SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Relial2013;00:1-38
Published online in Wiley InterScience (www.intersciemgiey.com). DOI: 10.1002/stvr

Advances in Noise-based Testing of Concurrent Software

J. Fiedor, V. Hruba, B. Kfena, Z. LetkpS. Ur, and T. Vojnar

FIT, Brno University of Technology, IT4Innovations CertdfdExcellence, Czech Republic
Shmuel Ur Innovations Ltd., Israel

SUMMARY

Testing of concurrent software written in programming laages like Java and C/C++ is a highly
challenging task due to the many possible interactions gnibreads. A simple, cheap, and effective
approach that addresses this challenge is testingneite injectionwhich influences the scheduling so that
different interleavings of concurrent actions are witeekssn this paper, multiple results achieved recently
in the area of noise-injection-based testing by the autamrgresented in a unified and extended way. In
particular, variougoncurrency coverage metriese presented first. Then, multiple heuristics for solvirey t
noise placement problefne., where and when to generate noise) as well andise seeding problefne.,
how to generate the noise) are introduced and experimgmtadluated. In addition, several new heuristics
are proposed and included into the evaluation too. Recomatiems on how to set up noise-based testing
for particular scenarios are then given. Finally, a noved asthe genetic algorithm for finding suitable
combinations of the many parameters of tests and noiseitp@mis presented.

Copyright(© 2013 John Wiley & Sons, Ltd.

Received ...

KEY WORDS: testing; dynamic analysis; noise injection; thtiireaded software; coverage metrics;
genetic algorithm; meta-heuristic algorithms

1. INTRODUCTION

Popularity of multi-core processors and multiprocessammaters stimulates development of
programs with multiple concurrently executing threadswfteol. Development of such applications
in widely used programming languages, like Java, C, and Qxits much higher demands
on programmers who must correctly synchronize actions wgdcin the different threads
communicating via shared memory and/or via message pasSymghronization errors, such as
data races, atomicity violations, deadlocks, or orderatiohs, are relatively easy to cause but very
hard to detect by code review or by simple execution of theeahating classical testing because
they may manifest only under very rare interleavings ofaadtiexecuted by the different threads.
Such interleavings are not very likely to be spot during silzed testing, but they can occur in the
production where the software is run for a much longer tinmgdifferent machines, under different
load, and in different environment settings.

This situation in turn stimulates research efforts devdtedll sorts of advanced methods for
testing, analysis, and verification of concurrent prograf@mal methods of verification, such

*Correspondence to: Faculty of Information Technology,dBtmiversity of Technology, Bozetéchova 1/2, Brno CZ-
61266, Czech Republic. email: iletko@fit.vutbr.cz.

Contract/grant sponsor: The work presented here was dieppdsy the Czech Science Foundation (project
P103/10/0306), the Czech Ministry of Education (projechtédt | LH13265), the EU/Czech IT4Innovations Centre of
Excellence project CZ.1.05/1.1.00/02.0070 as well as thgept CZ.1.07/2.3.00/30.0005, and the internal BUT prtge
FIT-S-12-1 and FIT-S-14-2486.

Copyright© 2013 John Wiley & Sons, Ltd.
Prepared usingtvrauth.cls [Version: 2010/05/13 v2.00]

2 Z. LETKO, ET AL.

as, e.g., model checking,[13], may potentially be able to precisely analyze a given paogr
Unfortunately, these precise approaches do not scale weltdmplex software systems. The
number of thread interleavings to be analyzed in such sysiesimply too high to be handled by
the precise approaches despite various optimizationsathaised in advanced formal verification
techniques. Approaches like lightweight static analysks¢ribed below) as well as testing and
dynamic analyses (introduced below and further describeld next section) use approximations
of the analyzed programs to cope with the complexity of th&tesys, which can pay off in the
number of detected errors despite such approaches can ligghermors as well as produce false
alarms pJ.

Lightweight static analyses, such &¥&], usually focus on searching for purely syntactic error
patterns (possibly slightly refined, e.g., by using somerimfation on the behavior of the verified
programs pre-computed by suitable dataflow or type anglySesh analyses scale well to even
large code bases and may provide valuable information tdekeloper 29], but they often cannot
discover concurrency-related errors because they do nd¢lttfreads and their interactior&s]. Of
course, there also exist static analyses which do consaeuerent threads, such as, e.§,,44).
These analyses are able to detect concurrency-related,ebut they often produce many false
alarms due to the abstractions they work with.

Testing [L4, 24, 43, 64] and dynamic analysed (), 16] rely on (possibly repeated) execution of
the given program and evaluation of the witnessed runs. Thayprecisely analyze all aspects of
concurrent behavior, but they only consider the witnessedwion paths and thread interactions
(or their extrapolation in the case of dynamic analyses)intoease the number of tested thread
interactions, one can use either the deterministic testopgoach or noise injection.

Deterministic testing24, 43, 64] can be viewed as execution-based model checking bounded in
various ways (e.g., in the number of context switches)ngiteng to systematically test as many
thread interleaving scenarios as possible. A lightweidfbt@ative to deterministic testing imise
injection[14]. This approach is based on injecting—either randomly sebaon some heuristics—
some noise into the test execution. The noise causes deldlis iexecution of selected threads,
giving other threads an opportunity to make progress ansilplggeveal so far untested scheduling
scenarios. Although the noise injection approach canragpeorrectness of a program even under
some bounds on its behavior, it was demonstratéd36, 57] that the technique can rapidly increase
the probability of spotting concurrency errors.

In testing, a crucial role is played by thmverage metricg11]. A coverage metric defines
a coverage domairwhich is a set ofcoverage tasksepresenting different phenomena (e.g.,
reachability of a certain line) whose occurrence in the bighaf a tested program is considered
to be of interest. One can then measure how many of the pheraooeresponding to the coverage
tasks have been seen in the witnessed behaviors of the sg@m. Such a measurement can be
used to asses how well the program has been tested.

Classic coverage metrics (such as code coverage) allow@mngldtively easily measure the
obtained coverage and to quite precisely estimate the $itee@overage domain statically (up to
issues such as unreachable code). However, such metric#t deflect interactions among threads
and are therefore insufficient for testing concurrent paogs. Measuring coverage of all thread
interleavings, on the other hand, is impractical becausenmuld have to remember and compare
various executions from the point of view of all involved text switches, and for an unbounded
number of threads, the coverage domain could be unboundedfdo a bounded number of
threads, it would be bounded, but huge and difficult to edgmath satisfactory precision). A good
concurrency-related coverage metric should hence reprasede-off between these two extremes.

In this paper, a unified overview of multiple results from theea of noise-injection-based
testing that were published by the authors in several paatsyg0, 21, 26, 32, 33, 34, 36] is
provided. In particular, multiple novel coverage metridiss{ proposed by Kfena et al37)),
which measure how well the behavior of tested programs has bgamined from the point of
view of possible occurrence of certain synchronizatidatesl errors, are presented first. These
metrics can be used to control saturation-based testirmprtgare effectiveness of various testing
approaches, or to tune parameters of metaheuristic digwiapplied in testingg]. Next, various

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 3

noise injection heuristics and their influence on error cl&e and ability to increase concurrency-
related coverage2, 34, 36] (absolutely and relatively, i.e., taking into account tbager test
execution time caused by noise injection) are studied. Dh&imed experiences with noise injection
on different levels (namely, Java bytecode and C/C++ béisqdre summarized into suggestions that
can make further applications of noise-based testing e&smally, an application of a metaheuristic
algorithm (namely, the genetic algorithm) for an automagtection of suitable combinations of
values of the many parameters of tests and noise injectdmigues 26, 33] is presented. The
recent works of the authors unified in the paper are accoragdnyi a description of related works,
and the paper can thus serve as a survey of the field of nogssthasting of concurrent software
too.

Moreover, in this paper, two new heuristics for noise inttare presented—in particular,
a new noise placement heuristic based on access pattermgmmfdsvariables and a new noise
seeding heuristic which blocks all threads but one. Bothe$é heuristics target common atomicity
violation scenarios, and the newly proposed noise seedewgidiic might also help in order
violation scenarios. The newly proposed heuristics arepared with a selection of already existing
heuristics which provided promising results in the pregienperimental comparisond, 36]. The
presented set of 8 Java benchmark programs and 4 C benchrogriips makes the comparison the
so-far largest comparison of noise-injection-basedrigdechniques. The comparison shows that
the different heuristics can indeed significantly imprdwe éfficiency of testing. However, they also
show that there is no single best noise injection techniqueg the many noise injection heuristics,
requiring a careful selection of the noise injection teglueito be used in a given scenario and/or
a random mix of the heuristics to be applied (possibly aidgdnetaheuristics as also discussed
below).

Plan of the paper. The rest of the paper is organized as follows. In the nexi@®gcthe state

of the art of dynamic analysis and testing of concurrent g is presented. Concurrency
coverage metrics are discussed in SecBolection4 contains an overview of noise placement
and noise seeding heuristics, a proposal of the new hasiistisummary of previously published
comparisons, and an evaluation of the newly proposed liesri¥arious technical aspects of noise
injection on binary and byte-code levels are also brieflgused. Finally, a few suggestions for
noise-based testing are provided. Secfiantroduces the test and noise configuration problem and
shows how the genetic algorithm can be used to solve thidgmol-inally, Sectior® concludes the
article and several possible future directions in the afe®ise-based testing are mentioned.

2. STATE OF THE ART

In this section, a broader overview of the existing techagjfor testing of concurrent programs is
presented. First, light-weight methods of stress testitymise injection are discussed followed by
methods based on a deterministic scheduler which fullyrotsithe interleaving of actions executed
in different threads. Finally, dynamic analysis technijaee introduced and briefly discussed.

Many discussions on various forums suggest tosigss testindor discovering concurrency-
related errors by simply executing a large number of threadspeting for shared resources. This
approach increases the possibility of spotting concugremrs a little, and it can help to reveal
some concurrency errors—usually those which manifeseapiten. This might make developers to
get a false conviction that the program is tested enoddh [

Noise injectioninserts delays into the execution of selected threads Wghaim of possibly
causing new (legal) interleavings, which have so far nohheitnessed and tested, to appear. This
approach allows one to test more interleavings of synchetion-sensitive actions in shorter time
because the system is not that much overloaded by othenacfiwise injection is also able to
test legal interleavings of actions which are far away fraaheother in terms of execution time
and in terms of the number of concurrency-relevant evetdf fhetween those actions) during
average executions provided that strong enough noise éstég into some of the threads. In

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

4 Z. LETKO, ET AL.

a sense, the approach is similar to running the programersichodel checker such as JPH|[
with a random exploration algorithm enabled. However, niatheckers such as JPF are often
limited in the programming constructs they natively suppbforeover, making purely random
scheduling decisions may be less efficient than using sortteeafioise heuristics which influence
the scheduling at some carefully selected places impdramntthe point of view of synchronization
only. The approach of noise injection is mature enough todeel dor testing of real-life software,
and it is supported by industrial-strength tools, such all lBava Concurrency Testing Tool
(ConTest) [L4] or the Microsoft Driver Verifier where the technique is ealldelay fuzzing 1].
Within IBM, ConTest allowed many bugs to be discovered, asifaa as we can say, it is still in
industrial use.

Deterministic testingc.f., e.g., R4, 43, 62, 64] has become quite popular recently. The technique
uses a deterministic control over the scheduling of threAdketerministic scheduler is sometimes
implemented using intense noise injection keeping allatiseblocked except the one chosen for
making a progress. Often, other threads which do not exagutehronization-relevant instructions
or which do not access shared memory are also allowed to mmagegss concurrently.

The deterministic testing approach can be seen as exeéwdgrd model checking which
systematically tests as many thread interleaving scemasopossible. Before execution of each
instruction which is considered as relevant from the poihview of detecting concurrency-
related errors, the techniqgue computes all possible stébrediecisions. The concrete set of
instructions considered as concurrency-relevant dependbfe particular implementation of the
technique (often, shared memory accesses and synchiionizalevant instructions are considered
as concurrency relevant). Each such decision point is deresil a state in the state space of the
system under test, and each possible decision is considaredabled transition at that state. The
decisions that are explored from each state are recordée iiotm of a partially ordered happens-
before graph43d], totally ordered list of synchronization even&?], or simply in the form of a set
of explored decisions2ld, 64]. During the next execution of the program, the recordeadaling
decisions can be enforced again when doing a replay or cdawgen testing with the aim of
enforcing a new interleaving scenario.

As the number of possible scheduling decisions is high fommgex programs, several
optimizations and heuristics reducing the number of densito explore have been proposed.
The locality hypothesig43] says that most concurrency-related errors can be exposied u
a small number of preemptions. This hypothesis is exploitethe CHESS tool 43] which
limits the number of context switches taking place in thecexien (iteratively increasing the
bound on the allowed number of context switches). Moredbertool also utilizes a partial-order
reduction algorithm blocking exploration of states equathe already explored states (based on
an equivalence defined on happens-before graphs). The kbap[€4] limits the number of context
switches to two and additionally gets use of tf@ue-independence hypothesikich states that
exposing a concurrency error does not depend on data valleesover, the Maple tool does not
consider interleavings where two related actions exedutdiferent threads are too far away from
each other. The distance of such actions is computed by ioguenttions in one of the threads, and
the threshold is referred to awalnerability window[64].

However, despite a great impact of the above mentioned tietsc the number of thread
interleavings to be explored remains big for real-life peogs and therefore the approach provides
great benefit mainly in the area of unit testiritfl[64, 43]. The deterministic testing approach is
not as expensive as full model checking, but it is still qeidstly because one needs to track which
scheduling scenarios of possibly very long runs have beéressed and systematically force new
ones. The approach makes it easy to replay an execution waheeeror was detected, but it has
problems with handling various external sources of noreinism (e.g., input events).

Deterministic testing offers several important benefisraoise injection. Its full control over the
scheduler allows deterministic testing to precisely natgéghe execution of the program under test,
to explore different interleavings in each run, and to akglay interesting runs (if other sources
of nondeterminism, such as input values, are handled)lolivalthe user to get information about
what fraction of (discovered) scheduling decisions hasaaly been covered by the testing process.

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 5

However, the approach does also suffer from various prokldime approach has problems to deal
with external sources of non-determinism (user actions liH, Glient requests) as well as with
continuously running programs where its ability to reuseady collected information is limited.
In all those problematic cases, noise injection can be sstaéy used. Moreover, the performance
degradation introduced by noise injection is significattlyer.

Another way to improve traditional concurrency testingiisisedynamic analysisvhich collects
various pieces of information along the executed path aesltio extrapolate the witnessed behavior
in order to find errors which are in the program but did not seadly occur during the execution.
Many problem-specific dynamic analyses have been proposeéfecting special classes of errors,
such as data racesq, 48, 49|, atomicity violations B8], or deadlocks 0, 28]. These techniques
may find more bugs in fewer executions than classical tes8oge of the techniques, e.dlf],
are even sound (i.e., do not miss an error) and precisedoeipt suffer from false alarms) with
respect to the observed execution path. However, most @jphmaches are unsound and typically
produce many false alarms.

Efficiency of dynamic analysis can be increased when a diffeexecution path is analyzed
during each execution of the test. A combination of noisedtipn or deterministic testing and
dynamic analysis can thus lead to a synergy effect. Howevenjtoring of the program behavior
by a dynamic analysis algorithm typically introduces fertlsynchronization among threads and
represents a form of noise affecting thread schedulingshvimiay be important to take into account
when applying regular noise injection heuristics.

Finally, there are tools and techniques that combine varapproaches to test multi-threaded
programs. For instance, multiple techniques get use ofrimdtion obtained by static and/or
dynamic analysis in navigating deterministic testing so@n example of such a technique is the
recently publishedctive testingapproach, targeting certain types of errors, such as dee¢s 0],
atomicity violations §6], and deadlocksZ8]. The technique uses results of approximate static
and/or dynamic analyses to hint deterministic testing wheepotential error can be found. The
technique works in two stages. During the fipsediction phasgea static and/or dynamic analysis
is performed and warnings about specific concurrency eamasollected. In the secondlidation
phase the test is repeatedly executed with a deterministic adieedThe scheduler behaves as
a random scheduler until some thread reaches an actiorvdigzbduring the prediction phase. If
such an action is spotted, all threads that are about to &xdaig action are stopped. Whenever
more threads are stopped, the scheduler enforces all podsibrleavings. A similar approach
is described in the papefly] which combines dynamic analysis and bounded model chgckin
In particular, this approach uses dynamic analysis to tigessible defects in a program and to
partially record a behavior witnessing such a defect. Aerafit to reconstruct the partially recorded
behavior in a model checker is then done using its abilitytafesspace exploration to navigate
through the recorded points. Subsequently, bounded mdaekag in the neighborhood of the
behavior can be used to check whether there is really aniertbe system or not.

3. CONCURRENCY COVERAGE METRICS AND SATURATION-BASED TESNG

Coverage metrics play a crucial role in testing as they atloe/to estimate how well a program has
been tested. Based on this information, one can then dedidéher to stop the testing process (if
the program has been tested enough) or to add new test cadsazearto examine so far uncovered
behavior of the program. In sequential programs, repedtiagsame test case many times on the
same version makes no sense as if the test did not find a bug firgshexecution, running it again
will not help. Of course, automated tests can be used everdégs or weeks on different versions
of the sequential software which is known as regressiomtgsin concurrent programs, however,
the same tests may be executed multiple times because cemcyerrors usually manifest with
low probability.

Coverage metrics successfully used for testing of secalgmibgrams (e.g., statement coverage
or condition coverage) are not sufficient for testing of aonent programs as they do not
reflect concurrent behavior. When proposing a concurrenggrage metric, one needs to capture

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

6 Z.LETKO, ET AL.

significant concurrency aspects of the computation by @gestasks in a way that growing coverage
will be related with the potential to reveal concurrencyoesr At the same time, it is desirable to
neglect worthless facts introduced by a usually huge numbgossible interleavings of threads in
order to keep the number of coverage tasks reasonable.

3.1. General-Purpose Concurrency Coverage Metrics

In order to measure concurrency-related aspects of satemecution, several approaches have
extended sequential coverage metrics by capturing imtarigs of threads and/or synchronization
events {12, 56, 63, 11, 37, 57]. Below, we present three of these metrics, namely, thosehvh
were used for an experimental comparison with our new claslcurrency metrics inspired
by dynamic detectors of concurrency errors, which have Ipeeposed by Kfena et al3p] and
which are discussed in detail in Sectidr2. Compared with the previously proposed metrics, the
new metrics are more specialized in tracking behavior damed as important for finding specific
classes of synchronization errors by various dynamic aeasy

Coverage based on concurrently executing instructions (GwurPairs). The coverage of
concurrent pairs of eventd]] is a metric in which each coverage task is composed of a air o
program locations that are assumed to be encountered eoivedcin a run and a third item that is
true oOr false. Itis false iff the two locations are visited by the same thread and otherwise—
that is,true means that there occurred a context switch between the t@gramn locations. This
metric provides statement coverage information (usingftiiee flag) and interleaving information
(using thetrue flag) at once. A task of this metric is denoted as a tuple, pls, switch) where
ply, plo represent consecutive program locations (only concuyrprimitives and variable accesses
are monitored), anskitch € {true, false} indicates whether the context switch occurs in between
of them.

Definition-use coverage (DUPairs). This coverage metric is based on thiédu-pathcoverage
metric for parallel programs6p]. The metric considers coverage tasks in the form of triples
(var,nt,,nJ) wheren! is theu!® node in threadl’; where the value of program variabler is
defined while it is referenced ¥ node in thread’;. A path in a Parallel Program Flow Graph
(PPFG) covers such coverage task if the value of variadatas first defined by thread; and then
the same value is used #}. This can be only guaranteed if a synchronization amongtse;
andT; taking place between the variable definition and its use. driginal approach considers
quite simple model of parallel computation, for instandesupportspost and wait system of
synchronization angthreadcreateoperation for creating new threads only, just the masteaithr
is allowed to create worker threads, and the number of alehiteads in a program need to be
determined statically. Under these limitation, it is pbsito number the particular threads. When
dealing with today real-life applications, one cannot gpich restrictions. The original coverage
metric was therefore slightly modified(]. The modified metric is referenced to as DUPabyelow.
The coverage tasks of this metric has the form of tuples, pl1, plo, t1,t2) meaning that value of
variablevar is defined at program locatigsi; in threadt; and then used at program locatiph

in threadt,. Instead of precise numbering of individual threads therimeses an abstract thread
identification which is explained later in this section.

Synchronization coverage (Sync). The synchronization coveragé7 focuses on the use of
synchronization primitives and does not directly consitieead interleavings. Coverage tasks of
the metric are defined based on various distinctive sitoatithat can occur when using each
specific type of synchronization primitives. For instaniethe case of a synchronized block
(defined using the Java keywasginchr oni zed), the obtained tasks argynchronization visited
synchronization blocking@ndsynchronization blocked he synchronization visited task is basically
just a sequential control flow coverage task. The other tveor@ported when there is an actual
contention between synchronized blocks—when a thrgadaches a synchronized blogkand

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 7

stops because another thrgads inside a blockB synchronized on the same lock. In this case,
A is reported as blocked, arigl as blocking (both, in addition, as visited). Tasks of thignwere
denoted in this article as tuples of the fofpd, mode) wherepl represents the program location of
a synchronization primitive, andode represents an element from the set of the distinctive gitusit
relevant for the given type of synchronization.

3.2. Coverage Metrics Inspired by Concurrency Error Debest

We are now going to discuss a class of metrg4 fhat are more specialized than the metrics above
in that they concentrate on concurrency-related aspecgsogfram behavior tracked by various
dynamic concurrency error detection techniques, suchaseE{9], GoldiLocks [L6], AVIO [39],

or GoodLock [LO]. The motivation for this approach comes from two obseorsi (1) These
detection techniques focus on those events occurring & ofithe analyzed programs that appear
relevant for detection of various concurrency-relatedmir(2) The techniques build and maintain
a representation of the context of such events that is impbfor detection of possible bugs in the
program. Hence, trying to measure how many of such events lheen seen, and possibly in how
many different contexts, seems promising from the pointi@iof relating the growth of a metric

to an increasing likelihood of spotting an error.

A crucial step in the creation of a new coverage metric basesbme error detection algorithm
is to choose suitable pieces of information available to@nputed by the detection algorithm,
which are then used to construct the domain of the new cogemagiric. There is a trade-off
between precision of the metric and the associated conipugtcomplexity. One extreme is to
build a coverage metric directly on warnings about conawyeerrors issued by the detection
algorithm. In this case, the detection algorithm needs torpdemented entirely. Another extreme
is to build a coverage metric counting just the events trddkethe detection algorithm and entirely
avoid implementation of the algorithm.

Precision of the constructed metrics can further be syitadjlusted by combining their coverage
tasks with somabstract identification of the threads/olved in generating the phenomena reflected
in the concerned tasks (extended versions of the metricglemeted by* in this article). The
identification should, of course, not be based on the unioueat! identifiers, but it should preserve
information on their type, the history of their creatior;.eh similar identification can then also be
used whenever the coverage tasks contain some dynamiastiniiated objects (e.g., locks). One
possible concrete way how the needed identifiers may bersatés discussed in Secti@n3.

In the text below, thdava memory mod@tQ] and the following notation is assuméd.is a set of
identifiers of instances of non-volatile variables that rhaysed in the tested program at haflds
a set of identifiers of instances of volatile variables usethe program[is a set of identifiers of
locks used in the prograrft;, is a set of identifiers of all threads that may be created byptbgram,
andP is a set of all program locations in the program (i.e., uniigieatifiers of instructions present
in the code or byte-code).

Coverage metrics based on Eraser. The coverage metrics Eraser and Erasame based on
the Eraser algorithm4pP]. For each thread, the algorithm computes a set of locksently
held by the thread, and for each variable access, the digoritses these sets to derive
the set of locks that were held by each thread that had so faessed the variable. These
locksets are maintained according tatateassigned to each variable which represents how the
variable has been operated so far (e.g., exclusively withim thread, shared among threads, for
reading only, etc.). Basic coverage tasks have the form opke (pl, var, state, lockset) where

pl € P identifies the program location of an instruction accessinghared variablear € V,
state € {virgin, exclusive, exclusive’, shared, modified, race} indicates the state in which the
Eraser’s finite control automaton is when the given locat®reached (the extended version of
Eraser using thexclusive’ state B0] is considered), andockset C L denotes a set of locks
currently guarding the variablear. Eraset extends the basic Eraser metric by identification of
a threadt € T performing the access operation. Extended coverage thskshiave the form of
(pl, var, state, lockset, t). Accessing a variablear at a certain program locatiopl is a code

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

8 Z.LETKO, ET AL.

coverage task which is here enriched by the information kadrethe variable has been already
initialized (indicated byvirgin or exclusive state). Other possible values of the state cannot be
reached in single threaded applications.

Coverage metrics based on GoldiLocks. GoldiLocks [L6] is an advanced lockset-based
algorithm which combines the use of locksets with computireghappens-before relation that says
which events arguaranteedo happen before other events. In GoldiLocks, locksets kboeved

to contain not only locks() but also volatile variableg)) and threadsT(). If a threadt appears

in the lockset of a variable when the variable is accessedeéns that is properly synchronized
for using the given variable because all other accessesrigat cause a data race are guaranteed
to happen before the current access. The algorithm usesitadimumber of elements placed in
the lockset to represent an important part of the synchabioiz history preceding an access to
a shared variable. The basic GoldiLocks algorithm is sittively expensive but can be optimized
by theshort circuit check§SC) which are three cheap checks that are sufficient fodderrace
freedom between the two last accesses to a variable. Thimarigigorithm is then used only
when SC cannot prove race freedom. The basic GoldiLock m&trbased on coverage tasks
having the form of tupleépl, var, goldiLockSet) wherepl € P gives the location of an instruction
accessing a variable:r € V andgoldiLockSet € O U L U T represents the lockset computed by
GoldiLocks. The tuple can be extended by a threadl” which accesses the variabler getting
GoldiLock* coverage tasks of the for(wl, var, goldi LockSet, t). Program locatiopl at which the
variablevar has been accessed represents a code coverage task. Fertisiagtled applications,
one of the short circuit checks discovers that data raceatameccur and the information about
execution history captured yvldi LockSet can thus only distinguish the first access to the variable
from the others.

Coverage metrics based on Avio. The Avio algorithm B8] detects atomicity violation over one
variable and does not require any additional informatiomfthe user about instructions that should
be executed atomically. The algorithm considers any twoseountive accesses andas from

one thread to a shared variahler to form an atomic blockB. Serializability is then defined
based on an analysis of what can happen wBes interleaved with some read or write access
az from another thread to the variabler. Out of the eight total cases arising in this way, four
(namely, riw/r, wiw/r, wirlw, r/w/w) are considered to letmdan unserializable execution. Tracking
of all accesses that occur concurrently to a blétkan be very expensive. Therefore, a criterion
to consider only the last interleaving access to the comckwariable from a different thread is
defined. The basic Avio metric uses coverage tasks in the &drmples(ply, pls, pls, var) where

the considered atomic block spans between program locatigiis € P andply € P where the
variablevar € V is accessed by a threade T while it interferes with the access from a different
threadt, € Tty # t, at program locationls € P. The extended metric Avioincorporates into
coverage tasks also information about the threads fromiwthizaccesses have been made resulting
in tuples of the form(ply, pla, pls, var,t1,t2). Single threaded programs cannot generate any such
coverage task because basic as well as extended versiomebased coverage metric requires the
variablevar to be accessed by two distinct threads.

Coverage metrics based on GoodLock. GoodLock is a popular deadlock detection algorithm
that has several implementations—the metric presenteddudds on the implementation published
by Bensalem and Havelund(]. The algorithm builds thguarded lock graphwhich is a labeled
oriented graph where nodes represent locks, and edgeseepmeested locking within which
a thread that already has some lock asks for another onelsLaber edges provide additional
information about the thread that creates the edge. Theitlgosearches for cycles in the graph
wrt. the edge labels in order to detect deadlocks. The nsdvzus on occurrence of nested locking
that is considered interesting by GoodLock. Collectionh# tocksets of the threads which the
original algorithm uses as one element of the edge label igemhbecause this information is used
in the algorithm to suppress certain false alarms only. ThbedEock metric is therefore based

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 9

on coverage tasks in the form of tupl@s, pl»,1,l2) meaning that some threads 7' has first
obtained the lock; € L at the locatiorpl; € P and later requested the loéke L at the location
pla € P. The extended metric GoodLaclkcorporates also identification of the thregddrming the
tuple (ply, pla, 11,12, t). Locks are usually used for synchronization of accessedred resources
among several threads, however, also a single threadetatmh can request for locks and thus
generate GoodLock-based coverage tasks.

Coverage metrics based on happens-before pairs.These coverage metrics are motivated by
observations obtained from the GoldiLocks algorithm arelihctor-clock algorithms4g], both

of them depend on computation of the happens-before raldticorder to get rid of the possibly
huge number of coverage tasks produced by the vector-clgokitams and trying to decrease the
computational complexity needed when the full GoldiLockpathm is used, the metrics focus on
pieces of information the algorithms use for creating thefiresentations of the analyzed program
behaviors. All of these algorithms rely on synchronizatewents observed along the execution
path. Inspired by this, the metrics capture successfullsypmization events based on locks, volatile
variables, wait-notify operations, and thread start aimlgperations used in Java. A basic coverage
task is defined as a tupl@l,, pls, syncObj) wherepl; € P is a program location in a thread
t; € T that was synchronized with the locatigi, € P of the threadts € T, t2 # ¢, using the
synchronization objectyncObj. The extended metric HBPaiincorporates identification of the
synchronized threads forming the task as a tuple, pls, syncObj, t1,t2). In the same way as
for the Avio-based metrics, no single threaded applicatian generate any HBPair or HBPair
coverage task because it captures a synchronization hetweelistinct threads only.

3.3. Abstract Object and Thread Identification

Some coverage metrics described in the previous paragraghdased on tasks that include
identification of threads, instances of variables, anddotke Java virtual machine (JVM) generates
identifiers of objects and threads dynamically. Such idiensi are, however, not suitable for the
metrics because (1) in long runs, too many of them may be gwtkrand (2) matching of
semantically equivalent tasks generated in different ianecessary (may be not precise much,
but at least with reasonable precision). The identifiereggted by JVM for the same threads (from
the semantical point of view) in different runs will quité&dily be different.

Previous works (such a571]) used Java types to identify threads. Here, type-basetifibation
of elements is considered as too rough. The goal is to crdattifiers which distinguish behavior
of objects and threads within the program more accurateily,stll keep a reasonable level of
abstraction so the set of such abstract identifiers reméimsmderate size.

The abstracbbject identificatiorthat are considered is based on the observation that, usuall
objects created in the same place in the program are usedrnmlarsvay. For instance, there are
usually many instances of the claSsri ng in an average Java program, but all strings that are
created within invocations of the same method will probdi@ymanipulated similarly. Therefore,
an object identifier is defined as a tugtepe, loc) wheretype refers to the type of the object, and
loc refers to the top of the stack (excluding calls to constn&tavhen the object is created. The
record at top of the stack contains a method, source file,inaaf code.

The abstracthread identificatioris based on an observation that the type and place of creation
are not sufficient to build a thread identifier. Several tbeeereated at the same program location
(e.g., in a loop) can subsequently process different dadlatlaerefore behave differently. More
information concerning the thread execution trace is neé@uderder to better capture the behavior
of threads. Therefore, identifiers in the form of tuplégpe, hash) are used. Theype denotes
the type of the object implementing the thread, @adh contains a hash value computed over
a sequence of first method identifiers that the thread executed after iéatoon (if the thread
terminates sooner, then all methods it executed are takeragtount). The value of influences
precision of the abstraction. Of course, when a pool of tisga set of threads started once and
used for several tasks) is used, the computation of the halsie yust be restarted immediately
after picking a thread up from the pool.

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

10 Z. LETKO, ET AL.

3.4. Saturation-Based Testing

As already mentioned above, different executions of a tase aisually follow several thread
schedules and therefore it make sense to repeat the santagesmany times. Unfortunately, it
is often very hard or even impossible to precisely enumeaahitthe coverage tasks imposed by
a concurrency metric. Many of the potential concurrencyecage tasks may be infeasible and,
thus, reaching a reasonably high coverage during testirygnoisbe possible. This problem can be
addressed bgaturation-based testiné1] which monitors the growth of the coverage and when the
coverage stops growing for some time, the testing can bgstbg-urther, irsearch-based testing
[41], a fitness function driving an optimization algorithm ugedontrol the testing process can be
based on the values of a coverage metric.

For metrics used in saturation-based or search-baseddgestie can identify several specific
properties that they should exhibit. First, within the itgg{process, the obtained coverage should as
often as possible grow for a while and then stabilize. Helhsbpuld not immediately jump to some
value and stabilize on it. On the other hand, it should no¢ talo much time for the coverage to
stabilize. Also, to enable a reliable detection of stahtiian, the coverage should grow as smoothly
as possible, i.e., without growing through a series of wigsive shoulders. Next, in the case of
examining an erroneous program by the test that can revealit), the stabilization should ideally
not happen before the error is really detected. The evaluati suitability of existing as well as
newly proposed concurrency metrics with respect to thespasties B2] is summarized below. In
the following, brief description of the experiments higfiiting main outcomes is presented.

3.4.1. Experimental Setupor experimental evaluation of concurrency metrics, tla¢fpim called
SearchBestie33] was used to set up and execute tests with the IBM ConTestCiimdest tool
provides a facility for bytecode instrumentation and aligrs infrastructure allowing one to create
plug-ins[30] for collecting various pieces of information about the tithreaded Java programs
being executed as well as to easily implement various dlyos for dynamic analyses. The tool
is itself able to collect structural coverage metrics (bdddcks, methods) and some concurrency-
related metrics (ConcurPairs, Sync) too. ConTest furtiheviges a noise injection facility which
injects the noise into the execution of a tested applicatiur experiments have been done on five
concurrent programs described below.

The Dining philosopherstest case is an implementation of the well-known synchadion
problem of dining philosophers. The program generates af$philosophers (each represented
by a thread) and the same number of shared objects repragéoriks. A deadlock can occur when
executing the test case.

The Airlines test case is a simple artificial program consisting of 8 eéssmd simulating an
air ticket reservation system. It generates a database ttlkéts and then allows 2 dealers (each
represented by a separate thread) to sell tickets to 4 sdf3 cfistomers (each set is represented
by a separate thread). Finally, a check whether the numbeusibmers with tickets is equal to
the number of sold tickets is done. The program contains l-leigel atomicity violation whose
occurrence makes the final check fail.

Crawler is a skeleton of a part of an older version of a major IBM prdaturcsoftware. The
crawler creates a set of threads waiting for a connectioa.débnnection is established, a worker
thread serves it. A bug present in the program can cause éodkadhen the crawler shuts down,
however, itis seen very rarely (6 times per 10 000 runs). Tia@er test case consists of 19 classes.

Another real-life application among our case studies isaaty @evelopment version of an open-
sourceFtpServerproduced by Apache. The version of the server used hereinerita0 classes.
The server creates a new worker thread for each new inconangection to serve it. The code
contains several data races that can cause exceptiong theishutdown process when there is still
an active connection. The probability of spotting an errbiew noise injection is enabled is quite
high in this example because there are multiple places ite8tevhere an exception can be thrown.

Our biggest case study with 1399 classesTiBOrbJ—a CORBA-compliant ORB (Object
Request Broker) product that is a part of the MORFEO Commguviiddleware Platform $2].
The test used checks how the infrastructure handles maildphcurrent simple requests. The

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 11

250 T T T T T T T T T 110

,,, T o e
200 L7] ol
150 F 4 70 L

60

100 |-—-~ 1 [

; S— 40 F
50 |iC

- o]
20 E

0 L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000 10 L L L L L L L L L
20 40 60 80 100 120 140 160 180 200
Avio GoodLock BasicBlock -« -+
DUPairs -------- HBPair ----- Avio GoodLock Sync -
Eraser - Sync - DUPairs --------- HBPair -----
(@ (b)
1200 T T T T T T T T T 40000 T T

35000 |

30000

25000

20000 |

15000

10000 f

5000
0 L L L L L L L L L e
0 200 400 600 800 1000 1200 1400 1600 1800 2000 ok L L L L
0 2000 4000 6000 8000 10000
Avio* Eraser* - GoodLock* -----
DUPairs* --------- GoldiLock HBPair* ----- ConcurPairs GoldiLock* ---------
(c) (d)

Figure 1. Cumulative values of coverage metrics on the Gravdst case (the horizontal axis gives the
number of executions, the vertical axis gives the cumwativmber of covered tasks)

particular test of TIDOrbJ we consider starts an instrumeérgerver and then 10 clients, each
sending 5 requests to the server. There was originally rar @rrthis test, however, a high-level
atomicity violation that leads to a null pointer excepti@shbeen injected there by commenting one
synchr oni zed statement in the code.

10,000 executions of the small programs and 4,000 executibIDOrbJ were performed. In
order to see as many different legal interleaving scenasgsossible, the ConTest tool was set to
randomly inject noise into the executions. ConTest plugtmcollect coverage information were
implemented and SearchBestie was set up to detect occasreferrors.

3.4.2. Results of Experimenihe results of the experiment3Z] are shown in Figurd.. All four
sub-figures show the cumulative number of coverage task&iefetrics covered during one
randomly chosen series of the Crawler test case execufitiesmetrics marked with an asterisk
are extended by the abstract thread identification (witfatéen. set to 20).

Figure 1(a) shows the behavior of the metrics that do not capture the wosret behavior
accurately enough. One coverage metric for non-concurcede measuring the number of
basic blockscovered during tests is added to demonstrate the differbatgeen classical and
concurrency-related coverage metrics. The coverager@utainder the metric based on basic blocks
is nearly constant all the time because the same code wastesarith the same inputs. For the rest
of the metrics shown in Figurg(a), the cumulative number of tasks covered during test exaasiti
increases only within approximately the 200 first execugig@oomed in Figurel (b)), and then
a saturation is reached. The depicted curves demonstratieigher disadvantage of the concerned
metrics—a presence of distinctive shoulders. A repeateduwgion of the test case does examine
different concurrent behaviors (which is indicated by thtet discussed metrics) but the metrics
concerned in the figure are not able to distinguish diffeesnic these behaviors, and therefore

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

12 Z. LETKO, ET AL.

clear shoulders (i.e., sequences of constant values) ceeepein the curves. The presence of such
shoulders makes automatic saturation detection harder.

Figure 1(c) demonstrates a positive effect of considering an extendedert of the tracked
events as mentioned in Secti8rB. The metrics concerned in this sub-figure (i.e., AviBraset,
DUPairs, HBPair, GoodLock, and GoldiLock) are able to distinguish differences in tebdwior
of the executed tests more accurately, leading to shorteuldérs, bigger differences in the
cumulated values, and a later occurrence of the saturatieat-e-indicating that the concerned
metrics behave in a way much better for saturation-basdithges\ very positive behavior has
the GoldiLock metric which does not suffer from shouldersla/fit reaches saturation near the
saturation points of the other metrics. Figdx(e) shows problems of metrics that are too accurate,
namely, ConcurPairs and GoldiLactkThese metrics work fine for small test cases but when used
on a bigger test case they tend to saturate late and prodoo@emns numbers of covered tasks.

To summarize the results, the most favorable behavior fouraton-based testing shows
the GoldiLock metric. Very good behavior have also Avidraser, DUPair,, HBPair", and
GoodLock metrics. The GoodLockmetric can provide information which cannot be directly
inferred from any other examined metric. On the other haihdested locking does not occur in
the tested program, the GoodLdaketric provides no information. The metrics Avio, GoodLpck
HBPair, Eraser, and Sync do not capture the concurrent behaccurately enough while
ConcurPairs and GoldiLo¢knetrics are too accurate (they work fine for small test cagewhen
used on a bigger test case they tend to saturate late andcerethermous numbers of covered
tasks).

4. NOISE INJECTION TECHNIQUES

As already mentioned in the introduction, the effectivenes$ noise-injection-based testing
techniques depends on a satisfactory solution tatlise placemerandnoise seedingroblems.
The noise placement problem addresses the question wheergtiwhich program locations, and
when, i.e., at which executions of these locations, to causeise. The noise seeding problem
then determines how to cause the noise, i.e., which typeisérgenerating mechanism should be
used, and how long it should last. The problems are, of coutandependent, and so, a suitable
combinationof noise placement and noise seeding heuristics (and @fdeivalues of their many
parameters) is to be sought in practice.

In this section, an overview and comparison of various egsapproaches to solving the noise
placement and noise seeding problems is presented, ingladiew newly proposed heuristics for
solving these problems. Moreover, a discussion of diffeesrin applying noise-based testing for
C/C++ and Java programs is provided. This discussion pesvégiveral hints on how to use noise-
based testing as well.

This section is organized as follows. In the first two sulisest (Section4.1 and Sectiort.2),
existing noise placement and noise seeding heuristics eserided. Additionally, several new
heuristics are introduced. Then, in Sectidrs, a selection of results of previously published
comparisons34, 36, 20] of the older noise injection heuristics are presentedeBam the results,
the most promising heuristics and their parameters areopitgd. Then, a new comparison of the
old and newly proposed noise injection heuristics on a s& ahd Java benchmarks of various
size is provided. The used set of benchmarks is the so-fayebigset of benchmarks used for
evaluating noise-injection-based testing. The mentiaaection of the most promising heuristics
that we have been done allowed us to test the selected praymisise configurations much more
thoroughly (which would not be possible with all of the pddsinoise configurations due to the
high time requirements of the experiments). The obtaingdigare discussed separately for C/C++
(Sectiord.4) and Java (Sectioh.5) because of the different noise injection infrastructuresd for
testing programs written in these languages—in partictoaiC/C++ code, instrumentation on the
binary level was used, whereas for Java, instrumentatidhebytecode level was used. An insight
into the differences of the considered noise-based tesfiityC++ programs on the binary level
and of Java programs on the bytecode level is presented imnB8&c6. Despite the differences,

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 13

a discussion of commonalities and dissimilarities of theawted results is provided in Sectidry.
Finally, some hints on how to effectively use noise-basetirtg are presented in Sectidrs.

4.1. Noise Placement Heuristics

Noise placement heuristics determine where, i.e., at whiclgram locations, and when, i.e., at
which executions of these locations, should a noise betegedn this section, an overview of
existing noise placement heuristics is provided first aed several novel heuristics addressing the
problem of where to put a noise are introduced.

Itis discussed in several papet$] 18, 54] that putting a noise at every possible program location
(ploc [19)]) is inefficient. This approach significantly increasesitieirred overhead, and it does not
help much in increasing chances to find bugs since only a flavaet context switches are critical
for a concurrency error to manifest. Also, it turns out thattipg a noise at a certain program
location can help to spot the concurrency error, but it cao alask it completely.

The IBM ConTest tool 14] allows one to inject a noise only before and/or after corenuy-
related events (namely, accesses to class member varighd¢is variables, and arrays stored
in the JVM heap, calls ofwait (), interrupt(), notify(), nonitorenter, and
noni t or exi t routines). Since the tool has no information which membdddieand arrays
are really shared (i.e., accessed by multiple threadsjpstluctions operating with the heap are
considered. Moreover, motivated by a coding anti-pattermhich developers use callswéi t ()
instead of proper synchronization, ConTest is able to éefetrcalls to thevai t () andsl eep()
routines too.

The rstesttool [54] considers as possibly interesting only those locatiomas #ppear before
concurrency-related events. Moreover, rstest uses a siggiape analysis and a lockset-based
algorithm to identify theunprotected accesses shared variables. An unprotected access reads
or writes a variable which is visible to multiple threadshatit holding an appropriate lock. This
optimization reduces the number of program locations witrer@oise can be put but suppresses the
ability to detect some concurrency errors, e.g., highlldata races or deadlocks where all accesses
to problematic variables are correctly guarded by a lock.

Moreover, the number of accesses to shared memory and €alisichronization elements is
still high in multi-threaded programs. Therefore, sevarlristics for determining more concretely
where and when to put a noise were propo$ed}, 54, 57].

The simplest heuristic is based on a random number gendfaios4]. This randomheuristic
puts a noise before an executed program location with a giv@pability, where the probability is
the same for all program locations considered. Most otheristics extend this heuristic in a way
that they reduce the number of possible program locatiofusdghich the noise might be injected.
When considering all possible program locations in a pnogtis heuristic is calledandom-all
below to distinguish it from the other heuristics that cansken as modifications of tlrandom
heuristic.

It was shown @] that restricting the number of program locations only tosth accessing
shared variables or a specific shared variable when appilygxg@ndom-allheuristic increases the
probability of spotting an error. These two modificationgtod random-allheuristic are denoted
here asharedVar-alland sharedVar-ongrespectively. When thsharedVar-onéneuristic is used,
the shared variable is usually chosen randomly from a likhofvn shared variables.

Several heuristics based on concurrency coverage mod&$ban published. Coverage-directed
generation of interleaving4 §] considers two coverage models. The first model determiresiver
the execution of each method was interrupted by a contextlswihe second model determines
whether a method execution was interrupted by any otheradeffhe level of methods used here
can be in most of the cases too coarse5If,[a coverage model considers, for each synchronization
primitive, various distinctive situations that can occurem the primitive is executed (e.g., in the
case of a synchronized block defined using the Java keyagrithr oni zed, the tasks are:
synchronization visitedsynchronization blockingome other thread, argynchronization blocked
by some other thread). The approach then injects a noiserasponding synchronization primitive

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

14 Z. LETKO, ET AL.

program locations to increase the coverage. None of theséhéwristics focuses on accesses to
shared variables which can limit their ability to discovens concurrency errors, e.g., data races.

A coverage-based noise placement heurisit§ (referred to acoveragen this article) targets
both accesses to shared variables as well as the use of egimatiion primitives, and so it can
be used to discover lock-based deadlocks as well as dati@detoncurrency errors, such as data
races and atomicity violations. The heuristic considelly program locations that appear before
concurrency-related events as suitable for noise injeclibe technique detects subsequent accesses
to shared variables and monitors whether these accesggrated in different threads. Such
couples of subsequent accesses are considered as ingetedie influenced by noise. The noise in
particular tries to test the opposite orderings of recoelashts in each couple. Therefore, a noise is
put before the first access recorded in a couple with a hopetibaaccess which was recorded
as the subsequent occurs earlier. If both accesses areegubydthe same lock, the described
approach would inject a noise into a shared critical seatthith would not change the ordering
of the recorded events. In such a case, the heuristic infeetsoise before the appropriate locking
operation where the common lock was obtained. Addition#iig heuristic monitors the frequency
of a program location execution during a test and puts a raiifiee given program location with
a probability biased wrt. this frequency—the more often @gpam location is executed the lower
probability is used.

Next, a noise placement heuristic calleshd/write heuristic R0] uses different noise settings
for the shared variable read accesses and write accesseseflimgs might differ in the frequency
which controls how often a noise is generated before a pdaticlass of accesses or in the chosen
noise seeding heuristic. The heuristic is motivated by traroon data race scenarios where there
are two unsynchronized accesses to a shared variable agasabhe of these accesses is a write
access. So, when a memory access is encountered, the bgsbtiei can do is to search the other
threads for the second (conflicting) access. In order toldkesnoise injected to the other threads,
the fact that one of the accesses causing a data race islly@icarite access while the other is
a read access is exploited. Based on this observation,regstrooise before one type of memory
accesses and a weaker noise before the other is injected.

A new noise placement heuristic. As theread/writenoise placement heuristic proved to be very
useful when detecting data races, a new noise placemernistiewalled apattern heuristic is
proposed here. The heuristic injects a noise before acctsgariables which were already accessed
before within the same method or function. The motivatiorehs to create a noise placement
heuristic that would help in discovering atomicity viotatiscenarios. An atomicity violation occurs
when two accesses to a shared variable, which should berpedoatomically, are interleaved by
another access to this variable. The idea is to inject a m&ig®e the second (or any further) access
to a shared variable from the same thread within a logicdl(@rogram method in this case) so
other threads have more time to access this variable in leetithe accesses, causing an atomicity
violation. It makes sense to inject such noise even insid®ekbntended by the programmer to
be executed atomically (e.g., a block defined by s@chr oni zed keyword in Java) and test
whether the synchronization is implemented correctly.

4.2. Noise Seeding Heuristics

Noise seeding heuristics determine how to cause a noisgwibéch type of noise generating
mechanism should be used, and how long should it last, iosv,dtrong the noise should be. In
this section, an overview of existing noise seeding hdasiss provided and then a new heuristic
addressing the problem how to cause a noise is proposed.

As the primary purpose of injecting a noise is to disturb teeal scheduling of threads, the noise
generating mechanism should influence the scheduler in saayeThere exist several ways how
a scheduler decision can be affected in J&&h [The priority heuristic changes priorities of threads
which allows chosen threads to make progress more oftertlineads with the lower priority. The
yield heuristic injects one or more calls of thé el d() method which causes a context switch.
The sleepheuristic injects one call ol eep() , and thewait heuristic injects a call ohai t () .

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 15

Thesl eep() andwai t () methods take a timeout for which to block a thread as thearmpater.
In case of thevait heuristic the concerned thread must first obtain a specaeshmonitor, then call
wai t () with a timeout on it, and finally, release the monitor. Usihg inonitor makes the current
thread flush all local data to shared memory and make thetnleifar other threads. Likewise, the
synchYielcheuristic combines thgield heuristic with obtaining a monitor. TheusyWaitheuristic
does not obtain a monitor, but instead loops for some time.

ThehaltOneThreadheuristic p7] occasionally stops one thread until all remaining threzsasot
make any further progress. Finally, ttimeoutTampeheuristic randomly reduces the time-out used
when calling thes| eep() andwai t () methodsin the tested program. This allows one to test that
the delay inserted by these methods is not used instead pépsgnchronization.

All the noise seeding heuristics mentioned above are pdesined by thestrength of noiseln
case of thesleep wait andbusyWaitheuristics, the strength gives the time to wait or loop. & th
case of thgjield heuristic, the strength says how many timesythel d() routine should be called.
Finally, in the case of theriority heuristic, the strength determines how much the threadifyrio
changes.

The barrier scheduling heuristic9] based on semaphores is presented. Each shared variable is
assigned a specific semaphore in such a way that a thread estomaait just before the particular
shared variable is accessed. When more than one threadiisgratithe same monitor (and thus for
access to the same variable), thentiogé i f yAl | () method is used to simultaneously advance
the waiting threads in hope to spot a data race. To prevediiatge, the waiting of threads on the
injected semaphores is timed.

All the above works discuss noise seeding heuristics foa.J@he first results obtained by
implementations of the selected noise seeding heurigtipgrticular, theyield andsleepheuristics,
in C [20] have been recently presented as well.

A new noise seeding heuristic. Some kinds of concurrency errors manifest in situationsrevhe
a thread executes an action earlier that it should, e.gdsseamotification before someone starts
waiting, accesses a variable before it is initialized, étcnew noise seeding heuristic called
a inverseNoiséneuristic proposed here does the opposite ofiléOneThreacheuristic. That is,

it stops all but one thread and allows this one thread to g&drass possible in its execution. This
increases chances that the thread will trigger an actiortwhishould perform only after some
of the blocked threads do something, e.g., start waitingjalize a variable, etc. Moreover, the
other threads are stopped at the nearest instrumentationvgaich is suitable for noise injection.
Therefore, the current thread has the opportunity to eedastructions which trigger an atomicity
violation if some of the blocked threads are blocked witmriraproperly guarded atomic section.

4.3. Results of Previously Performed Comparisons

In this section, the most important aspects of previouslyliphed comparisons of noise injection
heuristics PO, 34, 36] are highlighted. These results were used to set up an emagat for the
comparisons presented in this article. In particular, #suits lead to a choice among the many
possible configurations of noise placement and noise sgééiuristics—those which provide good
results in the comparisons presented in this section.

An extensive and systematic comparison of results of variexisting noise placement and
noise seeding heuristics including the coverage-baseskmmacement heuristics and the related
noise seeding heuristics introduced above for Java hasphé#ished in B4]. The heuristics were
compared according to their efficiency to improve detectbrconcurrency errors, to improve
the concurrency-related coverage metrics HBPaird Avig® in the considered test cases, and to
affect the execution time of the considered test cases. BRai and Avic" metrics described
in Section3.2 have been chosen due to their very good ratio of providinigfaatory results from
the point of view of suitability for saturation-based or mdabased testing and a relatively low
overhead of measuring the achieved coverage (and hencstitability for performing many tests
with an acceptable interference with the tested prograhte) SearchBestie platforr33] was used
to set up and execute the needed tests with IBM ConTeBt The heuristics were evaluated on

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

16 Z. LETKO, ET AL.

a set of 4 test cases (namely, Airlines, Crawler, FTPSearat, TIDOorbJ test cases) which have
been already described in Secti®d.1

First, there was done a comparison of several noise seeeungstics denoted as basic below
(namely, thejield, synchYieldwait, busyWaitandsleep and the IBM ConTeghixednoise seeding
heuristic which randomly chooses one of the basic noiseisg&euristics at each call of the noise
injection routine. Then, the improvement which can be agdeby combining basic noise seeding
heuristics with théaltOneThreagndtimeoutTamperingeuristics was studied. All heuristics were
used with theandom-allnoise placement heuristic enabled.

The results indicate that there is no optimal configuratian, for each test case and each
testing goal (improvement of coverage, error manifestatio overhead minimization), one needs
to choose different noise seeding heuristie][Moreover, in some cases, the noise injection
heuristics improved the obtained results considerablyayhi some other cases, the noise seeding
configurations used with thendom-allnoise placement heuristic actually provided considerably
worse—demonstrating the ability of noise injection tecjuas to mask concurrency errogd]. The
timeoutTampeheuristic provided a considerable improvement fordteavler test case. As already
said, this test case is a skeleton of an IBM software protiMboen developers extracted the skeleton,
they modeled its environment using timed routines. TfimeoutTampeheuristic influences these
timeouts in a way leading to a significantly better results.

Next, a comparison of different noise placement heurigiaes been published by Letk84] as
well. Mainly, therandom-all sharedVar and coverageheuristics were considered. Additionally,
a heuristic which randomly sets up noise settings beforbh st execution was considered in the
comparison too. The noise placement heuristics were agenpared according to the ability to
detect concurrency errors and to provide a high coveragen,Th comparison of the heuristics
using relative results was provided as well. In this congeanj the total number of covered tasks or
detected errors was divided by the execution time (in sesthe heuristics needed to achieve the
results.

Again, none of the heuristics achieved best results in thepesisons for all the considered
test cases. Overall good results were obtained by diffevergions of thesharedVarheuristic
which focuses noise to shared variables only. There was noarviamong the two versions of
the heuristicsharedVar-allwhich targets all accesses to shared variableshatedVar-onevhich
targets accesses to a single randomly chosen shared eanaddch test execution. The heuristic
using random settings for each test execution achievedermage good results too. This was because
accumulated results from multiple runs (namely, 20 and ’B@s) were used for the comparison—
some of the randomly chosen settings therefore provideyl geod results regardless of the test
case which turned in the overall results. Tdowerageheuristic achieved good results in some cases
as well.

Finally, the best relative improvement achieved by noiasdld testing in the considered test
cases was presented by Letk®][Table| shows the results obtained when evaluating the best
relative improvement (denoted bspr.) in the experiments for the considered metrics and tesscase
The improvement is computed as a relative improvement compi® the configuration without
noise injection (note that collection of coverage inforimatand the instrumentation itself already
introduce a certain amount of noise). The next three coluesoted asFreq Seeding heurand
Placement heurpresent the noise frequency, noise seeding heuristimaisd placement heuristic
used. Combinations of the basic noise seeding heuristits tive timeoutTamperingheuristic
(denoted a#t) andhaltOneThreadheuristic (denoted dst) were also allowed and evaluated.

The improvement of the error manifestation ratio (denote&rzor) in the TIDOorbJ test case
is not present because the version of the test case we ustinsomo error. Thé&l symbol in the
error manifestation ratio of the Crawler test case meartsiieamprovement cannot be computed
because in the experiments, the error does not manifesttiibemise was disabled. The best value,
which was achieved by theoverageheuristic, reached 2 % of error manifestation in this teseca
(on average 1 error manifestation per 50 executions).

In some cases (e.g., in the Airlines test case), the imprem¢mf the error detection is high,
reaching several hundreds percents. The lowest improviewsnachieved in the FTPServer test

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING

Table I. The best relative improvement achieved by noiseistizs

Test Metric Impr. | nFreq.| Seeding heur. Placement heun.
Airlines Error 5.93 150 | yield + tt sharedVar-one
Avio* 1.99 - - no noise
HBPair* 1.90 - - no noise
Crawler Error O - busyWait coverage
Avio* 8.20 50 | mixed + tt + ht sharedVar-all
HBPair* 3.55 200 | mixed + tt + ht sharedVar-all
FTPServer| Error 1.09 50 | sleep sharedVar-one
Avio* 1.26 50 | wait + tt + ht sharedVar-all
HBPair* 1.55 150 | busyWait + ht sharedVar-all
TIDOrbJ Error -
Avio* 1.12 200 | busyWait + tt + ht| sharedVar-one
HBPair* 1.23 200 | busyWait + tt + ht| sharedVar-one

17

Table Il. Success ratio of the AtomRace detector for var@mrgigurations of the noise injection (the values
represent the percentage of runs, out of 500, in which a datawas found)

Noise injection configuration Test case
ConflD | Placement heurl Seeding heur. | Freq.| Strength | t05] t06] t07
instrumented, no sleep or yield noise 00| 10| 16
1 random-all sleep 500 10 1.2 | 53.6| 69.4
2 random-all sleep 500 0-10 0.6 | 31.0| 79.0
3 read/write sleep /sleep /sleep 500 | 10/5/20 | 43.0| 92.6 | 96.2
4 read/write yield / yield / sleep| 500| 10/10/10| 51.0| 95.0 | 99.6

case. This is mainly because the error manifestation ratiguite high even without the noise
injection and by the fact that any performance degradatioeffiect makes the code containing
the error execute less often. Overall, the table preseptpdiitive effect of relatively cheap and
easy to use noise injection technique in the process ohtestncurrent programs. Again, one
cannot claim a clear winner among the noise placement arsé seeding heuristics. However, the
sharedVamoise placement heuristic achieved very good overall teguthis evaluation.

Next, a comparison of theead/write noise placement heuristic with thendom-all heuristic
on a set of 14 C programs implementing a simple ticket algoriusing the pthreads library
is presentedZ0]. These programs were created by students of an advancedtiogesystems
course and all contain data races. They are referred asassst®1 tot 14. The ANaConDA
framework R1] was used to perform the tests. The framework uses the IfitefrBmework [39]
for dynamic binary instrumentation to insert the code impdating the noise injection heuristics
into a C/C++ program binary. As the framework cannot provddacurrent coverage information
yet, an evaluation of the successfully detected data raceadh test run was performed. For the
detection of data races, a C++ implementation of the AtoreRignamic detecto3p] was used.

Results obtained for some selected noise injection cordiguns and test cases are shown in
Tablesll andlll. Each configuration is defined by a noise placement and neesirgy heuristics
together with the values of frequency and strength usedfddrasPlacement heurSeeding heur.
Freq., andStrength respectively). If theead/writenoise placement heuristic is used, Beeding
heur.andStrengthcolumns then contain 3 values. These are the values usdtefeyhchronization
operations, read accesses and write accesses, respettivese of theSeeding heucolumn, the
values represent the noise seeding heuristic used, andénofaheStrengthcolumn, the value of
strength used. If the value of strength is an interval, théiqudar value was taken randomly from
the interval each time the noise was injected.

Copyright© 2013 John Wiley & Sons, Ltd.
Prepared usingtvrauth.cls

Softw. Test. Verif. Reliali2013)
DOI: 10.1002/stvr

18 Z. LETKO, ET AL.

Table IlI. Success ratio of the AtomRace detector for variconfigurations of the noise injection (the values
represent the percentage of runs, out of 500, in which a datawas found)

Noise injection configuration Test case
ConflD | Placementheurl Seeding heur. | Freq.| Strength | t04 | t05
instrumented, no sleep or yield noise 12| 0.0

read/write sleep/sleep/yield 100| 10/10/10| 7.4| 62.4
read/write sleep /yield/sleep 100| 10/10/10| 96.8| 9.6
read/write yield / sleep/yield| 100| 10/10/10| 6.2 | 64.4
read/write yield / yield / sleep| 100| 10/10/10| 94.4| 7.2

| | O U1

Theread/writenoise placement heuristic allows to use different noisdisgeheuristics and their
parameters for different types of memory accesses. Of eptinere are many possibilities how
to combine them, so the two most promising combinations iecased. First, the same noise
seeding heuristics have been used, but parametrized théndifferent values of strength, i.e.,
a bigger strength for one type of memory accesses and a evably lower for the second one
was applied. The goal was to lower the amount of noise injeiciéhe threads that are intended to
be search through when detecting data races. As the resulblell show, such configurations
(Configuration no. 3) achieved better results than the cordigons using theandom-allheuristic
(Configurations no. 1 and 2).

Configurations which use different noise seeding heusdtic different memory accesses were
also used. More precisely, teeepheuristic for one type of memory accesses angiblel heuristic
for the second one were studied. Their values of strengtk lefirthe same. The goal was not only
to lower the amount of noise injected to the threads to beckedrthrough, but also to allow the
threads to perform as many memory accesses as possibles Waikleep noise is blocking the
thread performing the first access, the yield noise is fgrtie program to quickly switch threads
so the threads will be running more often and hence performe m@mory accesses. As the results
in Tablell show, such configurations (Configuration no. 4) achieved beg¢ter results than the ones
combining different values of strength (Configuration np. 3

The tests also proved that it is important to choose the tighe of memory accesses before
which the stronger noise is injected. When there are onlyvaufeprotected write accesses which
might cause a data race, the stronger noise should be putlibfse accesses. This is because it
is far more probable that one will encounter the more comneawl laccesses in the other threads
which are being searched than the rare write accesses.dittia¢ion is opposite, the stronger noise
should be put before the read accesses. Tébkhows the difference in results for two programs
which mainly differ in how a data race might manifest. As ti@4 test case contains only a few
unprotected write accesses which might cause a data racenang unprotected read accesses,
the configurations injecting a stronger noise before théewatccesses (Configurations no. 6 and
8) give far superior results than configurations injectingiranger noise before the read accesses
(Configurations no. 5 and 7). In case of th@5 test case which contains only a few unprotected
read accesses and many unprotected write accesses, e aesgompletely opposite.

4.4. A Comparison of Noise Injection Techniques in C/C++

New experiments that were performed with C programs andenimjgction heuristics selected
according to the experience from older experiments desdiiib the previous section are presented
here (new experiments with Java programs will be descrilbethé following section). First,

a description of the testing environment and experimetihgstwhich are used to compare selected
noise injection heuristics, including the newly proposedistics, is given. Then, the obtained
results of these heuristics on four C programs are provided.

4.4.1. Testing Environmenthe framework ANaConDAZ1] already mentioned in Sectigh3was
used to perform the tests. For each execution of a test,aheefvork collects information about test
duration and about the fact whether an error is manifestedoitrast to the previous comparisons

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 19

where each noise configuration was given an equal numbesiéxecutions, in this comparison,

each considered configuration of noise heuristics was gdeminutes of real time to test the

program and average results were computed. Thereforepitiigarations with higher impact on the

performance were provided with lower number of executidrib@test. This allows to demonstrate
efficiency of the heuristics in practical testing scenasdeere the time and other resources for
testing are usually limited.

As there are many possible combinations of various noiseepiant and noise seeding heuristics
and as each of these heuristics might be parametrized in rddfeyent ways, there exists
a large number of configurations that might be used. In ordldwetp the number of considered
configurations on a reasonable level, the focus is devotééutastics and their parameters which
provided good results in the previous comparisons and adsbenew heuristics introduced in the
previous sections.

In case of the noise placement heuristics, the followingsoare considered: theandom-
all heuristic which is used as a base-line, gimaredVar-alland sharedVar-onenheuristics which
provided good results in the evaluation of noise placemeatiktics for testing Java programs, the
read/writeheuristic which turned out to be efficient in the previouserxpents with noise injection
in C/C++, and the newly proposgzhtternheuristic. All these heuristics decide whether to inject
a noise based on thfeequencyparameter which controls how often the noise is injectechat t
selected place. The frequency parameter was set such ¢habige was generated either in 15 % or
30 % of situations. These values were also inspired by thétsasf the previous comparisons.

As for the noise seeding heuristics, thleep yield, and busyWaitheuristics were considered
because they provided good results in some cases in theopseebmparisons. Moreover, the
newly proposednverseNoiséheuristic was added. The noise seeding heuristics are paiaetd
by the strengthparameter. This parameter was set to 2 and 20 milliseconteicase ofleep
andbusyWaitheuristics and to 10 and 100 executions ofyinel d() function in the case of the
yield heuristic. In the case of thead/write heuristic, the strength parameter for writes and reads
was set in the mutually complementary way. That is, if a higiadue for writes (e.g., 20 ms) was
used, the lower value for reads (i.e., 2 ms) was applied, &®lversa. As for the newly proposed
inverseNoisgthe parameter was set to 2 and 20 operations executed hyrteatthread while other
threads are blocked. The higher values were chosen baskd msults of the previous comparisons
where a stronger noise often helped more than a weaker oadoWker values were used primarily
because of theead/writeheuristic, where combining strong and a much weaker noismlthe best
results. Also, as thgield heuristic disturbs the usual scheduling of threads fartlems the other
noise seeding heuristics, higher values of strength wezd fog it. In case of theead/writenoise
placement heuristic, configurations combiningsheepandyield noise seeding heuristics with fixed
values of strength were also used (10 for shkeepheuristic and 50 for thgield heuristic).

The combinations of heuristics described above give 8lenomnfigurations § x 2 noise
placement heuristicg, x 2 noise seeding heuristics, ahdonfiguration without noise—referred to
asnonoisebelow). Note that the previous comparisons did not contesharedVar-all sharedVar-
oneand the newly proposeghatternnoise placement heuristics. Also, thesyWaitand the newly
proposednverseNoisanoise seeding heuristics were not considered. They areettarnined for
C/C++ programs for the first time.

For the experiments, 4 simple C programs (about 200 to 5@8 tificode) implementing a simple
ticket algorithm using the pthreads library were used. €h@®grams were chosen from a set of
programs 20] which were already mentioned in Sectidr3. The chosen programs are referred
to as test cases01, t 03, t 05 andt 06. The main reason to use only a subset of programs
was that some of the newly tested noise placement heurigies information about the variables
which are accessed. In case of C/C++ programs, these infiormm@eed to be extracted from the
debugging information of the program. However, the ANaCArftamework has only a partial
support for extracting this kind of information, and for nyaof these programs the compiler
generated debugging information which the framework wasate to process. So in order to
test these new heuristics, availability of this informatis required. As the framework imposes
a huge slowdown on the execution of the tested program, bjgggrams were not considered for

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

20 Z. LETKO, ET AL.

the tests because one would be able to perform only a femgestns in the given 20 minute time
slot. All the programs were executed on an 4-core Intel Xed855 2.66GHz machine with the
Hyper-threading support (up to 8 threads might run simeitassly) and 64GB memory running
Linux with the 2.6.32 kernel.

The selected programs contain various kinds of errors thédaa to data races in the end. In
t 01, the data race is on a shared variable holding the numbericket aalllowed to enter a critical
section. The variable is updated in a critical section, hahtread outside of it. The next program
(t 03) contains a data race on a shared variable used to assigm |I@&ch of the threads. This
variable is updated and read without any synchronizatiomever, all of these accesses happen
when the threads are started one immediately after anaihéine data race may only occur during
this short time. ProgramO05 has a rarely occurring data race on individual items of aesharray
where each item may be accessed by the main thread and ore athtir threads simultaneously
just before the main thread starts to wait for the secondhthte end (join). Program06 contains
a data race on &i nespec structure, shared among all threads, used to randomly gientre
number of milliseconds a thread should sleep before andextering the monitor.

IS
1

Freq, Strength
15%, higher

15%, medium
B15%, lower

15%, lower / higher
15%, higher / lower
030%, higher

W 30%, medium
m30%, lower

&.30%, lower [higher
W 30%, higher / lower

w

¥
N
N
N
N
N

N
i

Number Of Test Cases
= N

e

cep/ Yield |—

/|
N
N
N
A
N
N
N
N
N
N
N
N
N
N
I
N
N

N
\
N
\
§
¥
o8|
N
4 N
N
B
\
\
\
t
\

o
@
2
0]

Inverse F

Sleep
Yield
Yield
Inverse —=——
Sleep =m0
Yield
Inverse

No Noise
Busy Wait
Busy Wait

Busy Wail p—es—)

Yield/ Sleep p—

Busy Wait
Busy Wait

Noise Seeding ©

w
Random-all Read / Write SharedVvar-all SharedVar-one
Noise Placement

Figure 2. A comparison of configurations across all of thesaigred C test cases

4.4.2. Experimental Resulis this section, a comparison of the efficiency of detecting
concurrency-related errors using various noise injeaanfigurations is described first. Then, focus
is devoted to the results obtained by the newly proposeddimst

Since all of the test cases contain a data race and the carsmpuof these data races are
not always externally visible, a dynamic analysis usingAlemRace dynamic detecto8$] was
performed in order to find these errors. Like the noise impecthe dynamic analysis requires the
program to be instrumented, so it is problematic to compae¢sults obtained with and without
dynamic analysis. However, note that the tests that weggnally used to evaluate the considered
student projects from which the test cases are derived ditbond any errors. The instrumentation
of a program usually increases the probability of finding mareeven when no noise is injected, as
the execution of the instrumented code itself causes a Barvery weak noise which might help
a little with the error detection. So, even with thenoiseconfiguration, it was possible to detect
some errors in the 20 minute time slot in most of the test cam@sely,t 01,t 03, andt 06).

To compare the efficiency of each configuration, their gdnsmacess across all of the test
cases executed was measured. The results are summarizgdi@Z The x-axis shows the noise
configurations grouped by the noise placement and noiséggleeluristics with the values of noise
frequency and strength represented by the different hdttheobars. The y-axis then shows the
number of test cases (out of 4) for which the respective cardigpn was among the best 30 % of
the configurations (i.e., among the best 24 configuratiotisarcase). Here, the best configurations
were chosen according to the percentage of runs in whicheerde¢ was detected. The other noise

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 21

configurations were, in fact, capable of detecting an emanost of the test cases too, but in less
test runs.

The graph shows that even when the test cases are very sanidacontain the same type of
concurrency errors, most of the configurations work onlysome of the test cases. Of course,
one can see that some of the configurations were more sugc#sah the others. In general,
configurations using theleepand busyWaitheuristics were the most successful ones. The most
successful approach was to combine these heuristics wathatitdom-all read/write or pattern
heuristics.

A further analysis of the results has also shown that chgosia right combination of noise
placement and noise seeding is important, but tweakingahees of noise frequency and strength
may also significantly influence the results. Many configoret provided very different results
when the values of frequency or strength were changed.

As for the newly proposed heuristics, configurations udiegatternheuristic proved to be very
useful in most of the test cases (namely, ttldd, t 03, andt 06 test cases). On the other hand, the
inverseNoiséneuristic helped only a little and only when combined witk tindom-allheuristic.

As for the heuristics tested for the first time in C progranasnely thesharedVar-allandsharedVar-
oneheuristics, these heuristics achieved good results foegest cases, but they were not so good
overall compared to the other noise placement heuristics.

4.5. A Comparison of Noise Injection Techniques in Java

In this section, new experiments with noise injection tégbas in Java are presented. Similarly to
the the results for C presented above, description of thimgesnvironment and test cases is given
first. Subsequently, a summary of the obtained results septed.

4.5.1. Testing Environmernthe code instrumentation and noise injection was done ubm¢{BM
ConTest framework[4] executed with plug-ins implementing the noise heuristind collecting
selected coverage information. Automatic test instruiigorn, execution, and evaluation was
orchestrated by the SearchBestie framewa6}.[In contrast to the experiments with noise injection
to C programs, the infrastructure collected not only infation related to execution time and error
manifestation but also coverage under two selected cosamagrics, namely, HBPdiand Avid*,
which were already used in the previous comparisons megdiabove and which were chosen due
to their very good ratio of providing satisfactory resultsthe experiments with saturation-based
testing described in Sectiéh4 and a relatively low overhead of measuring the achievedregee

In the comparison below, all the configurations previouslgatibed in the comparison of noise
heuristics for testing C/C++ programs were used, togetitarsgveral more configurations based on
the coverage-based heuristBf] introduced in Sectiod.1 Hence, the following noise placement
heuristics are considerecandom-all sharedVar-all sharedVar-ongpattern read/write and the
coverage-basedoverageheuristic which is exclusive to the comparision of Java paogs. The
reason why thecoverageheuristic is studied only for the Java programs is the faet the
ANaConDA framework, used in the experiments with C programiaot currently able to provide
any coverage information and thus cannot support any cgedrased heuristics. All the heuristics
were parametrized by the frequency parameter set to 15 % %r. Blbte that this is the first time
theread/writeand the newly proposgghtternheuristic are evaluated on Java test cases.

As for the noise seeding heuristics, the same heuristicsrdhei C comparison above are
considered, namelyield, sleep busyWait and the newly proposeidverNoiseheuristics. Again,
two levels of noise strength for each of the heuristics wesedu2 and 20 nanoseconds for the
sleepandbusyWaitheuristics, 2 and 20 instructions for theserNoiseheuristic, and 10 and 100
executions ofyi el d() for theyield heuristic. Finally, experiments with the configuration alni
injects no noise into the execution but which instrumergsctbde and collects coverage information
were evaluated as well (referred toramoisebelow). Recall, that execution of any injected code in
fact influences performance and scheduling of threads.

The above described combinations of heuristics give 97enomnfigurations § x 2 noise
placement heuristicst x 2 noise seeding heuristics, andnonoiseconfiguration). Similarly to

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

22 Z. LETKO, ET AL.

the comparison for C programs, each configuration was give@ minutes time slot to test the
considered program.

The above described configurations of noise injection tieglas were evaluated on 8 Java test
cases based on 6 Java programs of various size Aitliees, Crawler, and FtpServertest cases
have already been introduced in Secti#.1 The Animatortest case is based on a simple graphic
application for algorithm animation calledtangoAnimator The test case creates a window and
draws a picture according to a given batch file. The test cansists of 31 classes and contains
a data race that leads ol | Poi nt er Excepti on.

The Rovertest case is a Java version of the NASA Ames K9 Rover Exec{i#ige The test
case, consisting of 83 classes, executes a selected higlhplan or plans—programs written in
alanguage that specifies actions and constraints on thememteexperimental apparatus, and other
resources of the rover. The test case contains a deadlock daich race in the testing environment
during exchanging of two consecutive high-level plans.hrBatrors make the test hang. Similarly
to theCrawler test case, the probability of spotting the errors is extigrusv without the use of
a noise injection.

TheElevatortest case is a simple real-time discrete event simul&@rfhich contains atomicity
violation leading td\ul | Poi nt er Except i on. Elevators are modeled as individual threads that
poll directives from a central control board. The commutitais synchronized using locks. The
used configuration simulates 4 elevators.

Moreover, to demonstrate that the testing environmentbsgs an important role in the testing
process, two prominent test cases in which the probabifigpotting the error is extremely low
(namely, Rover and Crawler) were executed on two differemtilvare configurations (the results
are then referred to &rawler2andRoverd. The Airlines, Animator, Crawler, and Rover test cases
were executed on Intel i5-2500 machines with 2GB memoryinghinux with the 2.6.32 kernel
and 64bit Sun (Oracle) JVM version 1.6. The Crawler2, ElewditpServer, and Rover2 test cases
were executed on Intel i7-3770K machines with 4GB memorying Linux with the 3.2.0 kernel
and 64bit OpenJDK JVM version 1.6.

4.5.2. Experimental Resulis this section, results comparing efficiency of the congdenoise
configurations from the most important point of view, nantélgir efficiency in error detection, are
presented. Then, a short discussion of the results thesistiesiachieved in terms of coverage is
provided. Next, results achieved by the newly proposedistes are highlighted. And finally, the
influence of the testing environment is discussed.

In a vast majority of the test cases, the error does not netrdfeing the 20 minutes long testing
of non-instrumented code. Instrumentation of the testaseally increases the probability to spot
an error a bit because the instrumented code is executedatidas suitable for noise injection.
In particular, thenonoiseconfiguration was able to detect an error within the giveretstot in
two test cases, namely, the Airlines (the error manifeste®i% of runs) and FTPServer (the error
manifested in 66 % of runs).

The success of noise-based testing in detection of comayrerrors is summarized in Figuge
The figure shows configurations grouped by the noise placear&hnoise seeding heuristics on
the x-axis (the noise frequency and strength are repraségtthe different hatch of the bars). The
y-axis shows the number of test cases (out of 8) in which tmécp#ar configuration was able to
detect concurrency errors within the given time. In mosesathere were only a few configurations
which were able to detect errors in the given time (rangiognf2 in the Elevator test case to 9 in
the Crawler test case). In the Airlines and FTPServer testavhere the probability of spotting
an error is much higher than in the other test cases, all afafse configurations were able to detect
the errors.

The figure shows that there is no silver bullet among the cemed heuristics. Indeed, none of
the columns reached value 8 which would mean that the hegrisbrked for all the considered
test cases. Moreover, one can clearly see that some of tHiguwations were mostly successful
(mainly the configurations combining tieeverageheuristic with thesleepandbusyWaitheuristics)

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 23

Freq, Strength
Wzero
E15%, higher
15%, medium
E15%, lower
®15%, lower/ higher
B 15%, higher / lower
O30%, higher
E30%, medium
mM30%, lower
E230%, lower/ higher
m30%, higher / lower

'“

I

I
=
=
=

A0 @ N o

Number of Test Cases
w

——
TR

N

N
§
5!
5|
§
N

e

AR]
O CANRN]

ey
i

ey
nin Tiriit
1

Yield/ Sleepg

—

el

A
=3
@
@
[

Yield

ol
]
=

Sleep
Yield
Sleep
Sleep [
Yield

Inverse F———c—y
Sleep

4
©
4
T
>

1=

Inverse

Busy Wait
Inverse
Busy Wait
Inverse
eep / Yield
Busy Wait
Busy Wait
Inverse

@
=
>
%)
=
wm

Busy Wait 00 8100101810010 000D B B2

Noise Seeding ©

0
Coverage Pafttern Random-all Read [Write Sharedvar-all Sharedvar-one
Noise Placement

Figure 3. A comparison of noise configurations across atefJava test cases

and some were successful only in the easy Airlines and FMeB&zst cases (for instance, the
patternnoise placement heuristic combined with most of the noiaegrhent heuristics).

A further analysis of the results also shows that in most & ¢hses choosing the right
combination of noise placement and noise seeding hewrigis far more important then tweaking
the noise frequency and noise strength parameters. Marfigaoations provided similar results
when any value of strength and frequency was used.

Overall, the results focused on the detection of concuyrenmrs show that noise-based testing
is able to dramatically increase the probability of findilmgicurrency errors. It is enough to use any
combination of noise injection heuristics in order to degoors that do manifest during normal test
executions even through only rarely (as can be seen from iiees and FTPServer test cases).
Moreover, in the case of truly rarely manifesting concucsearrors which are hard to spot even
during the noise-based testing, a careful choice of the amatibn of noise placement and noise
seeding heuristics and their parameters is necessary.

As for the coverage obtained under considered coverageicsiethe results clearly show
a positive impact of noise-based testing in comparison withnonoiseconfiguration. In some
cases, a high achieved coverage correlated with a successoindetection (for instance, in the
Elevator test case), sometimes this correlation could eetified only between the error detection
ability and one of the coverage metrics (e.g., Avinetric in the Airlines test case and HBPaiin
the Rover2 test case), and sometimes there was no corretegizveen the error detection ability and
any of the considered metrics (for instance, in the Animatat FTPServer test cases). Therefore,
one cannot claim that there is in general a correlation bextwibe ability to detect errors and to
achieve a high Aviv or HBPair coverage. However, a further analysis of the results inegthat
it might be the case that if the error depends on a behaviactefl by the coverage metrics, the
configurations which achieve a high concurrency coveragalle to detect the error (for instance,
Avio* and the atomicity violation in the Airlines test case and ldBPand the deadlock error in the
Rover test case).

Next, we discuss efficiency of the newly proposed heurisficamely, the pattern and
inverseNoisgand theread/write heuristic. The newly proposed heuristics did not help much i
detection of concurrency errors which was a bit surprisiegause the preliminary results obtained
on the Rover test case (when the noise with frequency of 5% wak injected and coverage
data were not collected) the combination of the newly preddseuristics achieved the highest

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

24 Z. LETKO, ET AL.

error detection improvementNevertheless, the heuristics achieved good results airthg a high
coverage in some cases (e.g., in the Airlines test case)h®wrdntrary, theead/write heuristic
achieved very good results in improving the ability to detemncurrency errors in the Airlines
and FTPServer test cases. Errors in these test cases wearé liguall the considered noise
configurations, but noise configurations with tlead/write heuristic increased the percentage of
the detected erroneous runs the most.

Finally, the influence of the testing environment describe&ection4.5.1 (in particular, the
different hardware used) on programs under test was arthlgnethe Crawler/Crawler2 and
Rover/Rover?2 test cases. In the Crawler/Crawler2 testscéise results clearly show the influence
of the environment. The error was detected by 9 noise cordiguns in the Crawler test case. In
the Crawler2 test case, the number of successful configusaincreased to 39 including all the 9
configurations which worked for the Crawler test case. Adddlly, in the Crawler2 test case which
was executed on a machine with more available cores as ded@above, the obtained results show
higher numbers of achieved coverage and a higher errortaeteatio (i.e. the number of executions
in which a suitable configuration was able to detect the gr@wsnversely, in the Rover/Rover2 test
cases, the influence of the environment was minimal. The samigurations were able to detect
the error and the achieved coverage reached almost the saei® |

4.6. Specifics of Noise Implementation

Before the comparison of the results obtained for C and Jestaceses is provided, differences
in implementing the noise injection techniques for C/C+4 dava programs are discussed here.
There are various ways to insert noise injection code intoogrnam. The code might be inserted
directly to the source code of the program, to its intermed@de (e.g., Java bytecode), or to
the binary code. In general, inserting the code to the sococke of the program have several
disadvantages. It requires to have the source code of tlgggrmo(and all of the libraries it uses),
which might not always be available. It is also less precséha compiler might, e.g., move the
code elsewhere because of some optimizations. Theref@meAlaConDA framework41] used
for the C/C++ programs and the IBM ConTest framewdr] jused for the Java programs insert the
noise injection code on the binary and bytecode levelsgasgly. In this section, a short summary
of the experiences with implementing the noise injectiarhteques on the binary level of C/C++
code and the Java bytecode level is presented.

Inserting some code to the bytecode of a program is not a bigjgm as the bytecode instructions
are quite simple and JVM uses minimum optimizations conapilig this task. However, inserting
code to binaries of a C/C++ program is not such easy task. ©rbitary level there are used
highly optimized instructions such as conditional and egtjrestructions20]. While the conditional
instructions might not be executed when the control reathes, the repeat instructions may
be executed more than once as though they were placed in aNowpover, ther ep-prefixed
instructions, designed for manipulating continuous sages of memory locations (e.g., within
string operations), are both conditional and repeat ioitvns since they may be executed a fixed
number of times, until some condition is met, or sometimasexecuted at all. When the binary
code contains such instruction, one has to be sure that the isanjected only when the instruction
was really executed or every time the instruction was exaeturt a loop.

Distinguishing local and shared variables representshangiroblem. In Java, local data are
stored on the current thread stack and possibly shared datst@ed on the heap. Since there
exist different instructions for accessing stack and hdéap,easy to distinguish accesses to the
heap and apply noise only to them. On the binary level, loaghbles are on the stack too but the
stack is just a reserved part of memory which might be acdessthe same way as the memory
containing globally accessible variables. If noise ir@ttefore accesses to local variables is not
desirable, one has to determine before each access whedlasessed variable is stored in memory
containing the stack or not.

A hypothesis to be tested in the future is that the positivesion of the new heuristics on error detection is reduced by
the further noise associated with collecting coverage.data

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 25

Finally, in some cases (e.g., in the implementation of treess pattern detector for tipattern
noise placement heuristic), tracking of method or funcéatry and exit events is necessary. Again,
such events were fairly easily identified in Java bytecoddditly difficult to detect on the binary
level of C/C++ programs where returning from functions iofheavily optimized by the compiler,
e.g., using jumps between functions with the effect of thetrad effectively returning from another
function than the one that was calletl)], etc.

To sum up, the implementation of the actual noise generaafsequal difficulty in C and Java.
On the other hand, instrumentation and execution mongasmuch harder on the binary level as
described above. Overcoming the obstacles of the binagy ptimizations has a negative impact
on the overhead of the ANaConDA framework for noise-bassiing and dynamic analysis.

4.7. Comparison of Results Obtained for C and Java Test Cases

In this section, discovered commonalities and dissimitgiwhen analyzing the obtained results
of experiments with C and Java programs are briefly describete that this comparison may
be partially influenced by the used infrastructures for eagection in C and Java which differ
as highlighted in the previous section and the test caseshvdre also not directly comparable
(the comparison studies simple C programs created by swddrich implement a solution for the
same problem and Java programs of various size implemedifiiegent problems). Nevertheless,
the findings presented here might still be of interest forubers of noise-based testing.

The Java experiments indicate that the success of noisetbesting depends mainly on carefully
choosing the noise placement and noise seeding heuristieaking the frequency and strength
parameters did not improve the results much). On the contthe results for the C programs
show that strength and frequency of noise are also very itapbin the considered test cases.
Further analysis of the results achieved for the Java Aslitest case indicate that they share
a few characteristics with the C programs. In particulag, $ame heuristics (including the new
ones) provided good results, tweaking of frequency anaigthedid considerably affect the results,
and stronger noise provided often good results. The Asli@st case is of similar size, contains
a similar data-depending error, and the error manifestaitito without any noise heuristics is also
comparable.

In the considered C test cases, the results clearly showathajority of noise configurations
provided similar results across the four considered testsa configuration which provided good
results in one test case was successful also in the otheratess and vice versa the configurations
which provided poor improvement achieved poor results lic@bsidered test cases. This is most
probably caused by the similarity of the test cases. Inddediery similar results were also achieved
for the Crawler/Crawler2 and Rover/Rover2 test cases ia.JHve configurations which provided
good results for the Crawler (Rover) test case were amongdbd ones even under the slightly
different conditions represented by the Crawler2 (Rover&) cases.

4.8. Hints for Noise-based Testing

The results presented above indicate that there is no sipgimal noise configuration.The same
noise setting may provide significantly different results dlifferent test cases, testing goals, as
well as testing environment. Moreover, using a wrong naigection technique can in some cases
even degrade the quality of the testing process. Therefane,information concerning the tested
program is available, a good option is to start with the randetting which selects noise heuristics
and their parameters at random before each execution aésheditprogram. This setting often does
not achieve the overall best results as mentioned above aviides reasonably good results with
a minimal effort. Further, if one has at least a suspicion tha program under test may contain
a data-dependent error (such as a data race or an atomicigtion), based on the experience,
using some of the heuristics focused on shared variableggticting the random choice of noise
heuristics to those focusing on shared variables) mightdusod idea.

If one has to set up the noise seeding and placement hesinstinually (i.e., there is no support
for the random choice of noise heuristics in repeated teated on the results, one can recommend
using theyield, synchYieldwait, and busyWaitheuristics, which often provided good results in

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

26 Z. LETKO, ET AL.

the experiments described above. Teld and synchYieldheuristics have a smaller impact on
the performance while still providing good improvement onmge cases. Thwait and busyWait
heuristics cause a considerable performance degraddtinrthey can help to test even rarely
executed synchronization scenarios. Further, the resulisate that using a low noise frequency
(in particular, below 5 %) or using a high noise frequencyp@nticular, over 50 %) does not bring
a higher probability of spotting an error or obtaining a ldgboverage. On the contrary, a high noise
frequency used with a demanding heuristic (ebgsyWai} has a negative impact on the efficiency
of the test.

All the considered advanced noise seeding heuristics {ireeoutTamperinghaltOneThreadl
including the newly proposed heuristics (i.eaverageread/write andpattern-basejiprovide in
some cases a considerable improvement of the testing groldesrefore, it is worth to enable them
and test whether they positively affect results of the abergd test case. If they do, the results
indicate that the same heuristics might be providing goadlte even if the test is executed in
a different environment. This is because the efficiency eséhheuristics depends on appearance of
certain code patterns in the program under test. Theredosanple static analysis of the program
might help with the decision making (e.g., an analysis wiilekects appearance wéi t () and
sl eep() could indicate that th&meoutTamperindneuristic might provide good results). Next,
the results also indicate that heuristics which put nois=egfully selected locations only provide
better results than heuristics which simply put noise ramgli@r at too many locations.

To sum up, above a number of hints that may be useful when iagphoise-based testing is
provided. But, it is important to repeat that choosing ashlé noise configuration is a difficult task,
and the hints need not work in all cases. Hence, the final adsito—if possible—experiment with
more different noise settings. Moreover, in the next secém automated approach to this problem
based on using search techniques for finding suitable netags is presented.

5. META-HEURISTIC SETTING OF TEST AND NOISE PARAMETERS

As discussed above, there is no silver bullet among the mxisyireg noise injection heuristics.
Different noise heuristics provide different results whesed with different programs, compiled
by different compilers, and executed in different run-tiexeironments (especially the processor
type and system load influence the efficiency of the technigiite significantly). Moreover, some
configurations can actually decrease the probability ofraor enanifestation. This is helpful for
run-time healing of errors3[l] but highly undesirable when trying to detect the errors.

The number of possible noise settings is usually very laagé, it is not easy to find a suitable
setting for the given program, its environment, and the gbdétecting, reproducing, or suppressing
a certain error. Moreover, the number of possible settifigiseonoise injection (and also of the test
itself) together with the considerable time needed to ruesain order to evaluate the efficiency
of a certain noise configuration makes exhaustive searcfunguitable noise configurations
impractical. This is exactly the case wheneta-heuristic search techniquigs] can help.

A genetic algorithm[55] is one of popular metaheuristic algorithms. GA starts bgating an
initial set (called ageneration of possible solutions (also calleddividualg. Each individual is
evaluated and assigned a value calléith@ssrepresenting the suitability of the solution represented
by the individual. The next generation of individuals is @ibed by a stochastic recombination
(called acrossovey andmutationof selected individuals. Individuals are selected fromghevious
generation according to the value of their fitness.

Here, discussion on how a GA can be used to search for suftgiae of noise heuristics and their
parameters is provided as originally proposed by Hruba. ¢26é] (with some more details2[7]).
First, the task is formalized as thest and noise configuration search problére TNCS problem).
Then, itis shown how to represent instances of this probtera GA, and discussed which objective
functions may be useful as building blocks of fithess fundisuitable in the given context. Then,
discussion of the GA parameters influencing solving the TNi@&blem is provided. Next, an
instantiation of the framework by providing a concrete f#dunction suitable especially (but,
as these experiments show, not only) in the context of data datection is discussed. Finally,

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 27

experimental evidence that using a GA can indeed providefgigntly better results than random
noise injection is provided.

5.1. Related Work

Most existing works in the area of search-based testing m¢wwent programs focus on applying
various metaheuristics to control the state space exporawithin guided model checking
(GMCQC) [23]. The intention is to explore areas of the state space tlatrare likely to contain
concurrency errors even when the entire state space wilbaoéxplored. Hence, these works
concentrate orsearching for a walk in a directed graptepresenting the state space generated
by a model checker where the walk starts in an initial stat emds in an error state. Various
metaheuristics, including simulated annealihg]] the genetic algorithmd, 23], the partial swarm
optimization (PSO) 12], and the ant colony optimization (ACOZ2|[3], have successfully been
used within GMC to find deadlocks and/or assertion violatiam simple concurrent programs
and protocols. An advantage of GMC is that the underlying @hatecking offers a well-defined
state space and a high degree of systematic. The approagbydmw inherits limitations of model
checking in terms of scalability and cost of the environnreatleling. Noise injection instead focus
on testing which is able to handle much larger real programs@es not provide such precision as
GMC.

Debugging concurrent programs using noise injection and GAfocuses on making a known
error show up during repeated test executions. Within th@rageh, the debugging problem is
translated into theéest data generatioproblem B 1] where the goal is to automatically select inputs
of the test such that a chosen testing goal is achieved. ticplar, the approach uses a GA to search
in the set of possible noise configuratiofiddefined as the powerset of the disjoint union of sets
Sv, S4, andSy whereSy, defines the noise applied to selected program variableslefines the
noise applied to selected accesses to shared memong addfines the noise applied to selected
concurrency related events (lock operations, etc.). Theenis determined by the type of noise
together with the strength of the noise. The paper preseantsibjective functionsdize representing
the produced amount of noise andtropy encoding the probability of an error manifestation under
the given noise setting) and a fitness function computed asighted combination of the objective
functions. The fitness function therefore prefers confiions which make the error manifest with
a high probability using a minimal amount of noise. The tégha is evaluated on a set of small
(hundreds of lines) Java programs that contain known coecay errors which manifest quite often
when noise injection is used. The authors claim that their@gch is able to minimize the number
of locations where to put noise and to increase the prolyalbilian error manifestation. However,
statistical data supporting this claim are missing in thgepa

Compared to the described approadfi]| the below presented approactt] does not search
for concrete locations which should be noised with particabise. Instead, the approach searches
for noise seeding and noise placement heuristics (or caatibims of these heuristics) and their
parameters which can provide good results for a particakirand environment. This allows to use
a simpler representation of individuals and to support maiger test cases with plenty of possible
locations to be noised. Moreover, the approach presentedtm®nsider fitness functions which
allow to focus not only on debugging but also on testing. Tiygraach also considers and reflects
the non-deterministic behavior of concurrent softwareodrticular, each individual is evaluated by
a set of experiments and reevaluation of already evaluatidduals is performed.

Another popular approach to find suitable test inputs (idiclg inputs for the noise generator) is
the Combinatorial Test Design (CTD) technigdé][CTD is a systematic approach that generates
a set of test inputs such that the set contains all intendmdbctions of inputs. However, such a set
is usually huge, and therefore the technique often focuse®wering all combinations of pairs of
inputs only—such an approach is calledir-wise testingAs said, the technique covers the input
space uniformly which means that the technique does nogréze promising areas to which the
search-based approach invests more effort.

The debugging problem is targeted in other papers usingapiligtic [8] and machine
learningpg] algorithms instead of metaheuristics. In the probaldistpproach §], program

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

28 Z. LETKO, ET AL.

locations are first statically classified according to theiitability for noise injection. Then,
a probabilistic algorithm is used to find a subset of progracations that increase the error
manifestation ratio. In the machine learning approds}, [a machine learning feature selection
algorithm is used to identify a subset of program locatiohgm to inject noise by correlating the
selection of noised program locations with error manifista

Finally, an application of a steepest ascending searctritiigoin the context of noise-based
testing of concurrent programs has been studiéfids well. The experiments showed that the local
search technique tends to get trapped in a local optimumsanaitisuitable for the given setting in
most of the cases.

Recently, an application of metaheuristics—in particutlae genetic algorithm—to the problem
of unit test generation has been present]. [The technique produces a test suite (i.e., a set of
unit tests) for a chosen Java class. Each unit test cons$iatgrefixp initializing the class (usually,

a constructor call), a set of method sequeneethat are to be called (each sequence therefore
represents a computational thread), and a schedbigt is enforced during an execution of the test
using a deterministic scheduler. Typically, there are afpibssible unit tests (i.e., tripletg, m, s)).
Most of them are pruned away using various constraints omtimeber of considered schedules,
which is done mainly by concentrating on the synchronizgpioints (concurrency-relevant actions)
present in the code and by considering only a limited numbacbedules consisting of a small
number of synchronization points. The GA is used to produethod sequences (i.e., sequential
executions) that are able to reach and execute selectedreyiimation points. Finally, the sequences
are combined into multi-threaded unit tests examining tiesen schedules.

The above idea of a fully automatic generation of new unistbased on a suitable combination
of selected sequential programs seems to be promising. &teenainistic approach of building
schedulesq3] can be replaced by heuristic noise injection as well. H@veas already mentioned
in Section2, deterministic testing brings important benefits over adigection when scalability is
not an issue, which is usually the case for unit testing.

5.2. The Test and Noise Configuration Search Problem

As already discussed, there are two main issues to be solheth wsing noise injection: in
particular, determining which program locations shouldhbesed and which noise should be used.
To solve these issues, one can use sooige placemerdndnoise seedingeuristics, but there are
many of them, and so some choice must still be done. Moremast of the heuristics are adjustable
by one or more parameters influencing their behavior andefity (e.g., noise seeding heuristics
are often parameterized by their strength). Further, onecoabine several noise placement and
noise seeding techniques within one execution. Indeedjsasigbed above, such a combination
provides in many cases better results than using a singléstieuFinally, it is usually the case that
there exist multiple test cases for a given program that tssmkee parametric.

To reflect the above, thiest and noise configuration search probléime TNCS problem)Z6]
has been formulated as the problem of selecting test caddbein parameters together with types
and parameters of noise placement and noise seeding eusigitable for a certain test objective.

Formally, letTypep be a set of available types of noise placement heuristick efevhich
is assumed to be parameterized by a vector of parameter?dwetnp be a set of all possible
vectors of parameters. Further, [BtC Typep x Paramp be a set of all allowed combinations
of types of noise placement heuristics and their paramefgralogically, one can introduce sets
Types, Paramg, and S for noise seeding heuristics. Next, IetC 275 contain all the sets of
noise placement and noise seeding heuristics that haveadpenpy that they can be used together
within a single test run. Such elements are dendteat noise configurations~urther, like for the
noise placement and noise seeding heuristics'lgler be a set of test caseBaram a set of
vectors of their parameters, affdlC T'yper x Params a set of all allowed combinations of test
cases and their parameters. And finally;flet = T x C' be the set ofest configurations

Now, the TNCS problem can be defined as searching for a teBgoostion from7’C' minimizing
or maximizing some chosen objective functions. One canaissider the natural generalization of

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 29

the problem to searching forsetof test configurations frori'C' minimizing or maximizing some
chosen objective functions.

5.3. Objective Functions for the Context of the TNCS Problem

Several objective functions that can be useful in variousaimces of the TNCS problem are
discussed here. Typically, the functions are combined éngingle fitness function as illustrated
in Section5.5.

First, an objective function that can often be found usefuloi minimize the impact of noise
injection on thetime of executiorof a test case. The more noise is injected into the execution
the slower the execution typically is. The slowdown can b&elnome especially when the time
for testing is limited. Then, due to the slowdown, less eteas of a test case and/or less test
cases will be considered which may in turn negate the aimiofjusise injection to improve the
quality of testing. The time aspect is also important wheroggam under test needs to meet certain
throughput or response time requirements that could besbrbl¢ an excessive use of noise.

Next, since the primary goal of testing is to find errors, airaltobjective function is to maximize
the number of errorghat occur (and are detected by the test harness) when &gotests with
a certain configuration. Once some test configuration isdauitable wrt. the number of errors it
allows one to observe, one could think that this configuraisonot useful any more since the errors
were already detected. However, this test configuratiorbeansed for further testing in hope that
it will allow one to discover even more errors (recall thaeda the non-determinism of scheduling,
not all errors will show up in a single run or a set of runs). Blwrer, one can also think of using
this test configuration in regression testing or when tgsgimilar applications.

Another sensible objective function, tightly related te thbove, is to monitor test executions
under particular test configurations by somhgamic analyzeand to maximize the number of
warnings about dangerous behavior of the program undethi@sgiet reported. Test configurations
delivering good results in this case can subsequently be fasemore extensive testing in hope
of finding a real error even though an actual error was not skeimg evaluation of the test
configuration. The reliability of this approach of cours@eéeds on precision of the chosen analyzer.
A high ratio of false positives and/or negatives makes thjsaive function unreliable.

A further possibility is to use some suitalideverage metri@allowing one to judge how much
of the possible behavior of the program under test has beesrexd (and hence how likely it is
that some undesired behavior was omitted) and to look fdrdesfigurations maximizing the
obtained coverage. One can, for example, use the concyretated metrics based on dynamic
analyses that are discussed in Sectiohand that measure how many internal states a certain
dynamic analyzer has reached. Of course, one can also eonsidous other existing coverage
metrics, such as the synchronization coverddgé that are also mentioned in Secti@r2 and that
measures how well the various synchronization mechanised in the program under test are
tested (by measuring how many different scenarios of theotifge synchronization mechanisms
were witnessed). A drawback of many concurrency coverageasés that it is often impossible to
compute what the full coverage is. This is, however, not dlgra here since the focus is on relative
comparisons of the coverage achieved through differenttagigurations.

Fitness of a test configuratiar € T'C wrt. the above objective functions has typically to be
evaluated by @epeated executioof the test case encodeddnwith the test parameters and noise
configuration that are also a part af Recall that the noise configuration can contain multiple
types of noise heuristics. It is assumed that all of them aedun each testing run, which is
consistent with the definition of noise configurations thiéves for only those combinations of
noise heuristics that can indeed be used together. Furttertiat the repeated execution makes
sense due to the non-determinism of thread scheduling. Valeation of individual test runs
must of course be combined, which can be done, e.g., by camgptiite average evaluatioror
by computing a&umulative evaluatioacross all the performed executions.

In addition, it is also possible to define some simple obyecfunctions directly on the test
configurations. For instance, one can minimize/maximieentimber of enabled heuristics, volume
or frequency of noise to be injected, etc. Such objectivetions are typically not sensible alone, but

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

30 Z.LETKO, ET AL.

can make sense when combined with other objective functietrgess of a given test configuration
wrt. such objective functions can be evaluaséatically, i.e., without any test execution.

5.4. A Genetic Approach to the TNCS Problem

Now, a way how a GA can be used to solve the TNCS problem is ibescrThe approach is
presented on a concretization of the TNCS problem for théextdof using the ConTest toolf]
(with some extensions) for noise-based testing. The cteset of considered noise configurations
is described first. Subsequently, it is presented how on@pply the GA in this concrete setting.

5.4.1. ConTest-based Noise Configurati®sow, the original noise injection heuristics of
ConTest (cf. Sectiord) together with the coverage-based noise placement hiesriftom
Section3.2 are considered. Hence, three noise placement heuristcawailable: theeandom
heuristic which picks program locations randomly, tlearedVarheuristic which focuses on
accesses to shared variables, and dbeerage-basedheuristic which focuses on accesses near
a previously detected thread context switch. $haredVarheuristic has two parameters modifying
its behavior with 5 valid combinations of its values. Toaverage-basedheuristic is controlled
by 2 parameters with 3 valid combinations of values. All hesise placement heuristics inject
noise at selected places with a given probability. The gudibais set globally for all enabled noise
placement heuristics byraiseFregsetting from the range 0 (never) to 1000 (always). fdredom
heuristic is enabled by default whemiseFreq > 0. Therandomheuristic can be suppressed by
one parameter of theharedVarheuristic which explicitly disables the combination of sketwo
heuristics.

The considered infrastructure offers 6 basic and 2 advancs# seeding techniques. The basic
technigues cannot be combined, but any basic techniquesczonitbined with one or both advanced
techniques. The basic heuristics ayld, sleep wait, busyWait synchYieldandmixed Theyield
andsleeptechniques inject calls of tha el d() andsl eep() functions. ThevaitandsynchYield
techniques lock a special monitor and then either wait forestime or callyi el d() . ThebusyWait
technigue inserts code that just loops for some time.mMh@&dtechnique randomly chooses one of
the five other techniques at each noise injection locatibehaltOneThreadechnique occasionally
stops one thread until any other thread cannot run. FinélgtimeoutTampeheuristic randomly
reduces the time-outs used in the program under test inafadlseep() (to ensure that they are
not used for synchronization).

5.4.2. Individuals, Their Encoding, and Genetic Operasiam Themin order to utilize a GA
to solve the TNCS problem with the considered set of noisdigorations, the particular test
configurations can play the role ofdividuals The test configurations are encodedvastors of
integers The test configuration is either reduced to solely a noisdigoration (when a single test
case without parameters is considered), or it consistseohtiise configuration extended by one
or more specific entries controlling the test case settiHgse, however, the noise configurations
are targeted only, which form vectors of numbers in the rajige, 0, 0, 0, 0)—(1000, 5, 3,6, 2, 2).
The first entry controls theoiseFregsetting, the next two control theharedVarand coverage-
basednoise placement heuristics. The last three entries cahieadetting of the basic and advanced
noise seeding heuristics. Each entry in the vector is ateuwbtay a flag saying whether there exists
an ordering on the values of the entry. Entries whose valtesraered are calledrdinal entries
below.

The standard one-point, two-point, and uniform elemersewi(any-point) crossover
operatorg[55] are considered in the form they are implemented in the B4ry [61]. Mutationis
also done on an element-wise basis, and it handles ordidal@m-ordinal entries differently. Non-
ordinal entries are set to a randomly chosen value from thi&cpkar range (including the current
value). Ordinal entries (e.g., entries encoding the stfend noise or the parameter controlling
the number of threads the test should use) are handled dmrgjandard Gaussian mutaticd]
(with the standard deviation set to 10% of the possible ramgeninimal value 2). Finally,

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 31

standard proportional and tournament-based fithness melemperators §5] implemented in ECJ
are considered.

5.4.3. Parameters of Genetic Algorithms and the TNCS PmolBAs are adjustable through
a number of parameters influencing the efficiency of the segarocess. The way these parameters
should be set to make the search process as efficient aslpatsitends on the considered problem.
Therefore, setting of these GA parameters is described hopwarticular, one has to consider
the following questions: How to set up the breeding infrasture, i.e., which standard selection
and crossover operators should be used, how to set up thraimpters, which value of mutation
probability provides good results, and whether elitismamdom generation of individuals can help.
Another rising question is whether it is better to run a few populations or instead more small
populations in case the time for testing is limited.

Due to a high cost of evaluating each test configuration tginomultiple executions, all the
experiments were conducted on one selected case study lonparticular, theCrawler test
case introduced in Sectioh4.1was considered. With the aim of observing as many behaviors
differing in their various important concurrency-relai@spects as possible, a fitness function was
instantiated to maximize the obtained coverage under thifis@ent concurrency coverage metrics,
namely Synchro Avio*, andHBPair* discussed in Sectiof.2. This way, three different aspects
of concurrency behavior is covered: interleaving of acesdsom different threads to shared
memory locations vigdvio*, successful synchronization of program threads inducihg@pens-
before relation viddBPair*, and information about whether the implemented syncheatitia does
something helpful vieSynchro The value of the fithess function was computed as accuntulate
coverage obtained from five executions ©fawler with the same test and noise setting. All
experiments were evaluated using three statistics: (1atkeage fitness value in each population,
(2) the best individual fitness in each population, and (& ¢bmulative value of fitness from
all already evaluated individuals. For brevity, below, t@clusions that were derived from the
obtained results are presented only—more details aboudtual experiments and their detailed
analysis are available in the original technical repad.[

The experiments were divided into three series. In the fingt, ohe focus was devoted to the
population sizecrossovey andmutationoperators. The results indicate that a small or middle size
of populations (20 or 40 individuals) are more suitable ia ttontext since they could achieve better
results in a shorter time than bigger populations (100 orig@iduals). Further, it was concluded
that uniform crossover achieves a better coverage thampoime-or two-point crossover, and that
higher values of mutation probability (0.5 and more) hav@anter-productive impact on finding
the best solution (they become essentially comparable naitdom searching). In order to obtain
the best solution in the shortest time, the size of popula® uniform crossover with probability
0.25 and mutation 0.01 were chosen for the rest of the expetispresented next.

In the second series of experiments, the influen&ditfandrandom individuals$n the population
was studied. Results show that without elite and randonvididals, the GA did not manage to find
the best possible solution. Adding a small number of elithviduals (10 % of the population),
improved the quality of the discovered solutions althougé best solution was still not found.
Adding a relatively high number of elite individuals (20 % thie population) allowed the GA to
find the best solution, but on the other hand, the time neealggt it was quite significant, and
the cumulative coverage in the population was getting wokskeling random individuals to the
population caused the results to be less stable, but ovieiadld a positive effect on finding better
solutions and on increasing the cumulative coverage (avehea case when there were no elite
individuals). Hence, the best configuration for getting lblest solution and the biggest cumulative
coverage is to use a high number of elite and random indilédiowever, this solution is time
consuming. Therefore, as a compromise, it was decided t@ uskatively small number of elite
individuals (10 % of the population) and no random indivildia the population.

In the last set of experiments, tiselection operatoto be used was selected. In particular, the
fitness proportional selection operator as well as the touent of two and four individuals were
considered. Moreover, all their possible combinationsveensidered as well. The different settings

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

32 Z. LETKO, ET AL.

did not lead to big differences in the obtained results, lyetdombination of the tournament of four
individuals with the fithess proportional selection operaeemed to be slightly winning.

To sum up, the final values of the parameters of the GA that ansidered when evaluating
the below discussed application of the TNCS problem for owujprg data race detection are the
following: Size of population 20, a combination of the fitagsoportional selection operators with
the tournament of four individuals, the uniform crossovéthva higher probability (0.25), a low
mutation probability (0.01), and two elites (that is 10 %l population).

5.5. A Concrete Application of the Proposed Approach

In this subsection, a concrete application of a GA in the gss®f noise-based testing of concurrent
programs 26] is described. In particular, the TNCS problem was instdat by providing a fithess
function combining some of the discussed objective fumgtiovith the aim to be useful for
improving data race detection. The focus is devoted to fopdive best test configuration which
is motivated by its possible use in subsequent repeateihgest the given application (e.g.,
within regression testing). The experimental results skimat the described solution can indeed
significantly help. Moreover, the experiments show thatapperoach helps not only in finding data
races but also other kinds of concurrency-related errorsaddition, it turns out that when the
entire random testing process with the testing process fasdihding the best test configuration
are compared, the latter achieves better results despitesttd GA was not primarily designed for
controlling the entire testing process—this is indeed &er@sting challenge for the future.

5.5.1. A GoldiLocks-based Objective FunctiBased on the experience with different concurrency
coverage metrics and dynamic error detectors, fithessiimaias build such that it maximizes the
coverage obtained under the concurrency coverage n@&taiLock[32] (cf. Section3.2) based on
the GoldiLocks algorithm16], together with maximizing the number of actual warningsdurced

by this algorithm. ThéSoldiLockhas been chosen as the basis of the fitness function becdase it
a low ratio of false positives, and it is able to continue ie #malysis even after an error is detected.
Moreover, as discussed earlier, the concurrency coveraggcn@oldiLock has multiple further
positive properties. In particular, the coverage undes thétric usually grows smoothly (i.e., with
a minimum of shoulders) and does not stabilize too early, fiefore most behaviors relevant from
the point of view of data race detection are examined). leurtbased on the discussion presented
in Section5.3, an intention to minimize the execution time and to maxintieenumber of detected
errors were considered as well.

In summary, the presented approach aims at (1) maximizingrage under the concurrency
coverage metricsoldiLock (2) maximizing the number of warnings produced by Goldiksic
(3) maximizing the number of detected real errors due to datas, and (4) minimizing the
execution time. The different basic objectives are comibinging a system of weights assigned
to them.

As discussed in Sectiof.2, the GoldiLock metric counts the encountered internal states of
the GoldiLocks algorithm, here optimized by using the shorcuit (SC) evaluation 16]. In
particular, the coverage tasks of tB®ldiLockSCmetric are tuples$pl, var, state, goldiLockSet)
wherepl identifies the program location at which some shared menumgtionvar is accessed,
state € {SCT,SCL, LS, E} denotes the internal state of the GoldiLocks algorithm wéspect
to the use of SC checks an@idiLockSet represents the lockset computed by the GoldiLocks
algorithm when in the€.S state. The approach weights the coverage tasks of thisoaettording
to their severity. Namely, th8C'T state represents a situation where the first short circeiticlof
GoldiLocks (checking whether a variable is accessed by glesithread only) proves correctness
of the given access. This situation is common for sequéyngakcuted code, and so weight 1 was
assigned. Th&CL and LS states mean that the first check does not succeed, but it st
use further heuristic short circuit checkS({L) or use the full algorithm .S) to infer an object
(or objects) that proves correctness of the access. Suchwase assigned with weight 5. Finally,
the £’ state means that the algorithm detected a data race andggdwvarning. Such tasks were
weighted with 10. The weighted coverage is denotetV&goldi LockSC.

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 33

A GoldiLocks warning has the form of a tuplear, plocy, ploc2) wherevar identifies a shared
variable, andploc; and plocs represent two program locations between which a data race wa
detected. Sometimes, a single coverage task wiihe = F produced aploc, leads to several
warnings differing irploco or var. The number of different warnings issued during the testatxen
is denoted by7 Lwarn, and it was given the weight of 1000.

Finally, as already mentioned, aim was also devoted to miaiigthe number of detected error
manifestationserror) and minimizing the execution timei¢ne). Error manifestations are detected
by looking for unhandled exceptions. They are given a vegh lweight of 10000. With respect to
all the described objectives, the fithess function is thdimdd as follows (expecting the time to be
measured in milliseconds)tV Goldi LockSC + 1000 * G Lwarn + 10000 error) /time.

5.5.2. Case Studie$She above described approach was evaluated on five test castsning
concurrency-related errors (in particular, data racesmatty violations, and/or deadlocks as
described below). The test cases are listed in Tablén the table, thi&«kLOC column shows the size

of the considered test case, and Bazamcolumn indicates the number of its parameters and the
number of possible values of each parameter. The considassdstudies are not very large, which
is not due to a bad scalability of the approach, but rather due tdatige number of experiments
needed to evaluate it, which in summary take a lot of time @resmall benchmarks.

The Airlines, Crawler, andFTPServertest cases have already been mentioned in Sestib
The Airlines test case contains a high-level atomicity violation and Sig@arameters: the number
of resellers (1-5), the number of customer sets (1-5), amddimber of customers in each set (1-
10). TheCrawler test case has no parameters and contains a data race whishdeanhandled
exceptions. Th&TPServeltest case has one parameter setting the number of cliemgciimg to
the server. It contains several data races that can causptexts. TheAnimatortest case is based
on a simple graphic application for algorithm animationedXtangoAnimatorand theRovertest
case is a Java version of the NASA Ames K9 Rover Executiveh Bogése test cases have been
already introduced in Sectigh5.1

TheAirlines andAnimatorexperiments were run on Intel Core2 6600 machines.HFeServer
test case was run on a machine with two Intel X5355 proces$besRovertest case was run on
a machine with the Intel i5-2500 processor. Finally, @rawler test case was run on two different
machines to demonstrate that concurrency error detecienvironment dependent. The genetic
approach is, however, able to automatically find the besfigaration for each environment. In
particular, theCrawler test case was run on the Intel i5 661 processor an@tawler test case on
the machine with four AMD Opteron 8389 processors.

5.5.3. Experimental ResultSsor the actual experiments, the infrastructure described i
Section5.4.2and the setting of parameters of the GA inferred in Sedidm3were used. Although
this setting was inferred for a different fitness functionlelbising sampled values of ti®iseFreq
parameter only, it represents a good option even for othperaxents with the GA. Indeed,
the fitness function used in Secti@n4.3 was designed to be rather general to cover a lot of
different concurrent behaviors. Moreover, analysis of ¢herelation between the values of the
fitness function of Sectioh.4.3and theGoldi LocSCk metric used in the GoldiLocks-based fitness
function on the performed experiments shows that the @iroel is high. After all, the combination
of HBPair* andAvio* focuses on the same events as the GoldiLocks algorithm.

In the experiments, the elite individuals were allowed torbesvaluated in the following
generations. This is motivated by the fact that a few exeaostof an individual (5 in this case)
are often not sufficient to prove whether the configuratiammmake a concurrency error manifest.
Indeed, tricky concurrency-related errors manifest vargly even if a suitable noise heuristic is
used B6]. The reevaluation of elites therefore gives the most psimgiindividuals another chance
to spot an error. This setting is a compromise between a highber of executions needed to
evaluate every individual more times and the available time

The genetic approach was compared with the random approabk thoice of noise heuristics
and their parameters. In the random approach, 2000 test@gad configurations were randomly

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

34 Z. LETKO, ET AL.

Table IV. All columns denoted Error and Time provide relatimprovements obtained using the GA against
the random approach (for the concrete meaning see the text)

Test case Best individual Search process
Name kLOC | Params | Gen. Error Time Error Time
Airlines 0.3| 5x5x10| 15 | 3.0 | 1.7 | 3.8 | 25 |3.2|8.8| 3.0
Animator 15 - 25 | 218]109| 11| 13 |43|54| 13
Crawler 1.2 - 22 - - 13| 15|03|11| 33
Crawler 1.2 - 25 - - 11 11(04|210| 28
FTPServer] 12.2 10 14 | 1.2 | 10| 38| 47 | 09| 17| 1.9
Rover 5.4 7 3 d 0O |33.7]|194)32|88| 3.0

selected and evaluated by the infrastructure in the saméheandividuals in the genetic approach
were evaluated. Tabl® summarizes obtained results. The table is based on aversglesrgathered
from 10 executions of the genetic and random approach. ividet! into three parts. In the left part
(Test casg the test cases are identified, and their size and infoomatbout their parameters are
provided.

Evaluation of the best individuals. The middle part of TabléV (Best individual contains five
columns which compare the best individual obtained by thea@éfound by the random approach.
The Gen.column contains the average number of generations (demstee: below) within the
best individual according to the considered fitness functvas discovered. The numbers indicate
that the GA was able to find the best individual according ®odbnsidered fitness function within
the first quarter of the considered generations. This mietiva possible future work on designing
a suitable termination condition for the GA-based testiraepss.

The Error column of theBest individualsection of TabldV compares the ability of the best
individual to detect an error. The column contains two salsmins. The values in the first sub-
column are computed as the fraction of the average numberadound by the best individual
computed by the GA and the average number of errors disabwsréhe best individual found by
the random generation provided that an equivalent numbexexfutions is provided to the random
approach (this number is computedgas times the size of the population which is 20). The values
in the second sub-column are computed as the fraction ofviige number of errors found by
the best individual computed by the GA and the average nuwiberrors discovered by the best
individual found randomly in 2000 evaluations. The “—” valtepresents a situation where none
of the best individuals was able to detect the error withenallowed 5 executions. THe symbol
means that the genetically obtained best individual didspot any error while the best individual
found by the random generation did (this situation is disedsn more detail below).

Similarly, theTime column of theBest individualsection of TabldV compares average times
needed to evaluate the best individual obtained by the GAthadest individual found by the
random approach. Again, there are two sub-columns. Thevalihe first sub-column is computed
as the average time needed by the best individual found byatiom approach if onlyen * 20
evaluations are considered, divided by the average timgehetically found best individual needed.
The value in the second sub-column shows the average tindedd®y the best individual found
by the random generation when it was provided with 2000 exedos, divided by the average time
needed by the genetically found best individual.

The values that are higher tharn the Error and Timecolumns of theBest individuakection of
TablelV represent how many times the GA outperforms the random apprdn general, one can
see that the best individual found by the GA has a higher fitibheto spot a concurrency error, and
it also needs less time to do so. Even if one let the randonoapprto perform 2000 evaluations,
the best individual found by the GA is still better. Excepsdo this are th&overandCrawler test
cases. In th€rawlertest case, the error manifests with a very low probabilibye Best individuals
in both cases were not successful in spotting the error (hoteever, that the error was discovered
during the search process as discussed below). IiRtheertest case, the best individual found
by the GA was not able to detect an error and some of the besidoédls found by the random

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

ADVANCES IN NOISE-BASED TESTING 35

approach did detect the error (as again discussed belowrithiewas discovered during the search
process too). This results from the fact that the GA convetgan individual that allows a very fast
evaluation (over 30 times faster than the best configurdtiond by the random generation). This,
however, lowered the quality of the found configuration frima point of view of error detection,
indicating that as a part of future research, one may thirfikiidfier adjusting the fitness function
such that this phenomenon is suppressed.

An evaluation of the search process. The right part of TabldV (Search procedsprovides

a different point of view on the presented results. In thise¢dhe goal is not in finding just one
best individual learned genetically or by random generatlmt is assumed to be subsequently
used in debugging or regression testing. Instead, the fiealsvoted to the results obtained during
the search process itself. The GA is hence considered heptayoa role of a heuristic that
directly controls which test and noise configurations stidad used during a testing process with
a limited number of evaluations that can be done (2000 indhs®). Note, however, that despite
this comparison is provided and the GA turns out to work wedirein this comparison, the used
GA was not primarily designed for controlling the entiretieg process but for finding the best
individual test only (a design of a GA designed with a stresscontrolling the testing process
remains an interesting challenge for the future).

This part of the table contains three columns comparing émetic and random approaches wrt.
their successes in finding errors and wrt. the time neededrfonm the 2000 evaluations. The first
sub-column of Error) compares the average number of errors spot during thetspescess and
the average number of errors spot during the evaluation@® 28ndomly chosen configurations of
the test and noise heuristics. The second sub-colur&nrof column compares the average number
of errors detected by the GA and the random approach wherattes is provided with the same
amount of time as the GA. Finally, tiegmecolumn compares the average total time needed by the
random approach in 2000 evaluations and the average tindedd&y the GA. Again, values higher
thanl in all the columns represents how many times the GA outp@$dahe random approach.

The cumulative results presented in theor column show that the GA mostly outperforms the
random approach. The exceptions in the first sub-coluntrimir column reflect the already above
mentioned preference of the execution time in the fitnesstiom, which is further highlighted by
theTimecolumn. For instance, in the worst case (@rawler test case), the GA is more than 3 times
faster but in total discovers three times less errors. Quelg in the best cases (tldrlines and
Rove), the GA found three times more errors in three times shdirtez. To give some idea about
the needed time in total numbers, the average time neededhloaée 2000 random individuals
took on average 32 hours (whereas the GA needed just 10.5)hand the average time needed to
evaluate 2000 random individuals of the biggest test €a$eServertook 101 hours (whereas the
GA needed on average just 53 hours).

Overall, the results show that the GA outperforms the randpproach. They also indicate that
one should probably partially reconsider the fitness fuimcthat puts sometimes too much stress
on the execution time, which can in some cases (demonsiratedCrawler test case) be counter-
productive. Another positive fact is that the describedeisifunction helps to improve the testing
process even for test cases that do not contain a data raisecarhbe attributed to that it favors
configurations within which the synchronization occurs enoften and therefore is tested more.
The results obtained from the experiments with @rawler test case evaluated using two different
hardware configurations indicate that the GA is able to reflee environment and focus on the
noise heuristics and their parameters which provide begseits for the considered environment.

6. CONCLUSION AND FUTURE WORK

In this paper, noise-based testing that helps to examirfereiift thread interleavings during
testing and dynamic analysis of concurrent programs anaehémncreases chances of finding
concurrency-related errors was presented. An overviewuttijphe results in the area of noise-based
testing recently published by the authors was given, irinlpdovel coverage metrics suitable for

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

36 Z.LETKO, ET AL.

saturation-based testing and search-based testing ofigent programs. Then, various existing
and two new heuristics for the noise placement and noisersggpcbblems that play a crucial role
in noise-based testing were presented. Results of som®psivperformed comparisons of noise
injection techniques were summarized and used as a basieiffarming a new, more thorough
comparison of the most promising noise injection heuigstis well as the new noise heuristics
proposed in this article. The heuristics were comparedrdaogto their ability to find concurrency
errors, to increase concurrency coverage (namely, undektio* and HBPait coverage metrics),
and to cause an acceptable performance degradation.

The presented experimental results show that noise injeatan indeed very significantly
improve the testing process, but there is no silver bullairagrthe many noise injection techniques.
Their performance depends on the test case, test goal, bastest environment. Hence, for a new
test case, experimenting with the various noise injecteuristics may be needed—or, as often done
in industrial practice (e.g., within the industrial use ardest in IBM mentioned in Sectidt), one
can apply a randomly selected mix of the heuristics. In otdémprove on this aspect of noise-
injection based testing, an application of the geneticritlym for choosing a suitable combination
of noise placement and noise seeding heuristics (and ofilhesof their parameters) was presented
as well. Experiments obtained with this approach showetitltan indeed significantly improve
the noise-based testing process despite there is still af Ispace for further improvements (as
mentioned below t00).

Several promising directions for future work were envishg@) One could think of new
heuristics and approaches combining the simplicity of@aigection with the recent developments
in the field of deterministic testing. For instance, one douse noise-based testing to roughly
explore the behavior of the tested program and use detestigiteésting to test only particular areas
of the program behavior. (2) There is a significant space évebbping better fithess functions and
better algorithms for search-based testing with noisecfiga. The results presented in Secti®n
demonstrated that putting too much stress on minimizingotleghead caused by noise injection
may be counterproductive in some cases. In fact, the probfainoosing a suitable noise injection
technique is of a rather multi-objective nature, and so egipg multi-objective optimization
algorithms might help here. (3) Collecting concurrendgted coverage from many executions
produces a huge amount of data. Data-mining techniquesl cbatefore be used to mine new
helpful knowledge about the program under test from thete (& Noise injection is a lightweight
testing approach that has a moderate impact on the perfom@rthe test. Nevertheless, there is
a simple possibility to further improve its performance tsyng partial instrumentation of the code.
In this case, only selected parts of the code would be ingnted, and therefore affected by the
noise. All parts of the code which would be known to be safeoarantain no concurrency related
behavior could be omitted during the instrumentation. (BaHy, there is still a lot of space for new
combinations of static and dynamic analyses, further iwipgpefficiency of the testing processes.

REFERENCES

[N

. Power Framework Delay Fuzzing. Online at: http://msdeorosoft.com/en-us/library/hh454184(v=vs.85).aspx,
April 2013.

. Enrique Alba and Francisco Chicano. Finding Safety Brvath ACO. InProc. of GECCO’07ACM, 2007.

. Enrique Alba and Francisco Chicano. Searching for Ligssrieroperty Violations in Concurrent Systems with
ACO. InProc. of GECCO'08ACM, 2008.

. Enrique Alba, Francisco Chicano, Marco Ferreira, andnJG@@mez-Pulido. Finding Deadlocks in Large
Concurrent Java Programs Using Genetic AlgorithmsPrivc. of GECCO’08ACM, 2008.

. Cyrille Artho and Armin Biere. Applying Static Analysie targe-Scale, Multi-Threaded Java ProgramsPrioc.
of ASWEC'01IEEE Computer Society, 2001.

. Cyrille Artho and Armin Biere. Applying Static Analysie targe-Scale, Multi-Threaded Java ProgramsPrioc.
of ASWEC '01IEEE Computer Society, 2001.

. Christel Baier and Joost-Pieter Katod?rinciples of Model CheckingThe MIT Press, 2008.

. Yosi Ben-Asher, Yaniv Eytani, Eitan Farchi, and Shmuel Mioise Makers Need to Know Where to be Silent —
Producing Schedules That Find Bugs.Froc. of ISOLA'06 IEEE Computer Society, 2006.

. Yosi Ben-Asher, Eitan Farchi, and Yaniv Eytani. Heugcstior Finding Concurrent Bugs. roc. of IPDPS’03
IEEE Computer Society, 2003.

A OwWN

© oo~N O O

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

10

11.
12.

13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.

27.
28.
29.
30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

44,

45

ADVANCES IN NOISE-BASED TESTING 37

. Saddek Bensalem and Klaus Havelund. Dynamic Deadloeky8is of Multi-threaded Programs. Rroc. of
HVC'05. Springer-Verlag, 2006.

Arkady Bron, Eitan Farchi, Yonit Magid, Yarden Nir, andrfSuel Ur. Applications of Synchronization Coverage.
In Proc. of PPoPP’05ACM, 2005.

Francisco Chicano, Marco Ferreira, and Enrique Albamg@aing Metaheuristic Algorithms for Error Detection
in Java Programs. IRroc. of SSBSE’11Springer-Verlag, 2011.

Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Pelddel Checking MIT Press, 1999.

Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden, \Bil Ratsaby, and Shmuel Ur. Framework for Testing
Multi-threaded Java Program€oncurrency and Computation: Practice and Experiericg3-5), 2003.

Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsabyl &hmuel Ur. Multithreaded Java Program Test Generation.
IBM Systems Journafil, 2002.

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. GdidilédcRace and Transaction-aware Java Runtime. In
Proc. of PLDI'07. ACM, 2007.

Yaniv Eytani. Concurrent Java Test Generation as a Béaablem. Electronic Notes in Theoretical Computer
Sciencel144, 2006.

Yaniv Eytani and Timo Latvala. Explaining Intermittédoncurrent Bugs by Minimizing Scheduling Noise. In
Proc. of HVC’06 Springer-Verlag, 2007.

Jan Fiedor, Vendula Hruba, Bohuslav Kfena, and Foxtiriar. DA-BMC: A Tool Chain Combining Dynamic
Analysis and Bounded Model Checking. Pmoc. of RV’11 Springer-Verlag, 2012.

Jan Fiedor and Tomas Vojnar. Noise-based Testing aatysis of Multi-threaded C/C++ Programs on the Binary
Level. InProc. of PADTAD'12 ACM, 2012.

Jan Fiedor and Tomas Vojnar. ANaConDA: A FrameworkAoalysing Multi-threaded C/C++ Programs on the
Binary Level. InProc. of RV'13 Springer-Verlag, 2013.

Dimitra Giannakopoulou, Corina S. Pasareanu, Michaelrl, and Rich Washington. Lifecycle Verification of
the NASA Ames K9 Rover Executive. IRroc. of ICAPS’05AAAI Press, 2005.

Patrice Godefroid and Sarfraz Khurshid. Exploring Vémrge State Spaces Using Genetic Algorithms.
International Journal on Software Tools for Technologyrter, 6(2), 2004.

Shin Hong, Jaemin Ahn, Sangmin Park, Moonzoo Kim, andyMean Harrold. Testing Concurrent Programs to
Achieve High Synchronization Coverage. Froc. of ISSTA'12ACM, 2012.

David Hovemeyer and William Pugh. Finding Concurrenag®in Java. IrProc. of PODC’04 2004.

Vendula Hruba, Bohuslav Kfena, Zdenék Letko, Shnirend Tomas Vojnar. Testing of Concurrent Programs
Using Genetic Algorithms. IProc. of SSBSE’15pringer-Verlag, 2012.

Vendula Hruba, Bohuslav Kfena, Zdenék Letko, and@®Wojnar. Testing of Concurrent Programs Using Genetic
Algorithms. Technical Report FIT-TR-2012-01, Faculty ofdrmation Technology BUT, 2012.

Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayuk.N& Randomized Dynamic Program Analysis
Technique for Detecting Real Deadlocks. Rroc. of PLDI'09 ACM, 2009.

Devin Kester, Martin Mwebesa, and Jeremy S. Bradburyw Bood is Static Analysis at Finding Concurrency
Bugs? InProc. of SCAM "10IEEE Computer Society, 2010.

Bohuslav Kfena, Zdenék Letko, Yarden Nir-Buchbind®aichel Tzoref-Brill, Shmuel Ur, and Tomas Vojnar. A
Concurrency Testing Tool and its Plug-ins for Dynamic As@yand Runtime Healing. IAroc. of RV '09 Springer
Verlag, 2009.

Bohuslav Kfena, Zdenék Letko, Rachel Tzoref, Shmughbld Tomas Vojnar. Healing Data Races On-the-fly. In
Proc. of PADTAD’07 ACM, 2007.

Bohuslav Kfena, Zdenék Letko, and Tomas Vojnar. e€Cage Metrics for Saturation-based and Search-based
Testing of Concurrent Software. Froc. of RV'11 Springer-Verlag, 2012.

Bohuslav Kfena, Zdenék Letko, Tomas Vojnar, and &irbr. A Platform for Search-based Testing of Concurrent
Software. InProc. of PADTAD'10 ACM, 2010.

Zdenék Letko.Analysis and Testing of Concurrent ProgramBhD thesis, Faculty of Information Technology
BUT, 2012.

Zdenék Letko, Tomas Vojnar, and Bohuslav Kfena. Mace: Data Race and Atomicity Violation Detector and
Healer. InProc. of PADTAD'08 ACM, 2008.

Zdenék Letko, Toma$ Vojnar, and Bohuslav Kfena. uktite of Noise Injection Heuristics on Concurrency
Coverage. IProc. of MEMICS'11 Springer-Verlag, 2012.

Shan Lu, Weihang Jiang, and Yuanyuan Zhou. A study ofl@seing coverage criteria. lroc. of ESEC-FSE'Q7
ACM, 2007.

Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AWD&ecting Atomicity Violations via Access
Interleaving Invariants. IiProc. of ASPLOS'06ACM, 2006.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patiktuh Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building Cusi®d Program Analysis Tools with Dynamic
Instrumentation. IProc. of PLDI'OS ACM, 2005.

Jeremy Manson, William Pugh, and Sarita V. Adve. The 3&mory Model. InProc. of POPL'05 ACM, 2005.
Phil McMinn. Search-based Software Test Data Genera#o Survey. Software Testing, Verification and
Reliability, 14(2), 2004.

S. Morasca and M. Pezze. Using High-level Petri Net3ésting Concurrent and Real-time SystemsPtac. of
RTSTA'Q0Elsevier, 1990.

M. Musuvathi, S. Qadeer, and T. Ball. CHESS: A SystemEggting Tool for Concurrent Software. Technical
Report MSR-TR-2007-149, Microsoft Research, 2007.

Mayur Naik, Chang-Seo Park, Koushik Sen, and David Géfgctive Static Deadlock Detection. Froc. of ICSE
'09. IEEE Computer Society, 2009.
. Changhai Nie and Hareton Leung. A Survey of Combindt®asting. ACM Comput. Sury43(2), February 2011.

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

38

46

47.
48.
49.

50.
51.

52.
53.
54.

55.
56.

57.

58.
59.
60.
62.
63.
64.

Z. LETKO, ET AL.

. Chang-Seo Park and Koushik Sen. Randomized Active Afgn\fiolation Detection in Concurrent Programs. In
Proc. of SIGSOFT'08/FSE-1&\CM, 2008.

Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowlimrg Lea, and David HolmesJava Concurrency in
Practice Addison-Wesley Professional, 2005.

Eli Pozniansky and Assaf Schuster. Efficient On-the-fiyaCRace Detection in Multithreaded C++ Programs. In
Proc. of PPOPP’03ACM, 2003.

Stefan Savage, Michael Burrows, Greg Nelson, Patriddasarro, and Thomas Anderson. Eraser: A Dynamic
Data Race Detector for Multi-threaded ProgramsPitac. of SOSP’97ACM, 1997.

Koushik Sen. Race Directed Random Testing of ConcuResgrams. IrProc. of PLDI'0O& ACM, 2008.

Elena Sherman, Matthew B. Dwyer, and Sebastian Elbawaturagion-based Testing of Concurrent Programs. In
Proc. of ESEC/FSE'Q9ACM, 2009.

Javier Soriano, Miguel Jimenez, Jose M. Cantera, amu Juidierro. Delivering Mobile Enterprise Services on
Morfeo’s MC Open Source Platform. FProc. of MDM’'06 IEEE Computer Society, 2006.

Sebastian Steenbuck and Gordon Fraser. Generatingaststfor Concurrent Classes. Proc. of ICST'13|IEEE
Computer Society, 2013.

Scott D. Stoller. Testing Concurrent Java ProgramgyuiRandomized Schedulindzlectronic Notes in Theoretical
Computer Scienc&0(2), 2002.

El-Ghazali Talbi.Metaheuristics: From Design to Implementatiowiley Publishing, 2009.

Richard N. Taylor, David L. Levine, and Cheryl D. Kellytr&tural Testing of Concurrent Program&EE Trans.
Softw. Eng.18, March 1992,

Ehud Trainin, Yarden Nir-Buchbinder, Rachel TzoreilBAviad Zlotnick, Shmuel Ur, and Eitan Farchi. Forcing
Small Models of Conditions on Program Interleaving for &tm of Concurrent Bugs. IRroc. of PADTAD'09
ACM, 2009.

Rachel Tzoref, Shmuel Ur, and Elad Yom-Tov. InstrunmentWhere It Hurts: An Automatic Concurrent
Debugging Technique. IRroc. of ISSTA'07ACM, 2007.

Willem Visser, Klaus Havelund, Guillaume Brat, and Sgloon Park. Model Checking Programs. Hroc. of
ASE’0Q page 3. IEEE Computer Society, 2000.

Christoph von Praun and Thomas R. Gross. Object Racetidete In Proc. of OOPSLA'01ACM, 2001.

. David White. Software Review: The ECJ Toolk@enetic Programming and Evolvable Machin&3, 2012.
Jingyue Wu, Yang Tang, Gang Hu, Heming Cui, and Junfermg.YaSound and Precise Analysis of Parallel
Programs through Schedule SpecializationPiac. of PLDI'12 ACM, 2012.

Cheer-Sun D. Yang, Amie L. Souter, and Lori L. Pollockl-édi-path Coverage for Parallel Programs.Ploc. of
ISSTA'98 ACM, 1998.

Jie Yu, Satish Narayanasamy, Cristiano Pereira, ands@okam. Maple: A Coverage-driven Testing Tool for
Multithreaded Programs. IRroc. of OOPSLA'12ACM, 2012.

Copyright© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliali2013)
Prepared usingtvrauth.cls DOI: 10.1002/stvr

	1 Introduction
	2 State of the Art
	3 Concurrency Coverage Metrics and Saturation-based Testing
	3.1 General-Purpose Concurrency Coverage Metrics
	3.2 Coverage Metrics Inspired by Concurrency Error Detectors
	3.3 Abstract Object and Thread Identification
	3.4 Saturation-Based Testing
	3.4.1 Experimental Setup
	3.4.2 Results of Experiments

	4 Noise Injection Techniques
	4.1 Noise Placement Heuristics
	4.2 Noise Seeding Heuristics
	4.3 Results of Previously Performed Comparisons
	4.4 A Comparison of Noise Injection Techniques in C/C++
	4.4.1 Testing Environment
	4.4.2 Experimental Results

	4.5 A Comparison of Noise Injection Techniques in Java
	4.5.1 Testing Environment
	4.5.2 Experimental Results

	4.6 Specifics of Noise Implementation
	4.7 Comparison of Results Obtained for C and Java Test Cases
	4.8 Hints for Noise-based Testing

	5 Meta-heuristic Setting of Test and Noise Parameters
	5.1 Related Work
	5.2 The Test and Noise Configuration Search Problem
	5.3 Objective Functions for the Context of the TNCS Problem
	5.4 A Genetic Approach to the TNCS Problem
	5.4.1 ConTest-based Noise Configurations
	5.4.2 Individuals, Their Encoding, and Genetic Operations on Them
	5.4.3 Parameters of Genetic Algorithms and the TNCS Problem

	5.5 A Concrete Application of the Proposed Approach
	5.5.1 A GoldiLocks-based Objective Function
	5.5.2 Case Studies
	5.5.3 Experimental Results

	6 Conclusion and Future Work

