
DA-BMC: A Tool Chain Combining
Dynamic Analysis and Bounded

Model Checking

FIT BUT Technical Report Series

Jan Fiedor, Vendula Hrubá, Bohuslav Ǩrena,
and Tomáš Vojnar

Technical Report No. FIT-TR-2011-06

Faculty of Information Technology, Brno University of Technology

Last modified: October 4, 2011





DA-BMC: A Tool Chain Combining Dynamic Analysis
and Bounded Model Checking

Jan Fiedor, Vendula Hrubá, Bohuslav Křena, and Tomáš Vojnar

Brno University of Technology, Božetěchova 2,
612 66, Brno, Czech Republic

{ifiedor, ihruba, krena, vojnar}@fit.vutbr.cz
http://www.fit.vutbr.cz

Abstract. This paper presents the DA-BMC tool chain that allows one to com-
bine dynamic analysis and bounded model checking for findingsynchronisation
errors in concurrent Java programs. The idea is to use suitable dynamic analyses
to identify executions of a program being analysed that are suspected to contain
synchronisation errors. Some points in such executions arerecorded, and then the
executions are reproduced in a model checker, using its capabilities to navigate
among the recorded points. Subsequently, bounded model checking in a vicinity
of the replayed execution is used to confirm whether there aresome real errors in
the program and/or to debug the problematic execution of theprogram.

1 Introduction

Despite the constantly growing pressure on quality of software applications, many soft-
ware errors still appear in the field. One class of errors which can be found in software
applications more and more frequently are concurrency-related errors, which is a con-
sequence of the growing use of multi-core processors. Such errors are hard to find by
testing since they may be very unlikely to appear. One way to increase chances to de-
tect such an error is to use variousdynamic analyses (such as Eraser [6] for detection
of data races) that try to extrapolate the witnessed behaviour and give a warning about
a possible error even if such an error is not really witnessedin any testing run. A disad-
vantage of such analyses is that they often produce false alarms. To avoid false alarms,
one can usemodel checking based on a systematic search of the state space of the given
program [1], but this approach is very expensive. In this paper, we describe a tool chain
denoted asDA-BMC1 that tries to combine advantages of both dynamic analysis and
(bounded) model checking.

In our tool chain, implementing the approach proposed in [3], we use the infras-
tructure offered by theContest tool [2] to implement suitable dynamic analyses over
Java programs and to record selected points of the executions of the programs that are
suspected to contain errors. We then use theJava PathFinder (JPF) model checker [5]
to replay the partially recorded executions, using JPF’s capabilities of state space gen-
eration to heuristically navigate among the recorded points. In order to allow the navi-
gation, the JPF’s state space search strategy, including its use of partial order reduction

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/da-bmc

1



to reduce the searched state space, is suitably modified. Bounded model checking is
then performed in the vicinity of the replayed executions, trying to confirm that there is
really some error in the program and/or to debug the recordedsuspicious behaviour.

We illustrate capabilities of DA-BMC on several case studies, showing that it really
allows one to benefit from advantages of both dynamic analysis and model checking.

2 Recording Suspicious Executions

The first step when using DA-BMC is to use a suitabledynamic analysis to identify
executions suspected to contain an error and to record some information about them—
recording the entire executions would typically be too costly. In DA-BMC, this phase is
implemented on top of theContest tool [2]. Contest provides a listener architecture (im-
plemented via Java byte-code instrumentation) on top of which it is easy to implement
various dynamic analyses. We further refer to two such analyses, namely, Eraser+ and
AtomRace intended for detection of data races (and, in the second case, also atomicity
violations), which have been implemented as Contest plugins in [4]. Further analyses
can, of course, be added. Contest also provides a noise injection mechanism which
increases the probability of manifestation of concurrency-related errors.

In order to record executions, we have implemented another specialised listener on
top of Contest. We record information about an execution in the form of atrace which
is a sequence ofmonitored events that contains partial information about some of the
events that happen during the execution. In particular, Contest allows us to monitor the
following events:thread-related events (thread creation, thread termination),memory-
access-related events (before integer read, after integer read, before float write, after
float write, etc.),synchronisation-related events (after monitor enter, before monitor
exit, join, wait, notify, etc.), and somecontrol-related events (basic block entry, method
enter, and method exit). The user can choose only some of suchevents to be monitored.
As shown in our case studies, one should mainly consider synchronisation-related and
memory-access-related events, which help the most when dealing with the inherent
non-determinism of concurrent executions.

Each monitored event contains information about the source-code location from
which it was generated (class and method name, line and instruction number) and the
thread which generated it. The recorded trace also containsinformation produced by
the applied dynamic analysis which labels some of the monitored events as suspicious
from the point of view of causing an error.

3 Replaying Recorded Traces

The second step when using DA-BMC is to reproduce suspiciousexecutions recorded
as traces of monitored events in a model checker. More precisely, there is no guarantee
that the same execution as the one from which the given trace was recorded will be
reproduced. The tool will simply try to generate some execution whose underlying trace
corresponds with the recorded trace. It is also possible to let the model checker generate
more executions with the same trace.

2



In DA-BMC, we, in particular, use theJava PathFinder (JPF) model checker [5].
JPF provides several state space search strategies, but also allows one to add new user-
specific search strategies. Moreover, it provides a listener mechanism which is useful for
performing various analyses of the searched state space and/or for guiding the search
strategies to a specific part of the state space. JPF uses several state space reduction
techniques, including partial order reduction (POR), which out of several transitions
that lead from a certain state may explore only some [1].

A recorded trace is replayed by navigating JPF through the state space of a program
such that the monitored events encountered on the search path correspond with the ones
in the recorded trace. The states being explored during the search are stored in a priority
queue. The priority of the inserted states depends on the chosen search strategy (DFS
and BFS are supported). In each step, the next parent state tobe processed is obtained
from the queue. After that, all relevant children of the parent state are generated. Here,
we should note that, in JPF, a transition between a parent andchild states represents,
in fact, a sequence of events happening in a running program.This sequence is chosen
by the POR to represent all equivalent paths between the two states. Into the priority
queue, we only save the child states that may appear on a path corresponding to the
recorded trace. In other words, each program event encountered within the JPF’s transi-
tion between the parent and child states must either be an event which is not monitored
(and hence ignored), or an event which corresponds with the one stored in the recorded
trace at an appropriate position. This correspondence is checked during the generation
of a transition in JPF.

Sometimes, it is also necessary to influence the POR used by JPF. That happens
when the POR decides to consider another permutation of the events than the one ac-
tually present in the trace. Then, the POR is forced to use theneeded permutation as
follows. If the generation of the sequence of events that thePOR wants to compose
into a single transition encounters some monitored event, and this event differs from
the one expected in the recorded trace, then we force JPF to finish the generation of
the sequence of events to be put under a single transition andto create a new state. The
navigation algorithm then searches the transitions enabled in this state that correspond
with the recorded trace (if there is none, the search backtracks).

Since the replaying is driven by a sequence of monitored events generated from the
Contest’s instrumentation of the given program, we run the instrumented byte-code in
JPF. We, however, make JPF skip all the code that is a part of Contest in order not to in-
crease the size of the state space being searched. Moreover,Contest not only adds some
instructions into the code, but also replaces some originalbyte-code instructions. This
applies, e.g., for the instructionswait,notify, join, etc. In this case, when such an
instruction is detected in JPF, we dynamically replace it with the original instruction.

As the JPF’s implementation ofsleep() ignores interruption of sleeping threads,
we provide a modified implementation of theinterrupt() andsleep() methods
which correctly generate an exception if a thread is interrupted by another thread when
sleeping. For that to work correctly, the possibility of branching of the execution after
sleep() must be enabled in JPF.

Still, it might not be possible to replay a trace if the program depends on input or
random data or if it uses some specific dynamic data structures like hash tables where,

3



e.g., objects might be iterated in a different order in each run of the program. In these
cases, it is necessary to modify the source code of the analysed program, e.g., by adding
JPF data choice generators to eliminate these problems.

4 Bounded Model Checking

As we have already said above, the trace recorded from a suspicious execution does
not identify the execution from which it was generated in a unique way. Moreover,
even the original suspicious execution based on which the applied dynamic analysis
generated a warning about the possibility of some error needs not contain an actual
occurrence of the error (even if the error is real). To cope with such situations, apart
from possibly exploring several paths through the state space corresponding with the
recorded trace, we use bounded model checking that starts from the states from which
an event that is marked as suspicious is enabled, or from someof its predecessors. The
latter is motivated by the fact that once a suspicious event is reached, it may already be
too late for a real error to manifest.

To be able to use bounded model checking to see whether an error really appears
in the program, it is expected that the user supplies a JPF listener capable of identify-
ing occurrences of the error (in our experiments, which concentrate on data races, we,
e.g., use a slight modification of thePreciseRaceDetector listener available in
JPF). The listeners looking for occurrences of errors may beactivated either at the very
beginning of replaying of a trace, or they may be activated atthe beginning of each
application of bounded model checking. The user is allowed to control both the depth
of the bounded model checking as well as the number of backward steps to be taken
from a suspicious event before starting bounded model checking.

5 Experiments

To demonstrate capabilities of DA-BMC, we consider four case studies. The first two,
BankAccount andAirlines, are simple programs (with 2 or 8 classes, respectively) in
which a data race over a single shared variable can happen. The DiningPhilosophers
case study is a simple program (3 classes) implementing the problem of dining philoso-
phers with a possibility of a deadlock. Finally, our last case study,Crawler, is a part of
an older version of an IBM production software (containing 19 classes) with a data race
manifesting more rarely and further in the execution. All the tests were performed on
a machine with 2 Dual-Core AMD Opteron processors at 2.8GHz.

First, we measured the slowdown of program executions when recording various
types of events. An analysis of the overhead associated withtrace recording is presented
in Table 1. The first column of the table gives the average timeneeded for executing
the particular case studies while they are monitored by the Eraser dynamic analysis
implemented as a Contest plugin. The second column gives theaverage slowdown when
recording all the events that can be monitored by Contest andhence DA-BMC (cf.
Section 2). Finally, the third column gives the average slowdown when the thread and
memory-access events are recorded only.

4



Table 1. Overhead generated by trace recording

Execution time with Slowdown due to recording
Eraser in seconds (number of events in the trace)

Bank 1.62 44% (2 035) 34% (1 211)
Airlines 0.85 77% (969) 58% (609)
Crawler 4.45 31% (3 288) 23% (1 859)
DinPhil 0.49 43% (110 035) 25% (55 257)

Table 2. Finding real errors in traces produced by Eraser

Error discovery ratio (traces found / BMC runs)Time/memory consumption (sec/MB)
No. of DFS BFS DFS BFS
traces 1 5 1 5 1 5 1 5
Bank 46%(1/1) 49%(2/2) 46%(1/1) 46%(2/2) 2/517 4/633 3/522 5/659

Airlines 100%(1/1) 100%(1/1) 100%(1/1) 100%(1/1) 1/482 1/482 1/482 1/482
DinPhil 100%(1/1) 100%(1/1) 100%(1/1) 100%(1/1) 11/417 20/411 20/414 22/413
Crawler 7%(0.8/15)7%(1.8/34)2%(0.5/49)2%(1.2/50)122/1312268/1479311/2857321/3020

To sum up, when recording all the possible types of events mentioned above, the
slowdown was about 30-40 %. When recording only thread and memory-access-related
events, the slowdown was just about 20-30 % but the number of corresponding paths
found by JPF increased by about 50 %.

Note, however, that the overhead differs quite significantly from one example to
another. Therefore, the types of events to be recorded should be chosen depending on
the program being analysed, taking into account which kind of events and how often it
can generate. For instance, since the DiningPhilosophers case study is a program which
frequently switches threads, but minimally accesses shared variables, it is sufficient to
record only thread-related events in order to precisely navigate through the state space.

Next, we performed a series of tests in which we measured how often a real error
is identified when replaying a trace and performing bounded model checking (BMC) in
its vicinity. We let JPF to always backtrack 3 states from thestate before a suspicious
event and to use the maximum BMC depth of 10. The results are shown in Table 2.
We distinguish whether 1 or up to 5 paths corresponding to therecorded trace were
explored, using either DFS or BFS. For each of these settingsand each case study, the
left part of Table 2 gives the percentage of recorded traces based on which a real error
was found. Further, in brackets, it is shown how many corresponding paths were on
average found by JPF for a single trace, and how many times BMCwas on average
applied when analysing a single trace. The right part of Table 2 then gives the corre-
sponding time and memory consumption. Clearly, BFS has higher time and memory
requirements than DFS (mainly because it performs significantly more runs of BMC).
It is also less successful in finding an error if the error manifests later in the execution
(like in Crawler). It can also be seen that the number of corresponding paths searched
has a little contribution to the overall success of finding a real error.

5



Table 3. Efficiency of finding errors using DFS in traces of Crawler produced by AtomRace

T
ra

ce
s

se
ar

ch
ed

S
ta

te
s

Max depth of bounded model checking
No. of backtracked states / 30 40 50 60 70 80

Max depth of BMC 10 78%(0) 78%(1) 78%(3) - - -
3/10 5/15 10/30 15/45 20/60 20 - 90%(0) - 90%(2) 90%(2) 90%(2)

1 66% 71% 78% 84% 90% 30 - - 92%(2) - 94%(0) -
5 71% 73% 80% 85% 90% 40 - - - - - 89%(5)

The low percentage of real errors found in traces of Crawler is mostly due to the
number of false alarms produced by Eraser that were eliminated by DA-BMC, which
nicely illustrates one of the main advantages of using DA-BMC. Further, note that clas-
sical model checking as offered by JPF did not find any error inthis case since it ran
of our deadline of 8 hours (DFS) or ran out of the 24GB of memoryavailable to JPF
(BFS). To analyse how successful DA-BMC is in finding real errors in traces recorded
in Crawler and how the success ratio depends on the various settings of DA-BMC, we
have then done experiments with traces recorded using the AtomRace analysis, which
does not produce any false alarms. The results can be seen in Table 3. Its left part shows
how the percentage of real errors found depends on the numberof explored paths corre-
sponding to the recorded trace, the number of states backtracked from the state before
a suspicious event, and the maximum BMC depth. The right partanalyses in more de-
tail how the percentage depends on the number of backtrackedstates and the maximum
BMC depth (a single path corresponding to a recorded trace isanalysed). The numbers
in brackets express the percentage of replays which reacheda 10 minute timeout. We
can see that while increasing the number of searched corresponding paths has some
influence on the error detection, it is evident that the BMC settings have a much greater
impact. Moreover, the number of backtracked states increases the chances to find an
error much more than the increased maximum depth of BMC.

6 Conclusion

We have presented DA-BMC—a tool chain combining dynamic analysis and bounded
model checking for finding errors in concurrent Java programs (and also for debugging
them). We have demonstrated on several case studies that DA-BMC allows one to com-
bine the lower price of dynamic analysis with the higher precision of model checking.

Acknowledgement

This work was supported by the Czech Science Foundation (project no. P103/10/0306
and doctoral project no. 102/09/H042), the Czech Ministry of Education (projects COST
OC10009 and MSM 0021630528) and the internal BUT project FIT-11-1.

References

1. C. Baier and J.-P. Katoen.Principles of Model Checking. MIT Press, 2008.

6



2. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, S. Ur. Framework for Testing Multi-
threaded Java Programs.Concurrency and Computation: Practice and Experience, 15(3-5),
2003.

3. V. Hrubá, B. Křena, and T. Vojnar. Self-healing assurance using bounded model checking.
In Proc. of EUROCAST’09, LNCS 5717, Springer, 2009.

4. B. Křena, Z. Letko, Y. Nir-Buchbinder, R. Tzoref, S. Ur, T. Vojnar. A Concurrency Test-
ing Tool and its Plug-ins for Dynamic Analysis and Runtime Healing. In Proc. of RV’09,
LNCS 5779, Springer, 2009.

5. W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda. ModelChecking Programs. Auto-
mated Software Engineering Journal, 10(2), 2003.

6. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic Data
Race Detector for Multi-threaded Programs. InProc. of SOSP’97, ACM Press, 1997.

7


