DA-BMC: A Tool Chain Combining
Dynamic Analysis and Bounded
Model Checking

FIT BUT Technical Report Series

Jan Fiedor, Vendula Hrubd, Bohuslav Kfena,
and Tomas Vojnar

Technical Report No. FIT-TR-2011-06
Faculty of Information Technology, Brno University of Technology

Last modified: October 4, 2011

DA-BMC: A Tool Chain Combining Dynamic Analysis
and Bounded Model Checking

Jan Fiedor, Vendula Hruba, Bohuslav Kfena, and Tom&$avo

Brno University of Technology, BoZetéchova 2,
612 66, Brno, Czech Republic
{i fiedor, ihruba, krena, vojnar}@it.vutbr.cz
http://ww. fit.vutbr.cz

Abstract. This paper presents the DA-BMC tool chain that allows oneoto-c
bine dynamic analysis and bounded model checking for findymghronisation
errors in concurrent Java programs. The idea is to use sidlghamic analyses
to identify executions of a program being analysed that aspected to contain
synchronisation errors. Some points in such executionseameded, and then the
executions are reproduced in a model checker, using itshddjes to navigate
among the recorded points. Subsequently, bounded modeiiolgan a vicinity
of the replayed execution is used to confirm whether there@re real errors in
the program and/or to debug the problematic execution optbgram.

1 Introduction

Despite the constantly growing pressure on quality of saferapplications, many soft-
ware errors still appear in the field. One class of errors when be found in software
applications more and more frequently are concurren@tadlerrors, which is a con-
sequence of the growing use of multi-core processors. Suohsere hard to find by
testing since they may be very unlikely to appear. One wandeease chances to de-
tect such an error is to use variotgamic analyses (such as Eraser [6] for detection
of data races) that try to extrapolate the witnessed bebawiod give a warning about
a possible error even if such an error is not really witnegseahy testing run. A disad-
vantage of such analyses is that they often produce fals@asldo avoid false alarms,
one can usenodel checking based on a systematic search of the state space of the given
program [1], but this approach is very expensive. In thisspape describe a tool chain
denoted aDA-BMC! that tries to combine advantages of both dynamic analysis an
(bounded) model checking.

In our tool chain, implementing the approach proposed inj&j use the infras-
tructure offered by th&€ontest tool [2] to implement suitable dynamic analyses over
Java programs and to record selected points of the exesuifahe programs that are
suspected to contain errors. We then useJva PathFinder (JPF) model checker [5]
to replay the partially recorded executions, using JPRxbdities of state space gen-
eration to heuristically navigate among the recorded gointorder to allow the navi-
gation, the JPF’s state space search strategy, includingé of partial order reduction

Yhttp://ww. fit.vutbr.cz/research/groups/verifit/tools/da-bnt

to reduce the searched state space, is suitably modifiechd&@dumodel checking is
then performed in the vicinity of the replayed executiongng to confirm that there is
really some error in the program and/or to debug the recasdsplicious behaviour.
We illustrate capabilities of DA-BMC on several case stad#owing that it really
allows one to benefit from advantages of both dynamic aregrsil model checking.

2 Recording Suspicious Executions

The first step when using DA-BMC is to use a suitatij@amic analysis to identify
executions suspected to contain an error and to record sdoreniation about them—
recording the entire executions would typically be too lgost DA-BMC, this phase is
implemented on top of th€ontest tool [2]. Contest provides a listener architecture (im-
plemented via Java byte-code instrumentation) on top o€kwvhiis easy to implement
various dynamic analyses. We further refer to two such aealynamely, Eraser+ and
AtomRace intended for detection of data races (and, in tbenskcase, also atomicity
violations), which have been implemented as Contest puigij4]. Further analyses
can, of course, be added. Contest also provides a noisdigmenechanism which
increases the probability of manifestation of concurreredgited errors.

In order to record executions, we have implemented anopiearialised listener on
top of Contest. We record information about an executioméform of atrace which
is a sequence afonitored events that contains partial information about some of the
events that happen during the execution. In particulart€xmllows us to monitor the
following eventsthread-related events (thread creation, thread terminationgmory-
access-related events (before integer read, after integer read, beforé lage, after
float write, etc.),synchronisation-related events (after monitor enter, before monitor
exit, join, wait, notify, etc.), and sonmesntrol-related events (basic block entry, method
enter, and method exit). The user can choose only some ofsecits to be monitored.
As shown in our case studies, one should mainly considetsgnisation-related and
memory-access-related events, which help the most whelmdesith the inherent
non-determinism of concurrent executions.

Each monitored event contains information about the secode location from
which it was generated (class and method name, line andiatigtn number) and the
thread which generated it. The recorded trace also conitaiosmation produced by
the applied dynamic analysis which labels some of the moedtevents as suspicious
from the point of view of causing an error.

3 Replaying Recorded Traces

The second step when using DA-BMC is to reproduce suspi@gesutions recorded
as traces of monitored events in a model checker. More migcthere is no guarantee
that the same execution as the one from which the given traseracorded will be
reproduced. The tool will simply try to generate some execuwvhose underlying trace
corresponds with the recorded trace. It is also possibket thé model checker generate
more executions with the same trace.

In DA-BMC, we, in particular, use thdava PathFinder (JPF) model checker [5].
JPF provides several state space search strategies, ®atlaiss one to add new user-
specific search strategies. Moreover, it provides a lister@ehanism which is useful for
performing various analyses of the searched state spaderdadguiding the search
strategies to a specific part of the state space. JPF usaslss&tate space reduction
techniques, including partial order reduction (POR), whiwt of several transitions
that lead from a certain state may explore only some [1].

Arecorded trace is replayed by navigating JPF through tite space of a program
such that the monitored events encountered on the seatthga¢spond with the ones
in the recorded trace. The states being explored duringerels are stored in a priority
queue. The priority of the inserted states depends on theechgearch strategy (DFS
and BFS are supported). In each step, the next parent sthéepimcessed is obtained
from the queue. After that, all relevant children of the péistate are generated. Here,
we should note that, in JPF, a transition between a parenthifdistates represents,
in fact, a sequence of events happening in a running progrhim sequence is chosen
by the POR to represent all equivalent paths between the tatess Into the priority
queue, we only save the child states that may appear on a patsponding to the
recorded trace. In other words, each program event enaaahitathin the JPF’s transi-
tion between the parent and child states must either be an e¥éch is not monitored
(and hence ignored), or an event which corresponds withrieestored in the recorded
trace at an appropriate position. This correspondenceeisketdl during the generation
of a transition in JPF.

Sometimes, it is also necessary to influence the POR usedmbyTbat happens
when the POR decides to consider another permutation ofvéireeethan the one ac-
tually present in the trace. Then, the POR is forced to usedleeled permutation as
follows. If the generation of the sequence of events thati®&® wants to compose
into a single transition encounters some monitored evet,this event differs from
the one expected in the recorded trace, then we force JPFish flme generation of
the sequence of events to be put under a single transitiotoasrdate a new state. The
navigation algorithm then searches the transitions edablthis state that correspond
with the recorded trace (if there is none, the search batdja

Since the replaying is driven by a sequence of monitoredts\gamerated from the
Contest’s instrumentation of the given program, we run tis¢rimented byte-code in
JPF. We, however, make JPF skip all the code that is a partmteSoin order not to in-
crease the size of the state space being searched. Mor€owest not only adds some
instructions into the code, but also replaces some oridiyt-code instructions. This
applies, e.qg., for the instructiom&i t ,not i f y,j oi n, etc. In this case, when such an
instruction is detected in JPF, we dynamically replace thihe original instruction.

As the JPF's implementation el eep() ignores interruption of sleeping threads,
we provide a modified implementation of that er r upt () andsl eep() methods
which correctly generate an exception if a thread is infeterd by another thread when
sleeping. For that to work correctly, the possibility of ihching of the execution after
sl eep() must be enabled in JPF.

Still, it might not be possible to replay a trace if the pragrdepends on input or
random data or if it uses some specific dynamic data strigtikeehash tables where,

e.g., objects might be iterated in a different order in eachaf the program. In these
cases, itis necessary to modify the source code of the athfysgram, e.g., by adding
JPF data choice generators to eliminate these problems.

4 Bounded Model Checking

As we have already said above, the trace recorded from acsmspiexecution does
not identify the execution from which it was generated in &ua way. Moreover,
even the original suspicious execution based on which tipdiebdynamic analysis
generated a warning about the possibility of some error :i@edl contain an actual
occurrence of the error (even if the error is real). To copth wuch situations, apart
from possibly exploring several paths through the stateejgarresponding with the
recorded trace, we use bounded model checking that stantstfre states from which
an event that is marked as suspicious is enabled, or from ebitsepredecessors. The
latter is motivated by the fact that once a suspicious ewer@dched, it may already be
too late for a real error to manifest.

To be able to use bounded model checking to see whether anreatty appears
in the program, it is expected that the user supplies a JRfhés capable of identify-
ing occurrences of the error (in our experiments, which eotrate on data races, we,
e.g., use a slight modification of thi& eci seRaceDet ect or listener available in
JPF). The listeners looking for occurrences of errors magdtigated either at the very
beginning of replaying of a trace, or they may be activatethatbeginning of each
application of bounded model checking. The user is alloveecbintrol both the depth
of the bounded model checking as well as the number of backstaps to be taken
from a suspicious event before starting bounded model chgck

5 Experiments

To demonstrate capabilities of DA-BMC, we consider fourecatsidies. The first two,
BankAccount and Airlines, are simple programs (with 2 or 8 classes, respectively) in
which a data race over a single shared variable can happerDinimgPhilosophers
case study is a simple program (3 classes) implementing tiidgm of dining philoso-
phers with a possibility of a deadlock. Finally, our lasteeatudy,Crawler, is a part of
an older version of an IBM production software (containi®glasses) with a data race
manifesting more rarely and further in the execution. Ad thsts were performed on
a machine with 2 Dual-Core AMD Opteron processors at 2.8GHz.

First, we measured the slowdown of program executions whaeording various
types of events. An analysis of the overhead associatednaith recording is presented
in Table 1. The first column of the table gives the average tieeded for executing
the particular case studies while they are monitored by ttasdf dynamic analysis
implemented as a Contest plugin. The second column givesdrage slowdown when
recording all the events that can be monitored by Contesthemde DA-BMC (cf.
Section 2). Finally, the third column gives the average diown when the thread and
memory-access events are recorded only.

Table 1. Overhead generated by trace recording

Execution time with Slowdown due to recording
Eraser in seconds (number of events in the trace)
Bank 1.62 44% (2 035) 34% (1211)
Airlines 0.85 77% (969) 58% (609)
Crawler 4.45 31% (3288) 23% (1859)
DinPhil 0.49 43% (110 035) 25% (55 257)

Table 2. Finding real errors in traces produced by Eraser

Error discovery ratio (traces found / BMC runs)lime/memory consumption (sec/MB|
No. of DFS BFS DFS BFS

traces 1 5 1 5 1 5 1 5
Bank | 46%(1/1) | 49%(2/2) | 46%(1/1) | 46%(2/2)| 2/517 | 4/633 | 3/522 | 5/659

Airlines| 100%(1/1)| 100%(1/1)] 100%(1/1)] 100%(1/1) 1/482 | 1/482 | 1/482 | 1/482
DinPhil| 1009%(1/1)] 100%(1/1){ 100%(1/1) 100%(1/1)] 11/417 | 20/411 | 20/414 | 22/413

Crawler| 7%(0.8/15) 7%(1.8/34)2%(0.5/49) 2%(1.2/50)122/1312268/1479311/2857321/302(

To sum up, when recording all the possible types of eventgiored above, the
slowdown was about 30-40 %. When recording only thread andang-access-related
events, the slowdown was just about 20-30 % but the humbeoroésponding paths
found by JPF increased by about 50 %.

Note, however, that the overhead differs quite signifigafrttm one example to
another. Therefore, the types of events to be recorded gteuthosen depending on
the program being analysed, taking into account which kirevents and how often it
can generate. For instance, since the DiningPhilosophsesstudy is a program which
frequently switches threads, but minimally accesses ghagables, it is sufficient to
record only thread-related events in order to preciselygade through the state space.

Next, we performed a series of tests in which we measured fiwn a real error
is identified when replaying a trace and performing boundedehchecking (BMC) in
its vicinity. We let JPF to always backtrack 3 states fromdtate before a suspicious
event and to use the maximum BMC depth of 10. The results aersin Table 2.
We distinguish whether 1 or up to 5 paths corresponding tad¢erded trace were
explored, using either DFS or BFS. For each of these settindeach case study, the
left part of Table 2 gives the percentage of recorded traassdon which a real error
was found. Further, in brackets, it is shown how many coordmg paths were on
average found by JPF for a single trace, and how many times BM€on average
applied when analysing a single trace. The right part of @&bthen gives the corre-
sponding time and memory consumption. Clearly, BFS haséhigjime and memory
requirements than DFS (mainly because it performs signifiganore runs of BMC).
Itis also less successful in finding an error if the error rfests later in the execution
(like in Crawler). It can also be seen that the number of apoading paths searched
has a little contribution to the overall success of findingal error.

Table 3. Efficiency of finding errors using DFS in traces of Crawlergwoed by AtomRace

2 Max depth of bounded model checking
'S No. of backtracked states / 30 [40 [50 | 60 | 70 | 80
3 Max depth of BMC 0| 10]78%(0) 78%(1) 78%(3) - - -

o [3/10[5/15]10/30/15/4520/6Q % 20 - [90%(0) - [90%(2)90%(2)90%((2
gé 1(66%|71%| 78%| 84%| 90%| ¢p|30] - - |92%(2) - [94%(0) -
£=15(71%]| 73%| 80% | 85% | 90% 40 - - - - - |89%(5

The low percentage of real errors found in traces of Cravdenostly due to the
number of false alarms produced by Eraser that were eliedhlay DA-BMC, which
nicely illustrates one of the main advantages of using DA@Murther, note that clas-
sical model checking as offered by JPF did not find any erradhig case since it ran
of our deadline of 8 hours (DFS) or ran out of the 24GB of menawgilable to JPF
(BFS). To analyse how successful DA-BMC is in finding reabesiin traces recorded
in Crawler and how the success ratio depends on the varidtirsgseof DA-BMC, we
have then done experiments with traces recorded using traRace analysis, which
does not produce any false alarms. The results can be seahla3. Its left part shows
how the percentage of real errors found depends on the nwhbeplored paths corre-
sponding to the recorded trace, the number of states bakkttdrom the state before
a suspicious event, and the maximum BMC depth. The rightgreatyses in more de-
tail how the percentage depends on the number of backtratétss and the maximum
BMC depth (a single path corresponding to a recorded traaeadfysed). The numbers
in brackets express the percentage of replays which reaci@dminute timeout. We
can see that while increasing the number of searched conmdsp paths has some
influence on the error detection, it is evident that the BMtlirsgs have a much greater
impact. Moreover, the number of backtracked states ineseiee chances to find an
error much more than the increased maximum depth of BMC.

6 Conclusion

We have presented DA-BMC—a tool chain combining dynamidysimsand bounded
model checking for finding errors in concurrent Java progréand also for debugging
them). We have demonstrated on several case studies thB\DA\allows one to com-
bine the lower price of dynamic analysis with the higher mien of model checking.

Acknowledgement

This work was supported by the Czech Science Foundatiofe@inso. P103/10/0306
and doctoral project no. 102/09/H042), the Czech Ministiigaucation (projects COST
0OC10009 and MSM 0021630528) and the internal BUT project L.

References

1. C. Baier and J.-P. KatoeRrinciples of Model Checking. MIT Press, 2008.

. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, &. Bramework for Testing Multi-
threaded Java ProgranmSoncurrency and Computation: Practice and Experience, 15(3-5),
2003.

. V. Hruba, B. Kfena, and T. Vojnar. Self-healing assueansing bounded model checking.
In Proc. of EUROCAST’ 09, LNCS 5717, Springer, 2009.

. B. Kfena, Z. Letko, Y. Nir-Buchbinder, R. Tzoref, S. Ur, Mojnar. A Concurrency Test-
ing Tool and its Plug-ins for Dynamic Analysis and Runtimealiteg. InProc. of RV’ 09,
LNCS 5779, Springer, 2009.

. W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda. Mdzle¢cking Programs. Auto-
mated Software Engineering Journal, 10(2), 2003.

. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and Tefswh. Eraser: A Dynamic Data
Race Detector for Multi-threaded Programs Phoc. of SOSP’97, ACM Press, 1997.

