- and post-conditions and twice longer than the code of the procedure. It contains the
precondition and further a requirement of non-reachability of y from z and t, a parent-
child relation between t and z, a condition about the end of the descent (if z is null, then
the left or right descendant of t is null—according to its relation to y—that is the place
where y comes to), and finally, two conditions that are similar to the postcondition—all
parents are greater (or less) than y if z is reachable from the left (or right) child of that
parent, respectively, and the same for t.

After supplying all these conditions, the verification passes correctly informing us that
there can be no null pointer dereferences, there are no cycles in the tree, all cells are
reachable from the data variables, and the postcondition is always satisfied.

4 Verification in TVLA

TVLA (Three-Valued Logic Analyzer) is based on a three-valued first-order predicate
logic with transitive closure. It outputs the set of all possible memory states which can
appear in every step of the program encoded in the three-valued logic wrt. a given set
of predicates. The indefinite value of the logic (i.e. 1/2 compared to the definite values 0
and 1) allows us to represent an arbitrary number of nodes as a single so-called summary
node. In this way, we may easily finitely encode infinite structures. However, we obtain
an overapproximation, and so the output is sometimes not precise enough. For example,
for a certain choice of predicates, all singly linked lists with two or more nodes and a
variable pointing to the head of the list may be abstracted to one structure with one head
node and the rest compressed into one summary node. This problem can be solved by
supplying additional predicates.

4.1 The Process of Verification in TVLA

In a simplified view, the analysis can be described as follows. We code the initial memory
configuration(s) into values of the chosen predicates and then simulate execution of the
program statements by updating these values via predicate transformers (either supplied
manually or derived). At the end we have all possible memory configurations at every line
of the program.

Before we start the above computation, we must create the predicates which will
hold information about the memory. The set of the predicates is partitioned into two
disjoint sets. For describing atomic properties of a memory configuration, we use core
predicates and for describing derived properties, we use instrumentation predicates. The
sets of these predicates remain nearly the same for procedures working with the same
or similar structures. So there is no need to completely re-create them every time. For
example, when we have already verified some property for unsorted binary trees and we
want to verify a procedure working with binary search trees, we only add predicates that
hold information about the sortedness.

Next, the initial memory configuration(s) must be specified. Then, we must specify
how this configuration and other configurations change depending on the statements of
the program. These rules are called predicate update formulae. These formulae must be



Predicate Intended meaning

x(v) Is variable x pointing to the node v?
right(v1, v2) Is the node v2 right child of the node v1?
left(v1, v2) Is the node v2 left child of the node v1?
dle(v1, v2) Is the node v1 less-than-or-equal-to the node v2?

downStar(v1, v2) Is the node v2 child of the node v1?
downStar(v1, v2) = (left + right)∗(v1, v2)

r[x](v) Is node v reachable from variable x?
r[x](v) = ∃v1 : x(v1) ∧ downStar(v1, v)

sorted(v) Are all the left and right children of node v less and greater than v,
respectively? sorted(v) = ∀v1, v2 : (left(v, v1)∧downStar(v1, v2) →
dle(v2, v)) ∧ (right(v, v1) ∧ downStar(v1, v2) → dle(v, v2))

allSorted Are all nodes sorted? (this is the desired property)
allSorted = ∀v1 : sorted(v1)

Tab. 1: Simplified predicates used in verification of search trees.

written manually for core predicates while for instrumentation predicates, they can be
generated automatically from the base definition of these predicates.

4.2 Verification of Binary Search Trees in TVLA

For our procedure working with search trees, we may use the instrumentation predicates
devoted to working with trees published in the literature on TVLA—they are shown
in Table 4.2 together with the predicates sorted and allSorted that we introduce for
specifying the full sortedness property. The first four predicates are core predicates and
the other four are instrumentation predicates.

However, these formulae are not enough for verifying the full sortedness property for
InsertBST. The result is always allSorted = 1/2 (i.e. the unknown value). This is caused
by the fact that as the pointer z descends from the root to the leaves, we forget which nodes
it has gone through and which not. One of the possible abstract memory configurations
at the end of this descent is depicted in Figure 1. The notation is as follows: Nodes are
ellipses, summary nodes are double ellipses, unary predicates are satisfied for a node if the
name of the predicate is written in it, otherwise they evaluate to 0. Binary predicates are
depicted as full line arrows when they evaluate to one, dotted arrows when they evaluate
to 1/2, and finally when they evaluate to 0, no arrows are drawn. For simplicity and
transparency, all the dle predicates are omitted.

After adding a new node, nothing is known about the sortedness of the tree. To solve
this problem, we have to create an instrumentation predicate which will keep the infor-
mation about the descent. The possible need to devise such predicates is a disadvantage
of using TVLA. It may be quite time-consuming to think out a helpful predicate and it
may require a lot of insight. Very recently there appeared some new results [5] about the
possibility of automatically generating some instrumentation predicates. In the future, it
will be interesting to examine if these new results are able to generate the special new kind
of predicate for verifying full sortedness that we describe below. Currently these methods
are not implemented in the available version of TVLA yet.



Fig. 1: An example of a memory configuration after executing the loop of InsertBST

4.3 A New Instrumentation Predicate

The new predicate we provide for solving the above problem is defined as follows:

i[x, y](v) = ∃v1, v2, v3 : x(v1) ∧ y(v2) ∧ downStar(v3, v1)∧
(right(v, v3) ∧ dle(v, v2) ∨ left(v, v3) ∧ dle(v2, v))

Its meaning can be described as if i[x,y] evaluates to 1 for a node v then “adding y after
x” does not harm sortedness of the node v where adding y after x means adding the node
which is pointed to by y after the node which is pointed to by x (i.e. executing x->left

= y or x->right = y). The predicate can be described in another way too: if x points to
the node which is the left (right) descendant of v, then v must be greater (less) than the
node pointed to by y, respectively.

The next thing is to create predicate update formulae for the new predicate. The
generated ones do not work in this case possibly due to the transitive operation hidden
in downStar. So we have to create them manually which is relatively time-consuming.
Then we have to modify (or create) predicate update formulae for the predicate sorted in
statements x->left|right = y for our effort to take effect. It is enough to add “|i[x,y]”
to the formulae.

Now we can check whether the new predicate solves our sortedness problem. Before
the insertion of the new node into the tree, the situation is much better as depicted in
Figure 2. The tree is divided into two disjoint parts: nodes which the pointers t and z
went through (those with i[t, y]) and the untouched ones. As the pointer t points to a
node whose all ancestors fulfil i[t, y], the insertion passes without harming the sortedness.

For a better understanding see Figure 3 where a not abstracted tree is shown. The
node pointed to by x (the root) and the node pointed to by t in Figure 3 are not abstracted
in Figure 2. The path the pointers z and t went through is marked with p in Figure 3 and
these nodes correspond to the summary node which satisfies i[t, y] in Figure 2. All the
other nodes in Figure 3 are compressed to the summary node in the middle of Figure 2.



Fig. 2: One of the memory configurations with the new predicate after executing the loop

Fig. 3: A sample concrete tree covered by the abstract configuration of Fig. 2

5 Conclusion

We discussed formal verification of the unbounded dynamic data structure of binary
search trees using two state-of-the-art tools, namely TVLA and PALE. Unlike in other
works, we considered even verification of the full sortedness property of binary search
trees. In the paper, we concentrated on the InsertBST procedure. The case of searching
in binary search trees is simpler because it does not perform any destructive updating
of the structure. On the other hand, the case of DeleteBST is much more difficult—e.g.,



as discussed below, our verification of DeleteBST was too long to complete. In order to
successfully verify the full sortedness property in the TVLA tool, we have provided a new
specialised kind of instrumentation predicate i[x, y](v).

The biggest differences between PALE and TVLA witnessed in our experiments are
in the amount of information to be provided manually and in the verification times. In
PALE, one must almost always manually provide a significant amount of help to the
tool, but the verification times may be relatively low. In TVLA, the amount of help to
the tool is usually much lower, but the running times may be higher—the verification of
InsertBST takes about 2 seconds in PALE and 2 hours in TVLA on Athlon 1.66GHz.
Sometimes, even for TVLA, one may have to provide manually some help in the form of
special instrumentation predicates such as our i[x, y](v) predicate. The first steps towards
relieving this problem are presented in [5].

As we have already mentioned, we were not able to successfully complete verification of
the DeleteBST procedure in TVLA, which may be due to a very high number of structures
(there are 8 pointers and the number of their possible relations in the structure is reflected
in the computing time). For the future, we would like to more carefully examine sources
of this problem and its possible solutions including a possibility of a parallelization of
the method. Further, it is interesting to try to verify procedures working with even more
complex structures like, e.g., B-trees. Finally, the question of verifying liveness properties
over procedures manipulating dynamic data structures is another challenging issue.
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