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SUMMARY

Testing of concurrent software written in programming languages like Java and C/C++ is a highly
challenging task due to the many possible interactions among threads. A simple, cheap, and effective
approach that addresses this challenge is testing withnoise injectionwhich influences the scheduling so that
different interleavings of concurrent actions are witnessed. In this paper, multiple results achieved recently
in the area of noise-injection-based testing by the authorsare presented in a unified and extended way. In
particular, variousconcurrency coverage metricsare presented first. Then, multiple heuristics for solving the
noise placement problem(i.e., where and when to generate noise) as well as thenoise seeding problem(i.e.,
how to generate the noise) are introduced and experimentally evaluated. In addition, several new heuristics
are proposed and included into the evaluation too. Recommendations on how to set up noise-based testing
for particular scenarios are then given. Finally, a novel use of the genetic algorithm for finding suitable
combinations of the many parameters of tests and noise techniques is presented.
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1. INTRODUCTION

Popularity of multi-core processors and multiprocessor computers stimulates development of
programs with multiple concurrently executing threads of control. Development of such applications
in widely used programming languages, like Java, C, and C++,puts much higher demands
on programmers who must correctly synchronize actions executed in the different threads
communicating via shared memory and/or via message passing. Synchronization errors, such as
data races, atomicity violations, deadlocks, or order violations, are relatively easy to cause but very
hard to detect by code review or by simple execution of the code during classical testing because
they may manifest only under very rare interleavings of actions executed by the different threads.
Such interleavings are not very likely to be spot during classical testing, but they can occur in the
production where the software is run for a much longer time, on different machines, under different
load, and in different environment settings.

This situation in turn stimulates research efforts devotedto all sorts of advanced methods for
testing, analysis, and verification of concurrent programs. Formal methods of verification, such
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as, e.g., model checking [7, 13], may potentially be able to precisely analyze a given program.
Unfortunately, these precise approaches do not scale well for complex software systems. The
number of thread interleavings to be analyzed in such systems is simply too high to be handled by
the precise approaches despite various optimizations thatare used in advanced formal verification
techniques. Approaches like lightweight static analyses (described below) as well as testing and
dynamic analyses (introduced below and further described in the next section) use approximations
of the analyzed programs to cope with the complexity of the systems, which can pay off in the
number of detected errors despite such approaches can both miss errors as well as produce false
alarms [5].

Lightweight static analyses, such as [25], usually focus on searching for purely syntactic error
patterns (possibly slightly refined, e.g., by using some information on the behavior of the verified
programs pre-computed by suitable dataflow or type analyses). Such analyses scale well to even
large code bases and may provide valuable information to thedeveloper [29], but they often cannot
discover concurrency-related errors because they do not model threads and their interactions [25]. Of
course, there also exist static analyses which do consider concurrent threads, such as, e.g., [6, 44].
These analyses are able to detect concurrency-related errors, but they often produce many false
alarms due to the abstractions they work with.

Testing [14, 24, 43, 64] and dynamic analyses [10, 16] rely on (possibly repeated) execution of
the given program and evaluation of the witnessed runs. Theycan precisely analyze all aspects of
concurrent behavior, but they only consider the witnessed execution paths and thread interactions
(or their extrapolation in the case of dynamic analyses). Toincrease the number of tested thread
interactions, one can use either the deterministic testingapproach or noise injection.

Deterministic testing[24, 43, 64] can be viewed as execution-based model checking bounded in
various ways (e.g., in the number of context switches), attempting to systematically test as many
thread interleaving scenarios as possible. A lightweight alternative to deterministic testing isnoise
injection[14]. This approach is based on injecting—either randomly or based on some heuristics—
some noise into the test execution. The noise causes delays in the execution of selected threads,
giving other threads an opportunity to make progress and possibly reveal so far untested scheduling
scenarios. Although the noise injection approach cannot prove correctness of a program even under
some bounds on its behavior, it was demonstrated [14, 36, 57] that the technique can rapidly increase
the probability of spotting concurrency errors.

In testing, a crucial role is played by thecoverage metrics[11]. A coverage metric defines
a coverage domainwhich is a set ofcoverage tasksrepresenting different phenomena (e.g.,
reachability of a certain line) whose occurrence in the behavior of a tested program is considered
to be of interest. One can then measure how many of the phenomena corresponding to the coverage
tasks have been seen in the witnessed behaviors of the testedprogram. Such a measurement can be
used to asses how well the program has been tested.

Classic coverage metrics (such as code coverage) allow one to relatively easily measure the
obtained coverage and to quite precisely estimate the size of the coverage domain statically (up to
issues such as unreachable code). However, such metrics do not reflect interactions among threads
and are therefore insufficient for testing concurrent programs. Measuring coverage of all thread
interleavings, on the other hand, is impractical because one would have to remember and compare
various executions from the point of view of all involved context switches, and for an unbounded
number of threads, the coverage domain could be unbounded too (for a bounded number of
threads, it would be bounded, but huge and difficult to estimate with satisfactory precision). A good
concurrency-related coverage metric should hence represent a trade-off between these two extremes.

In this paper, a unified overview of multiple results from thearea of noise-injection-based
testing that were published by the authors in several past years [20, 21, 26, 32, 33, 34, 36] is
provided. In particular, multiple novel coverage metrics (first proposed by Křena et al. [32]),
which measure how well the behavior of tested programs has been examined from the point of
view of possible occurrence of certain synchronization-related errors, are presented first. These
metrics can be used to control saturation-based testing, tocompare effectiveness of various testing
approaches, or to tune parameters of metaheuristic algorithms applied in testing [26]. Next, various
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noise injection heuristics and their influence on error detection and ability to increase concurrency-
related coverage [20, 34, 36] (absolutely and relatively, i.e., taking into account thelonger test
execution time caused by noise injection) are studied. The obtained experiences with noise injection
on different levels (namely, Java bytecode and C/C++ binaries) are summarized into suggestions that
can make further applications of noise-based testing easier. Finally, an application of a metaheuristic
algorithm (namely, the genetic algorithm) for an automaticselection of suitable combinations of
values of the many parameters of tests and noise injection techniques [26, 33] is presented. The
recent works of the authors unified in the paper are accompanied by a description of related works,
and the paper can thus serve as a survey of the field of noise-based testing of concurrent software
too.

Moreover, in this paper, two new heuristics for noise injection are presented—in particular,
a new noise placement heuristic based on access patterns of shared variables and a new noise
seeding heuristic which blocks all threads but one. Both of these heuristics target common atomicity
violation scenarios, and the newly proposed noise seeding heuristic might also help in order
violation scenarios. The newly proposed heuristics are compared with a selection of already existing
heuristics which provided promising results in the previous experimental comparisons [20, 36]. The
presented set of 8 Java benchmark programs and 4 C benchmark programs makes the comparison the
so-far largest comparison of noise-injection-based testing techniques. The comparison shows that
the different heuristics can indeed significantly improve the efficiency of testing. However, they also
show that there is no single best noise injection technique among the many noise injection heuristics,
requiring a careful selection of the noise injection technique to be used in a given scenario and/or
a random mix of the heuristics to be applied (possibly aided by metaheuristics as also discussed
below).

Plan of the paper. The rest of the paper is organized as follows. In the next section, the state
of the art of dynamic analysis and testing of concurrent programs is presented. Concurrency
coverage metrics are discussed in Section3. Section4 contains an overview of noise placement
and noise seeding heuristics, a proposal of the new heuristics, a summary of previously published
comparisons, and an evaluation of the newly proposed heuristics. Various technical aspects of noise
injection on binary and byte-code levels are also briefly discussed. Finally, a few suggestions for
noise-based testing are provided. Section5 introduces the test and noise configuration problem and
shows how the genetic algorithm can be used to solve this problem. Finally, Section6 concludes the
article and several possible future directions in the area of noise-based testing are mentioned.

2. STATE OF THE ART

In this section, a broader overview of the existing techniques for testing of concurrent programs is
presented. First, light-weight methods of stress testing and noise injection are discussed followed by
methods based on a deterministic scheduler which fully controls the interleaving of actions executed
in different threads. Finally, dynamic analysis techniques are introduced and briefly discussed.

Many discussions on various forums suggest to usestress testingfor discovering concurrency-
related errors by simply executing a large number of threadscompeting for shared resources. This
approach increases the possibility of spotting concurrency errors a little, and it can help to reveal
some concurrency errors—usually those which manifest quite often. This might make developers to
get a false conviction that the program is tested enough [47].

Noise injectioninserts delays into the execution of selected threads with the aim of possibly
causing new (legal) interleavings, which have so far not been witnessed and tested, to appear. This
approach allows one to test more interleavings of synchronization-sensitive actions in shorter time
because the system is not that much overloaded by other actions. Noise injection is also able to
test legal interleavings of actions which are far away from each other in terms of execution time
and in terms of the number of concurrency-relevant events [14] between those actions) during
average executions provided that strong enough noise is injected into some of the threads. In
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a sense, the approach is similar to running the program inside a model checker such as JPF [59]
with a random exploration algorithm enabled. However, model checkers such as JPF are often
limited in the programming constructs they natively support. Moreover, making purely random
scheduling decisions may be less efficient than using some ofthe noise heuristics which influence
the scheduling at some carefully selected places importantfrom the point of view of synchronization
only. The approach of noise injection is mature enough to be used for testing of real-life software,
and it is supported by industrial-strength tools, such as IBM Java Concurrency Testing Tool
(ConTest) [14] or the Microsoft Driver Verifier where the technique is called delay fuzzing [1].
Within IBM, ConTest allowed many bugs to be discovered, and as far as we can say, it is still in
industrial use.

Deterministic testing, c.f., e.g., [24, 43, 62, 64] has become quite popular recently. The technique
uses a deterministic control over the scheduling of threads. A deterministic scheduler is sometimes
implemented using intense noise injection keeping all threads blocked except the one chosen for
making a progress. Often, other threads which do not executesynchronization-relevant instructions
or which do not access shared memory are also allowed to make progress concurrently.

The deterministic testing approach can be seen as execution-based model checking which
systematically tests as many thread interleaving scenarios as possible. Before execution of each
instruction which is considered as relevant from the point of view of detecting concurrency-
related errors, the technique computes all possible scheduler decisions. The concrete set of
instructions considered as concurrency-relevant dependson the particular implementation of the
technique (often, shared memory accesses and synchronization relevant instructions are considered
as concurrency relevant). Each such decision point is considered a state in the state space of the
system under test, and each possible decision is consideredan enabled transition at that state. The
decisions that are explored from each state are recorded in the form of a partially ordered happens-
before graph [43], totally ordered list of synchronization events [62], or simply in the form of a set
of explored decisions [24, 64]. During the next execution of the program, the recorded scheduling
decisions can be enforced again when doing a replay or changed when testing with the aim of
enforcing a new interleaving scenario.

As the number of possible scheduling decisions is high for complex programs, several
optimizations and heuristics reducing the number of decisions to explore have been proposed.
The locality hypothesis[43] says that most concurrency-related errors can be exposed using
a small number of preemptions. This hypothesis is exploitedin the CHESS tool [43] which
limits the number of context switches taking place in the execution (iteratively increasing the
bound on the allowed number of context switches). Moreover,the tool also utilizes a partial-order
reduction algorithm blocking exploration of states equal to the already explored states (based on
an equivalence defined on happens-before graphs). The Mapletool [64] limits the number of context
switches to two and additionally gets use of thevalue-independence hypothesiswhich states that
exposing a concurrency error does not depend on data values.Moreover, the Maple tool does not
consider interleavings where two related actions executedin different threads are too far away from
each other. The distance of such actions is computed by counting actions in one of the threads, and
the threshold is referred to as avulnerability window[64].

However, despite a great impact of the above mentioned reductions, the number of thread
interleavings to be explored remains big for real-life programs and therefore the approach provides
great benefit mainly in the area of unit testing [24, 64, 43]. The deterministic testing approach is
not as expensive as full model checking, but it is still quitecostly because one needs to track which
scheduling scenarios of possibly very long runs have been witnessed and systematically force new
ones. The approach makes it easy to replay an execution wherean error was detected, but it has
problems with handling various external sources of non-determinism (e.g., input events).

Deterministic testing offers several important benefits over noise injection. Its full control over the
scheduler allows deterministic testing to precisely navigate the execution of the program under test,
to explore different interleavings in each run, and to also replay interesting runs (if other sources
of nondeterminism, such as input values, are handled). It allows the user to get information about
what fraction of (discovered) scheduling decisions has already been covered by the testing process.
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However, the approach does also suffer from various problems. The approach has problems to deal
with external sources of non-determinism (user actions in GUI, client requests) as well as with
continuously running programs where its ability to reuse already collected information is limited.
In all those problematic cases, noise injection can be successfully used. Moreover, the performance
degradation introduced by noise injection is significantlylower.

Another way to improve traditional concurrency testing is to usedynamic analysiswhich collects
various pieces of information along the executed path and tries to extrapolate the witnessed behavior
in order to find errors which are in the program but did not necessarily occur during the execution.
Many problem-specific dynamic analyses have been proposed for detecting special classes of errors,
such as data races [16, 48, 49], atomicity violations [38], or deadlocks [10, 28]. These techniques
may find more bugs in fewer executions than classical testing. Some of the techniques, e.g., [16],
are even sound (i.e., do not miss an error) and precise (i.e.,do not suffer from false alarms) with
respect to the observed execution path. However, most of theapproaches are unsound and typically
produce many false alarms.

Efficiency of dynamic analysis can be increased when a different execution path is analyzed
during each execution of the test. A combination of noise injection or deterministic testing and
dynamic analysis can thus lead to a synergy effect. However,monitoring of the program behavior
by a dynamic analysis algorithm typically introduces further synchronization among threads and
represents a form of noise affecting thread scheduling, which may be important to take into account
when applying regular noise injection heuristics.

Finally, there are tools and techniques that combine various approaches to test multi-threaded
programs. For instance, multiple techniques get use of information obtained by static and/or
dynamic analysis in navigating deterministic testing tools. An example of such a technique is the
recently publishedactive testingapproach, targeting certain types of errors, such as data races [50],
atomicity violations [46], and deadlocks [28]. The technique uses results of approximate static
and/or dynamic analyses to hint deterministic testing where a potential error can be found. The
technique works in two stages. During the firstprediction phase, a static and/or dynamic analysis
is performed and warnings about specific concurrency errorsare collected. In the secondvalidation
phase, the test is repeatedly executed with a deterministic scheduler. The scheduler behaves as
a random scheduler until some thread reaches an action discovered during the prediction phase. If
such an action is spotted, all threads that are about to execute this action are stopped. Whenever
more threads are stopped, the scheduler enforces all possible interleavings. A similar approach
is described in the paper [19] which combines dynamic analysis and bounded model checking.
In particular, this approach uses dynamic analysis to detect possible defects in a program and to
partially record a behavior witnessing such a defect. An attempt to reconstruct the partially recorded
behavior in a model checker is then done using its ability of state space exploration to navigate
through the recorded points. Subsequently, bounded model checking in the neighborhood of the
behavior can be used to check whether there is really an errorin the system or not.

3. CONCURRENCY COVERAGE METRICS AND SATURATION-BASED TESTING

Coverage metrics play a crucial role in testing as they allowone to estimate how well a program has
been tested. Based on this information, one can then decide whether to stop the testing process (if
the program has been tested enough) or to add new test cases inhope to examine so far uncovered
behavior of the program. In sequential programs, repeatingthe same test case many times on the
same version makes no sense as if the test did not find a bug in the first execution, running it again
will not help. Of course, automated tests can be used every few days or weeks on different versions
of the sequential software which is known as regression testing. In concurrent programs, however,
the same tests may be executed multiple times because concurrency errors usually manifest with
low probability.

Coverage metrics successfully used for testing of sequential programs (e.g., statement coverage
or condition coverage) are not sufficient for testing of concurrent programs as they do not
reflect concurrent behavior. When proposing a concurrency coverage metric, one needs to capture
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significant concurrency aspects of the computation by coverage tasks in a way that growing coverage
will be related with the potential to reveal concurrency errors. At the same time, it is desirable to
neglect worthless facts introduced by a usually huge numberof possible interleavings of threads in
order to keep the number of coverage tasks reasonable.

3.1. General-Purpose Concurrency Coverage Metrics

In order to measure concurrency-related aspects of software execution, several approaches have
extended sequential coverage metrics by capturing interleavings of threads and/or synchronization
events [42, 56, 63, 11, 37, 57]. Below, we present three of these metrics, namely, those which
were used for an experimental comparison with our new class of concurrency metrics inspired
by dynamic detectors of concurrency errors, which have beenproposed by Křena et al. [32] and
which are discussed in detail in Section3.2. Compared with the previously proposed metrics, the
new metrics are more specialized in tracking behavior considered as important for finding specific
classes of synchronization errors by various dynamic analyzers.

Coverage based on concurrently executing instructions (ConcurPairs). The coverage of
concurrent pairs of events [11] is a metric in which each coverage task is composed of a pair of
program locations that are assumed to be encountered consecutively in a run and a third item that is
true or false. It is false iff the two locations are visited by the same thread andtrue otherwise—
that is,true means that there occurred a context switch between the two program locations. This
metric provides statement coverage information (using thefalse flag) and interleaving information
(using thetrue flag) at once. A task of this metric is denoted as a tuple(pl1, pl2, switch) where
pl1, pl2 represent consecutive program locations (only concurrency primitives and variable accesses
are monitored), andswitch ∈ {true, false} indicates whether the context switch occurs in between
of them.

Definition-use coverage (DUPairs). This coverage metric is based on theall-du-pathcoverage
metric for parallel programs [63]. The metric considers coverage tasks in the form of triples
(var, ni

u, n
j
v) whereni

u is theuth node in threadTi where the value of program variablevar is
defined while it is referenced invth node in threadTj . A path in a Parallel Program Flow Graph
(PPFG) covers such coverage task if the value of variablevar is first defined by threadTi and then
the same value is used inTj . This can be only guaranteed if a synchronization among threadsTi

andTj taking place between the variable definition and its use. Theoriginal approach considers
quite simple model of parallel computation, for instance, it supportspost and wait system of
synchronization andpthreadcreateoperation for creating new threads only, just the master thread
is allowed to create worker threads, and the number of created threads in a program need to be
determined statically. Under these limitation, it is possible to number the particular threads. When
dealing with today real-life applications, one cannot apply such restrictions. The original coverage
metric was therefore slightly modified [30]. The modified metric is referenced to as DUPairs∗ below.
The coverage tasks of this metric has the form of tuples(var, pl1, pl2, t1, t2) meaning that value of
variablevar is defined at program locationpl1 in threadt1 and then used at program locationpl2
in threadt2. Instead of precise numbering of individual threads the metric uses an abstract thread
identification which is explained later in this section.

Synchronization coverage (Sync). The synchronization coverage [57] focuses on the use of
synchronization primitives and does not directly considerthread interleavings. Coverage tasks of
the metric are defined based on various distinctive situations that can occur when using each
specific type of synchronization primitives. For instance,in the case of a synchronized block
(defined using the Java keywordsynchronized), the obtained tasks are:synchronization visited,
synchronization blocking, andsynchronization blocked. The synchronization visited task is basically
just a sequential control flow coverage task. The other two are reported when there is an actual
contention between synchronized blocks—when a threadt1 reaches a synchronized blockA and
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stops because another threadt2 is inside a blockB synchronized on the same lock. In this case,
A is reported as blocked, andB as blocking (both, in addition, as visited). Tasks of this metric are
denoted in this article as tuples of the form(pl,mode) wherepl represents the program location of
a synchronization primitive, andmode represents an element from the set of the distinctive situations
relevant for the given type of synchronization.

3.2. Coverage Metrics Inspired by Concurrency Error Detectors

We are now going to discuss a class of metrics [32] that are more specialized than the metrics above
in that they concentrate on concurrency-related aspects ofprogram behavior tracked by various
dynamic concurrency error detection techniques, such as Eraser [49], GoldiLocks [16], AVIO [ 38],
or GoodLock [10]. The motivation for this approach comes from two observations: (1) These
detection techniques focus on those events occurring in runs of the analyzed programs that appear
relevant for detection of various concurrency-related errors. (2) The techniques build and maintain
a representation of the context of such events that is important for detection of possible bugs in the
program. Hence, trying to measure how many of such events have been seen, and possibly in how
many different contexts, seems promising from the point of view of relating the growth of a metric
to an increasing likelihood of spotting an error.

A crucial step in the creation of a new coverage metric based on some error detection algorithm
is to choose suitable pieces of information available to or computed by the detection algorithm,
which are then used to construct the domain of the new coverage metric. There is a trade-off
between precision of the metric and the associated computational complexity. One extreme is to
build a coverage metric directly on warnings about concurrency errors issued by the detection
algorithm. In this case, the detection algorithm needs to beimplemented entirely. Another extreme
is to build a coverage metric counting just the events tracked by the detection algorithm and entirely
avoid implementation of the algorithm.

Precision of the constructed metrics can further be suitably adjusted by combining their coverage
tasks with someabstract identification of the threadsinvolved in generating the phenomena reflected
in the concerned tasks (extended versions of the metrics aredenoted by∗ in this article). The
identification should, of course, not be based on the unique thread identifiers, but it should preserve
information on their type, the history of their creation, etc. A similar identification can then also be
used whenever the coverage tasks contain some dynamically instantiated objects (e.g., locks). One
possible concrete way how the needed identifiers may be obtained is discussed in Section3.3.

In the text below, theJava memory model[40] and the following notation is assumed.V is a set of
identifiers of instances of non-volatile variables that maybe used in the tested program at hand,O is
a set of identifiers of instances of volatile variables used in the program,L is a set of identifiers of
locks used in the program,T is a set of identifiers of all threads that may be created by theprogram,
andP is a set of all program locations in the program (i.e., uniqueidentifiers of instructions present
in the code or byte-code).

Coverage metrics based on Eraser. The coverage metrics Eraser and Eraser∗ are based on
the Eraser algorithm [49]. For each thread, the algorithm computes a set of locks currently
held by the thread, and for each variable access, the algorithm uses these sets to derive
the set of locks that were held by each thread that had so far accessed the variable. These
locksets are maintained according to astateassigned to each variable which represents how the
variable has been operated so far (e.g., exclusively withinone thread, shared among threads, for
reading only, etc.). Basic coverage tasks have the form of a tuple (pl, var, state, lockset) where
pl ∈ P identifies the program location of an instruction accessinga shared variablevar ∈ V ,
state ∈ {virgin, exclusive, exclusive′, shared,modified, race} indicates the state in which the
Eraser’s finite control automaton is when the given locationis reached (the extended version of
Eraser using theexclusive′ state [60] is considered), andlockset ⊆ L denotes a set of locks
currently guarding the variablevar. Eraser∗ extends the basic Eraser metric by identification of
a threadt ∈ T performing the access operation. Extended coverage tasks thus have the form of
(pl, var, state, lockset, t). Accessing a variablevar at a certain program locationpl is a code
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coverage task which is here enriched by the information whether the variable has been already
initialized (indicated byvirgin or exclusive state). Other possible values of the state cannot be
reached in single threaded applications.

Coverage metrics based on GoldiLocks. GoldiLocks [16] is an advanced lockset-based
algorithm which combines the use of locksets with computingthe happens-before relation that says
which events areguaranteedto happen before other events. In GoldiLocks, locksets are allowed
to contain not only locks (L) but also volatile variables (O) and threads (T ). If a threadt appears
in the lockset of a variable when the variable is accessed, itmeans thatt is properly synchronized
for using the given variable because all other accesses thatmight cause a data race are guaranteed
to happen before the current access. The algorithm uses a limited number of elements placed in
the lockset to represent an important part of the synchronization history preceding an access to
a shared variable. The basic GoldiLocks algorithm is still relatively expensive but can be optimized
by theshort circuit checks(SC) which are three cheap checks that are sufficient for deciding race
freedom between the two last accesses to a variable. The original algorithm is then used only
when SC cannot prove race freedom. The basic GoldiLock metric is based on coverage tasks
having the form of tuples(pl, var, goldiLockSet) wherepl ∈ P gives the location of an instruction
accessing a variablevar ∈ V andgoldiLockSet ⊆ O ∪ L ∪ T represents the lockset computed by
GoldiLocks. The tuple can be extended by a threadt ∈ T which accesses the variablevar getting
GoldiLock∗ coverage tasks of the form(pl, var, goldiLockSet, t). Program locationpl at which the
variablevar has been accessed represents a code coverage task. For single threaded applications,
one of the short circuit checks discovers that data race cannot occur and the information about
execution history captured ingoldiLockSet can thus only distinguish the first access to the variable
from the others.

Coverage metrics based on Avio. The Avio algorithm [38] detects atomicity violation over one
variable and does not require any additional information from the user about instructions that should
be executed atomically. The algorithm considers any two consecutive accessesa1 and a2 from
one thread to a shared variablevar to form an atomic blockB. Serializability is then defined
based on an analysis of what can happen whenB is interleaved with some read or write access
a3 from another thread to the variablevar. Out of the eight total cases arising in this way, four
(namely, r/w/r, w/w/r, w/r/w, r/w/w) are considered to leadto an unserializable execution. Tracking
of all accesses that occur concurrently to a blockB can be very expensive. Therefore, a criterion
to consider only the last interleaving access to the concerned variable from a different thread is
defined. The basic Avio metric uses coverage tasks in the formof tuples(pl1, pl2, pl3, var) where
the considered atomic blockB spans between program locationspl1 ∈ P andpl2 ∈ P where the
variablevar ∈ V is accessed by a threadt1 ∈ T while it interferes with the access from a different
threadt2 ∈ T, t2 6= t1 at program locationpl3 ∈ P . The extended metric Avio∗ incorporates into
coverage tasks also information about the threads from which the accesses have been made resulting
in tuples of the form(pl1, pl2, pl3, var, t1, t2). Single threaded programs cannot generate any such
coverage task because basic as well as extended version of Avio-based coverage metric requires the
variablevar to be accessed by two distinct threads.

Coverage metrics based on GoodLock. GoodLock is a popular deadlock detection algorithm
that has several implementations—the metric presented here builds on the implementation published
by Bensalem and Havelund [10]. The algorithm builds theguarded lock graphwhich is a labeled
oriented graph where nodes represent locks, and edges represent nested locking within which
a thread that already has some lock asks for another one. Labels over edges provide additional
information about the thread that creates the edge. The algorithm searches for cycles in the graph
wrt. the edge labels in order to detect deadlocks. The metrics focus on occurrence of nested locking
that is considered interesting by GoodLock. Collection of the locksets of the threads which the
original algorithm uses as one element of the edge label is omitted because this information is used
in the algorithm to suppress certain false alarms only. The GoodLock metric is therefore based
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on coverage tasks in the form of tuples(pl1, pl2, l1, l2) meaning that some threadt ∈ T has first
obtained the lockl1 ∈ L at the locationpl1 ∈ P and later requested the lockl2 ∈ L at the location
pl2 ∈ P . The extended metric GoodLock∗ incorporates also identification of the threadt forming the
tuple(pl1, pl2, l1, l2, t). Locks are usually used for synchronization of accesses to shared resources
among several threads, however, also a single threaded application can request for locks and thus
generate GoodLock-based coverage tasks.

Coverage metrics based on happens-before pairs.These coverage metrics are motivated by
observations obtained from the GoldiLocks algorithm and the vector-clock algorithms [48], both
of them depend on computation of the happens-before relation. In order to get rid of the possibly
huge number of coverage tasks produced by the vector-clock algorithms and trying to decrease the
computational complexity needed when the full GoldiLocks algorithm is used, the metrics focus on
pieces of information the algorithms use for creating theirrepresentations of the analyzed program
behaviors. All of these algorithms rely on synchronizationevents observed along the execution
path. Inspired by this, the metrics capture successful synchronization events based on locks, volatile
variables, wait-notify operations, and thread start and join operations used in Java. A basic coverage
task is defined as a tuple(pl1, pl2, syncObj) wherepl1 ∈ P is a program location in a thread
t1 ∈ T that was synchronized with the locationpl2 ∈ P of the threadt2 ∈ T, t2 6= t1 using the
synchronization objectsyncObj. The extended metric HBPair∗ incorporates identification of the
synchronized threads forming the task as a tuple(pl1, pl2, syncObj, t1, t2). In the same way as
for the Avio-based metrics, no single threaded applicationcan generate any HBPair or HBPair∗

coverage task because it captures a synchronization between two distinct threads only.

3.3. Abstract Object and Thread Identification

Some coverage metrics described in the previous paragraphsare based on tasks that include
identification of threads, instances of variables, and locks. The Java virtual machine (JVM) generates
identifiers of objects and threads dynamically. Such identifiers are, however, not suitable for the
metrics because (1) in long runs, too many of them may be generated, and (2) matching of
semantically equivalent tasks generated in different runsis necessary (may be not precise much,
but at least with reasonable precision). The identifiers generated by JVM for the same threads (from
the semantical point of view) in different runs will quite likely be different.

Previous works (such as [51]) used Java types to identify threads. Here, type-based identification
of elements is considered as too rough. The goal is to create identifiers which distinguish behavior
of objects and threads within the program more accurately, but still keep a reasonable level of
abstraction so the set of such abstract identifiers remains of a moderate size.

The abstractobject identificationthat are considered is based on the observation that, usually,
objects created in the same place in the program are used in a similar way. For instance, there are
usually many instances of the classString in an average Java program, but all strings that are
created within invocations of the same method will probablybe manipulated similarly. Therefore,
an object identifier is defined as a tuple(type, loc) wheretype refers to the type of the object, and
loc refers to the top of the stack (excluding calls to constructors) when the object is created. The
record at top of the stack contains a method, source file, and line of code.

The abstractthread identificationis based on an observation that the type and place of creation
are not sufficient to build a thread identifier. Several threads created at the same program location
(e.g., in a loop) can subsequently process different data and therefore behave differently. More
information concerning the thread execution trace is needed in order to better capture the behavior
of threads. Therefore, identifiers in the form of tuples(type, hash) are used. Thetype denotes
the type of the object implementing the thread, andhash contains a hash value computed over
a sequence ofn first method identifiers that the thread executed after its creation (if the thread
terminates sooner, then all methods it executed are taken into account). The value ofn influences
precision of the abstraction. Of course, when a pool of threads (a set of threads started once and
used for several tasks) is used, the computation of the hash value must be restarted immediately
after picking a thread up from the pool.
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3.4. Saturation-Based Testing

As already mentioned above, different executions of a test case usually follow several thread
schedules and therefore it make sense to repeat the same testcase many times. Unfortunately, it
is often very hard or even impossible to precisely enumerateall the coverage tasks imposed by
a concurrency metric. Many of the potential concurrency coverage tasks may be infeasible and,
thus, reaching a reasonably high coverage during testing may not be possible. This problem can be
addressed bysaturation-based testing[51] which monitors the growth of the coverage and when the
coverage stops growing for some time, the testing can be stopped. Further, insearch-based testing
[41], a fitness function driving an optimization algorithm usedto control the testing process can be
based on the values of a coverage metric.

For metrics used in saturation-based or search-based testing, one can identify several specific
properties that they should exhibit. First, within the testing process, the obtained coverage should as
often as possible grow for a while and then stabilize. Hence,it should not immediately jump to some
value and stabilize on it. On the other hand, it should not take too much time for the coverage to
stabilize. Also, to enable a reliable detection of stabilization, the coverage should grow as smoothly
as possible, i.e., without growing through a series of distinctive shoulders. Next, in the case of
examining an erroneous program by the test that can reveal the bug, the stabilization should ideally
not happen before the error is really detected. The evaluation of suitability of existing as well as
newly proposed concurrency metrics with respect to these properties [32] is summarized below. In
the following, brief description of the experiments highlighting main outcomes is presented.

3.4.1. Experimental SetupFor experimental evaluation of concurrency metrics, the platform called
SearchBestie [33] was used to set up and execute tests with the IBM ConTest. TheConTest tool
provides a facility for bytecode instrumentation and a listeners infrastructure allowing one to create
plug-ins[30] for collecting various pieces of information about the multi-threaded Java programs
being executed as well as to easily implement various algorithms for dynamic analyses. The tool
is itself able to collect structural coverage metrics (basic blocks, methods) and some concurrency-
related metrics (ConcurPairs, Sync) too. ConTest further provides a noise injection facility which
injects the noise into the execution of a tested application. Our experiments have been done on five
concurrent programs described below.

The Dining philosopherstest case is an implementation of the well-known synchronization
problem of dining philosophers. The program generates a setof 6 philosophers (each represented
by a thread) and the same number of shared objects representing forks. A deadlock can occur when
executing the test case.

The Airlines test case is a simple artificial program consisting of 8 classes and simulating an
air ticket reservation system. It generates a database of air tickets and then allows 2 dealers (each
represented by a separate thread) to sell tickets to 4 sets of10 customers (each set is represented
by a separate thread). Finally, a check whether the number ofcustomers with tickets is equal to
the number of sold tickets is done. The program contains a high-level atomicity violation whose
occurrence makes the final check fail.

Crawler is a skeleton of a part of an older version of a major IBM production software. The
crawler creates a set of threads waiting for a connection. Ifa connection is established, a worker
thread serves it. A bug present in the program can cause a deadlock when the crawler shuts down,
however, it is seen very rarely (6 times per 10 000 runs). The Crawler test case consists of 19 classes.

Another real-life application among our case studies is an early development version of an open-
sourceFtpServerproduced by Apache. The version of the server used here contains 120 classes.
The server creates a new worker thread for each new incoming connection to serve it. The code
contains several data races that can cause exceptions during the shutdown process when there is still
an active connection. The probability of spotting an error when noise injection is enabled is quite
high in this example because there are multiple places in thetest where an exception can be thrown.

Our biggest case study with 1399 classes isTIDOrbJ—a CORBA-compliant ORB (Object
Request Broker) product that is a part of the MORFEO Community Middleware Platform [52].
The test used checks how the infrastructure handles multiple concurrent simple requests. The
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Figure 1. Cumulative values of coverage metrics on the Crawler test case (the horizontal axis gives the
number of executions, the vertical axis gives the cumulative number of covered tasks)

particular test of TIDOrbJ we consider starts an instrumented server and then 10 clients, each
sending 5 requests to the server. There was originally no error in this test, however, a high-level
atomicity violation that leads to a null pointer exception has been injected there by commenting one
synchronized statement in the code.

10,000 executions of the small programs and 4,000 executions of TIDOrbJ were performed. In
order to see as many different legal interleaving scenariosas possible, the ConTest tool was set to
randomly inject noise into the executions. ConTest plug-ins to collect coverage information were
implemented and SearchBestie was set up to detect occurrences of errors.

3.4.2. Results of ExperimentsThe results of the experiments [32] are shown in Figure1. All four
sub-figures show the cumulative number of coverage tasks of the metrics covered during one
randomly chosen series of the Crawler test case executions.The metrics marked with an asterisk
are extended by the abstract thread identification (with variablen set to 20).

Figure 1(a) shows the behavior of the metrics that do not capture the concurrent behavior
accurately enough. One coverage metric for non-concurrentcode measuring the number of
basic blockscovered during tests is added to demonstrate the differencebetween classical and
concurrency-related coverage metrics. The coverage obtained under the metric based on basic blocks
is nearly constant all the time because the same code was executed with the same inputs. For the rest
of the metrics shown in Figure1(a), the cumulative number of tasks covered during test executions
increases only within approximately the 200 first executions (zoomed in Figure1(b)), and then
a saturation is reached. The depicted curves demonstrate one further disadvantage of the concerned
metrics—a presence of distinctive shoulders. A repeated execution of the test case does examine
different concurrent behaviors (which is indicated by the later discussed metrics) but the metrics
concerned in the figure are not able to distinguish differences in these behaviors, and therefore
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clear shoulders (i.e., sequences of constant values) can beseen in the curves. The presence of such
shoulders makes automatic saturation detection harder.

Figure 1(c) demonstrates a positive effect of considering an extended context of the tracked
events as mentioned in Section3.3. The metrics concerned in this sub-figure (i.e., Avio∗, Eraser∗,
DUPairs∗, HBPair∗, GoodLock∗, and GoldiLock) are able to distinguish differences in the behavior
of the executed tests more accurately, leading to shorter shoulders, bigger differences in the
cumulated values, and a later occurrence of the saturation effect—indicating that the concerned
metrics behave in a way much better for saturation-based testing. A very positive behavior has
the GoldiLock metric which does not suffer from shoulders while it reaches saturation near the
saturation points of the other metrics. Figure1(d) shows problems of metrics that are too accurate,
namely, ConcurPairs and GoldiLock∗. These metrics work fine for small test cases but when used
on a bigger test case they tend to saturate late and produce enormous numbers of covered tasks.

To summarize the results, the most favorable behavior for saturation-based testing shows
the GoldiLock metric. Very good behavior have also Avio∗, Eraser∗, DUPair∗, HBPair∗, and
GoodLock∗ metrics. The GoodLock∗ metric can provide information which cannot be directly
inferred from any other examined metric. On the other hand, if nested locking does not occur in
the tested program, the GoodLock∗ metric provides no information. The metrics Avio, GoodLock,
HBPair, Eraser, and Sync do not capture the concurrent behavior accurately enough while
ConcurPairs and GoldiLock∗ metrics are too accurate (they work fine for small test cases but when
used on a bigger test case they tend to saturate late and produce enormous numbers of covered
tasks).

4. NOISE INJECTION TECHNIQUES

As already mentioned in the introduction, the effectiveness of noise-injection-based testing
techniques depends on a satisfactory solution to thenoise placementandnoise seedingproblems.
The noise placement problem addresses the question where, i.e., at which program locations, and
when, i.e., at which executions of these locations, to causea noise. The noise seeding problem
then determines how to cause the noise, i.e., which type of noise generating mechanism should be
used, and how long it should last. The problems are, of course, not independent, and so, a suitable
combinationof noise placement and noise seeding heuristics (and of suitable values of their many
parameters) is to be sought in practice.

In this section, an overview and comparison of various existing approaches to solving the noise
placement and noise seeding problems is presented, including a few newly proposed heuristics for
solving these problems. Moreover, a discussion of differences in applying noise-based testing for
C/C++ and Java programs is provided. This discussion provides several hints on how to use noise-
based testing as well.

This section is organized as follows. In the first two subsections (Section4.1 and Section4.2),
existing noise placement and noise seeding heuristics are described. Additionally, several new
heuristics are introduced. Then, in Section4.3, a selection of results of previously published
comparisons [34, 36, 20] of the older noise injection heuristics are presented. Based on the results,
the most promising heuristics and their parameters are pinpointed. Then, a new comparison of the
old and newly proposed noise injection heuristics on a set ofC and Java benchmarks of various
size is provided. The used set of benchmarks is the so-far biggest set of benchmarks used for
evaluating noise-injection-based testing. The mentionedselection of the most promising heuristics
that we have been done allowed us to test the selected promising noise configurations much more
thoroughly (which would not be possible with all of the possible noise configurations due to the
high time requirements of the experiments). The obtained results are discussed separately for C/C++
(Section4.4) and Java (Section4.5) because of the different noise injection infrastructuresused for
testing programs written in these languages—in particular, for C/C++ code, instrumentation on the
binary level was used, whereas for Java, instrumentation onthe bytecode level was used. An insight
into the differences of the considered noise-based testingof C/C++ programs on the binary level
and of Java programs on the bytecode level is presented in Section 4.6. Despite the differences,
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a discussion of commonalities and dissimilarities of the obtained results is provided in Section4.7.
Finally, some hints on how to effectively use noise-based testing are presented in Section4.8.

4.1. Noise Placement Heuristics

Noise placement heuristics determine where, i.e., at whichprogram locations, and when, i.e., at
which executions of these locations, should a noise be injected. In this section, an overview of
existing noise placement heuristics is provided first and then several novel heuristics addressing the
problem of where to put a noise are introduced.

It is discussed in several papers [15, 18, 54] that putting a noise at every possible program location
(ploc [15]) is inefficient. This approach significantly increases theincurred overhead, and it does not
help much in increasing chances to find bugs since only a few relevant context switches are critical
for a concurrency error to manifest. Also, it turns out that putting a noise at a certain program
location can help to spot the concurrency error, but it can also mask it completely.

The IBM ConTest tool [14] allows one to inject a noise only before and/or after concurrency-
related events (namely, accesses to class member variables, static variables, and arrays stored
in the JVM heap, calls ofwait(), interrupt(), notify(), monitorenter, and
monitorexit routines). Since the tool has no information which member fields and arrays
are really shared (i.e., accessed by multiple threads), allinstructions operating with the heap are
considered. Moreover, motivated by a coding anti-pattern in which developers use calls ofwait()
instead of proper synchronization, ConTest is able to intercept calls to thewait() andsleep()
routines too.

The rstest tool [54] considers as possibly interesting only those locations that appear before
concurrency-related events. Moreover, rstest uses a simple escape analysis and a lockset-based
algorithm to identify theunprotected accessesto shared variables. An unprotected access reads
or writes a variable which is visible to multiple threads without holding an appropriate lock. This
optimization reduces the number of program locations wherethe noise can be put but suppresses the
ability to detect some concurrency errors, e.g., high-level data races or deadlocks where all accesses
to problematic variables are correctly guarded by a lock.

Moreover, the number of accesses to shared memory and calls of synchronization elements is
still high in multi-threaded programs. Therefore, severalheuristics for determining more concretely
where and when to put a noise were proposed [9, 15, 54, 57].

The simplest heuristic is based on a random number generator[15, 54]. This randomheuristic
puts a noise before an executed program location with a givenprobability, where the probability is
the same for all program locations considered. Most other heuristics extend this heuristic in a way
that they reduce the number of possible program locations before which the noise might be injected.
When considering all possible program locations in a program, this heuristic is calledrandom-all
below to distinguish it from the other heuristics that can beseen as modifications of therandom
heuristic.

It was shown [9] that restricting the number of program locations only to those accessing
shared variables or a specific shared variable when applyingthe random-allheuristic increases the
probability of spotting an error. These two modifications ofthe random-allheuristic are denoted
here assharedVar-allandsharedVar-one, respectively. When thesharedVar-oneheuristic is used,
the shared variable is usually chosen randomly from a list ofknown shared variables.

Several heuristics based on concurrency coverage models have been published. Coverage-directed
generation of interleavings [15] considers two coverage models. The first model determines whether
the execution of each method was interrupted by a context switch. The second model determines
whether a method execution was interrupted by any other method. The level of methods used here
can be in most of the cases too coarse. In [57], a coverage model considers, for each synchronization
primitive, various distinctive situations that can occur when the primitive is executed (e.g., in the
case of a synchronized block defined using the Java keywordsynchronized, the tasks are:
synchronization visited, synchronization blockingsome other thread, andsynchronization blocked
by some other thread). The approach then injects a noise at corresponding synchronization primitive
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program locations to increase the coverage. None of these two heuristics focuses on accesses to
shared variables which can limit their ability to discover some concurrency errors, e.g., data races.

A coverage-based noise placement heuristic [36] (referred to ascoveragein this article) targets
both accesses to shared variables as well as the use of synchronization primitives, and so it can
be used to discover lock-based deadlocks as well as data-related concurrency errors, such as data
races and atomicity violations. The heuristic considers only program locations that appear before
concurrency-related events as suitable for noise injection. The technique detects subsequent accesses
to shared variables and monitors whether these accesses originated in different threads. Such
couples of subsequent accesses are considered as interesting to be influenced by noise. The noise in
particular tries to test the opposite orderings of recordedevents in each couple. Therefore, a noise is
put before the first access recorded in a couple with a hope that the access which was recorded
as the subsequent occurs earlier. If both accesses are guarded by the same lock, the described
approach would inject a noise into a shared critical sectionwhich would not change the ordering
of the recorded events. In such a case, the heuristic injectsthe noise before the appropriate locking
operation where the common lock was obtained. Additionally, this heuristic monitors the frequency
of a program location execution during a test and puts a noiseat the given program location with
a probability biased wrt. this frequency—the more often a program location is executed the lower
probability is used.

Next, a noise placement heuristic calledread/write heuristic [20] uses different noise settings
for the shared variable read accesses and write accesses. The settings might differ in the frequency
which controls how often a noise is generated before a particular class of accesses or in the chosen
noise seeding heuristic. The heuristic is motivated by the common data race scenarios where there
are two unsynchronized accesses to a shared variable and at least one of these accesses is a write
access. So, when a memory access is encountered, the best thing one can do is to search the other
threads for the second (conflicting) access. In order to lower the noise injected to the other threads,
the fact that one of the accesses causing a data race is typically a write access while the other is
a read access is exploited. Based on this observation, a stronger noise before one type of memory
accesses and a weaker noise before the other is injected.

A new noise placement heuristic. As theread/writenoise placement heuristic proved to be very
useful when detecting data races, a new noise placement heuristic called apattern heuristic is
proposed here. The heuristic injects a noise before accesses to variables which were already accessed
before within the same method or function. The motivation here is to create a noise placement
heuristic that would help in discovering atomicity violation scenarios. An atomicity violation occurs
when two accesses to a shared variable, which should be performed atomically, are interleaved by
another access to this variable. The idea is to inject a noisebefore the second (or any further) access
to a shared variable from the same thread within a logical unit (a program method in this case) so
other threads have more time to access this variable in between the accesses, causing an atomicity
violation. It makes sense to inject such noise even inside a block intended by the programmer to
be executed atomically (e.g., a block defined by thesynchronized keyword in Java) and test
whether the synchronization is implemented correctly.

4.2. Noise Seeding Heuristics

Noise seeding heuristics determine how to cause a noise, i.e., which type of noise generating
mechanism should be used, and how long should it last, i.e., how strong the noise should be. In
this section, an overview of existing noise seeding heuristics is provided and then a new heuristic
addressing the problem how to cause a noise is proposed.

As the primary purpose of injecting a noise is to disturb the usual scheduling of threads, the noise
generating mechanism should influence the scheduler in someway. There exist several ways how
a scheduler decision can be affected in Java [15]. Thepriority heuristic changes priorities of threads
which allows chosen threads to make progress more often thanthreads with the lower priority. The
yield heuristic injects one or more calls of theyield() method which causes a context switch.
Thesleepheuristic injects one call ofsleep(), and thewait heuristic injects a call ofwait().
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Thesleep() andwait() methods take a timeout for which to block a thread as their parameter.
In case of thewait heuristic the concerned thread must first obtain a special shared monitor, then call
wait() with a timeout on it, and finally, release the monitor. Using the monitor makes the current
thread flush all local data to shared memory and make them visible for other threads. Likewise, the
synchYieldheuristic combines theyield heuristic with obtaining a monitor. ThebusyWaitheuristic
does not obtain a monitor, but instead loops for some time.

ThehaltOneThreadheuristic [57] occasionally stops one thread until all remaining threadscannot
make any further progress. Finally, thetimeoutTamperheuristic randomly reduces the time-out used
when calling thesleep() andwait() methods in the tested program. This allows one to test that
the delay inserted by these methods is not used instead of proper synchronization.

All the noise seeding heuristics mentioned above are parameterized by thestrength of noise. In
case of thesleep, wait andbusyWaitheuristics, the strength gives the time to wait or loop. In the
case of theyieldheuristic, the strength says how many times theyield() routine should be called.
Finally, in the case of thepriority heuristic, the strength determines how much the thread priority
changes.

Thebarrier scheduling heuristic [9] based on semaphores is presented. Each shared variable is
assigned a specific semaphore in such a way that a thread is made to wait just before the particular
shared variable is accessed. When more than one thread is waiting at the same monitor (and thus for
access to the same variable), then thenotifyAll() method is used to simultaneously advance
the waiting threads in hope to spot a data race. To prevent deadlocks, the waiting of threads on the
injected semaphores is timed.

All the above works discuss noise seeding heuristics for Java. The first results obtained by
implementations of the selected noise seeding heuristics,in particular, theyieldandsleepheuristics,
in C [20] have been recently presented as well.

A new noise seeding heuristic. Some kinds of concurrency errors manifest in situations where
a thread executes an action earlier that it should, e.g., sends a notification before someone starts
waiting, accesses a variable before it is initialized, etc.A new noise seeding heuristic called
a inverseNoiseheuristic proposed here does the opposite of thehaltOneThreadheuristic. That is,
it stops all but one thread and allows this one thread to get asfar as possible in its execution. This
increases chances that the thread will trigger an action which it should perform only after some
of the blocked threads do something, e.g., start waiting, initialize a variable, etc. Moreover, the
other threads are stopped at the nearest instrumentation point which is suitable for noise injection.
Therefore, the current thread has the opportunity to execute instructions which trigger an atomicity
violation if some of the blocked threads are blocked within an improperly guarded atomic section.

4.3. Results of Previously Performed Comparisons

In this section, the most important aspects of previously published comparisons of noise injection
heuristics [20, 34, 36] are highlighted. These results were used to set up an environment for the
comparisons presented in this article. In particular, the results lead to a choice among the many
possible configurations of noise placement and noise seeding heuristics—those which provide good
results in the comparisons presented in this section.

An extensive and systematic comparison of results of various existing noise placement and
noise seeding heuristics including the coverage-based noise placement heuristics and the related
noise seeding heuristics introduced above for Java has beenpublished in [34]. The heuristics were
compared according to their efficiency to improve detectionof concurrency errors, to improve
the concurrency-related coverage metrics HBPair∗ and Avio∗ in the considered test cases, and to
affect the execution time of the considered test cases. The HBPair∗ and Avio∗ metrics described
in Section3.2 have been chosen due to their very good ratio of providing satisfactory results from
the point of view of suitability for saturation-based or search-based testing and a relatively low
overhead of measuring the achieved coverage (and hence their suitability for performing many tests
with an acceptable interference with the tested programs).The SearchBestie platform [33] was used
to set up and execute the needed tests with IBM ConTest [14]. The heuristics were evaluated on
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a set of 4 test cases (namely, Airlines, Crawler, FTPServer,and TIDOorbJ test cases) which have
been already described in Section3.4.1.

First, there was done a comparison of several noise seeding heuristics denoted as basic below
(namely, theyield, synchYield, wait, busyWait, andsleep) and the IBM ConTestmixednoise seeding
heuristic which randomly chooses one of the basic noise seeding heuristics at each call of the noise
injection routine. Then, the improvement which can be achieved by combining basic noise seeding
heuristics with thehaltOneThreadandtimeoutTamperingheuristics was studied. All heuristics were
used with therandom-allnoise placement heuristic enabled.

The results indicate that there is no optimal configuration,i.e., for each test case and each
testing goal (improvement of coverage, error manifestation, or overhead minimization), one needs
to choose different noise seeding heuristic [34]. Moreover, in some cases, the noise injection
heuristics improved the obtained results considerably while, in some other cases, the noise seeding
configurations used with therandom-allnoise placement heuristic actually provided considerably
worse—demonstrating the ability of noise injection techniques to mask concurrency errors [31]. The
timeoutTamperheuristic provided a considerable improvement for thecrawler test case. As already
said, this test case is a skeleton of an IBM software product.When developers extracted the skeleton,
they modeled its environment using timed routines. ThetimeoutTamperheuristic influences these
timeouts in a way leading to a significantly better results.

Next, a comparison of different noise placement heuristicshas been published by Letko [34] as
well. Mainly, the random-all, sharedVar, andcoverageheuristics were considered. Additionally,
a heuristic which randomly sets up noise settings before each test execution was considered in the
comparison too. The noise placement heuristics were again compared according to the ability to
detect concurrency errors and to provide a high coverage. Then, a comparison of the heuristics
using relative results was provided as well. In this comparison, the total number of covered tasks or
detected errors was divided by the execution time (in seconds) the heuristics needed to achieve the
results.

Again, none of the heuristics achieved best results in the comparisons for all the considered
test cases. Overall good results were obtained by differentversions of thesharedVarheuristic
which focuses noise to shared variables only. There was no winner among the two versions of
the heuristic:sharedVar-allwhich targets all accesses to shared variables andsharedVar-onewhich
targets accesses to a single randomly chosen shared variable in each test execution. The heuristic
using random settings for each test execution achieved on average good results too. This was because
accumulated results from multiple runs (namely, 20 and 50 times) were used for the comparison—
some of the randomly chosen settings therefore provided very good results regardless of the test
case which turned in the overall results. Thecoverageheuristic achieved good results in some cases
as well.

Finally, the best relative improvement achieved by noise-based testing in the considered test
cases was presented by Letko [34]. Table I shows the results obtained when evaluating the best
relative improvement (denoted asImpr.) in the experiments for the considered metrics and test cases.
The improvement is computed as a relative improvement compared to the configuration without
noise injection (note that collection of coverage information and the instrumentation itself already
introduce a certain amount of noise). The next three columns(denoted asnFreq, Seeding heur., and
Placement heur.) present the noise frequency, noise seeding heuristic, andnoise placement heuristic
used. Combinations of the basic noise seeding heuristics with the timeoutTamperingheuristic
(denoted astt) andhaltOneThreadheuristic (denoted asht) were also allowed and evaluated.

The improvement of the error manifestation ratio (denoted as Error) in the TIDOorbJ test case
is not present because the version of the test case we used contains no error. The★ symbol in the
error manifestation ratio of the Crawler test case means that the improvement cannot be computed
because in the experiments, the error does not manifest whenthe noise was disabled. The best value,
which was achieved by thecoverageheuristic, reached 2 % of error manifestation in this test case
(on average 1 error manifestation per 50 executions).

In some cases (e.g., in the Airlines test case), the improvement of the error detection is high,
reaching several hundreds percents. The lowest improvement was achieved in the FTPServer test
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Table I. The best relative improvement achieved by noise heuristics

Test Metric Impr. nFreq. Seeding heur. Placement heur.
Airlines Error 5.93 150 yield + tt sharedVar-one

Avio∗ 1.99 – – no noise
HBPair∗ 1.90 – – no noise

Crawler Error ★ – busyWait coverage
Avio∗ 8.20 50 mixed + tt + ht sharedVar-all
HBPair∗ 3.55 200 mixed + tt + ht sharedVar-all

FTPServer Error 1.09 50 sleep sharedVar-one
Avio∗ 1.26 50 wait + tt + ht sharedVar-all
HBPair∗ 1.55 150 busyWait + ht sharedVar-all

TIDOrbJ Error –
Avio∗ 1.12 200 busyWait + tt + ht sharedVar-one
HBPair∗ 1.23 200 busyWait + tt + ht sharedVar-one

Table II. Success ratio of the AtomRace detector for variousconfigurations of the noise injection (the values
represent the percentage of runs, out of 500, in which a data race was found)

Noise injection configuration Test case
ConfID Placement heur. Seeding heur. Freq. Strength t05 t06 t07

instrumented, no sleep or yield noise 0.0 1.0 1.6
1 random-all sleep 500 10 1.2 53.6 69.4
2 random-all sleep 500 0–10 0.6 31.0 79.0
3 read/write sleep / sleep / sleep 500 10 / 5 / 20 43.0 92.6 96.2
4 read/write yield / yield / sleep 500 10 / 10 / 10 51.0 95.0 99.6

case. This is mainly because the error manifestation ratio is quite high even without the noise
injection and by the fact that any performance degradation in effect makes the code containing
the error execute less often. Overall, the table presents the positive effect of relatively cheap and
easy to use noise injection technique in the process of testing concurrent programs. Again, one
cannot claim a clear winner among the noise placement and noise seeding heuristics. However, the
sharedVarnoise placement heuristic achieved very good overall results in this evaluation.

Next, a comparison of theread/write noise placement heuristic with therandom-all heuristic
on a set of 14 C programs implementing a simple ticket algorithm using the pthreads library
is presented [20]. These programs were created by students of an advanced operating systems
course and all contain data races. They are referred as test casest01 to t14. The ANaConDA
framework [21] was used to perform the tests. The framework uses the Intel PIN framework [39]
for dynamic binary instrumentation to insert the code implementing the noise injection heuristics
into a C/C++ program binary. As the framework cannot provideconcurrent coverage information
yet, an evaluation of the successfully detected data races in each test run was performed. For the
detection of data races, a C++ implementation of the AtomRace dynamic detector [35] was used.

Results obtained for some selected noise injection configurations and test cases are shown in
TablesII andIII . Each configuration is defined by a noise placement and noise seeding heuristics
together with the values of frequency and strength used (denoted asPlacement heur., Seeding heur.,
Freq., andStrength, respectively). If theread/writenoise placement heuristic is used, theSeeding
heur.andStrengthcolumns then contain 3 values. These are the values used for the synchronization
operations, read accesses and write accesses, respectively. In case of theSeeding heur.column, the
values represent the noise seeding heuristic used, and in case of theStrengthcolumn, the value of
strength used. If the value of strength is an interval, the particular value was taken randomly from
the interval each time the noise was injected.
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Table III. Success ratio of the AtomRace detector for various configurations of the noise injection (the values
represent the percentage of runs, out of 500, in which a data race was found)

Noise injection configuration Test case
ConfID Placement heur. Seeding heur. Freq. Strength t04 t05

instrumented, no sleep or yield noise 1.2 0.0
5 read/write sleep / sleep / yield 100 10 / 10 / 10 7.4 62.4
6 read/write sleep / yield / sleep 100 10 / 10 / 10 96.8 9.6
7 read/write yield / sleep / yield 100 10 / 10 / 10 6.2 64.4
8 read/write yield / yield / sleep 100 10 / 10 / 10 94.4 7.2

Theread/writenoise placement heuristic allows to use different noise seeding heuristics and their
parameters for different types of memory accesses. Of course, there are many possibilities how
to combine them, so the two most promising combinations werefocused. First, the same noise
seeding heuristics have been used, but parametrized them with different values of strength, i.e.,
a bigger strength for one type of memory accesses and a considerably lower for the second one
was applied. The goal was to lower the amount of noise injected to the threads that are intended to
be search through when detecting data races. As the results in TableII show, such configurations
(Configuration no. 3) achieved better results than the configurations using therandom-allheuristic
(Configurations no. 1 and 2).

Configurations which use different noise seeding heuristics for different memory accesses were
also used. More precisely, thesleepheuristic for one type of memory accesses and theyieldheuristic
for the second one were studied. Their values of strength were left the same. The goal was not only
to lower the amount of noise injected to the threads to be searched through, but also to allow the
threads to perform as many memory accesses as possible. While the sleep noise is blocking the
thread performing the first access, the yield noise is forcing the program to quickly switch threads
so the threads will be running more often and hence perform more memory accesses. As the results
in TableII show, such configurations (Configuration no. 4) achieved even better results than the ones
combining different values of strength (Configuration no. 3).

The tests also proved that it is important to choose the righttype of memory accesses before
which the stronger noise is injected. When there are only a few unprotected write accesses which
might cause a data race, the stronger noise should be put before these accesses. This is because it
is far more probable that one will encounter the more common read accesses in the other threads
which are being searched than the rare write accesses. If thesituation is opposite, the stronger noise
should be put before the read accesses. TableIII shows the difference in results for two programs
which mainly differ in how a data race might manifest. As thet04 test case contains only a few
unprotected write accesses which might cause a data race andmany unprotected read accesses,
the configurations injecting a stronger noise before the write accesses (Configurations no. 6 and
8) give far superior results than configurations injecting astronger noise before the read accesses
(Configurations no. 5 and 7). In case of thet05 test case which contains only a few unprotected
read accesses and many unprotected write accesses, the results are completely opposite.

4.4. A Comparison of Noise Injection Techniques in C/C++

New experiments that were performed with C programs and noise injection heuristics selected
according to the experience from older experiments described in the previous section are presented
here (new experiments with Java programs will be described in the following section). First,
a description of the testing environment and experiment settings which are used to compare selected
noise injection heuristics, including the newly proposed heuristics, is given. Then, the obtained
results of these heuristics on four C programs are provided.

4.4.1. Testing EnvironmentThe framework ANaConDA [21] already mentioned in Section4.3was
used to perform the tests. For each execution of a test, the framework collects information about test
duration and about the fact whether an error is manifested. In contrast to the previous comparisons

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(2013)
Prepared usingstvrauth.cls DOI: 10.1002/stvr



ADVANCES IN NOISE-BASED TESTING 19

where each noise configuration was given an equal number of test executions, in this comparison,
each considered configuration of noise heuristics was given20 minutes of real time to test the
program and average results were computed. Therefore, the configurations with higher impact on the
performance were provided with lower number of executions of the test. This allows to demonstrate
efficiency of the heuristics in practical testing scenarioswhere the time and other resources for
testing are usually limited.

As there are many possible combinations of various noise placement and noise seeding heuristics
and as each of these heuristics might be parametrized in manydifferent ways, there exists
a large number of configurations that might be used. In order to keep the number of considered
configurations on a reasonable level, the focus is devoted toheuristics and their parameters which
provided good results in the previous comparisons and also on the new heuristics introduced in the
previous sections.

In case of the noise placement heuristics, the following ones are considered: therandom-
all heuristic which is used as a base-line, thesharedVar-alland sharedVar-oneheuristics which
provided good results in the evaluation of noise placement heuristics for testing Java programs, the
read/writeheuristic which turned out to be efficient in the previous experiments with noise injection
in C/C++, and the newly proposedpatternheuristic. All these heuristics decide whether to inject
a noise based on thefrequencyparameter which controls how often the noise is injected at the
selected place. The frequency parameter was set such that the noise was generated either in 15 % or
30 % of situations. These values were also inspired by the results of the previous comparisons.

As for the noise seeding heuristics, thesleep, yield, andbusyWaitheuristics were considered
because they provided good results in some cases in the previous comparisons. Moreover, the
newly proposedinverseNoiseheuristic was added. The noise seeding heuristics are parametrized
by thestrengthparameter. This parameter was set to 2 and 20 milliseconds inthe case ofsleep
andbusyWaitheuristics and to 10 and 100 executions of theyield() function in the case of the
yield heuristic. In the case of theread/writeheuristic, the strength parameter for writes and reads
was set in the mutually complementary way. That is, if a higher value for writes (e.g., 20 ms) was
used, the lower value for reads (i.e., 2 ms) was applied, and vice versa. As for the newly proposed
inverseNoise, the parameter was set to 2 and 20 operations executed by the current thread while other
threads are blocked. The higher values were chosen based on the results of the previous comparisons
where a stronger noise often helped more than a weaker one. The lower values were used primarily
because of theread/writeheuristic, where combining strong and a much weaker noise led to the best
results. Also, as theyield heuristic disturbs the usual scheduling of threads far lessthan the other
noise seeding heuristics, higher values of strength were used for it. In case of theread/writenoise
placement heuristic, configurations combining thesleepandyieldnoise seeding heuristics with fixed
values of strength were also used (10 for thesleepheuristic and 50 for theyield heuristic).

The combinations of heuristics described above give 81 noise configurations (5× 2 noise
placement heuristics,4× 2 noise seeding heuristics, and1 configuration without noise—referred to
asnonoisebelow). Note that the previous comparisons did not contain thesharedVar-all, sharedVar-
oneand the newly proposedpatternnoise placement heuristics. Also, thebusyWaitand the newly
proposedinverseNoisenoise seeding heuristics were not considered. They are thusexamined for
C/C++ programs for the first time.

For the experiments, 4 simple C programs (about 200 to 500 lines of code) implementing a simple
ticket algorithm using the pthreads library were used. These programs were chosen from a set of
programs [20] which were already mentioned in Section4.3. The chosen programs are referred
to as test casest01, t03, t05 and t06. The main reason to use only a subset of programs
was that some of the newly tested noise placement heuristicsneed information about the variables
which are accessed. In case of C/C++ programs, these information need to be extracted from the
debugging information of the program. However, the ANaConDA framework has only a partial
support for extracting this kind of information, and for many of these programs the compiler
generated debugging information which the framework was not able to process. So in order to
test these new heuristics, availability of this information is required. As the framework imposes
a huge slowdown on the execution of the tested program, bigger programs were not considered for
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the tests because one would be able to perform only a few testing runs in the given 20 minute time
slot. All the programs were executed on an 4-core Intel Xeon X5355 2.66GHz machine with the
Hyper-threading support (up to 8 threads might run simultaneously) and 64GB memory running
Linux with the 2.6.32 kernel.

The selected programs contain various kinds of errors that all lead to data races in the end. In
t01, the data race is on a shared variable holding the number of a ticket allowed to enter a critical
section. The variable is updated in a critical section, but then read outside of it. The next program
(t03) contains a data race on a shared variable used to assign IDs to each of the threads. This
variable is updated and read without any synchronization, however, all of these accesses happen
when the threads are started one immediately after another,so the data race may only occur during
this short time. Programt05 has a rarely occurring data race on individual items of a shared array
where each item may be accessed by the main thread and one of the other threads simultaneously
just before the main thread starts to wait for the second thread to end (join). Programt06 contains
a data race on atimespec structure, shared among all threads, used to randomly generate the
number of milliseconds a thread should sleep before and after entering the monitor.

Figure 2. A comparison of configurations across all of the considered C test cases

4.4.2. Experimental ResultsIn this section, a comparison of the efficiency of detecting
concurrency-related errors using various noise injectionconfigurations is described first. Then, focus
is devoted to the results obtained by the newly proposed heuristics.

Since all of the test cases contain a data race and the consequences of these data races are
not always externally visible, a dynamic analysis using theAtomRace dynamic detector [35] was
performed in order to find these errors. Like the noise injection, the dynamic analysis requires the
program to be instrumented, so it is problematic to compare the results obtained with and without
dynamic analysis. However, note that the tests that were originally used to evaluate the considered
student projects from which the test cases are derived did not found any errors. The instrumentation
of a program usually increases the probability of finding an error, even when no noise is injected, as
the execution of the instrumented code itself causes a sort of a very weak noise which might help
a little with the error detection. So, even with thenonoiseconfiguration, it was possible to detect
some errors in the 20 minute time slot in most of the test cases(namely,t01, t03, andt06).

To compare the efficiency of each configuration, their general success across all of the test
cases executed was measured. The results are summarized in Figure2. The x-axis shows the noise
configurations grouped by the noise placement and noise seeding heuristics with the values of noise
frequency and strength represented by the different hatch of the bars. The y-axis then shows the
number of test cases (out of 4) for which the respective configuration was among the best 30 % of
the configurations (i.e., among the best 24 configurations inthe case). Here, the best configurations
were chosen according to the percentage of runs in which a data race was detected. The other noise

Copyright c© 2013 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab.(2013)
Prepared usingstvrauth.cls DOI: 10.1002/stvr



ADVANCES IN NOISE-BASED TESTING 21

configurations were, in fact, capable of detecting an error in most of the test cases too, but in less
test runs.

The graph shows that even when the test cases are very similarand contain the same type of
concurrency errors, most of the configurations work only forsome of the test cases. Of course,
one can see that some of the configurations were more successful than the others. In general,
configurations using thesleepand busyWaitheuristics were the most successful ones. The most
successful approach was to combine these heuristics with the random-all, read/write, or pattern
heuristics.

A further analysis of the results has also shown that choosing the right combination of noise
placement and noise seeding is important, but tweaking the values of noise frequency and strength
may also significantly influence the results. Many configurations provided very different results
when the values of frequency or strength were changed.

As for the newly proposed heuristics, configurations using thepatternheuristic proved to be very
useful in most of the test cases (namely, thet01, t03, andt06 test cases). On the other hand, the
inverseNoiseheuristic helped only a little and only when combined with the random-allheuristic.
As for the heuristics tested for the first time in C programs, namely thesharedVar-allandsharedVar-
oneheuristics, these heuristics achieved good results for some test cases, but they were not so good
overall compared to the other noise placement heuristics.

4.5. A Comparison of Noise Injection Techniques in Java

In this section, new experiments with noise injection techniques in Java are presented. Similarly to
the the results for C presented above, description of the testing environment and test cases is given
first. Subsequently, a summary of the obtained results is presented.

4.5.1. Testing EnvironmentThe code instrumentation and noise injection was done usingthe IBM
ConTest framework [14] executed with plug-ins implementing the noise heuristicsand collecting
selected coverage information. Automatic test instrumentation, execution, and evaluation was
orchestrated by the SearchBestie framework [33]. In contrast to the experiments with noise injection
to C programs, the infrastructure collected not only information related to execution time and error
manifestation but also coverage under two selected coverage metrics, namely, HBPair∗ and Avio∗,
which were already used in the previous comparisons mentioned above and which were chosen due
to their very good ratio of providing satisfactory results in the experiments with saturation-based
testing described in Section3.4and a relatively low overhead of measuring the achieved coverage.

In the comparison below, all the configurations previously described in the comparison of noise
heuristics for testing C/C++ programs were used, together with several more configurations based on
the coverage-based heuristic [36] introduced in Section4.1. Hence, the following noise placement
heuristics are considered:random-all, sharedVar-all, sharedVar-one, pattern, read/write, and the
coverage-basedcoverageheuristic which is exclusive to the comparision of Java programs. The
reason why thecoverageheuristic is studied only for the Java programs is the fact that the
ANaConDA framework, used in the experiments with C programs, is not currently able to provide
any coverage information and thus cannot support any coverage-based heuristics. All the heuristics
were parametrized by the frequency parameter set to 15 % or 30%. Note that this is the first time
theread/writeand the newly proposedpatternheuristic are evaluated on Java test cases.

As for the noise seeding heuristics, the same heuristics as in the C comparison above are
considered, namely,yield, sleep, busyWait, and the newly proposedinverNoiseheuristics. Again,
two levels of noise strength for each of the heuristics were used: 2 and 20 nanoseconds for the
sleepandbusyWaitheuristics, 2 and 20 instructions for theinverNoiseheuristic, and 10 and 100
executions ofyield() for theyield heuristic. Finally, experiments with the configuration which
injects no noise into the execution but which instruments the code and collects coverage information
were evaluated as well (referred to asnonoisebelow). Recall, that execution of any injected code in
fact influences performance and scheduling of threads.

The above described combinations of heuristics give 97 noise configurations (6× 2 noise
placement heuristics,4× 2 noise seeding heuristics, and1 nonoiseconfiguration). Similarly to
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the comparison for C programs, each configuration was given a20 minutes time slot to test the
considered program.

The above described configurations of noise injection techniques were evaluated on 8 Java test
cases based on 6 Java programs of various size. TheAirlines, Crawler, andFtpServertest cases
have already been introduced in Section3.4.1. TheAnimatortest case is based on a simple graphic
application for algorithm animation calledXtangoAnimator. The test case creates a window and
draws a picture according to a given batch file. The test case consists of 31 classes and contains
a data race that leads toNullPointerException.

The Rover test case is a Java version of the NASA Ames K9 Rover Executive[22]. The test
case, consisting of 83 classes, executes a selected high-level plan or plans—programs written in
a language that specifies actions and constraints on the movement, experimental apparatus, and other
resources of the rover. The test case contains a deadlock anda data race in the testing environment
during exchanging of two consecutive high-level plans. Both errors make the test hang. Similarly
to theCrawler test case, the probability of spotting the errors is extremely low without the use of
a noise injection.

TheElevatortest case is a simple real-time discrete event simulator [60] which contains atomicity
violation leading toNullPointerException. Elevators are modeled as individual threads that
poll directives from a central control board. The communication is synchronized using locks. The
used configuration simulates 4 elevators.

Moreover, to demonstrate that the testing environment alsoplays an important role in the testing
process, two prominent test cases in which the probability of spotting the error is extremely low
(namely, Rover and Crawler) were executed on two different hardware configurations (the results
are then referred to asCrawler2andRover2). The Airlines, Animator, Crawler, and Rover test cases
were executed on Intel i5-2500 machines with 2GB memory running Linux with the 2.6.32 kernel
and 64bit Sun (Oracle) JVM version 1.6. The Crawler2, Elevator, FtpServer, and Rover2 test cases
were executed on Intel i7-3770K machines with 4GB memory running Linux with the 3.2.0 kernel
and 64bit OpenJDK JVM version 1.6.

4.5.2. Experimental ResultsIn this section, results comparing efficiency of the considered noise
configurations from the most important point of view, namelytheir efficiency in error detection, are
presented. Then, a short discussion of the results these heuristics achieved in terms of coverage is
provided. Next, results achieved by the newly proposed heuristics are highlighted. And finally, the
influence of the testing environment is discussed.

In a vast majority of the test cases, the error does not manifest during the 20 minutes long testing
of non-instrumented code. Instrumentation of the test cases usually increases the probability to spot
an error a bit because the instrumented code is executed in locations suitable for noise injection.
In particular, thenonoiseconfiguration was able to detect an error within the given time slot in
two test cases, namely, the Airlines (the error manifested in 8 % of runs) and FTPServer (the error
manifested in 66 % of runs).

The success of noise-based testing in detection of concurrency errors is summarized in Figure3.
The figure shows configurations grouped by the noise placement and noise seeding heuristics on
the x-axis (the noise frequency and strength are represented by the different hatch of the bars). The
y-axis shows the number of test cases (out of 8) in which the particular configuration was able to
detect concurrency errors within the given time. In most cases, there were only a few configurations
which were able to detect errors in the given time (ranging from 2 in the Elevator test case to 9 in
the Crawler test case). In the Airlines and FTPServer test cases where the probability of spotting
an error is much higher than in the other test cases, all of thenoise configurations were able to detect
the errors.

The figure shows that there is no silver bullet among the considered heuristics. Indeed, none of
the columns reached value 8 which would mean that the heuristics worked for all the considered
test cases. Moreover, one can clearly see that some of the configurations were mostly successful
(mainly the configurations combining thecoverageheuristic with thesleepandbusyWaitheuristics)
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Figure 3. A comparison of noise configurations across all of the Java test cases

and some were successful only in the easy Airlines and FTPServer test cases (for instance, the
patternnoise placement heuristic combined with most of the noise placement heuristics).

A further analysis of the results also shows that in most of the cases choosing the right
combination of noise placement and noise seeding heuristics was far more important then tweaking
the noise frequency and noise strength parameters. Many configurations provided similar results
when any value of strength and frequency was used.

Overall, the results focused on the detection of concurrency errors show that noise-based testing
is able to dramatically increase the probability of finding concurrency errors. It is enough to use any
combination of noise injection heuristics in order to detect errors that do manifest during normal test
executions even through only rarely (as can be seen from the Airlines and FTPServer test cases).
Moreover, in the case of truly rarely manifesting concurrency errors which are hard to spot even
during the noise-based testing, a careful choice of the combination of noise placement and noise
seeding heuristics and their parameters is necessary.

As for the coverage obtained under considered coverage metrics, the results clearly show
a positive impact of noise-based testing in comparison withthe nonoiseconfiguration. In some
cases, a high achieved coverage correlated with a success inerror detection (for instance, in the
Elevator test case), sometimes this correlation could be identified only between the error detection
ability and one of the coverage metrics (e.g., Avio∗ metric in the Airlines test case and HBPair∗ in
the Rover2 test case), and sometimes there was no correlation between the error detection ability and
any of the considered metrics (for instance, in the Animatorand FTPServer test cases). Therefore,
one cannot claim that there is in general a correlation between the ability to detect errors and to
achieve a high Avio∗ or HBPair∗ coverage. However, a further analysis of the results indicates that
it might be the case that if the error depends on a behavior reflected by the coverage metrics, the
configurations which achieve a high concurrency coverage are able to detect the error (for instance,
Avio∗ and the atomicity violation in the Airlines test case and HBPair∗ and the deadlock error in the
Rover test case).

Next, we discuss efficiency of the newly proposed heuristics(namely, the pattern and
inverseNoise) and theread/write heuristic. The newly proposed heuristics did not help much in
detection of concurrency errors which was a bit surprising because the preliminary results obtained
on the Rover test case (when the noise with frequency of 5 % only was injected and coverage
data were not collected) the combination of the newly proposed heuristics achieved the highest
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error detection improvement†. Nevertheless, the heuristics achieved good results in obtaining a high
coverage in some cases (e.g., in the Airlines test case). On the contrary, theread/writeheuristic
achieved very good results in improving the ability to detect concurrency errors in the Airlines
and FTPServer test cases. Errors in these test cases were found by all the considered noise
configurations, but noise configurations with theread/writeheuristic increased the percentage of
the detected erroneous runs the most.

Finally, the influence of the testing environment describedin Section4.5.1 (in particular, the
different hardware used) on programs under test was analyzed on the Crawler/Crawler2 and
Rover/Rover2 test cases. In the Crawler/Crawler2 test cases, the results clearly show the influence
of the environment. The error was detected by 9 noise configurations in the Crawler test case. In
the Crawler2 test case, the number of successful configurations increased to 39 including all the 9
configurations which worked for the Crawler test case. Additionally, in the Crawler2 test case which
was executed on a machine with more available cores as described above, the obtained results show
higher numbers of achieved coverage and a higher error detection ratio (i.e. the number of executions
in which a suitable configuration was able to detect the error). Conversely, in the Rover/Rover2 test
cases, the influence of the environment was minimal. The sameconfigurations were able to detect
the error and the achieved coverage reached almost the same levels.

4.6. Specifics of Noise Implementation

Before the comparison of the results obtained for C and Java test cases is provided, differences
in implementing the noise injection techniques for C/C++ and Java programs are discussed here.
There are various ways to insert noise injection code into a program. The code might be inserted
directly to the source code of the program, to its intermediate code (e.g., Java bytecode), or to
the binary code. In general, inserting the code to the sourcecode of the program have several
disadvantages. It requires to have the source code of the program (and all of the libraries it uses),
which might not always be available. It is also less precise as the compiler might, e.g., move the
code elsewhere because of some optimizations. Therefore, the ANaConDA framework [21] used
for the C/C++ programs and the IBM ConTest framework [14] used for the Java programs insert the
noise injection code on the binary and bytecode levels, respectively. In this section, a short summary
of the experiences with implementing the noise injection techniques on the binary level of C/C++
code and the Java bytecode level is presented.

Inserting some code to the bytecode of a program is not a big problem as the bytecode instructions
are quite simple and JVM uses minimum optimizations complicating this task. However, inserting
code to binaries of a C/C++ program is not such easy task. On the binary level there are used
highly optimized instructions such as conditional and repeat instructions [20]. While the conditional
instructions might not be executed when the control reachesthem, the repeat instructions may
be executed more than once as though they were placed in a loop. Moreover, therep-prefixed
instructions, designed for manipulating continuous sequences of memory locations (e.g., within
string operations), are both conditional and repeat instructions since they may be executed a fixed
number of times, until some condition is met, or sometimes not executed at all. When the binary
code contains such instruction, one has to be sure that the noise is injected only when the instruction
was really executed or every time the instruction was executed in a loop.

Distinguishing local and shared variables represents another problem. In Java, local data are
stored on the current thread stack and possibly shared data are stored on the heap. Since there
exist different instructions for accessing stack and heap,it is easy to distinguish accesses to the
heap and apply noise only to them. On the binary level, local variables are on the stack too but the
stack is just a reserved part of memory which might be accessed in the same way as the memory
containing globally accessible variables. If noise injection before accesses to local variables is not
desirable, one has to determine before each access whether the accessed variable is stored in memory
containing the stack or not.

†A hypothesis to be tested in the future is that the positive impact of the new heuristics on error detection is reduced by
the further noise associated with collecting coverage data.
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Finally, in some cases (e.g., in the implementation of the access pattern detector for thepattern
noise placement heuristic), tracking of method or functionentry and exit events is necessary. Again,
such events were fairly easily identified in Java bytecode but fairly difficult to detect on the binary
level of C/C++ programs where returning from functions is often heavily optimized by the compiler,
e.g., using jumps between functions with the effect of the control effectively returning from another
function than the one that was called [20], etc.

To sum up, the implementation of the actual noise generatorsis of equal difficulty in C and Java.
On the other hand, instrumentation and execution monitoring is much harder on the binary level as
described above. Overcoming the obstacles of the binary level optimizations has a negative impact
on the overhead of the ANaConDA framework for noise-based testing and dynamic analysis.

4.7. Comparison of Results Obtained for C and Java Test Cases

In this section, discovered commonalities and dissimilarities when analyzing the obtained results
of experiments with C and Java programs are briefly described. Note that this comparison may
be partially influenced by the used infrastructures for noise injection in C and Java which differ
as highlighted in the previous section and the test cases which are also not directly comparable
(the comparison studies simple C programs created by students which implement a solution for the
same problem and Java programs of various size implementingdifferent problems). Nevertheless,
the findings presented here might still be of interest for theusers of noise-based testing.

The Java experiments indicate that the success of noise-based testing depends mainly on carefully
choosing the noise placement and noise seeding heuristics (tweaking the frequency and strength
parameters did not improve the results much). On the contrary, the results for the C programs
show that strength and frequency of noise are also very important in the considered test cases.
Further analysis of the results achieved for the Java Airlines test case indicate that they share
a few characteristics with the C programs. In particular, the same heuristics (including the new
ones) provided good results, tweaking of frequency and strength did considerably affect the results,
and stronger noise provided often good results. The Airlines test case is of similar size, contains
a similar data-depending error, and the error manifestation ratio without any noise heuristics is also
comparable.

In the considered C test cases, the results clearly show thata majority of noise configurations
provided similar results across the four considered test cases. A configuration which provided good
results in one test case was successful also in the other testcases and vice versa the configurations
which provided poor improvement achieved poor results in all considered test cases. This is most
probably caused by the similarity of the test cases. Indeed,the very similar results were also achieved
for the Crawler/Crawler2 and Rover/Rover2 test cases in Java. The configurations which provided
good results for the Crawler (Rover) test case were among thegood ones even under the slightly
different conditions represented by the Crawler2 (Rover2)test cases.

4.8. Hints for Noise-based Testing

The results presented above indicate that there is no singleoptimal noise configuration.The same
noise setting may provide significantly different results for different test cases, testing goals, as
well as testing environment. Moreover, using a wrong noise injection technique can in some cases
even degrade the quality of the testing process. Therefore,if no information concerning the tested
program is available, a good option is to start with the random setting which selects noise heuristics
and their parameters at random before each execution of the tested program. This setting often does
not achieve the overall best results as mentioned above but it provides reasonably good results with
a minimal effort. Further, if one has at least a suspicion that the program under test may contain
a data-dependent error (such as a data race or an atomicity violation), based on the experience,
using some of the heuristics focused on shared variables (orrestricting the random choice of noise
heuristics to those focusing on shared variables) might be agood idea.

If one has to set up the noise seeding and placement heuristics manually (i.e., there is no support
for the random choice of noise heuristics in repeated test),based on the results, one can recommend
using theyield, synchYield, wait, andbusyWaitheuristics, which often provided good results in
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the experiments described above. Theyield and synchYieldheuristics have a smaller impact on
the performance while still providing good improvement in some cases. Thewait and busyWait
heuristics cause a considerable performance degradation,but they can help to test even rarely
executed synchronization scenarios. Further, the resultsindicate that using a low noise frequency
(in particular, below 5 %) or using a high noise frequency (inparticular, over 50 %) does not bring
a higher probability of spotting an error or obtaining a higher coverage. On the contrary, a high noise
frequency used with a demanding heuristic (e.g.,busyWait) has a negative impact on the efficiency
of the test.

All the considered advanced noise seeding heuristics (i.e., timeoutTampering, haltOneThread)
including the newly proposed heuristics (i.e.,coverage, read/write, andpattern-based) provide in
some cases a considerable improvement of the testing process. Therefore, it is worth to enable them
and test whether they positively affect results of the considered test case. If they do, the results
indicate that the same heuristics might be providing good results even if the test is executed in
a different environment. This is because the efficiency of these heuristics depends on appearance of
certain code patterns in the program under test. Therefore,a simple static analysis of the program
might help with the decision making (e.g., an analysis whichdetects appearance ofwait() and
sleep() could indicate that thetimeoutTamperingheuristic might provide good results). Next,
the results also indicate that heuristics which put noise atcarefully selected locations only provide
better results than heuristics which simply put noise randomly or at too many locations.

To sum up, above a number of hints that may be useful when applying noise-based testing is
provided. But, it is important to repeat that choosing a suitable noise configuration is a difficult task,
and the hints need not work in all cases. Hence, the final advice is to—if possible—experiment with
more different noise settings. Moreover, in the next section, an automated approach to this problem
based on using search techniques for finding suitable noise settings is presented.

5. META-HEURISTIC SETTING OF TEST AND NOISE PARAMETERS

As discussed above, there is no silver bullet among the many existing noise injection heuristics.
Different noise heuristics provide different results whenused with different programs, compiled
by different compilers, and executed in different run-timeenvironments (especially the processor
type and system load influence the efficiency of the techniquequite significantly). Moreover, some
configurations can actually decrease the probability of an error manifestation. This is helpful for
run-time healing of errors [31] but highly undesirable when trying to detect the errors.

The number of possible noise settings is usually very large,and it is not easy to find a suitable
setting for the given program, its environment, and the goalof detecting, reproducing, or suppressing
a certain error. Moreover, the number of possible settings of the noise injection (and also of the test
itself) together with the considerable time needed to run a test in order to evaluate the efficiency
of a certain noise configuration makes exhaustive searchingfor suitable noise configurations
impractical. This is exactly the case wheremeta-heuristic search techniques[55] can help.

A genetic algorithm[55] is one of popular metaheuristic algorithms. GA starts by creating an
initial set (called ageneration) of possible solutions (also calledindividuals). Each individual is
evaluated and assigned a value called afitnessrepresenting the suitability of the solution represented
by the individual. The next generation of individuals is obtained by a stochastic recombination
(called acrossover) andmutationof selected individuals. Individuals are selected from theprevious
generation according to the value of their fitness.

Here, discussion on how a GA can be used to search for suitabletypes of noise heuristics and their
parameters is provided as originally proposed by Hrubá et al. [26] (with some more details [27]).
First, the task is formalized as thetest and noise configuration search problem(the TNCS problem).
Then, it is shown how to represent instances of this problem for a GA, and discussed which objective
functions may be useful as building blocks of fitness functions suitable in the given context. Then,
discussion of the GA parameters influencing solving the TNCSproblem is provided. Next, an
instantiation of the framework by providing a concrete fitness function suitable especially (but,
as these experiments show, not only) in the context of data race detection is discussed. Finally,
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experimental evidence that using a GA can indeed provide significantly better results than random
noise injection is provided.

5.1. Related Work

Most existing works in the area of search-based testing of concurrent programs focus on applying
various metaheuristics to control the state space exploration within guided model checking
(GMC) [23]. The intention is to explore areas of the state space that are more likely to contain
concurrency errors even when the entire state space will notbe explored. Hence, these works
concentrate onsearching for a walk in a directed graphrepresenting the state space generated
by a model checker where the walk starts in an initial state and ends in an error state. Various
metaheuristics, including simulated annealing [12], the genetic algorithm [4, 23], the partial swarm
optimization (PSO) [12], and the ant colony optimization (ACO) [2, 3], have successfully been
used within GMC to find deadlocks and/or assertion violations in simple concurrent programs
and protocols. An advantage of GMC is that the underlying model checking offers a well-defined
state space and a high degree of systematic. The approach, however, inherits limitations of model
checking in terms of scalability and cost of the environmentmodeling. Noise injection instead focus
on testing which is able to handle much larger real programs but does not provide such precision as
GMC.

Debugging concurrent programs using noise injection and GA[17] focuses on making a known
error show up during repeated test executions. Within the approach, the debugging problem is
translated into thetest data generationproblem [41] where the goal is to automatically select inputs
of the test such that a chosen testing goal is achieved. In particular, the approach uses a GA to search
in the set of possible noise configurationsC defined as the powerset of the disjoint union of sets
SV , SA, andSL whereSV defines the noise applied to selected program variables,SA defines the
noise applied to selected accesses to shared memory, andSL defines the noise applied to selected
concurrency related events (lock operations, etc.). The noise is determined by the type of noise
together with the strength of the noise. The paper presents two objective functions (size representing
the produced amount of noise andentropy encoding the probability of an error manifestation under
the given noise setting) and a fitness function computed as a weighted combination of the objective
functions. The fitness function therefore prefers configurations which make the error manifest with
a high probability using a minimal amount of noise. The technique is evaluated on a set of small
(hundreds of lines) Java programs that contain known concurrency errors which manifest quite often
when noise injection is used. The authors claim that their approach is able to minimize the number
of locations where to put noise and to increase the probability of an error manifestation. However,
statistical data supporting this claim are missing in the paper.

Compared to the described approach [17], the below presented approach [26] does not search
for concrete locations which should be noised with particular noise. Instead, the approach searches
for noise seeding and noise placement heuristics (or combinations of these heuristics) and their
parameters which can provide good results for a particular test and environment. This allows to use
a simpler representation of individuals and to support muchlarger test cases with plenty of possible
locations to be noised. Moreover, the approach presented below consider fitness functions which
allow to focus not only on debugging but also on testing. The approach also considers and reflects
the non-deterministic behavior of concurrent software. Inparticular, each individual is evaluated by
a set of experiments and reevaluation of already evaluated individuals is performed.

Another popular approach to find suitable test inputs (including inputs for the noise generator) is
the Combinatorial Test Design (CTD) technique [45]. CTD is a systematic approach that generates
a set of test inputs such that the set contains all intended combinations of inputs. However, such a set
is usually huge, and therefore the technique often focuses on covering all combinations of pairs of
inputs only—such an approach is calledpair-wise testing. As said, the technique covers the input
space uniformly which means that the technique does not recognize promising areas to which the
search-based approach invests more effort.

The debugging problem is targeted in other papers using probabilistic [8] and machine
learning[58] algorithms instead of metaheuristics. In the probabilistic approach [8], program
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locations are first statically classified according to theirsuitability for noise injection. Then,
a probabilistic algorithm is used to find a subset of program locations that increase the error
manifestation ratio. In the machine learning approach [58], a machine learning feature selection
algorithm is used to identify a subset of program locations where to inject noise by correlating the
selection of noised program locations with error manifestation.

Finally, an application of a steepest ascending search algorithm in the context of noise-based
testing of concurrent programs has been studied [33] as well. The experiments showed that the local
search technique tends to get trapped in a local optimum and is not suitable for the given setting in
most of the cases.

Recently, an application of metaheuristics—in particular, the genetic algorithm—to the problem
of unit test generation has been presented [53]. The technique produces a test suite (i.e., a set of
unit tests) for a chosen Java class. Each unit test consists of a prefixp initializing the class (usually,
a constructor call), a set of method sequencesm that are to be called (each sequence therefore
represents a computational thread), and a schedules that is enforced during an execution of the test
using a deterministic scheduler. Typically, there are a lotof possible unit tests (i.e., triplets(p,m, s)).
Most of them are pruned away using various constraints on thenumber of considered schedules,
which is done mainly by concentrating on the synchronization points (concurrency-relevant actions)
present in the code and by considering only a limited number of schedules consisting of a small
number of synchronization points. The GA is used to produce method sequencesm (i.e., sequential
executions) that are able to reach and execute selected synchronization points. Finally, the sequences
are combined into multi-threaded unit tests examining the chosen schedules.

The above idea of a fully automatic generation of new unit tests based on a suitable combination
of selected sequential programs seems to be promising. The deterministic approach of building
schedules [53] can be replaced by heuristic noise injection as well. However, as already mentioned
in Section2, deterministic testing brings important benefits over noise injection when scalability is
not an issue, which is usually the case for unit testing.

5.2. The Test and Noise Configuration Search Problem

As already discussed, there are two main issues to be solved when using noise injection: in
particular, determining which program locations should benoised and which noise should be used.
To solve these issues, one can use somenoise placementandnoise seedingheuristics, but there are
many of them, and so some choice must still be done. Moreover,most of the heuristics are adjustable
by one or more parameters influencing their behavior and efficiency (e.g., noise seeding heuristics
are often parameterized by their strength). Further, one can combine several noise placement and
noise seeding techniques within one execution. Indeed, as discussed above, such a combination
provides in many cases better results than using a single heuristic. Finally, it is usually the case that
there exist multiple test cases for a given program that can also be parametric.

To reflect the above, thetest and noise configuration search problem(the TNCS problem) [26]
has been formulated as the problem of selecting test cases and their parameters together with types
and parameters of noise placement and noise seeding heuristics suitable for a certain test objective.

Formally, letTypeP be a set of available types of noise placement heuristics each of which
is assumed to be parameterized by a vector of parameters. LetParamP be a set of all possible
vectors of parameters. Further, letP ⊆ TypeP × ParamP be a set of all allowed combinations
of types of noise placement heuristics and their parameters. Analogically, one can introduce sets
TypeS, ParamS , andS for noise seeding heuristics. Next, letC ⊆ 2P×S contain all the sets of
noise placement and noise seeding heuristics that have the property that they can be used together
within a single test run. Such elements are denotedC or noise configurations. Further, like for the
noise placement and noise seeding heuristics, letTypeT be a set of test cases,ParamT a set of
vectors of their parameters, andT ⊆ TypeT × ParamT a set of all allowed combinations of test
cases and their parameters. And finally, letTC = T × C be the set oftest configurations.

Now, the TNCS problem can be defined as searching for a test configuration fromTC minimizing
or maximizing some chosen objective functions. One can alsoconsider the natural generalization of
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the problem to searching for asetof test configurations fromTC minimizing or maximizing some
chosen objective functions.

5.3. Objective Functions for the Context of the TNCS Problem

Several objective functions that can be useful in various instances of the TNCS problem are
discussed here. Typically, the functions are combined intoa single fitness function as illustrated
in Section5.5.

First, an objective function that can often be found useful is to minimize the impact of noise
injection on thetime of executionof a test case. The more noise is injected into the execution
the slower the execution typically is. The slowdown can be unwelcome especially when the time
for testing is limited. Then, due to the slowdown, less executions of a test case and/or less test
cases will be considered which may in turn negate the aim of using noise injection to improve the
quality of testing. The time aspect is also important when a program under test needs to meet certain
throughput or response time requirements that could be broken by an excessive use of noise.

Next, since the primary goal of testing is to find errors, a natural objective function is to maximize
the number of errorsthat occur (and are detected by the test harness) when executing tests with
a certain configuration. Once some test configuration is found suitable wrt. the number of errors it
allows one to observe, one could think that this configuration is not useful any more since the errors
were already detected. However, this test configuration canbe used for further testing in hope that
it will allow one to discover even more errors (recall that due to the non-determinism of scheduling,
not all errors will show up in a single run or a set of runs). Moreover, one can also think of using
this test configuration in regression testing or when testing similar applications.

Another sensible objective function, tightly related to the above, is to monitor test executions
under particular test configurations by somedynamic analyzerand to maximize the number of
warnings about dangerous behavior of the program under testthat get reported. Test configurations
delivering good results in this case can subsequently be used for more extensive testing in hope
of finding a real error even though an actual error was not seenduring evaluation of the test
configuration. The reliability of this approach of course depends on precision of the chosen analyzer.
A high ratio of false positives and/or negatives makes this objective function unreliable.

A further possibility is to use some suitablecoverage metricallowing one to judge how much
of the possible behavior of the program under test has been covered (and hence how likely it is
that some undesired behavior was omitted) and to look for test configurations maximizing the
obtained coverage. One can, for example, use the concurrency-related metrics based on dynamic
analyses that are discussed in Section3.2 and that measure how many internal states a certain
dynamic analyzer has reached. Of course, one can also consider various other existing coverage
metrics, such as the synchronization coverage [11] that are also mentioned in Section3.2 and that
measures how well the various synchronization mechanisms used in the program under test are
tested (by measuring how many different scenarios of the useof the synchronization mechanisms
were witnessed). A drawback of many concurrency coverage metrics is that it is often impossible to
compute what the full coverage is. This is, however, not a problem here since the focus is on relative
comparisons of the coverage achieved through different test configurations.

Fitness of a test configurationtc ∈ TC wrt. the above objective functions has typically to be
evaluated by arepeated executionof the test case encoded intc with the test parameters and noise
configuration that are also a part oftc. Recall that the noise configuration can contain multiple
types of noise heuristics. It is assumed that all of them are used in each testing run, which is
consistent with the definition of noise configurations that allows for only those combinations of
noise heuristics that can indeed be used together. Further note that the repeated execution makes
sense due to the non-determinism of thread scheduling. The evaluation of individual test runs
must of course be combined, which can be done, e.g., by computing theaverage evaluationor
by computing acumulative evaluationacross all the performed executions.

In addition, it is also possible to define some simple objective functions directly on the test
configurations. For instance, one can minimize/maximize the number of enabled heuristics, volume
or frequency of noise to be injected, etc. Such objective functions are typically not sensible alone, but
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can make sense when combined with other objective functions. Fitness of a given test configuration
wrt. such objective functions can be evaluatedstatically, i.e., without any test execution.

5.4. A Genetic Approach to the TNCS Problem

Now, a way how a GA can be used to solve the TNCS problem is described. The approach is
presented on a concretization of the TNCS problem for the context of using the ConTest tool [14]
(with some extensions) for noise-based testing. The concrete set of considered noise configurations
is described first. Subsequently, it is presented how one canapply the GA in this concrete setting.

5.4.1. ConTest-based Noise ConfigurationsBelow, the original noise injection heuristics of
ConTest (cf. Section4) together with the coverage-based noise placement heuristics from
Section3.2 are considered. Hence, three noise placement heuristics are available: therandom
heuristic which picks program locations randomly, thesharedVarheuristic which focuses on
accesses to shared variables, and thecoverage-basedheuristic which focuses on accesses near
a previously detected thread context switch. ThesharedVarheuristic has two parameters modifying
its behavior with 5 valid combinations of its values. Thecoverage-basedheuristic is controlled
by 2 parameters with 3 valid combinations of values. All these noise placement heuristics inject
noise at selected places with a given probability. The probability is set globally for all enabled noise
placement heuristics by anoiseFreqsetting from the range 0 (never) to 1000 (always). Therandom
heuristic is enabled by default whennoiseFreq > 0. The randomheuristic can be suppressed by
one parameter of thesharedVarheuristic which explicitly disables the combination of these two
heuristics.

The considered infrastructure offers 6 basic and 2 advancednoise seeding techniques. The basic
techniques cannot be combined, but any basic technique can be combined with one or both advanced
techniques. The basic heuristics are:yield, sleep, wait, busyWait, synchYield, andmixed. Theyield
andsleeptechniques inject calls of theyield() andsleep() functions. Thewait andsynchYield
techniques lock a special monitor and then either wait for some time or callyield(). ThebusyWait
technique inserts code that just loops for some time. Themixedtechnique randomly chooses one of
the five other techniques at each noise injection location. ThehaltOneThreadtechnique occasionally
stops one thread until any other thread cannot run. Finally,the timeoutTamperheuristic randomly
reduces the time-outs used in the program under test in callsof sleep() (to ensure that they are
not used for synchronization).

5.4.2. Individuals, Their Encoding, and Genetic Operations on ThemIn order to utilize a GA
to solve the TNCS problem with the considered set of noise configurations, the particular test
configurations can play the role ofindividuals. The test configurations are encoded asvectors of
integers. The test configuration is either reduced to solely a noise configuration (when a single test
case without parameters is considered), or it consists of the noise configuration extended by one
or more specific entries controlling the test case settings.Here, however, the noise configurations
are targeted only, which form vectors of numbers in the range(0, 0, 0, 0, 0, 0)–(1000, 5, 3, 6, 2, 2).
The first entry controls thenoiseFreqsetting, the next two control thesharedVarand coverage-
basednoise placement heuristics. The last three entries controlthe setting of the basic and advanced
noise seeding heuristics. Each entry in the vector is annotated by a flag saying whether there exists
an ordering on the values of the entry. Entries whose values are ordered are calledordinal entries
below.

The standard one-point, two-point, and uniform element-wise (any-point) crossover
operators[55] are considered in the form they are implemented in the ECJ library [61]. Mutationis
also done on an element-wise basis, and it handles ordinal and non-ordinal entries differently. Non-
ordinal entries are set to a randomly chosen value from the particular range (including the current
value). Ordinal entries (e.g., entries encoding the strength of noise or the parameter controlling
the number of threads the test should use) are handled using the standard Gaussian mutation [55]
(with the standard deviation set to 10 % of the possible rangeor minimal value 2). Finally,
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standard proportional and tournament-based fitness selection operators [55] implemented in ECJ
are considered.

5.4.3. Parameters of Genetic Algorithms and the TNCS Problem GAs are adjustable through
a number of parameters influencing the efficiency of the search process. The way these parameters
should be set to make the search process as efficient as possible depends on the considered problem.
Therefore, setting of these GA parameters is described now.In particular, one has to consider
the following questions: How to set up the breeding infrastructure, i.e., which standard selection
and crossover operators should be used, how to set up their parameters, which value of mutation
probability provides good results, and whether elitism or random generation of individuals can help.
Another rising question is whether it is better to run a few big populations or instead more small
populations in case the time for testing is limited.

Due to a high cost of evaluating each test configuration through multiple executions, all the
experiments were conducted on one selected case study only.In particular, theCrawler test
case introduced in Section3.4.1 was considered. With the aim of observing as many behaviors
differing in their various important concurrency-relatedaspects as possible, a fitness function was
instantiated to maximize the obtained coverage under threedifferent concurrency coverage metrics,
namelySynchro, Avio∗, andHBPair∗ discussed in Section3.2. This way, three different aspects
of concurrency behavior is covered: interleaving of accesses from different threads to shared
memory locations viaAvio∗, successful synchronization of program threads inducing ahappens-
before relation viaHBPair∗, and information about whether the implemented synchronization does
something helpful viaSynchro. The value of the fitness function was computed as accumulated
coverage obtained from five executions ofCrawler with the same test and noise setting. All
experiments were evaluated using three statistics: (1) theaverage fitness value in each population,
(2) the best individual fitness in each population, and (3) the cumulative value of fitness from
all already evaluated individuals. For brevity, below, theconclusions that were derived from the
obtained results are presented only—more details about theactual experiments and their detailed
analysis are available in the original technical report [27].

The experiments were divided into three series. In the first one, the focus was devoted to the
population size, crossover, andmutationoperators. The results indicate that a small or middle size
of populations (20 or 40 individuals) are more suitable in this context since they could achieve better
results in a shorter time than bigger populations (100 or 200individuals). Further, it was concluded
that uniform crossover achieves a better coverage than one-point or two-point crossover, and that
higher values of mutation probability (0.5 and more) have a counter-productive impact on finding
the best solution (they become essentially comparable withrandom searching). In order to obtain
the best solution in the shortest time, the size of population 20, uniform crossover with probability
0.25 and mutation 0.01 were chosen for the rest of the experiments presented next.

In the second series of experiments, the influence ofeliteandrandom individualsin the population
was studied. Results show that without elite and random individuals, the GA did not manage to find
the best possible solution. Adding a small number of elite individuals (10 % of the population),
improved the quality of the discovered solutions although the best solution was still not found.
Adding a relatively high number of elite individuals (20 % ofthe population) allowed the GA to
find the best solution, but on the other hand, the time needed to get it was quite significant, and
the cumulative coverage in the population was getting worse. Adding random individuals to the
population caused the results to be less stable, but overall, it had a positive effect on finding better
solutions and on increasing the cumulative coverage (even in the case when there were no elite
individuals). Hence, the best configuration for getting thebest solution and the biggest cumulative
coverage is to use a high number of elite and random individuals. However, this solution is time
consuming. Therefore, as a compromise, it was decided to usea relatively small number of elite
individuals (10 % of the population) and no random individuals in the population.

In the last set of experiments, theselection operatorto be used was selected. In particular, the
fitness proportional selection operator as well as the tournament of two and four individuals were
considered. Moreover, all their possible combinations were considered as well. The different settings
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did not lead to big differences in the obtained results, yet the combination of the tournament of four
individuals with the fitness proportional selection operator seemed to be slightly winning.

To sum up, the final values of the parameters of the GA that are considered when evaluating
the below discussed application of the TNCS problem for improving data race detection are the
following: Size of population 20, a combination of the fitness proportional selection operators with
the tournament of four individuals, the uniform crossover with a higher probability (0.25), a low
mutation probability (0.01), and two elites (that is 10 % of the population).

5.5. A Concrete Application of the Proposed Approach

In this subsection, a concrete application of a GA in the process of noise-based testing of concurrent
programs [26] is described. In particular, the TNCS problem was instantiated by providing a fitness
function combining some of the discussed objective functions with the aim to be useful for
improving data race detection. The focus is devoted to finding the best test configuration which
is motivated by its possible use in subsequent repeated testing of the given application (e.g.,
within regression testing). The experimental results showthat the described solution can indeed
significantly help. Moreover, the experiments show that theapproach helps not only in finding data
races but also other kinds of concurrency-related errors. In addition, it turns out that when the
entire random testing process with the testing process usedfor finding the best test configuration
are compared, the latter achieves better results despite the used GA was not primarily designed for
controlling the entire testing process—this is indeed an interesting challenge for the future.

5.5.1. A GoldiLocks-based Objective FunctionBased on the experience with different concurrency
coverage metrics and dynamic error detectors, fitness function was build such that it maximizes the
coverage obtained under the concurrency coverage metricGoldiLock[32] (cf. Section3.2) based on
the GoldiLocks algorithm [16], together with maximizing the number of actual warnings produced
by this algorithm. TheGoldiLockhas been chosen as the basis of the fitness function because ithas
a low ratio of false positives, and it is able to continue in the analysis even after an error is detected.
Moreover, as discussed earlier, the concurrency coverage metric GoldiLock has multiple further
positive properties. In particular, the coverage under this metric usually grows smoothly (i.e., with
a minimum of shoulders) and does not stabilize too early (i.e., before most behaviors relevant from
the point of view of data race detection are examined). Further, based on the discussion presented
in Section5.3, an intention to minimize the execution time and to maximizethe number of detected
errors were considered as well.

In summary, the presented approach aims at (1) maximizing coverage under the concurrency
coverage metricGoldiLock, (2) maximizing the number of warnings produced by GoldiLocks,
(3) maximizing the number of detected real errors due to dataraces, and (4) minimizing the
execution time. The different basic objectives are combined using a system of weights assigned
to them.

As discussed in Section3.2, the GoldiLock metric counts the encountered internal states of
the GoldiLocks algorithm, here optimized by using the shortcircuit (SC) evaluation [16]. In
particular, the coverage tasks of theGoldiLockSCmetric are tuples(pl, var, state, goldiLockSet)
wherepl identifies the program location at which some shared memory locationvar is accessed,
state ∈ {SCT, SCL,LS,E} denotes the internal state of the GoldiLocks algorithm withrespect
to the use of SC checks andgoldiLockSet represents the lockset computed by the GoldiLocks
algorithm when in theLS state. The approach weights the coverage tasks of this metric according
to their severity. Namely, theSCT state represents a situation where the first short circuit check of
GoldiLocks (checking whether a variable is accessed by a single thread only) proves correctness
of the given access. This situation is common for sequentially executed code, and so weight 1 was
assigned. TheSCL andLS states mean that the first check does not succeed, but it is possible to
use further heuristic short circuit checks (SCL) or use the full algorithm (LS) to infer an object
(or objects) that proves correctness of the access. Such tasks were assigned with weight 5. Finally,
theE state means that the algorithm detected a data race and produced a warning. Such tasks were
weighted with 10. The weighted coverage is denoted asWGoldiLockSC.
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A GoldiLocks warning has the form of a tuple(var, ploc1, ploc2) wherevar identifies a shared
variable, andploc1 and ploc2 represent two program locations between which a data race was
detected. Sometimes, a single coverage task withstate = E produced atploc1 leads to several
warnings differing inploc2 orvar. The number of different warnings issued during the test execution
is denoted byGLwarn, and it was given the weight of 1000.

Finally, as already mentioned, aim was also devoted to maximizing the number of detected error
manifestations (error) and minimizing the execution time (time). Error manifestations are detected
by looking for unhandled exceptions. They are given a very high weight of 10000. With respect to
all the described objectives, the fitness function is then defined as follows (expecting the time to be
measured in milliseconds):(WGoldiLockSC + 1000 ∗GLwarn+ 10000 ∗ error)/time.

5.5.2. Case StudiesThe above described approach was evaluated on five test casescontaining
concurrency-related errors (in particular, data races, atomicity violations, and/or deadlocks as
described below). The test cases are listed in TableIV. In the table, thekLOCcolumn shows the size
of the considered test case, and theParamcolumn indicates the number of its parameters and the
number of possible values of each parameter. The consideredcase studies are not very large, which
is not due to a bad scalability of the approach, but rather due to thelarge number of experiments
needed to evaluate it, which in summary take a lot of time evenon small benchmarks.

TheAirlines, Crawler, andFTPServertest cases have already been mentioned in Section3.4.1.
The Airlines test case contains a high-level atomicity violation and has3 parameters: the number
of resellers (1–5), the number of customer sets (1–5), and the number of customers in each set (1–
10). TheCrawler test case has no parameters and contains a data race which leads to unhandled
exceptions. TheFTPServertest case has one parameter setting the number of clients connecting to
the server. It contains several data races that can cause exceptions. TheAnimatortest case is based
on a simple graphic application for algorithm animation calledXtangoAnimator, and theRovertest
case is a Java version of the NASA Ames K9 Rover Executive. Both these test cases have been
already introduced in Section4.5.1.

TheAirlinesandAnimatorexperiments were run on Intel Core2 6600 machines. TheFTPServer
test case was run on a machine with two Intel X5355 processors. TheRovertest case was run on
a machine with the Intel i5-2500 processor. Finally, theCrawler test case was run on two different
machines to demonstrate that concurrency error detection is environment dependent. The genetic
approach is, however, able to automatically find the best configuration for each environment. In
particular, theCrawler test case was run on the Intel i5 661 processor and theCrawler∗ test case on
the machine with four AMD Opteron 8389 processors.

5.5.3. Experimental ResultsFor the actual experiments, the infrastructure described in
Section5.4.2and the setting of parameters of the GA inferred in Section5.4.3were used. Although
this setting was inferred for a different fitness function while using sampled values of thenoiseFreq
parameter only, it represents a good option even for other experiments with the GA. Indeed,
the fitness function used in Section5.4.3 was designed to be rather general to cover a lot of
different concurrent behaviors. Moreover, analysis of thecorrelation between the values of the
fitness function of Section5.4.3and theGoldiLocSCk metric used in the GoldiLocks-based fitness
function on the performed experiments shows that the correlation is high. After all, the combination
of HBPair∗ andAvio∗ focuses on the same events as the GoldiLocks algorithm.

In the experiments, the elite individuals were allowed to bere-evaluated in the following
generations. This is motivated by the fact that a few executions of an individual (5 in this case)
are often not sufficient to prove whether the configuration can make a concurrency error manifest.
Indeed, tricky concurrency-related errors manifest very rarely even if a suitable noise heuristic is
used [36]. The reevaluation of elites therefore gives the most promising individuals another chance
to spot an error. This setting is a compromise between a high number of executions needed to
evaluate every individual more times and the available time.

The genetic approach was compared with the random approach to the choice of noise heuristics
and their parameters. In the random approach, 2000 test and noise configurations were randomly
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Table IV. All columns denoted Error and Time provide relative improvements obtained using the GA against
the random approach (for the concrete meaning see the text)

Test case Best individual Search process
Name kLOC Params Gen. Error Time Error Time
Airlines 0.3 5×5×10 15 3.0 1.7 3.8 2.5 3.2 8.8 3.0
Animator 1.5 – 25 21.8 10.9 1.1 1.3 4.3 5.4 1.3
Crawler 1.2 – 22 – – 1.3 1.5 0.3 1.1 3.3
Crawler∗ 1.2 – 25 – – 1.1 1.1 0.4 1.0 2.8
FTPServer 12.2 10 14 1.2 1.0 3.8 4.7 0.9 1.7 1.9
Rover 5.4 7 3 ★ ★ 33.7 19.4 3.2 8.8 3.0

selected and evaluated by the infrastructure in the same waythe individuals in the genetic approach
were evaluated. TableIV summarizes obtained results. The table is based on average results gathered
from 10 executions of the genetic and random approach. It is divided into three parts. In the left part
(Test case), the test cases are identified, and their size and information about their parameters are
provided.

Evaluation of the best individuals. The middle part of TableIV (Best individual) contains five
columns which compare the best individual obtained by the GAand found by the random approach.
The Gen.column contains the average number of generations (denotedasgen below) within the
best individual according to the considered fitness function was discovered. The numbers indicate
that the GA was able to find the best individual according to the considered fitness function within
the first quarter of the considered generations. This motivates a possible future work on designing
a suitable termination condition for the GA-based testing process.

The Error column of theBest individualsection of TableIV compares the ability of the best
individual to detect an error. The column contains two sub-columns. The values in the first sub-
column are computed as the fraction of the average number of errors found by the best individual
computed by the GA and the average number of errors discovered by the best individual found by
the random generation provided that an equivalent number ofexecutions is provided to the random
approach (this number is computed asgen times the size of the population which is 20). The values
in the second sub-column are computed as the fraction of the average number of errors found by
the best individual computed by the GA and the average numberof errors discovered by the best
individual found randomly in 2000 evaluations. The “–” value represents a situation where none
of the best individuals was able to detect the error within the allowed 5 executions. The★ symbol
means that the genetically obtained best individual did notspot any error while the best individual
found by the random generation did (this situation is discussed in more detail below).

Similarly, theTimecolumn of theBest individualsection of TableIV compares average times
needed to evaluate the best individual obtained by the GA andthe best individual found by the
random approach. Again, there are two sub-columns. The value in the first sub-column is computed
as the average time needed by the best individual found by therandom approach if onlygen ∗ 20
evaluations are considered, divided by the average time thegenetically found best individual needed.
The value in the second sub-column shows the average time needed by the best individual found
by the random generation when it was provided with 2000 evaluations, divided by the average time
needed by the genetically found best individual.

The values that are higher than1 in theError andTimecolumns of theBest individualsection of
TableIV represent how many times the GA outperforms the random approach. In general, one can
see that the best individual found by the GA has a higher probability to spot a concurrency error, and
it also needs less time to do so. Even if one let the random approach to perform 2000 evaluations,
the best individual found by the GA is still better. Exceptions to this are theRoverandCrawler test
cases. In theCrawler test case, the error manifests with a very low probability. The best individuals
in both cases were not successful in spotting the error (note, however, that the error was discovered
during the search process as discussed below). In theRover test case, the best individual found
by the GA was not able to detect an error and some of the best individuals found by the random
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approach did detect the error (as again discussed below, theerror was discovered during the search
process too). This results from the fact that the GA converged to an individual that allows a very fast
evaluation (over 30 times faster than the best configurationfound by the random generation). This,
however, lowered the quality of the found configuration fromthe point of view of error detection,
indicating that as a part of future research, one may think offurther adjusting the fitness function
such that this phenomenon is suppressed.

An evaluation of the search process. The right part of TableIV (Search process) provides
a different point of view on the presented results. In this case, the goal is not in finding just one
best individual learned genetically or by random generation that is assumed to be subsequently
used in debugging or regression testing. Instead, the focusis devoted to the results obtained during
the search process itself. The GA is hence considered here toplay a role of a heuristic that
directly controls which test and noise configurations should be used during a testing process with
a limited number of evaluations that can be done (2000 in thiscase). Note, however, that despite
this comparison is provided and the GA turns out to work well even in this comparison, the used
GA was not primarily designed for controlling the entire testing process but for finding the best
individual test only (a design of a GA designed with a stress on controlling the testing process
remains an interesting challenge for the future).

This part of the table contains three columns comparing the genetic and random approaches wrt.
their successes in finding errors and wrt. the time needed to perform the 2000 evaluations. The first
sub-column of (Error) compares the average number of errors spot during the search process and
the average number of errors spot during the evaluation of 2000 randomly chosen configurations of
the test and noise heuristics. The second sub-column ofError column compares the average number
of errors detected by the GA and the random approach when the latter is provided with the same
amount of time as the GA. Finally, theTimecolumn compares the average total time needed by the
random approach in 2000 evaluations and the average time needed by the GA. Again, values higher
than1 in all the columns represents how many times the GA outperforms the random approach.

The cumulative results presented in theError column show that the GA mostly outperforms the
random approach. The exceptions in the first sub-column ofError column reflect the already above
mentioned preference of the execution time in the fitness function, which is further highlighted by
theTimecolumn. For instance, in the worst case (theCrawler test case), the GA is more than 3 times
faster but in total discovers three times less errors. Conversely, in the best cases (theAirlines and
Rover), the GA found three times more errors in three times shortertime. To give some idea about
the needed time in total numbers, the average time needed to evaluate 2000 random individuals
took on average 32 hours (whereas the GA needed just 10.5 hours), and the average time needed to
evaluate 2000 random individuals of the biggest test caseFTPServertook 101 hours (whereas the
GA needed on average just 53 hours).

Overall, the results show that the GA outperforms the randomapproach. They also indicate that
one should probably partially reconsider the fitness function that puts sometimes too much stress
on the execution time, which can in some cases (demonstratedin theCrawler test case) be counter-
productive. Another positive fact is that the described fitness function helps to improve the testing
process even for test cases that do not contain a data race. This can be attributed to that it favors
configurations within which the synchronization occurs more often and therefore is tested more.
The results obtained from the experiments with theCrawler test case evaluated using two different
hardware configurations indicate that the GA is able to reflect the environment and focus on the
noise heuristics and their parameters which provide betterresults for the considered environment.

6. CONCLUSION AND FUTURE WORK

In this paper, noise-based testing that helps to examine different thread interleavings during
testing and dynamic analysis of concurrent programs and hence increases chances of finding
concurrency-related errors was presented. An overview of multiple results in the area of noise-based
testing recently published by the authors was given, including novel coverage metrics suitable for
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saturation-based testing and search-based testing of concurrent programs. Then, various existing
and two new heuristics for the noise placement and noise seeding problems that play a crucial role
in noise-based testing were presented. Results of some previously performed comparisons of noise
injection techniques were summarized and used as a basis forperforming a new, more thorough
comparison of the most promising noise injection heuristics as well as the new noise heuristics
proposed in this article. The heuristics were compared according to their ability to find concurrency
errors, to increase concurrency coverage (namely, under the Avio∗ and HBPair∗ coverage metrics),
and to cause an acceptable performance degradation.

The presented experimental results show that noise injection can indeed very significantly
improve the testing process, but there is no silver bullet among the many noise injection techniques.
Their performance depends on the test case, test goal, as well as test environment. Hence, for a new
test case, experimenting with the various noise injection heuristics may be needed—or, as often done
in industrial practice (e.g., within the industrial use of ConTest in IBM mentioned in Section2), one
can apply a randomly selected mix of the heuristics. In orderto improve on this aspect of noise-
injection based testing, an application of the genetic algorithm for choosing a suitable combination
of noise placement and noise seeding heuristics (and of the values of their parameters) was presented
as well. Experiments obtained with this approach showed that it can indeed significantly improve
the noise-based testing process despite there is still a lotof space for further improvements (as
mentioned below too).

Several promising directions for future work were envisaged: (1) One could think of new
heuristics and approaches combining the simplicity of noise injection with the recent developments
in the field of deterministic testing. For instance, one could use noise-based testing to roughly
explore the behavior of the tested program and use deterministic testing to test only particular areas
of the program behavior. (2) There is a significant space for developing better fitness functions and
better algorithms for search-based testing with noise injection. The results presented in Section5
demonstrated that putting too much stress on minimizing theoverhead caused by noise injection
may be counterproductive in some cases. In fact, the problemof choosing a suitable noise injection
technique is of a rather multi-objective nature, and so employing multi-objective optimization
algorithms might help here. (3) Collecting concurrency-related coverage from many executions
produces a huge amount of data. Data-mining techniques could therefore be used to mine new
helpful knowledge about the program under test from these data. (4) Noise injection is a lightweight
testing approach that has a moderate impact on the performance of the test. Nevertheless, there is
a simple possibility to further improve its performance by using partial instrumentation of the code.
In this case, only selected parts of the code would be instrumented, and therefore affected by the
noise. All parts of the code which would be known to be safe or to contain no concurrency related
behavior could be omitted during the instrumentation. (5) Finally, there is still a lot of space for new
combinations of static and dynamic analyses, further improving efficiency of the testing processes.
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