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Abstract. Nowadays, multi-threaded programs are quite common and
so are concurrency errors. Many works devoted to detection of concur-
rency errors have been published in recent years and many of them pre-
sented definitions of concurrency errors that the proposed algorithms
are able to handle. These definitions are usually expressed in different
terms suitable for a description of the particular considered algorithms
and they surprisingly often differ from each other in the meaning they
assign to particular errors. To help understanding the errors and de-
veloping techniques for detecting them, this report strives to provide
a uniform taxonomy of concurrency errors common in current programs,
with a stress on those written in Java, together with a brief overview of
techniques so far proposed for detecting such errors.

1 Introduction

The arrival of multi-core processors into regular computers accelerated develop-
ment of software products that use multi-threaded design to utilise the avail-
able hardware resources. Modern object-oriented programming languages allow
programmers to create multi-threaded programs, which, however, significantly
increases chances of errors appearing in the code. Indeed, errors in concurrency
are not only easy to cause, but also very difficult to discover and localise due to
the non-deterministic nature of multi-threaded computation.

Due to the above, a lot of research effort is currently devoted to all sorts of
methods of analysis and verification targeted at errors in concurrency. Plenty of
papers describing new tools and techniques for detection of concurrency errors
are presented each year. However, different authors describe the same concur-
rency errors in different terms and, surprisingly often, they even give the same
concurrency error a different meaning. Therefore, this report strives to provide
a uniform taxonomy of concurrency errors common in current programs, with
a stress on those written in object-oriented programming languages, that could
help a better understanding of these errors and their possible treatment.

The inconsistencies in definitions of concurrency errors are often related to
the fact that authors of various analyses adjust the definitions according to
the method they propose. Sometimes the definitions differ fundamentally (e.g.,
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one can find works claiming that an execution leads to a deadlock if all threads
terminate or end up waiting on a blocking instruction, without requiring any cir-
cular relationship between such threads required in the most common definition
of deadlocks). However, often, the definitions have some shared basic skeleton
which is parameterised by different underlying notions (such as the notion of
behavioural equivalence of threads). In our description, we try to systematically
identify the generic skeletons of the various notions of concurrency errors as well
as the underlying notions parameterising them.

For the considered errors, we try to also provide a brief overview of the
different existing techniques for detecting them. In these overviews, we (mostly)
do not mention the approach of model checking which can, of course, be used for
detecting all the different errors, but its use in practice is often limited by the
state explosion problem (or, even worse, by a need to handle infinite state spaces)
as well as the need to model the environment of a program being verified. That
is why the use of model checking is usually limited in practice to relatively small,
especially critical programs or components (e.g., drivers). For similar reasons,
we do not discuss the use of theorem proving in the rest of the report either.

Related work. Of course, there have been several attempts to provide a taxonomy
of concurrency errors in the past decades, c.f., e.g., [44, 46, 12]. In [12], authors
focus on concrete bug patterns bound to concrete synchronisation constructs in
Java like, e.g., the sleep() command. In [46], a kind of taxonomy of bug pat-
terns can also be found. The authors report results of analysis of concurrency
errors in several real-life programs. A detailed description of all possible concur-
rency errors that can occur when the synchronised construct is used in Java
is provided in [44] where a Petri net model of the synchronisation construct is
analysed. In comparison to these works, our aim is to provide uniform definitions
of common concurrency errors that are not based on some specific set of pro-
grams or some specific synchronisation means, and we always stress the generic
skeleton of the definitions and the notions parameterising it. We do not rely on
concrete bug patterns because they are always incomplete, characterising only
some specific ways how a certain type of error can arise.

Plan of the report. Our discussion of common concurrency errors is divided into
two main sections. (1) Section 2 covers various errors in safety, i.e., errors that
cause something bad to happen. In particular, data races, atomicity violation,
order violation, deadlocks, and missed signals are discussed. (2) Section 3 covers
various errors in liveness, i.e., errors that prevent something good from happen-
ing, as well as errors mixing liveness and safety. Concretely, starvation, livelocks,
non-progress behaviour, and blocked threads are discussed. In all cases, the par-
ticular error is first defined, trying to stress the main concept of the error and
the notions by which it is parameterised, followed by a brief discussion of various
known techniques for detecting the particular error. Finally, in Section 4, a short
conclusion is given.
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2 Safety Errors

Safety errors violate safety properties of a program, i.e., cause something bad to
happen. They always have a finite witness leading to an error state.

2.1 Data Races

Data races are one of the most common (mostly) undesirable phenomena in
concurrent programs. To be able to identify an occurrence of a data race in
an execution of a concurrent program, one needs to be able to say (1) which
variables are shared by any two given threads and (2) whether any given two
accesses to a given shared variable are synchronised in some way. A data race
can then be defined as follows.

Definition 1 A program execution contains a data race iff it contains two un-
synchronised accesses to a shared variable and at least one of them is a write
access.

Note, however, that not all data races are harmful—data races that are not
errors are often referred to as benign races.

2.1.1 Detection of Data Races

Data races are a well studied concurrency problem and therefore there exist
many different techniques for their detection. Dynamic techniques which analyse
one particular execution of a program are usually based on computing the so-
called locksets and/or happens-before relations along the witnessed execution.
Static techniques often either look for concrete code patterns that are likely to
cause a data race or they compute locksets and/or happens-before relations over
all executions considered feasible by the static analyser. There also exist static
detection techniques that use type systems to detect data races. We discuss the
basic principles of some of these techniques in the rest of this subsection.

The techniques based on locksets [61] build on the idea that all accesses
to a shared variable should be guarded by a lock. The lockset is defined as
a set of locks that guard all accesses to a given variable. Detectors then use an
observation that if the lockset associated with a certain shared variable is non-
empty, then there is at least one lock such that every access to the shared variable
from any thread is protected by this lock, and hence there is no possibility of
simultaneous accesses, and so a data race is not possible.

The happens-before-based techniques exploit the so-called happens-before re-
lation [41] (denoted →) which is defined as the least strict partial order that
includes every pair of causally ordered events. For instance, if an event x occurs
before an event y in the same thread, then x → y. Also, when x is an event creat-
ing some thread and y is an event in that thread, then x → y. Similarly, if some
synchronisation or communication means is used that requires an event x to pre-
cede an event y, then x → y. All notions of synchronisation and communication,
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such as sending and receiving a message, locking and unlocking a lock, sending
and receiving a notification, etc., are to be considered. Detectors build (or ap-
proximate) the happens-before relation among accesses to shared variables and
check that no two accesses (out of which at least one is for writing) can happen
simultaneously, i.e., without the happens-before relation between them.

Type systems provide a syntactic method for proving the absence of certain
program behaviours by classifying phrases according to the kinds of values they
compute [58]. A formal type system provides a powerful and efficient checker
of correctness of the code mainly if the programming language is strongly and
statically typed (i.e., each variable has a deterministic type in each point of com-
putation, and the types can be inferred without executing the code). Detection
of concurrency bugs is usually done by extending the initial type system with
a number of additional types that handle concurrency. These additional types
are usually expressed by code annotations. A type system then searches for vi-
olations of rules defined over the newly defined types. Sometimes, the notion
of typestates, introduced in [64], is used. Typestates extend the ordinary types
that do not change through the lifetime of an object by allowing them to change
during the course of the computation. A typestate property can be captured by
a finite state machine where the nodes represent states of the type and the arcs
correspond to operations that lead to state transitions.

Lockset-based algorithms. The first algorithm which used the idea of locksets was
Eraser [61]. The algorithm maintains for each shared variable v, a set C(v) of
candidate locks for v. When a new variable is initialised, its candidate set C(v)
contains all possible locks. Eraser updates C(v) by intersecting C(v) and the set
L(t) of locks held by the current thread whenever v is accessed. Eraser warns
about a data race if C(v) becomes empty for some shared variable v along the
execution being analysed. In order to reduce the number of false alarms, Eraser
introduces an internal state s(v) for each shared variable v used to identify
whether v is used exclusively by one thread, v is read by multiple threads, or
multiple threads change the value of v. The lockset C(v) is then modified only
when the variable is shared and a data race is reported only if C(v) becomes
empty and v is in the state denoting the situation when multiple threads access
v for writing.

The original Eraser algorithm designed for C programs was then modified
for programs written in object-oriented languages, c.f., e.g., [69, 13, 11, 77]. The
main modification (usually called as the ownership model) is inspired by the
common idiom used in object-oriented programs where a creator of an object is
actually not the owner of the object. Then one should take into account that
the creator always accesses the object first and no explicit synchronisation with
the owner is needed because the synchronisation is implicitly taken care by the
Java virtual machine. This idea is reflected by inserting a new internal state of
the shared variables. The modification introduces a small possibility of having
false negatives [40, 69] but greatly reduces the number of false alarms caused by
this object-oriented programming idiom.
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A static data race detector that approximates locksets using an interpro-
cedural data-flow analysis has been presented in [19]. The detection has three
phases: (1) The control flow of each procedure is obtained and a call graph of
the whole system is constructed. (2) A top-down data-flow analysis based on
locksets is performed over the constructed graphs. A data race is suspected if an
access to a shared variable is not guarded by a lock that is present in the lockset
constructed for the variable along a path being analysed. (3) A final inspection
algorithm then ranks each detected possible bug and reports only those that are
real with a higher probability. However, the approach still produces many false
alarms and it also has high memory requirements.

Better results were obtained, e.g., in [52, 38] where two more static analyses
were incorporated into the machinery. An alias analysis [55] identifies a set of
variables that refer to the same memory location, and an escape analysis [55]
identifies a set of objects that are accessible in more than one thread. The first
analysis enables the method to join locksets of different variables referencing the
same data, and the escape analysis allows the method to limit the computation
of locksets for variables that could be shared only.

A computation of locksets has also been implemented in the Java PathFinder
(JPF) model checker [68]. JPF performs explicit state model checking, and there-
fore the RaceDetector checker computes a lockset for each shared variable and
each state of the state space.

A problem of techniques based on locksets is that they do not support other
synchronisation than locks and therefore produce too many false alarms when
applied to common concurrent software.

Happens-before-based algorithms. Most happens-before-based algorithms use the
so-called vector clocks introduced in [50]. The idea of vector clocks for a message
passing system is as follows. Each thread has a vector of clocks Tvc indexed by
thread identifiers. One position in Tvc represents the own clock of t. The other
entries in Tvc hold logical timestamps indicating the last event in a remote thread
that is known to be in the happens-before relation with the current operation
of t. Vector clocks are partially-ordered in a point-wise manner (⊑) with an
associated join operation (⊔) and the minimal element (0). The vector clocks
of threads are managed as follows: (1) Initially, all clocks are set to 0. (2) Each
time a thread t sends a message, it sends also its Tvc and then t increments its
own logical clock in its Tvc by one. (3) Each time a thread receives a message,
it increments its own logical clock by one and further updates its Tvc according
to the received vector T ′

vc
to Tvc = Tvc ⊔ T ′

vc
.

Recently, a new variation of the vector-clock algorithm has been published [3].
The modification allows a distributed computation of vector clocks. Each thread
maintains not a vector but a tree structure holding values of vector clocks. How-
ever, according to the best of our knowledge, there is no detector that uses this
new algorithm yet.

Algorithms [59, 60] detect data races in systems with locks via maintaining
a vector clock Ct for each thread t (corresponding to Tvc in the original ter-
minology above), a vector clock Lm for each lock m, and two vector clocks for
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write and read operations for each shared variable x (denoted Wx and Rx, re-
spectively). Wx and Rx simply maintain a copy of Ct of the last thread that
accessed x for writing or reading, respectively. A read from x by a thread is
race-free if Wx ⊑ Ct (it happens after the last write of each thread). A write to
x by a thread is race-free if Wx ⊑ Ct and Rx ⊑ Ct (it happens after all accesses
to the variable).

Maintaining such a big number of vector clocks as above generates a consid-
erable overhead. Therefore, in [26], the vector clocks of variables from above were
mostly replaced by the so-called epochs associated with each variable v that are
represented as tuples (t, c) where t identifies the thread that last accessed v and
c represents the value of its clock. The idea behind this optimisation is that, in
most cases, a data race occurs between two subsequent accesses to a variable. In
such cases, epochs are sufficient to detect unsynchronised accesses. However, in
cases where a write operation needs to be synchronised with multiple preceding
read operations, epochs are not sufficient, and the algorithm has to build an
analogy of vector clocks for sequences of read operations.

The happens-before relation can also be approximated statically. A very ex-
pensive and quite precise static analysis has been introduced in [49]. The algo-
rithm proposed in this paper aims at computing the so-called may-happen-in-
parallel relation (MHP) which is the complement of the happens-before relation.
MHP is approximated in two steps. Initially, any pair of instructions is assumed
to be able to happen in parallel (the MHP is total). Then, the initial set of pairs
is pruned such that only those which cannot be seen to happen in succession
remain in the set. A data race is reported if two accesses to a shared variable
are in the MHP relation.

The original algorithm for computing MHP relations is very inefficient and
is able to handle very small programs only. Therefore, several modifications
have been proposed. The approach presented in [54] tries to compute MHP
relations using a data-flow framework. The data-flow analysis is performed over
the so-called parallel execution graph. This graph combines control-flow graphs
of all threads that could be started during the execution with special edges
induced by synchronisation actions in the code. The size of the graph increases
exponentially with the size of the program and with the number of threads.
Further, the data-flow computation of MHP relations has been slightly improved
in [8] by the so-called thread creation trees (TCT) that help to compute a rough
over-approximation of MHP relations before the data-flow evaluation is used.
However, the obtained static analysis is still quite expensive.

A somewhat similar approach has also been used in the JPF model checker
[68]. The PreciseRaceDetector detects data races by checking whether two ac-
cesses to the same variable may happen in parallel. In every state that JPF visits,
the algorithm checks all actions that can be performed next. If this collection of
actions contains at least two accesses to the same variable from different threads,
then a data race is reported. Compared to the static analyses presented above,
the detection in JPF is completely precise: It announces a data race only if it
can really happen.
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A bit different detection approach has been introduced in TRaDe [14] where
a topological race detection [30] is used. This technique is based on an exact iden-
tification of objects which are reachable from a thread. This is accomplished by
observing manipulations with references which alter the interconnection graph of
the objects used in a program—hence the name topological. Then, vector clocks
are used to identify possibly concurrently executed segments of code, called par-
allel segments. If an object is reachable from two parallel segments, a race has
been detected. A disadvantage of this solution is a considerable overhead.

An advantage of the algorithms mentioned above is their precision. How-
ever, the big cost of these algorithms inspired many researches to come up with
some combination of happens-before-based and lockset-based algorithms. These
combinations are often called hybrid algorithms.

Happens-before-based algorithms. Hybrid algorithms such as [57, 18, 77, 24] com-
bine the two approaches described above.

In RaceTrack [77], a notion of a threadset was introduced. The threadset is
maintained for each shared variable and contains information concerning threads
currently working with the variable. The method works as follows. Each time
a thread performs a memory access on a variable, it forms a label consisting
of the thread identifier and its current private clock value. The label is then
added to the threadset of the variable. The thread also uses its vector clock
to identify and remove from the threadset labels that correspond to accesses
that are ordered before the current access. Hence the threadset contains solely
labels for accesses that are concurrent. At the same time, locksets are used to
track locking of variables, which is not tracked by the used approximation of
the happens-before relation. Intersections on locksets are applied if the approxi-
mated happens-before relation is not able to assure an ordered access to shared
variables. If an ordered access to a shared variable is assured by the approxi-
mated happens-before relation, the lockset of the variable is reset to the lockset
of the thread that currently accesses it.

One of the most advanced lockset-based algorithms that also uses the happens-
before relation is Goldilocks presented in [18]. The main idea of this algorithm
is that locksets can contain not only locks but also volatile variables (i.e., vari-
ables with atomic access that may also be used for synchronisation) and, most
importantly, also threads. An appearance of a thread t in a lockset of a shared
variable means that t is properly synchronised for using the given variable. The
information about threads synchronised for using certain variables is then used
to maintain the transitive closure of the happens-before relation via the locksets.
An advantage of Goldilocks is that it allows locksets to grow during a computa-
tion when the happens-before relation is established between operations over v.
The basic Goldilocks algorithm is relatively expensive but can be optimised by
short circuiting the lockset computation (three cheaper checks that are sufficient
for race freedom between the two last accesses on a variable are used) and using
a lazy computation of the locksets (the locksets are computed only if the previous
optimisation is not able to detect that some events are in the happens-before re-
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lation). The optimised algorithm has a considerably lower overhead approaching
in some cases pure lockset-based algorithms.

A similar approach to Goldilocks but for the JPF model checker has been
presented in [39]. This algorithm does not map variables to locksets containing
threads and synchronisation elements (such as locks) but threads and synchro-
nisation elements to sets of variables. This modification is motivated by the fact
that the number of threads and locks is usually much lower than the number of
shared variables. The modification can be done because model checking allows
the method to modify structures associated with different threads at once. In
a dynamic analysis, this cannot be done and locksets must be maintained in
a distributed manner.

In [70], an abstract interpretation over abstract heaps is performed. The
algorithm maintains the so-called object use graphs (OUG) capturing accesses
from different threads to particular objects. Nodes of an OUG represent events
performed with the object for which the OUG is built, and edges denote approx-
imated happens-before relations between the events. The data race detection
algorithm performed after the OUGs are built then does not need to analyse the
entire program but only relatively small OUGs. A data race is detected if there
exist two events such that: (1) There is no ordering between the events, (2) the
events originate from different threads, (3) at least one event is a write action,
and (4) the events are not done under a common lock protection.

Type-based algorithms. In [23, 25], a clone of classic Java called ConcurrentJava
has been proposed. The papers presented several annotations of using synchro-
nisation primitives and of accessing shared variables allowing race-freeness be
checked by an extended typing system of ConcurrentJava. For instance, each
definition of a shared variable can be annotated with an annotation guarded-by

l which requires each access to the particular variable to be guarded by a lock l.
A combination of type-based and data flow analysis has been presented in

[75]. The proposed algorithm uses typestates to handle locking states for each
variable and does not need any annotation provided by the user. Typestates
are computed using an intraprocedural data-flow analysis and symbolic path
simulation. The technique is able to handle large programs but still produces
false alarms mainly due to unsupported synchronisation mechanisms (only locks
are supported).

2.2 Atomicity Violation

Atomicity is a non-inference property. The notion of atomicity is rather generic.
It is parametrised by (1) a specification of when two program executions may
be considered equivalent from the point of view of their overall impact and
(2) a specification of which code blocks are assumed to be atomic. Then an
atomicity violation can be defined as follows.

Definition 2 A program execution violates atomicity iff it is not equivalent to
any other execution in which all code blocks which are assumed to be atomic are
executed serially.
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An execution that violates atomicity of some code blocks is often denoted as
an unserialisable execution. The precise meaning of unserialisability of course
depends on the employed notion of equivalence of program executions.

2.2.1 Detection of Atomicity Violation

Taking into account the generic notion of atomicity, methods of detecting atom-
icity violation can be classified according to: (1) The way they obtain informa-
tion about which code blocks should, in fact, be expected to execute atomically.
(2) The notion of equivalence of executions used (we will get to several commonly
used equivalences in the following). (3) The actual way in which an atomicity
violation is detected (i.e., using static analysis, dynamic analysis, etc.).

As for the blocks to be assumed to execute atomically, some authors expect
the programmers to annotate their code to delimit such code blocks [28]. Some
other works come with predefined patterns of code which should typically exe-
cute atomically [47, 67, 32]. Still other authors try to infer blocks to be assumed
to execute atomically, e.g., by analysing data and control dependencies between
program statements [74], where dependent program statements form a block
which should be executed atomically, or by finding out access correlations be-
tween shared variables [45], where a set of accesses to correlated shared variables
should be executed atomically (together with all statements between them).

Below, we first discuss approaches of detecting atomicity violations when con-
sidering accesses to a single shared variable only and then those which consider
accesses to several shared variables.

Atomicity over one variable. Most of the existing algorithms for detecting atom-
icity violations are only able to detect atomicity violations within accesses to
a single shared variable. They mostly try to detect a situation where two ac-
cesses to a shared variable should be executed atomically, but are interleaved by
an access from another thread.

In [74], blocks of instructions which are assumed to execute atomically are
approximated by the so called computational units (CUs). CUs are inferred au-
tomatically from a single program trace by analysing data and control depen-
dencies between instructions. First, a dependency graph is created which con-
tains control and read-after-write dependencies between all instructions. Then
the algorithm tries to partition this dependency graph to obtain a set of dis-
tinct subgraphs which are the CUs. The partitioning works in such a way that
each CU is the largest group of instructions where all instructions are control
or read-after-write dependent, but no instructions which access shared variables
are read-after-write dependent, i.e., no read-after-write dependencies are allowed
between shared variables in the same computational unit. Since these conditions
are not sufficient to partition the dependency graph to distinct subgraphs, ad-
ditional heuristics are used. Atomicity violations are then detected by checking
if the strict 2-phase locking (2PL) discipline [20] is violated in a program trace.
Violating the strict 2PL discipline means that some CU has written or accessed
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a shared variable which another CU is currently reading from or writing to, re-
spectively (i.e., some CU accessed a shared variable and before its execution is
finished, another CU accesses this shared variables). If the strict 2PL discipline
is violated, the program trace is not identical to any serial execution, and so
seen as violating atomicity. Checking if the strict 2PL discipline is violated is
done dynamically during a program execution in case of the online version of
the algorithm, or a program trace is first recorded and then analysed using the
off-line version of the algorithm.

A much simpler approach of discovering atomicity violations was presented
in [47]. Here, any two consecutive accesses from one thread to the same shared
variable are considered an atomic section, i.e., a block which should be executed
atomically. Such blocks can be categorised into four classes according to the types
of the two accesses (read or write) to the shared variable. Serialisability is then
defined based on an analysis of what can happen when a block b of each of the
possible classes is interleaved with some read or write access from another thread
to the same shared variable which is accessed in b. Out of the eight total cases
arising in this way, four (namely, r/w/r, w/w/r, w/r/w, r/w/w) are considered
to lead to an unserialisable execution. However, the detection algorithm does
not consider all the unserialisable executions as errors. Detection of atomicity
violations is done dynamically in two steps. First, the algorithm analyses a set of
correct (training) runs in which it tries to detect atomic sections which are never
unserialisably interleaved. These atomic sections are called access interleaving
invariants (AI invariants). Then the algorithm checks if any of the obtained
AI invariants is violated in a monitored run, i.e., if there is an AI invariant
which is unserialisably interleaved by an access from another thread to a shared
variable which the AI invariant (atomic section) accesses. While the second step
of checking AI invariants violation is really simple and can be done in a quite
efficient way, the training step to get the AI invariants can lead to a considerable
slow down of the monitored application.

A more complicated approach was introduced in [24, 72], where atomicity vi-
olations are sought using the Lipton’s reduction theorem [43]. The approach is in
particular based on checking whether a given run can be transformed (reduced)
to a serial one using commutativity of certain instructions (or, in other words,
by moving certain instructions left or right in the execution). Both [24] and [72]
use procedures as atomic blocks by default, but users can annotate blocks of
code which they assume to execute atomically to provide a more precise spec-
ification of atomic sections for the algorithm. For the reduction used to detect
atomicity violations, all instructions are classified, according to their commuta-
tivity properties, into 4 groups: (1) Right-mover instructions R which can be
swapped with immediately following instructions. (2) Left-mover instructions L

which can be swapped with immediately preceding instructions. (3) Both-mover
instructions B which can be swapped with preceding or following instructions.
(4) Non-mover instructions N which are not known to be left or right mover in-
structions. Classification of instructions to these classes is based on their relation
to synchronisation operations, e.g., lock acquire instructions are right-movers,
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lock release instructions are left-movers, and race free accesses to variables are
both-movers (a lockset-based dynamic detection algorithm is used for checking
race freeness). An execution is then serialisable if it is deadlock-free and each
atomic section in this execution can be reduced to a form R∗N?L∗ by moving the
instructions in the execution in the allowed directions. Here, N? represents a sin-
gle or no non-mover instruction and both-mover instructions B can be taken as
right-mover instructions R or left-mover instructions L. Algorithms in both [24]
and [72] use dynamic analysis to detect atomicity violation using the reduction
algorithm described above.

Other approaches using the Lipton’s reduction theorem [43] can be found
in [27, 71] where type systems based on this theorem are used to deal with
atomicity violations.

In [27], atomicity is analysed in programs written in a language called Atom-
icJava, a subset of Java with a type system for atomicity. The type system works
with atomicity-related types denoting an expression as compound, atomic, mover
(in the sense of Lipton), etc. These types may, moreover, be conditional upon the
locks held. The user may annotate methods by the atomicity types and he/she
can also annotate variables by locks the variables are supposed to be guarded
with. The type inference rules proposed in the paper then automatically derive
type constraints whose solution (if any) provides atomicity types for particu-
lar methods. If the methods were annotated by the user, conformance of the
automatically derived and manually provided atomicity types is checked. The
use of the conditional atomicity types makes the analysis more precise than the
previous approaches.

In [71], a more simple type system for programs with non-blocking syn-
chronisation is used which operates with five atomicity-related types: atomic,
non-atomic, right-, left-, and both-mover expressions are distinguished. Again,
procedures are considered as the main unit of atomicity. In this case, no anno-
tations are provided, the technique just informs on which methods it considers
atomic and which not, which is a bit restricting. Methods which are not executed
atomically may, but need not violate atomicity assumptions of the programmer.

Atomicity over multiple variables. The above mentioned algorithms consider
atomicity of multiple accesses to the same variable only. However, there are sit-
uations where we need to check atomicity over multiple variables, e.g., when
a program modifies three different variables representing a point in a three-
dimensional space. Even if we ensure that every consecutive read and write
accesses to each of these variables are executed atomically, the program can still
have an unserialisable execution. This is because the three atomic blocks guard-
ing each pair of accesses to each of these variables can be interleaved with other
atomic blocks operating with these variables. Some of these variables can then
end up modified by a different thread than the others which cannot happen in
a serial execution. Nevertheless, the above discussed detectors would not detect
any atomicity violation here.

In [6], the problem of violation of atomicity of operations over multiple vari-
ables is referred to as a high-level data race. In the work, all synchronised blocks

11



(i.e., blocks of code guarded by the synchronised statement) are considered to
form atomic sections. The proposed detection of atomicity violations is based
on checking the so-called view consistency. For each thread a set of views is
generated. A view is a set of fields (variables) which are accessed by a thread
within a single synchronised block. From this set of views, a set of maximal views
(maximal according to set inclusion) is computed for the thread. An execution
is then serialisable if each thread is only using views which are compatible, i.e.,
form a chain according to set inclusion, with all maximal views of other threads.
Hence, the detection algorithm uses a dynamic analysis to check whether all
views are compatible within a given a program trace. Since the algorithm has
to operate with a big number of sets (each view is a set), it suffers from a big
overhead.

A different approach is associated with the Velodrome detector [28]. Here,
atomic sections (called transactions) are given as methods annotated by the
user. Detection of atomicity violations is based on constructing a graph of the
transactional happens-before relation (the happens-before relation among trans-
actions). An execution is serialisable if the graph does not contain a cycle. The
detection algorithm uses a dynamic analysis to create the graph from a program
trace and then checks if it contains a cycle. If yes, the program contains an atom-
icity violation. Since creating the graph for an entire execution is inconvenient,
nodes that cannot be involved in a cycle are garbage collected or not created at
all. Like the previous algorithm, Velodrom too may suffer from a considerable
overhead in some cases.

The simple idea of AI invariants described in [47] has been generalised for
checking atomicity over pairs of variables in [67, 32], where 11 or 14, respectively,
problematic interleaving scenarios were identified. The user is assumed to pro-
vide the so-called atomic sets that are sets of variables which should be operated
atomically. In [67] there is proposed an algorithm which infers which procedure
bodies should be the so-called units of work w.r.t. the given atomic sets. This
is done statically using a dataflow analysis. An execution is then considered se-
rialisable if it does not correspond to any of the problematic interleavings of
the detected units of work. An algorithm capable of checking unserialisability
of execution of units of work (called atomic-set-serialisability violations) is de-
scribed in [32], based on a dynamic analysis of program traces. The algorithm
introduces the so-called race automata which are simple finite state automata
used to detect the problematic interleaving scenarios.

There are also attempts to enhance well-known approaches for data race
detection to be able to detect atomicity violations over multiple variables. One
method can be found in [45] where data mining techniques are used to determine
access correlations among an arbitrary number of variables. This information is
then used in modified lockset-based and happens-before-based detectors. Since
data race detectors do not directly work with the notion of atomicity, blocks of
code accessing correlated variables are used to play the role of atomic sections.
Access correlations are inferred statically using a correlation analysis. The cor-
relation analysis is based on mining association rules [2] from frequent itemsets,
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where items in these sets are accesses to variables. The obtained association rules
are then pruned to allow only the rules satisfying the minimal support and min-
imal confidence constraints [2]. The resulting rules determine access correlations
between various variables. Using this information, the two mentioned data race
detector types can then be modified to detect atomicity violations over multiple
variables as follows. Lockset-based algorithms must check for every pair of ac-
cesses to a shared variable that the shared variable and all variables correlated
with this variable are protected by at least one common lock. Happens-before-
based algorithms must compare the logical timestamps not only with accesses
to the same variables, but also with accesses to the correlated variables. The de-
tection can be done statically or dynamically, depends on the data race detector
which is used.

2.3 Order Violations

Order violations form a much less studied class of concurrency errors than data
races and atomicity violations, which is, however, starting to gain more attention
lately. An order violation is a problem of a missing enforcement of some higher-
level ordering requirements. For detecting order violations, one needs to be able
to decide for a given execution whether the instructions executed in it have been
executed in the right order. An order violation can be defined as follows.

Definition 3 A program execution exhibits an order violation if some instruc-
tions executed in it are not executed in an expected order.

2.3.1 Detection of Order Violations

Like in the case of atomicity violations, a prerequisite for detecting order vio-
lations is to know which order restrictions are assumed. These can be specified
manually, generic order requirements may be used (e.g., an object must be first
initialised and only then used), or some restrictions may be automatically in-
ferred. The order restrictions considered in current approaches are often quite
simple, frequently considering only pairs of instructions. The actual discovery
of order violations can in theory be done dynamically as well as statically. Cur-
rently, however, there are not many works dealing with order violation detection
as has been pinpointed in [46].

In [76], authors introduce, for each memory operation o, a set of memory
operations PSet(o) which o depends upon and which can safely occur before o.
These sets are extracted from a set of correct executions of the analysed pro-
gram. Then, order violations are sought in further runs by looking for a memory
operation o such that the previous memory operation dependent upon o is not
in PSet(o).

The ConMem tool [78] detects several behavioural patterns corresponding
to order violations that can lead to a program crash. For each test input, Con-
Mem monitors one execution of the given program. It uses a dynamic analysis
to first identify parts of executions (denoted as ingredients) that may lead to
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a crash if ordered differently than in the given execution (e.g., assignments of
null to a shared pointer and dereferences of this shared pointer from different
treads). Then, ConMem analyses synchronisation around these potentially prob-
lematic constructions to see whether fatal interleavings exist to trigger an error
(e.g., an interleaving where a thread t1 assigns null to a shared variable v, and
subsequently, a thread t2 dereferences v). The paper describes four problematic
patterns consisting of ingredients and timing conditions that lead to an error and
that ConMem is able to detect. One example is the Con-NULL pattern with in-
gredients rp—a thread t1 reads a pointer ptr, wp—a thread t2 writes null to ptr,
and timing conditions requiring wp to execute before rp with no write operation
on ptr happening in between of wp and rp. Another example is the Con-UnInit
pattern with ingredients r—a thread t1 reads a variable v without previously
writing to v, w—a thread t2 initialises v, and the timing condition requiring r

to execute before w.

2.4 Deadlocks

Deadlocks are a class of safety errors which is quite often studied in the literature.
However, despite that, the understanding of deadlocks still varies in different
works. We stick here to the meaning common, e.g., in the classical literature
on operating systems. To define deadlocks in a general way, we assume that
given any state of a program, (1) one can identify threads that are blocked and
waiting for some event to happen and (2) for any waiting thread t, one can
identify threads that could generate an event that would unblock t.

Definition 4 A program state contains a set S of deadlocked threads iff each
thread in S is blocked and waiting for some event that could unblock it, but such
an event could only be generated by a thread from S.

Most works consider a special case of deadlocks, namely, the so-called Coff-
man deadlock [15]. A Coffman deadlock happens in a state in which four condi-
tions are met: (1) Processes have an exclusive access to the resources granted to
them, (2) processes hold some resources and are waiting for additional resources,
(3) resources cannot be forcibly removed from the tasks holding them until the
resources are used to completion (no preemption on the resources), and (4) a cir-
cular chain of tasks exists in which each task holds one or more resources that
are being requested by the next task in the chain. Such a definition perfectly
fits deadlocks caused by blocking lock operations but does not cover deadlocks
caused by message passing (e.g., a thread t1 can wait for a message that could
only be sent by a thread t2, but t2 is waiting for a message that could only be
sent by t1).

2.4.1 Detection of Deadlocks

Detection of deadlocks usually involves various graph algorithms as it is, for in-
stance, in the case of the algorithm introduced in [56] where a thread-wait-for
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graph is dynamically constructed and analysed for a presence of cycles. Here,
a thread-wait-for graph is an arc-labelled digraph G = (V, E) where vertices V

are threads and locks, and edges E represent waiting arcs which are classified
(labelled) according to the synchronisation mechanism used (join synchronisa-
tion, notification, finalisation, and waiting on a monitor). A cycle in this graph
involving at least two threads represents a deadlock. A disadvantage of this al-
gorithm is that it is able to detect only deadlocks that actually happen. The
following works can detect also potential deadlocks that could happen but did
not actually happen during the witnessed execution.

In [33], a different algorithm called GoodLock for detecting deadlocks was
presented. The algorithm constructs the so-called runtime lock trees and uses
a depth-first search to detect cycles in it. Here, a runtime lock tree Tt = (V, E)
for a thread t is a tree where vertices V are locks acquired by t and there is
an edge from v1 ∈ V to v2 ∈ V when v1 represents the most recently acquired
lock that t holds when acquiring v2. A path in such a tree represents a nested
use of locks. When a program terminates, the algorithm analyses lock trees for
each pair of threads. The algorithm issues a warning about a possible deadlock
if the order of obtaining the same locks (i.e., their nesting) in two analysed trees
differs and no “gate” lock guarding this inconsistency has been detected.

The original GoodLock algorithm is able to detect deadlocks between two
threads only. Later works, e.g., [9, 1] improve the algorithm to detect deadlocks
among multiple threads. In [1], a support for semaphores and wait-notify syn-
chronisation was added. The recent work [37] modified the original algorithm so
that runtime lock trees are not constructed. Instead, the algorithm uses a stack
to handle the so-called lock dependency relation. The algorithm computes the
transitive closure of the lock dependency relation instead of performing a depth
first search in a graph. The modified algorithm uses more memory but the com-
putation is much faster.

A purely data-flow-based interprocedural static detector of deadlocks called
RacerX has been presented in [19]. The detection it implements has two phases:
(1) The control flow graph of each procedure is obtained and the complete con-
trol flow graph of the whole system is constructed. (2) A data-flow analysis is
performed over the constructed graph and the order in which locks are nested
is analysed. A deadlock is reported when locks are not obtained every time in
the same order. In [73], a bottom-up data-flow static analysis is used to detect
deadlocks. The algorithm traverses the call graph bottom-up and builds a lock-
order graph per method. Each node of the lock-order graph represents a set of
objects that may be aliased and an edge in the graph indicates nested locking of
objects along some code path. If the obtained graph contains cycles, a possible
deadlock is reported. Both algorithms produce many false alarms due to the
approximations they use.

The algorithm presented in [53] reduces the number of false alarms obtained
by a data-flow interprocedural analysis described in the previous paragraph using
six conditions. The first four represent results of reachability, alias, escape, and
approximated may-happen-in-parallel analyses. The next two conditions handle
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special cases of using reentrant locks and a guarding lock. The algorithm filters
all potential deadlocks through these conditions and reports only those which
fulfil all the conditions.

A combination of symbolic execution, static analysis, and SMT solving is
used in [17] to automatically derive the so-called method contracts guaranteeing
deadlock free executions. The algorithm does not focus on detection of deadlock
if the whole program is available. Instead, the algorithm analyse pieces of code
(usually libraries) and automatically infers conditions that must be fulfilled when
these libraries are used in order to avoid deadlocks.

2.5 Missed Signals

Missed signals are another less studied class of concurrency errors. The notion of
missed signals assumes that it is known which signal is intended to be delivered
to which thread or threads. A missed signal error can be defined as follows.

Definition 5 A program execution contains a missed signal iff there is sent
a signal that is not delivered to the thread or threads to which it is intended to
be delivered.

Since signals are often used to unblock waiting threads, a missed signal error
typically leads to a thread or threads being blocked forever.

2.5.1 Detection of Missed Signals

There are not many works focusing specially on missed signals. Usually, the
problem is studied as a part of detecting other concurrency problems. In [1],
a lost notification error is reported if there is a notify event e in a trace tr and
there exists a trace that is a feasible permutation of tr in which e wakes up fewer
threads than it does in tr. Such a situation is possible when the wait event of
one of the threads woken in tr is not constrained to happen before the event e.

In [36], several code patterns that might lead to a lost notification are listed.
For instance, each call of wait() must be enclosed by a loop checking some
external condition. A pattern-based static analysis is then used to detect such
bug patterns.

3 Liveness and Mixed Errors

Liveness errors are errors which violate liveness properties of a program, i.e.,
prevent something good from happening. They have infinite (or finite, but com-
plete) witnesses. Dealing with liveness errors is much harder than with safety
errors because algorithms dealing with them have to find out that there is no way
something could (or could not) happen in the future, which often boils down to
a necessity of detecting loops. Mixed errors are then errors that that have both
finite witnesses as well as infinite ones, whose any finite prefix does not suffice
as a witness.
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Before we start discussing more concrete notions of liveness and mixed errors,
let us first introduce the very general notion of starvation [66].

Definition 6 A program execution exhibits starvation iff there exists a thread
which waits (blocked or continually performing some computation) for an event
that needs not occur.

Starvation can be seen to cover as special cases various safety as well as
liveness (mixed) errors such as deadlocks, missed signals, and the below discussed
livelocks or blocked threads. In these situations, an event for which a thread is
waiting cannot happen, and the situations are clearly to be avoided. On the
other hand, there are cases where the event for which a thread is waiting can
always eventfully happen despite there is a possibility that it never happens. Such
situations are not welcome since they may cause performance degradation, but
they are sometimes tolerated (one expects that if an event can always eventually
happen, it will eventually happen in practice).

3.1 Livelocks and Non-progress Behaviour

There are again various different definitions of a livelock in the literature. Often,
the works consider some kind of a progress notion for expressing that a thread is
making some useful work, i.e., doing something what the programmer intended
to be done. Then they see a livelock as a problem when a thread is not blocked
but is not making any progress. However, by analogy with deadlocks, we feel it
more appropriate to restrict the notion of livelocks to the case when threads are
looping in a useless way while trying to synchronise (which is a notion common,
e.g., in various works on operating systems). That is why, we first define a general
notion of non-progress behaviour and then we specialise it to livelocks.

Definition 7 An infinite program execution exhibits a non-progress behaviour
iff there is a thread which is continually performing some computation, i.e., it is
not blocked, but it is not making any progress.

A non-progress behaviour is a special case of starvation within an infinite
behaviour. On the other hand, starvation may exhibit even in finite behaviours
and also in infinite progress behaviours in which a thread is for a while waiting
for an event that is not guaranteed to happen. As we have said already above,
livelocks may be seen as a special case of non-progress behaviour [66].

Definition 8 Within an infinite execution, a set S of threads is in a livelock iff
each of the threads in S keeps running forever in some loop in which it is not
intended to run forever, but which it could leave only if some thread from S could
leave the loop it is running in.

As was mentioned before, there are many, often inconsistent, definitions of
a livelock. Moreover, many works do not distinguish between livelocks and a non-
progress behaviour [10, 63, 42, 65, 34]. Other papers [51, 48] take a livelock to be
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a situation where a task has such a low priority that it does not run (it is not al-
lowed to make any progress) because there are many other, higher priority, tasks
which run instead. We do not consider such a situation a livelock and not even
a non-progress behaviour but a form of starvation. There are even works [4] for
which a thread is in a livelock whenever it is executing an infinite loop, regard-
less of what the program does within the loop. However, there are many reactive
programs which run intentionally in an infinite loop, e.g., controllers, operating
systems and their components, etc., and it is not appropriate to considered them
to be in a livelock.

3.1.1 Detection of Livelocks and Non-progress Behaviour

We are not aware of any works specialising in detection of livelocks in the sense we
defined them above, which requires not only detection of a looping behaviour but
also of the fact that this behaviour could be escaped only if some of the livelocked
threads could escape it. There are, however, works considering detection of non-
progress behaviour (sometimes under the name of livelock detection, but we stick
here to speaking about detection of non-progress behaviour).

The first issue the non-progress detection methods have to deal with is get-
ting to know what is to be considered a non-progress behaviour. In the literature
there are used various different notions of progress. Some works, e.g., [63], de-
fine progress by looking at the communication among two or more cooperating
threads. If a thread communicates, it is progressing. In [29], progress is associated
with operations on the so-called communication objects (such as shared variables,
semaphores, FIFO buffers, etc.). In [42, 65], progress is defined by reaching a so-
called progress action or progress statement, respectively (e.g., delivering output,
responding to the environment, etc.). In [34], progress is expressed by a so-called
liveness signature, a set of state predicates and temporal rules, specifying which
application states determine whether a program is making a progress when they
are repeatedly reached.

To enable a non-progress detection, the general notions of progress from
above have to be concretised for a particular program. This is mostly expected to
be done by the user, e.g., by specifying progress actions [42], labelling statements
as progress statements [35], annotating the code [34], calling actions of the so-
called observer [10], etc. However, some works do not require any user input and
use a fixed notion of progress [29].

One of the most common approaches for detecting non-progress behaviour in
finite-state programs is to use model checking [35, 29] and search for non-progress
cycles [21]. In [29], no non-progress cycles are being sought, instead bounded
model checking is used to find a path where no progress is being made for a user-
specified period of time. Such an approach can lead to false alarms, but can be
used for large and infinite-state programs. Recently, there has also appeared
various (infinite-state) program analyses, based, e.g., on transition predicate
abstraction and ranking function synthesis, for proving (non-)termination. These
can also be used for verifying liveness properties [16], but these approaches, albeit
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useful, for instance, for verifying drivers, are still not applicable to large software
systems.

Another often used approach is to use a dynamic analysis in the form of
dynamic monitoring [34, 5]. In [34], a liveness signature, a set of state predicates
and temporal rules, is used to determine whether a program is making progress.
In other words, the liveness signature determines which program states are sig-
nificant in determining whether a program is making a progress. If a program
does not reach any of these program states for some time, the program is at a so-
called standstill, i.e., is not making progress. In [5], the so-called Q-Learning is
used to navigate a program execution to follow paths which most likely lead
to an execution trace in which the program is not making progress. In case of
finite-state programs, the tool searches for an execution trace containing a non-
progress loop, in case of infinite-state programs, it tries to find an execution
trace of a user-specified length. A problem with dynamic monitoring techniques
is that they cannot distinguish between a non-progress behaviour and starvation
because they are checking bounded liveness properties [62], which are in fact
safety properties, not liveness properties.

In [10], a static analysis is used to detect a non-progress behaviour in pro-
grams written in Ada. Progress is defined here as a communication with an
external observer. Each program is represented by a control flow graph. To de-
tect a non-progress behaviour, the method searches the control flow graph for an
infinite loop in which no communication with the external observer is performed.

There are also works which attempt to use approaches often used for detection
of other concurrency errors. For example, in [31], the authors define antipatterns
which may lead to a non-progress behaviour and use static and dynamic analyses
to locate these antipatterns in programs.

In [42], the authors define progress as an execution of a progress action and
a progress cycle as a cycle which contains at least one progress action. Then
they translate a necessary condition of an existence of a non-progress behaviour,
i.e., that there exists an infinite run in which progress cycles are repeated only
a finite number of times, into a homogeneous integer programming problem.
Subsequently, they try to find a solution to this problem. If the problem has no
solution, then the program surely does not contain a non-progress behaviour.
A downside of this method (apart from its cost) is that it is incomplete, so if
the problem has a solution there may or may not be a non-progress behaviour.

3.2 Blocked Threads

We speak about a blocked thread appearing within some execution when a thread
is blocked and waiting forever for some event which can unblock it. Like for
a deadlock, one must be able to say what the blocking and unblocking operations
are. The problem can then be defined as follows.

Definition 9 A program execution contains a blocked thread iff there is a thread
which is waiting for some event to continue and this event never occurs in the
execution.
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An absence of some unblocking event which leaves some thread blocked may
have various reasons. A common reason is that a thread, which should have
unblocked some other thread, ended unexpectedly, leaving the other thread in
a blocked state. In such a case, one often speaks about the so-called orphaned
threads [22]. Another reason may be that a thread is waiting for a livelocked or
deadlocked thread.

3.2.1 Detection of Blocked Threads

We are not aware of any works specialising in this kind of errors. Of course,
the most simple solution to deal with this error is to check that a thread is
waiting for more than some time to be unblocked. This is, however, a very crude
approach. In fact, a similar approach is used in MySQL to detect deadlocks and
it was shown [46] that it is quite inaccurate detection method which often leads
to false alarms and, in case of MySQL, to unnecessary restarts.

Like with all previous errors, another possibility is to use model checking [7],
limited by its high price and problems with some program operations like input
and output. In theory, one could also use, e.g., static analysis for detection of
some undesirable code patterns that could cause permanent blocking, similar to
deadlock antipatterns [31] in case of a deadlock. However, detection of this kind
of errors remains mostly an open issue.

4 Conclusions

We have provided a uniform classification of common concurrency errors, mostly
focusing on shared memory systems. In the definitions, we have have tried to
stress the basic skeleton of the considered phenomena together with the various
notions that parameterise these phenomena and that must be fixed before one
can speak about concrete appearances of the given errors. These parameters
are often used implicitly, but we feel appropriate to stress their existence so
that one realizes that they have to be fixed and also that various specialised
notions of errors are in fact instances of the same general principle. We decided
to define all the considered errors in an informal way in order to achieve a high
level of generality. For concrete and formal definitions of these errors, one has
to define the memory model used and the exact semantics of all operations that
may (directly or indirectly) influence synchronisation of the application, which
typically leads to a significant restriction of the considered notions.

We have also mentioned various detection techniques for each studied con-
currency error and briefly described the main ideas they are based on. It is
evident that some concurrency errors are quite often studied (e.g., data races),
and some have a shortage of algorithms for their detection. Despite some of the
latter problems may appear less often than the former ones and they are also
typically more difficult to detect, detection of such problems is an interesting
subject for future research.
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