
Noname manuscript No.

(will be inserted by the editor)

Forest Automata for Verification of Heap Manipulation

Peter Habermehl · Lukáš Hoĺık · Adam

Rogalewicz · Jiř́ı Šimáček · Tomáš Vojnar

Received: date / Accepted: date

Abstract We consider verification of programs manipulating dynamic linked data
structures such as various forms of singly and doubly-linked lists or trees. We con-
sider important properties for this kind of systems like no null-pointer dereferences,
absence of garbage, shape properties, etc. We develop a verification method based
on a novel use of tree automata to represent heap configurations. A heap is split
into several “separated” parts such that each of them can be represented by a tree
automaton. The automata can refer to each other allowing the different parts of
the heaps to mutually refer to their boundaries. Moreover, we allow for a hierarchi-
cal representation of heaps by allowing alphabets of the tree automata to contain
other, nested tree automata. Program instructions can be easily encoded as oper-
ations on our representation structure. This allows verification of programs based
on symbolic state-space exploration together with refinable abstraction within the
so-called abstract regular tree model checking. A motivation for the approach is to
combine advantages of automata-based approaches (higher generality and flexibil-
ity of the abstraction) with some advantages of separation-logic-based approaches

This work was supported by the Czech Science Foundation (projects P103/10/0306,
P201/09/P531, and 102/09/H042), the Czech Ministry of Education (projects COST
OC10009 and MSM 0021630528), the EU/Czech IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070, the internal BUT project FIT-S-12-1, and the French ANR-09-SEGI
project Veridyc.

P. Habermehl
Université Paris Diderot, Sorbonne Paris Cité, LIAFA, CNRS, France

L. Hoĺık
FIT, Brno University of Technology, Czech Republic and
Uppsala University, Sweden

A. Rogalewicz
FIT, Brno University of Technology, Czech Republic

J. Šimáček
FIT, Brno University of Technology, Czech Republic and
VERIMAG, UJF/CNRS/INPG, Gières, France

T. Vojnar
FIT, Brno University of Technology, Czech Republic, E-mail: vojnar@fit.vutbr.cz



2 Peter Habermehl et al.

(efficiency). We have implemented our approach and tested it successfully on mul-
tiple non-trivial case studies.

Keywords Pointers · shape analysis · regular model checking · tree automata

1 Introduction

We address verification of sequential programs with complex dynamic linked data

structures such as various forms of singly- and doubly-linked lists (SLL/DLL),
possibly cyclic, shared, hierarchical, and/or having different additional (head, tail,
data, and the like) pointers, as well as various forms of trees. We in particular con-
sider C pointer manipulation, but our approach can easily be applied to any other
similar language. We concentrate on safety properties of the considered programs
which includes generic properties like absence of null dereferences, double free
operations, dealing with dangling pointers, or memory leakage. Furthermore, to
check various shape properties of the involved data structures one can use testers,
i.e., parts of code which, in case some desired property is broken, lead the control
flow to a designated error location.

For the above purpose, we propose a novel approach of representing sets of
heaps via tree automata (TA). In our representation, a heap is split in a canonical
way into several tree components whose roots are the so-called cut-points. Cut-points
are nodes pointed to by program variables or having several incoming edges. The
tree components can refer to the roots of each other, and hence they are “sepa-
rated” much like heaps described by formulae joined by the separating conjunction
in separation logic [16]. Using this decomposition, sets of heaps with a bounded
number of cut-points are then represented by a new class of automata called for-

est automata (FA) that are basically tuples of TA accepting tuples of trees whose
leaves can refer back to the roots of the trees. Moreover, we allow alphabets of
FA to contain nested FA, leading to a hierarchical encoding of heaps, allowing us to
represent even sets of heaps with an unbounded number of cut-points (e.g., sets
of DLL). Intuitively, a nested FA can describe a part of a heap with a bounded
number of cut-points (e.g., a DLL segment), and by using such an automaton as an
alphabet symbol an unbounded number of times, heaps with an unbounded num-
ber of cut-points are described. Finally, since FA are not closed under union, we
work with sets of forest automata, which are an analogy of disjunctive separation
logic formulae.

As a nice theoretical feature of our representation, we show that inclusion of sets
of heaps represented by finite sets of non-nested FA (i.e., having a bounded number
of cut-points) is decidable. This covers sets of complex structures like SLL with
head/tail pointers. Moreover, we show how inclusion can be safely approximated
for the case of nested FA. Further, C program statements manipulating pointers
can be easily encoded as operations modifying FA. Consequently, the symbolic
verification framework of abstract regular tree model checking [6,7], which comes
with automatically refinable abstractions, can be applied.

The proposed approach brings the principle of local heap manipulation (i.e.,
dealing with separated parts of heaps) from separation logic into the world of
automata. The motivation is to combine some advantages of using automata and
separation logic. Automata provide higher generality and flexibility of the abstrac-
tion (see also below) and allow us to leverage the recent advances of efficient use of



Forest Automata for Verification of Heap Manipulation 3

non-deterministic automata [2,3]. As further discussed below, the use of separation
allows for a further increase in efficiency compared to a monolithic automata-based
encoding proposed in [7].

We have implemented our approach in a prototype tool called Forester as a gcc

plug-in. In our current implementation, if nested FA are used, they are provided
manually (similar to the use of pre-defined inductive predicates common in works
on separation logic). However, we show that Forester can already successfully
handle multiple interesting case studies, proving the proposed approach to be
very promising.

Related work. The area of verifying programs with dynamic linked data struc-
tures has been a subject of intense research for quite some time. Many different
approaches based on logics, e.g., [14,17,16,4,11,15,20,19,8,13], automata [7,5,
9], upward closed sets [1], and other formalisms have been proposed. These ap-
proaches differ in their generality, efficiency, and degree of automation. Due to
space restrictions, we cannot discuss all of them here. Therefore, we concentrate
on a comparison with the two closest lines of work, namely, the use of automata as
described in [7] and the use of separation logic in the works [4,19] linked with the
Space Invader tool. In fact, as is clear from the above, the approach we propose
combines some features from these two lines of research.

Compared to [4,19], our approach is more general in that it allows one to
deal with tree-like structures, too. We note that there are other works on sep-
aration logic, e.g., [15], that consider tree manipulation, but these are usually
semi-automated only. An exception is [11] which automatically handles even tree
structures, but its mechanism of synthesising inductive predicates seems quite de-
pendent on the fact that the dynamic linked data structures are built in a “nice”
way conforming to the structure of the predicate to be learned (meaning, e.g., that
lists are built by adding elements at the end only1).

Further, compared to [4,19], our approach comes with a more flexible abstrac-
tion. We are not building on just using some inductive predicates, but we combine
a use of our nested FA with an automatically refinable abstraction on the TA that
appear in our representation. Thus our analysis can more easily adjust to various
cases arising in the programs being verified. An example is dealing with lists of
lists where the sublists are of length 0 or 1, which is a quite practical situation
[18]. In such cases, the abstraction used in [4,19] can fail, leading to an infinite
computation (e.g., when, by chance, a list of regularly interleaved lists of length
0 or 1 appears) or generate false alarms (when modified to abstract even pointer
links of length 1 to a list segment). For us, such a situation is easy to handle
without any need to fine-tune the abstraction manually.

Finally, compared with [7], our newly proposed approach is a bit less general.
We cannot handle structures such as, e.g., trees with linked leaves. To handle
these structures, we would have to introduce into our approach FA nested not just
strictly hierarchically but in an arbitrary, possibly cyclic way, which is an inter-
esting subject for future research. On the other hand, our new approach is more
scalable than that of [7]. This is due to the fact that the heap representation in [7] is
monolithic, i.e., the whole heap is represented by a single tree skeleton over which
additional pointer links are expressed using the so-called routing expressions. The

1 We did not find an available implementation of [11], and so we could not try it out ourselves.



4 Peter Habermehl et al.

new encoding is much more structured, and so the different operations on the
heap, corresponding to a symbolic execution of the verified program, typically in-
fluence only small parts of the encoding and not all (or most) of it. The monolithic
encoding of [7] has also problems with deletion of elements inside data structures
since the routing expressions are built over a tree backbone that is assumed not
to change (and hence deleted elements inside data structures are always kept, just
marked as deleted). Moreover, the encoding of [7] has troubles with detection of
memory leakage, which is in theory possible, but it is so complex that it has never
been implemented.

Plan of the paper. In the next section, we provide an informal introduction to
our proposal of hierarchical forest automata and their use for encoding sets of
heaps. In Section 3, the notion of (non-hierarchical) forest automata is formalised,
and we examine properties of forest automata from the point of view of inclusion
checking. Subsequently, Section 4 generalises the notion of forest automata to
hierarchical forest automata. In Section 5, we propose a verification procedure
based on hierarchical forest automata. Section 6 provides a brief description of
the Forester tool implementing the proposed approach as well as results obtained
from experiments with Forester. Finally, Section 7 concludes the paper.

2 From Heaps to Forests

In this section, we outline in an informal way our proposal of hierarchical forest
automata and the way how sets of heaps can be represented by them. For the
purpose of the explanation, heaps may be viewed as oriented graphs whose nodes
correspond to allocated memory cells and edges to pointer links between these
cells. The nodes may be labelled by non-pointer data stored in them (assumed to
be from a finite data domain) and by program variables pointing to the nodes.
Edges may be labelled by the corresponding selectors.

In what follows, we restrict ourselves to garbage free heaps in which all memory
cells are reachable from pointer variables by following pointer links. However, this
is not a restriction in practice since the emergence of garbage can be checked for
each executed program statement. If some garbage arises, an error message can be
issued and the symbolic computation stopped. Alternatively, the garbage can be
removed and the computation continued.

It is easy to see that each heap graph can be decomposed into a set of tree

components when the leaves of the tree components are allowed to reference back
to the roots of these components. Moreover, given a total ordering on program
variables and selectors, each heap graph may be decomposed into a tuple of tree
components in a canonical way as illustrated in Figure 1(a) and (b). In particular,
one can first identify the so-called cut-points, i.e., nodes that are either pointed to
by a program variable or that have several incoming edges. Next, the cut-points can
be canonically numbered using a depth-first traversal of the heap graph starting
from nodes pointed to by program variables in the order derived from the order
of the program variables and respecting the order of selectors. Subsequently, one
can split the heap graph into tree components rooted at particular cut-points.
These components should contain all the nodes reachable from their root while not
passing through any cut-point, plus a copy of each reachable cut-point, labelled by



Forest Automata for Verification of Heap Manipulation 5

x
1

2

3

y
4

next

next

next

next

next
data

data

data

data

data

data

data

data
next

next

next

x
1

2

2

3

3

3

y
4

2

next

next

next next

next

nextnext

next

data

data

data data

data

datadata

data

(a) (b)

Fig. 1 (a) A heap graph with cut-points highlighted in red, (b) the canonical tree decompo-
sition of the heap with x ordered before y.

its number. Finally, the tree components can then be canonically ordered according
to the numbers of the cut-points representing their roots.

Our proposal of forest automata builds upon the described decomposition of
heaps into tree components. In particular, a forest automaton (FA) is basically
a tuple of tree automata (TA). Each of the tree automata accepts trees whose
leaves may refer back to the roots of any of these trees. An FA then represents
exactly the set of heaps that may be obtained by taking a single tree from the
language of each of the component TA and by gluing the roots of the trees with
the leaves referring to them.

Below, we will mostly concentrate on a subclass of FA that we call canon-

icity respecting forest automata (CFA). CFA encode sets of heaps decomposed in
a canonical way, i.e., such that if we take any tuple of trees accepted by the given
CFA, construct a heap from them, and then canonically decompose it, we get the
tuple of trees we started with. This means that in the chosen tuple there is no
tree with a root that does not correspond to a cut-point and that the trees are
ordered according to the depth-first traversal as described above. The canonicity
respecting form allows us to test inclusion on the sets of heaps represented by CFA
by testing inclusion component-wise on the languages of the TA constituting the
given CFA.

Note, however, that FA are not closed under union. Even for FA having the
same number of components, uniting the TA component-wise may yield an FA
overapproximating the union of the sets of heaps represented by the original FA (cf.
Section 3). Thus, we represent unions of FA explicitly as sets of FA (SFA), which
is similar to dealing with disjunctions of conjunctive separation logic formulae.
However, as we will see, inclusion on the sets of heaps represented by SFA is still
easily decidable.



6 Peter Habermehl et al.

next

prev

next

prev

next

prev

(a)

DLL DLL DLL

next

prev

(b)

Fig. 2 (a) A part of a DLL, (b) a hierarchical encoding of the DLL.

The described encoding allows one to represent sets of heaps with a bounded
number of cut-points. However, to handle many common dynamic data structures,
one needs to represent sets of heaps with an unbounded number of cut-points. Indeed,
for instance, in doubly-linked lists (DLLs), every node is a cut-point. We solve this
problem by representing heaps in a hierarchical way. In particular, we collect sets
of repeated subgraphs (called components) containing cut-points in the so-called
boxes. Every occurrence of such components can then be replaced by a single edge
labelled by the appropriate box. To specify how a subgraph enclosed within a box
is connected to the rest of the graph, the subgraph is equipped with the so-called
input and output ports. The source vertex of a box then matches the input port
of the subgraph, and the target vertex of the edge matches the output port.2

In this way, a set of heap graphs with an unbounded number of cut-points can
be transformed into a set of hierarchical heap graphs with a bounded number of
cut-points at each level of the hierarchy. Figures 2(a) and (b) illustrate how this
approach can basically reduce DLLs into singly-linked lists (with a DLL segment
used as a kind of meta-selector).

In general, we allow a box to have more than one output port. Boxes with mul-
tiple output ports, however, reduce heap graphs not to graphs but hypergraphs with
hyperedges having a single source node, but multiple target nodes. This situation is
illustrated on a simple example shown in Figure 3. The tree with linked brothers
from Figure 3(a) is turned into a hypergraph with binary hyperedges shown in
Figure 3(c) using the box B from Figure 3(b). The subgraph encoded by the box
B can be connected to its surroundings via its input port i and two output ports
o1, o2. Therefore, the hypergraph from Figure 3(c) encodes it by a hyperedge with
one source and two target nodes.

Sets of heap hypergraphs corresponding either to the top level of the repre-
sentation or to boxes of different levels can then be decomposed into (hyper)tree
components and represented using hierarchical FA whose alphabet can contain

2 Later on, the term input port will be used to refer to the nodes pointed to by program
variables too since these nodes play a similar role as the inputs of components.



Forest Automata for Verification of Heap Manipulation 7

left right

next

next

left right

next

next

left right

next

next

i

o1 o2

B

left right

next

next

B

B B

(a) (b) (c)

Fig. 3 (a) A tree with linked brother nodes, (b) a pattern that repeats in the structure and
that is linked in such a way that all nodes in the structure are cut-points, (c) the tree with
linked brother nodes represented using hyperedges labelled by the box B.

nested FA.3 Intuitively, FA appearing in the alphabet of some superior FA play
a role similar to that of inductive predicates in separation logic.4 We restrict our-
selves to automata that form a finite and strict hierarchy (i.e., there is no circular
use of the automata in their alphabets).

The question of deciding inclusion on sets of heaps represented by hierarchical
FA remains open. However, we propose a canonical decomposition of hierarchical

hypergraphs allowing inclusion to be decided for sets of heap hypergraphs repre-
sented by FA provided that the nested FA labelling hyperedges are taken as atomic
alphabet symbols. Note that this decomposition is by far not the same as for non-
hierarchical heap graphs due to a need to deal with nodes that are not reachable
on the top level, but are reachable through edges hidden in some boxes. This result
allows us to safely approximate inclusion checking on hierarchically represented
heaps, which appears to work quite well in practice.

3 Hypergraphs and Their Representation

We now formalise the notion of hypergraphs and forest automata.

3.1 Hypergraphs

A ranked alphabet is a finite set Γ of symbols associated with a map # : Γ → N. The
value #(a) is called the rank of a ∈ Γ . We use #(Γ ) to denote the maximum rank of
a symbol in Γ . A ranked alphabet Γ is a hypergraph alphabet if it is associated with

3 Since graphs are a special case of hypergraphs, in the following, we will work with hy-
pergraphs only. Moreover, to simplify the definitions, we will work with hyperedge-labelled
hypergraphs only. Node labels mentioned above will be put at specially introduced nullary
hyperedges leaving from the nodes whose label is to be represented.

4 For instance, we use a nested FA to encode a DLL segment of length 1. In separation logic,
the corresponding induction predicate would represent segments of length 1 or more. In our
approach, the repetition of the segment is encoded in the structure of the top-level FA.



8 Peter Habermehl et al.

a total ordering �Γ on its symbols. For the rest of the section, we fix a hypergraph
alphabet Γ .

An (oriented, Γ -labelled) hypergraph (with designated input/output ports) is
a tuple G = (V,E, P ) where:

– V is a finite set of vertices.
– E is a finite set of hyperedges such that every hyperedge e ∈ E is of the

form (v, a, (v1, . . . , vn)) where v ∈ V is the source of e, a ∈ Γ , n = #(a),
and v1, . . . , vn ∈ V are targets of e and a-successors of v.

– P is the so-called port specification that consists of a set of input ports IP ⊆ V ,
a set of output ports OP ⊆ V , and a total ordering �P on IP ∪OP .

We use v to denote a sequence v1, . . . , vn and v.i to denote its ith vertex vi. For
symbols a ∈ Γ with #(a) = 0, we write (v, a) ∈ E to denote that (v, a, ()) ∈ E.
Such hyperedges may simulate labels assigned to vertices.

A path in a hypergraph G = (V,E, P ) is a sequence 〈v0, a1, v1, . . . , an, vn〉, n ≥ 0,
where for all 1 ≤ i ≤ n, vi is an ai-successor of vi−1. G is called deterministic iff
∀(v, a, v), (v, a′, v′) ∈ E: a = a′ =⇒ v = v′. G is called well-connected iff each node
v ∈ V is reachable through some path from some input port of G.

As we have already mentioned in Section 2, in hypergraphs representing heaps,
input ports correspond to nodes pointed to by program variables or to input nodes
of components, and output ports correspond to output nodes of components. Fig-
ure 1(a) shows a hypergraph with two input ports corresponding to the variables x
and y. The hyperedges are labelled by selectors data and next. All the hyperedges
are of arity 1. A simple example of a hypergraph with hyperedges of arity 2 is
given in Figure 3(c).

3.2 A Forest Representation of Hypergraphs

We will now define the forest representation of hypergraphs. For that, we will first
define a notion of a tree as a basic building block of forests. We will define trees
much like hypergraphs but with a restricted shape and without input/output ports.
The reason for the latter is that the ports of forests will be defined on the level of
the forests themselves, not on the level of the trees that they are composed of.

Formally, an (unordered, oriented, Γ -labelled) tree T = (V,E) consists of a set
of vertices and hyperedges defined as in the case of hypergraphs with the following
additional requirements: (1) V contains a single node with no incoming hyperedge
(called the root of T and denoted root(T )). (2) All other nodes of T are reachable
from root(T ) via some path. (3) Each node has at most one incoming hyperedge.
(4) Each node appears at most once among the target nodes of its incoming hy-
peredge (if it has one). Given a tree, we call its nodes with no successors leaves.

Let us assume that Γ ∩N = ∅. An (ordered, Γ -labelled) forest (with designated
input/output ports) is a tuple F = (T1, . . . , Tn, R) such that:

– For every i ∈ {1, . . . , n}, Ti = (Vi, Ei) is a tree that is labelled by the alphabet
(Γ ∪ {1, . . . , n}).

– R is a (forest) port specification consisting of a set of input ports IR ⊆ {1, . . . , n},
a set of output ports OR ⊆ {1, . . . , n}, and a total ordering �R of IR ∪OR.



Forest Automata for Verification of Heap Manipulation 9

– For all i, j ∈ {1, . . . , n}, (1) if i 6= j, then Vi ∩ Vj = ∅, (2) #(i) = 0, and
(3) a vertex v with (v, i) ∈ Ej is not a source of any other edge (it is a leaf).
We call such vertices root references and denote by rr(Ti) the set of all root
references in Ti, i.e., rr(Ti) = {v ∈ Vi | (v, k) ∈ Ei, k ∈ {1, . . . , n}}.

A forest F = (T1, . . . , Tn, R) represents the hypergraph ⊗F obtained by uniting
the trees T1, . . . , Tn and interconnecting their roots with the corresponding root
references. In particular, for every root reference v ∈ Vi, i ∈ {1, . . . , n}, hyperedges
leading to v are redirected to the root of Tj where (v, j) ∈ Ei, and v is removed. The
sets IR and OR then contain indices of the trees whose roots are to be input/output
ports of ⊗F , respectively. Finally, their ordering �P is defined by the �R-ordering
of the indices of the trees whose roots they are. Formally, ⊗F = (V,E, P ) where:

– V =
⋃n

i=1
Vi \rr(Ti), E =

⋃n
i=1

{(v, a, v′) | a ∈ Γ ∧∃(v, a, v) ∈ Ei ∀1 ≤ j ≤ #(a) :
if ∃(v.j, k) ∈ Ei with k ∈ {1, . . . , n}, then v′.j = root(Tk), else v′.j = v.j},

– IP = {root(Ti) | i ∈ IR}, OP = {root(Ti) | i ∈ OR},
– ∀u, v ∈ IP ∪ OP such that u = root(Ti) and v = root(Tj): u �P v ⇐⇒ i �R j.

3.3 Minimal and Canonical Forests

We now define the canonical form of a forest which will be important later for
deciding language inclusion on forest automata, acceptors of sets of hypergraphs.

We call a forest F = (T1, . . . , Tn, R) representing the well-connected hypergraph
⊗F minimal iff the roots of the trees T1, . . . , Tn correspond to the cut-points of ⊗F ,
i.e., those nodes that are either ports, have more than one incoming hyperedge in
⊗F , or appear more than once as a target of some hyperedge. A minimal forest
representation of a hypergraph is unique up to permutations of T1, . . . , Tn.

In order to get a truly unique canonical forest representation of a well-connected
deterministic hypergraph G = (V,E, P ), it remains to canonically order the trees
in its minimal forest representation. To do this, we use the total ordering �P on
ports P and the total ordering �Γ on hyperedge labels Γ of G. We then order
the trees according to the order in which their roots are visited in a depth-first
traversal (DFT) of G. If all nodes are not reachable from a single port, a series of
DFTs is used. The DFTs are started from the input ports in IP in the order given
by �P . During the DFTs, a priority is given to the hyperedges that are smaller
in �Γ . A canonical representation is obtained this way since we consider G to be
deterministic.

Figure 1(b) shows a forest decomposition of the heap graph of Figure 1(a). The
nodes pointed to by variables are input ports of the heap graph. Assuming that
the ports are ordered such that the port pointed by x precedes the one pointed by
y, then the forest of Figure 1(b) is a canonical representation of the heap graph of
Figure 1(a).

3.4 Tree Automata

Next, we will work towards defining forest automata as tuples of tree automata
encoding sets of forests and hence sets of hypergraphs. We start by classical defi-
nitions of tree automata and their languages.



10 Peter Habermehl et al.

Ordered Trees. Let ǫ denote the empty sequence. An ordered tree t over a ranked
alphabet Σ is a partial mapping t : N∗ → Σ satisfying the following conditions:
(1) dom(t) is a finite, prefix-closed subset of N∗, and (2) for each p ∈ dom(t), if
#(t(p)) = n ≥ 0, then {i | pi ∈ dom(t)} = {1, . . . , n}. Each sequence p ∈ dom(t) is
called a node of t. For a node p, the ith child of p is the node pi, and the ith subtree

of p is the tree t′ such that t′(p′) = t(pip′) for all p′ ∈ N
∗. A leaf of t is a node p

with no children, i.e., there is no i ∈ N with pi ∈ dom(t). Let T(Σ) be the set of
all ordered trees over Σ.

Tree Automata. A (finite, non-deterministic, bottom-up) tree automaton (abbrevi-
ated as TA in the following) is a quadruple A = (Q,Σ,∆, F ) where Q is a finite set
of states, F ⊆ Q is a set of final states, Σ is a ranked alphabet, and ∆ is a set of
transition rules. Each transition rule is a triple of the form ((q1, . . . , qn), f, q) where
n ≥ 0, q1, . . . , qn, q ∈ Q, f ∈ Σ, and #(f) = n. We use f(q1, . . . , qn) → q to denote
that ((q1, . . . , qn), f, q) ∈ ∆. In the special case where n = 0, we speak about the
so-called leaf rules.

A run of A over a tree t ∈ T(Σ) is a mapping π : dom(t) → Q such that, for each
node p ∈ dom(t) where q = π(p), if qi = π(pi) for 1 ≤ i ≤ n, t(p)(q1, . . . , qn) → q.

We write t
π

=⇒ q to denote that π is a run of A over t such that π(ǫ) = q. We use

t =⇒ q to denote that t
π

=⇒ q for some run π. The language of a state q is defined
by L(q) = {t | t =⇒ q}, and the language of A is defined by L(A) =

⋃
q∈F L(q).

3.5 Forest Automata

We will now define forest automata as tuples of tree automata extended by a port
specification. Tree automata accept trees that are ordered and node-labelled.
Therefore, in order to be able to use forest automata to encode sets of forests, we
must define a conversion between ordered, node-labelled trees and our unordered,
edge-labelled trees.

We convert a deterministic Γ -labelled unordered tree T into a node-labelled
ordered tree ot(T ) by (1) transferring the information about labels of edges of
a node into the symbol associated with the node and by (2) ordering the successors
of the node. More concretely, we label each node of the ordered tree ot(T ) by the
set of labels of the hyperedges leading from the corresponding node in the original
tree T . Successors of the node in ot(T ) correspond to the successors of the original
node in T , and are ordered w.r.t. the order �Γ of hyperedge labels through which
the corresponding successors are reachable in T (while always keeping tuples of
nodes reachable via the same hyperedge together, ordered in the same way as they
were ordered within the hyperedge). The rank of the new node label is given by
the sum of ranks of the original hyperedge labels embedded into it. Below, we use
ΣΓ to denote the ranked node alphabet obtained from Γ as described above.

The Notion of Forest Automata. A forest automaton over Γ (with designated in-
put/output ports) is a tuple F = (A1, . . . ,An, R) where:

– For all 1 ≤ i ≤ n, Ai = (Qi, Σ,∆i, Fi) is a TA with Σ = ΣΓ ∪ {1, . . . , n} and
#(i) = 0.



Forest Automata for Verification of Heap Manipulation 11

– R is defined as for forests, i.e., it consists of input and output ports IR, OR ⊆

{1, . . . , n} and a total ordering �R on IR ∪OR.

The forest language of F is the set of forests LF (F) = {(T1, . . . , Tn, R) | ∀1 ≤ i ≤
n : ot(Ti) ∈ L(Ai)}, i.e., the forest language is obtained by taking the Cartesian
product of the tree languages, unordering the trees that appear in its elements,
and extending them by the port specification. The forest language of F in turn
defines the hypergraph language of F which is the set of hypergraphs L(F) = {⊗F |
F ∈ LF (F)}.

An FA F respects canonicity iff for each forest F ∈ LF (F), the hypergraph ⊗F

is well-connected, and F is its canonical representation. We abbreviate canonicity
respecting FA as CFA. It is easy to see that comparing sets of hypergraphs repre-
sented by CFA can be done component-wise as described in the below proposition.

Proposition 1 Let F = (A1, . . . ,An, R) and F ′ = (A′
1, . . . ,A

′
m, R′) be two CFA.

Then, L(F) ⊆ L(F ′) iff n = m, R = R′, and ∀1 ≤ i ≤ n : L(Ai) ⊆ L(A′
i).

3.6 Transforming FA into Canonicity Respecting FA

In order to facilitate inclusion checking, each FA can be algorithmically trans-
formed (split) into a finite set of CFA such that the union of their languages
equals the original language. We describe the transformation in a more detailed
way below.

First, we label the states of the component TA of the given FA by special labels.
For each state, these labels capture all possible orders in which root references
appear in the leaves of the trees accepted at this state when the left-most (i.e., the
first) appearance of each root-reference is considered only. Moreover, the labels
capture which of the references appear multiple times. Intuitively, following the
first appearances of the root references in the leaves of tree components is enough
to see how a depth first traversal through the represented hypergraph orders the
roots of the tree components. The knowledge of multiple references to the same
root from a single tree is then useful for checking which nodes should really be the
roots.

The computed labels are subsequently used to possibly split the given FA into
several FA such that the accepting states of the component TA of each of the
obtained FA are labelled in a unique way. This guarantees that the obtained FA
are canonicity respecting up to the fact that the roots of some of the trees accepted
by component TA need not be cut-points (and up to the ordering of the component
TA). Thus, subsequently, some of the TA may get merged. Finally, we order the
remaining component TA in a way consistent with the DFT ordering on the cut-
points of the represented hypergraphs (which after the splitting is the same for all
the hypergraphs represented by each obtained FA). To order the component TA,
the labels of the accepting states can be conveniently used.

More precisely, consider a forest automaton F = (A1, . . . ,An, R), n ≥ 1, and
any of its component tree automata Ai = (Qi, Σ,∆i, Fi), 1 ≤ i ≤ n. We label each
state q ∈ Qi by a set of labels (w, Y ), w ∈ {1, . . . , n}∗, Y ⊆ {1, . . . , n}, for which
there is a tree t ∈ L(q) such that

– w is the string that records the order in which root references appear for the
first time in the leaves of t (i.e., w is the concatenation of the labels of the



12 Peter Habermehl et al.

leaves labelled by root references, restricted to the first occurrence of each root
reference), and

– Y is the set of root references that appear more than once in the leaves of t.

Such labelling can be obtained by first labelling states w.r.t. the leaf rules and
then propagating the so-far obtained labels bottom-up. If the final states of Ai

get labelled by several different labels, we make a copy of the automaton for
each of these labels, and in each of them, we preserve only the transitions that
allow trees with the appropriate label of the root to be accepted.5 This way, all
the component automata can be processed and then new forest automata can be
created by considering all possible combinations of the transformed TA.

Clearly, each of the FA created above represents a set of hypergraphs that have
the same number of cut-points (corresponding either to ports, nodes referenced
at least twice from a single component tree, or referenced from several compo-
nent trees) that get ordered in the same way in the depth first traversal of the
hypergraphs. However, it may be the case that some roots need not correspond
to cut-points. This is easy to detect by looking for a root reference that does not
appear in the set part of any label of some final state and that does not appear in
the labels of two different component tree automata. A useless root can then be
eliminated by adding transition rules of the appropriate component tree automa-
ton Ai to those of the tree automaton Aj that refers to that root and by gluing
final states of Ai with the states of Aj accepting the root reference i.

It remains to order the component TA within each of the obtained FA in a way
consistent with the DFT ordering of the cut-points of the represented hypergraphs
(which is now the same for all the hypergraphs represented by a single FA due to
the performed splitting). To order the component TA of any of the obtained FA,
one can use the w-part of the labels of its accepting states. One can then perform
a DFT on the component TA, considering the TA as atomic objects. One starts
with the TA that accept trees whose roots represent ports and processes them wrt.
the ordering of ports. When processing a TA A, one considers as its successors the
TA that correspond to the root references that appear in the w-part of the labels of
the accepting states of A. Moreover, the successor TA are processed in the order in
which they are referenced from the labels. When the DFT is over, the component
TA may get reordered according to the order in which they were visited.

Subsequently, the port specification R and root references in leaves must be
updated to reflect the reordering. If the original sets IR or OR contain a port i,
and the ith tree was moved to the jth position, then i must be substituted by j

in IR, OR, and �R as well as in all root references. This finally leads to a set of
canonicity respecting FA.

Note that, in practice, it is not necessary to tightly follow the above described
process. Instead, one can arrange the symbolic execution of statements in such
a way that when starting with a CFA, one obtains an FA which already meets some
requirements for CFA. Most notably, the splitting of component TA—if needed—
can be efficiently done already during the symbolic execution of the particular

5 More technically, given a labelled TA, one can first make a separate copy of each state for
each of its labels, connect the states by transitions such that the obtained singleton labelling
is respected, then make a copy of the TA for each label of accepting states, and keep the
accepting status for a single labelling of accepting states in each of the copies only.



Forest Automata for Verification of Heap Manipulation 13

statements. Therefore, transforming an FA obtained this way into the correspond-
ing CFA involves the elimination of redundant roots and the root reordering only.

3.7 Sets of Forest Automata

The class of languages of FA (and even CFA) is not closed under union since
a forest language of a FA corresponds to the Cartesian product of the languages of
all its components, and not every union of Cartesian products may be expressed
as a single Cartesian product. For instance, consider two CFA F = (A,B, R) and
F ′ = (A′,B′, R) such that LF (F) = {(a, b, R)} and LF (F

′) = {(c, d,R)} where
a, b, c, d are distinct trees. The forest language of the FA (A ∪ A′,B ∪ B′, R) is
{(x, y,R) | (x, y) ∈ {a, c}×{b, d}}), and there is no FA with the hypergraph language
equal to L(F) ∪ L(F ′).

Due to the above, we cannot transform a set of CFA obtained by canonising
a given FA into a single CFA. Likewise, when we obtain several CFA when sym-
bolically executing several program paths leading to the same program location,
we cannot merge them into a single CFA without risking a loss of information.
Consequently, we will explicitly work with finite sets of (canonicity-respecting) for-

est automata, S(C)FA for short, where the language L(S) of a finite set S of FA is
defined as the union of the languages of its elements. This, however, means that
we need to be able to decide language inclusion on SFA.

Testing Inclusion on SFA. The problem of checking inclusion on SFA, this is, check-
ing whether L(S) ⊆ L(S ′) where S ,S ′ are SFA, can be reduced to a problem of
checking inclusion on tree automata. We may w.l.o.g. assume that S and S ′ are
SCFA.

We will transform every FA F in S and S ′ into a TA AF which accepts the
language of trees where:

– The root of each of these trees is labelled by a special fresh symbol (parame-
terised by n and the port specification of F).

– The root has n children, one for each tree automaton of F .
– For each 1 ≤ i ≤ n, the ith child of the root is the root of a tree accepted by

the ith tree automaton of F .

Trees accepted by AF are therefore unique encodings of hypergraphs in L(F). We
will then test the inclusion L(S) ⊆ L(S ′) by testing the tree automata language
inclusion between the union of TA obtained from S and the union of TA obtained
from S ′.

Formally, let F = (A1, . . . ,An, R) be an FA where Ai = (Σ,Qi, ∆i, Fi) for
each 1 ≤ i ≤ n. Without a loss of generality, assume that Qi ∩ Qj = ∅ for each
1 ≤ i < j ≤ n. We define the TA AF = (Σ ∪ {fR

n }, Q,∆, {qtop}) where:

– f
R
n 6∈ Σ is a fresh symbol with #(fR

n ) = n,
– qtop 6∈

⋃n
i=1

Qi is a fresh accepting state,
– Q =

⋃n
i=1

Qi ∪ {qtop}, and

– ∆ =
⋃n

i=1
∆i ∪ ∆top where ∆top contains the rule f

R
n (q1, . . . , qn) → qtop for

each (q1, . . . , qn) ∈ F1 × · · · × Fn.



14 Peter Habermehl et al.

It is now easy to see that the following proposition holds (in the proposition, “∪”
stands for the usual tree automata union).

Proposition 2 For SCFA S and S ′, L(S) ⊆ L(S ′) ⇐⇒ L(
⋃

F∈S

AF ) ⊆ L(
⋃

F ′∈S′

AF ′

).

4 Hierarchical Hypergraphs

As discussed informally in Section 2, simple forest automata cannot express sets
of data structures with unbounded numbers of cut-points like, e.g., the set of all
doubly-linked lists or the set of all trees with linked brothers (Figures 2 and 3).
To capture such data structures, we will enrich the expressive power of forest
automata by allowing them to be hierarchically nested. For the rest of the section,
we fix a hypergraph alphabet Γ .

4.1 Hierarchical Hypergraphs, Components, and Boxes

We first introduce hypergraphs with hyperedges labelled by the so-called boxes
which are sets of hypergraphs (defined up to isomorphism6). A hypergraph G

with hyperedges labelled by boxes encodes a set of hypergraphs. The hypergraphs
encoded by G can be obtained by replacing every hyperedge of G labelled by
a box by some hypergraph from the box. The hypergraphs within the boxes may
themselves have hyperedges labelled by boxes, which gives rise to a hierarchical
structure (which we require to be of a finite depth).

Let Υ be a hypergraph alphabet. First, we define an Υ -labelled component

as an Υ -labelled hypergraph C = (V,E, P ) which satisfies the requirement that
|IP | = 1 and IP ∩ OP = ∅. Then, an Υ -labelled box is a non-empty set B of Υ -
labelled components such that all of them have the same number of output ports.
This number is called the rank of the box B and denoted by #(B). Let B[Υ ] be
the ranked alphabet containing all Υ -labelled boxes such that B[Υ ] ∩ Υ = ∅. The
operator B gives rise to a hierarchy of alphabets Γ0, Γ1, . . . where:

– Γ0 = Γ is the set of plain symbols,
– for i ≥ 0, Γi+1 = Γi ∪ B[Γi] is the set of symbols of level i+ 1.

A Γi-labelled hypergraph H is then called a Γ -labelled (hierarchical) hypergraph of

level i, and we refer to the Γi−1-labelled boxes appearing on edges of H as to
nested boxes of H. A Γ -labelled hypergraph is sometimes called a plain Γ -labelled
hypergraph.

Semantics of hierarchical hypergraphs. A Γ -labelled hierarchical hypergraph H en-
codes a set JHK of plain hypergraphs, called the semantics of H. For a set S of
hierarchical hypergraphs, we use JSK to denote the union of semantics of its ele-
ments.

If H is plain, then JHK contains just H itself. If H is of level j > 0, then
hypergraphs from JHK are obtained in such a way that hyperedges labelled by

6 Dealing with hypergraphs and later also automata defined up to isomorphism avoids a need
to deal with classes instead of sets. We will not repeat this fact later on.



Forest Automata for Verification of Heap Manipulation 15

boxes B ∈ Γj are substituted in all possible ways by plain components from JBK.
The substitution is similar to an ordinary hyperedge replacement used in graph
grammars. When an edge e is substituted by a component C, the input port of C is
identified with the source node of e, and the output ports of C are identified with
the target nodes of e. The correspondence of the output ports of C and the target
nodes of e is defined using the order of the target nodes in e and the ordering of
ports of C. The edge e is finally removed from H.

Formally, given a Γ -labelled hierarchical hypergraph H = (V,E, P ), a hyper-
edge e = (v, a, v) ∈ E, and a component C = (V ′, E′, P ′) where #(a) = |OP ′ | = k,
the substitution of e by C in H results in the hypergraphH[C/e] defined as follows.
Let o1 �P . . . �P ok be the ports of OP ordered by �P . W.l.o.g., assume V ∩V ′ = ∅.
C will be connected to H by identifying its ports with their matching vertices of
e. We define for every vertex w ∈ V ′ its matching vertex match(w) such that (1) if
w ∈ IP ′ , match(w) = v (the input port of C matches the source of e), (2) if
w = oi, 1 ≤ i ≤ k, match(w) = v.i (the output ports of C match the corresponding
targets of e), and (3) match(w) = w otherwise (an inner node of C is not matched
with any node of H). Then H[C/e] = (V ′′, E′′, P ) where V ′′ = V ∪(V ′ \(IP ′ ∪OP ′ ))
and E′′ = (E \ {e}) ∪ {(v′′, a′, v′′) | ∃(v′, a′, v′) ∈ E′ : match(v′) = v′′ ∧ ∀1 ≤ i ≤
k : match(v′.i) = v′′.i}.

We can now give an inductive definition of JHK. Let e1 = (v1, B1, v1), . . . ,
en = (vn, Bn, vn) be all edges of H labelled by Γ -labelled boxes. Then, G ∈ JHK

iff it is obtained from H by successively substituting every ei by a component
Ci ∈ JBiK, i.e.,

JHK = {H[C1/e1] . . . [Cn/en] | C1 ∈ JB1K, . . . , Cn ∈ JBnK}.

Figure 2(b) shows a hierarchical hypergraph of level 1 whose semantics is the
(hyper)graph of Figure 2(a). Similarly, Figure 3(c) shows a hierarchical hypergraph
of level 1 whose semantics is the (hyper)-graph of Figure 3(a).

4.2 Hierarchical Forest Automata

We now define hierarchical forest automata that represent sets of hierarchical
hypergraphs. The hierarchical FA are FA whose alphabet can contain symbols
which encode boxes appearing on edges of hierarchical hypergraphs. The boxes
are themselves represented using hierarchical FA.

To define an alphabet of hierarchical FA, we will take an approach similar
to the one used for the definition of hierarchical hypergraphs. First, we define
an operator A which for a hypergraph alphabet Υ returns the ranked alphabet
containing the set of all SFA S over (a finite subset of) Υ such that L(S) is an
Υ -labelled box and such that A[Υ ] ∩ Υ = ∅. The rank of S in the alphabet A[Υ ] is
the rank of the box L(S). The operator A gives rise to a hierarchy of alphabets
Γ0,Γ1, . . . where:

– Γ0 = Γ is the set of plain symbols,
– for i ≥ 0, Γi+1 = Γi ∪A[Γi] is the set of symbols of level i+ 1.

A hierarchical FA F over Γi is then called a Γ -labelled (hierarchical) FA of level i,
and we refer to the hierarchical SFA over Γi−1 appearing within alphabet symbols
of F as to nested SFA of F .



16 Peter Habermehl et al.

Let F be a hierarchical FA. We now define an operator ♯ that translates any Γi-
labelled hypergraph G = (V,E,P ) ∈ L(F) to a Γ -labelled hierarchical hypergraph
H of level i (i.e., it translates G by transforming the SFA that appear on its
edges to the boxes they represent). Formally, G♯ is defined inductively as the Γ -
labelled hierarchical hypergraph H = (V,E′, P ) of level i that is obtained from
the hypergraph G by replacing every edge (v,S , v) ∈ E, labelled by a Γ -labelled

hierarchical SFA S, by the edge (v, L(S)♯, v), labelled by the box L(S)♯ where
L(S)♯ denotes the set (box) {X♯ | X ∈ L(S)}. Then, we define the semantics of
a hierarchical FA F over Γ as the set of Γ -labelled (plain) hypergraphs JFK =
JL(F)♯K.

Notice that a hierarchical SFA of any level has finitely many nested SFA of
a lower level only. Therefore, a hierarchical SFA is a finitely representable object.
Notice also that even though the maximum number of cut-points of hypergraphs
from L(S)♯ is fixed (SFA always accept hypergraphs with a fixed maximum number
of cut-points), the number of cut-points of hypergraphs in JSK may be unbounded.
The reason is that hypergraphs from L(S)♯ may contain an unbounded number
of hyperedges labelled by boxes B such that hypergraphs from JBK contain cut-
points too. These cut-points then appear in hypergraphs from JSK, but they are
not visible at the level of hypergraphs from L(S)♯.

Hierarchical SFA are therefore finite representations of sets of hypergraphs
with possibly unbounded numbers of cut-points.

4.3 Inclusion and Well-Connectedness on Hierarchical SFA

In this section, we aim at checking well-connectedness and inclusion of sets of
hypergraphs represented by hierarchical FA. Since considering the full class of hi-
erarchical hypergraphs would unnecessarily complicate our task, we enforce a re-
stricted form of hierarchical automata that rules out some rather artificial sce-
narios and that allows us to handle the automata hierarchically (i.e., using some
pre-computed information for nested FA rather than having to unfold the entire
hierarchy all the time). In particular, the restricted form guarantees that:

1. For a hierarchical hypergraph H, well-connectedness of hypergraphs in JHK

is equivalent to the so-called box-connectedness of H. Box-connectedness is
a property introduced below that can be easily checked and that basically
considers paths from input ports to output ports and vice versa, in the latter
case through hyperedges hidden inside nested boxes.

2. Determinism of hypergraphs from JHK implies determinism of H.

The two above properties simplify checking inclusion and well-connectedness
considerably since for a general hierarchical hypergraph H, well-connectedness of
H is neither implied nor it implies well-connectedness of hypergraphs from JHK.
This holds also for determinism. The reason is that a component C in a nested box
of H may interconnect its ports in an arbitrary way. It may contain paths from
output ports to both input and output ports (including paths from an output port
to another output port not passing the input port), but it may be missing paths
from the input port to some of the output ports.

Using the above restriction, we will show below a safe approximation of inclu-
sion checking on hierarchical SFA, and we will also show that this approximation



Forest Automata for Verification of Heap Manipulation 17

is precise in some cases. Despite the introduced restriction, the description is quite
technical, and it may be skipped on the first reading. Indeed, it turns out that
in practice, an even more aggressive approximation of inclusion checking in which
nested boxes are taken as atomic symbols is often sufficient.

Properness and Box-connectedness. Given a Γ -labelled component C of level 0, we
define its backward reachability set br(C) as the set of indices i for which there is
a path from the i-th output port of C back to the input port of C. Given a box
B over Γ , we inductively define B to be proper iff all its nested boxes are proper,
br(C1) = br(C2) for any C1, C2 ∈ JBK, and the following holds for all components
C ∈ JBK:

1. C is well-connected.
2. If there is a path from the i-th to the j-th output port of C, i 6= j, then

i ∈ br(C).7

For a proper box B, we use br(B) to denote br(C) for C ∈ JBK. A hierarchical
hypergraph H is called well-formed iff all its nested boxes are proper. In that case,
the conditions above imply that either all or no hypergraphs from JHK are well-
connected and that well-connectedness of hypergraphs in JHK may be judged based
only on the knowledge of br(B) for each nested box B of H, without a need to
reason about the semantics of B (in particular, Point 2 in the above definition
of proper boxes guarantees that we do not have to take into account paths that
interconnect output ports of B). This is formalised below.

Let H = (V,E, P ) be a well-formed Γ -labelled hierarchical hypergraph with
a set X of nested boxes. We define the backward reachability graph of H as the
Γ ∪ X ∪ Xbr -labelled hypergraph Hbr = (V,E ∪ Ebr , P ) where Xbr = {(B, i) |
B ∈ X ∧ i ∈ br(B)} and Ebr = {(vi, (B, i), (v)) | B ∈ X ∧ (v,B, (v1, . . . , vn)) ∈

E ∧ i ∈ br(B)}. We say that H is box-connected iff Hbr is well-connected. The
below proposition clearly holds.

Proposition 3 If H is a well-formed hierarchical hypergraph, then the hypergraphs

from JHK are well-connected iff H is box-connected. Moreover, if hypergraphs from JHK

are deterministic, then both H and Hbr are deterministic hypergraphs.

We straightforwardly extend the above notions to hypergraphs with hyperedges
labelled by hierarchical SFA, treating these SFA-labels as if they were the boxes
they represent. Particularly, we call a hierarchical SFA S proper iff it represents
a proper box JSK, we let br(S) = br(JSK), and for a Γ ∪ Y -labelled hypergraph
G where Y is a set of proper SFA, its backward reachability hypergraph Gbr is
defined based on br in the same way as the backward reachability hypergraph of
a hierarchical hypergraph above (just instead of boxes, we deal with their SFA
representations). We also say that G is box-connected iff Gbr is well-connected.

Checking Properness and Well-connectedness. We now outline algorithms for check-
ing properness of nested SFA and well-connectedness of SFA.

Properness of nested SFA can be checked relatively easily since we can take
advantage of the fact that nested SFA of a proper SFA must be proper as well.

7 Notice that this definition is correct since boxes of level 0 have no nested boxes, and the
recursion stops at them.



18 Peter Habermehl et al.

We start with nested SFA of level 0 which contain no nested SFA, we check their
properness and compute the values of the backward reachability function br for
them. To do this we can label TA states similarly to Section 3.6. A unique label of
each root in the SFA representing the box guarantees that the br function will be
equal for all hypergraphs hidden in the box. Then, we iteratively increase the level
j and for each j, we check properness of the nested SFA of level j and compute the
values of the function br . For this, we use the values of br that we have computed
for the nested SFA of level j − 1, and we can also take advantage of the fact that
the nested SFA of level j − 1 have been shown to be proper. We can again use the
labels attached to all tree automata states. The difference from level 0 is that we
have to extend the labels in order to capture also the backward reachability of the
edges labelled by nested SFA.

Now, given an FA F over Γ with proper nested SFA, we can check well-
connectedness of hypergraphs from JFK as follows: (1) for each nested SFA S of F ,
we compute like above (and cache for further use) the value br(S), and (2) using
this value, we check box-connectedness of hypergraphs in L(F) without a need of
reasoning about the inner structure of the nested SFA [12].

The Problem of Checking Inclusion on Hierarchical FA. Checking inclusion on hier-
archical automata over Γ with nested boxes from X, i.e., given two hierarchical
FA F and F ′, checking whether JFK ⊆ JF ′K, is a hard problem, even under the
assumption that nested SFA of F and F ′ are proper. Its decidability is not known.
In this paper, we choose a pragmatic approach and give only a semi-algorithm
that is efficient and works well in practical cases. The idea is simple. Since the im-
plications L(F) ⊆ L(F ′) =⇒ L(F)♯ ⊆ L(F ′)♯ =⇒ JFK ⊆ JF ′K obviously hold, we
may safely approximate the solution of the inclusion problem by deciding whether
L(F) ⊆ L(F ′) (i.e., we abstract away the semantics of nested SFA of F and F ′

and treat them as ordinary labels).
From now on, assume that our hierarchical FA represent only deterministic

well-connected hypergraphs, i.e., that JFK and JF ′K contain only well-connected
deterministic hypergraphs. Note that this assumption is in particular fulfilled for
hierarchical FA representing garbage-free heaps.

We cannot directly use the results on inclusion checking of Section 3.5, based
on a canonical forest representation and canonicity respecting FA, since they rely
on well-connectedness of hypergraphs from L(F) and L(F ′), which is now not

necessarily the case. The reason is that hypergraphs represented by a not well-
connected hierarchical hypergraph H can themselves still be well-connected via
backward links hidden in boxes. However, by Proposition 3, every hypergraph G

from L(F) or L(F ′) is box-connected, and both G and Gbr are deterministic. As
we show below, these properties are still sufficient to define a canonical forest rep-
resentation of G, which in turn yields a canonicity respecting form of hierarchical
FA.

Canonicity respecting hierarchical FA. Let Y be a set of proper SFA over Γ . We
aim at a canonical forest representation F = (T1, . . . , Tn, R) of a Γ ∪ Y -labelled
hypergraph G = ⊗F which is box-connected and such that both G and Gbr are
deterministic. By extending the approach used in Section 3.5, this will be achieved
via an unambiguous definition of the root-points of G, i.e., the nodes of G that
correspond to the roots of the trees T1, . . . , Tn, and their ordering.



Forest Automata for Verification of Heap Manipulation 19

The root-points of G are defined as follows. First, every cut-point (port or
a node with more than one incoming edge) is a root-point of Type 1. Then, every
node with no incoming edge is a root-point of Type 2. Root-points of Type 2 are
entry points of parts of G that are not reachable from root-points of Type 1 (they
are only backward reachable). However, not every such part of G has a unique
entry point which is a root-point of Type 2. Instead, there might be a simple loop
such that there are no edges leading into the loop from outside. To cover a part of
G that is reachable from such a loop, we have to choose exactly one node of the
loop to be a root-point. To choose one of them unambiguously, we define a total
ordering �G on nodes of G and choose the smallest node wrt. this ordering to be
a root-point of Type 3. After unambiguously determining all root-points of G, we
may order them according to �G, and we are done.

A suitable total ordering �G on V can be defined taking advantage of the fact
that Gbr is well-connected and deterministic. Therefore, it is obviously possible to
define �G as the order in which the nodes are visited by a deterministic depth-first
traversal that starts at input ports. The details on how this may be algorithmically
done on the structure of forest automata may be found in [12].

We say that a hierarchical FA F over Γ with proper nested SFA and such that
hypergraphs from JFK are deterministic and well-connected respects canonicity iff
each forest F ∈ LF (F) is a canonical representation of the hypergraph ⊗F . We
abbreviate canonicity respecting hierarchical FA as hierarchical CFA. Analogically
as for ordinary CFA, respecting canonicity allows us to compare languages of
hierarchical CFA component-wise as described in the below proposition.

Proposition 4 Let F = (A1, . . . ,An, R) and F ′ = (A′
1, . . . ,A

′
m, R′) be hierarchical

CFA. Then, L(F) ⊆ L(F ′) iff n = m, R = R′, and ∀1 ≤ i ≤ n : L(Ai) ⊆ L(A′
i).

Proposition 4 allows us to safely approximate inclusion of the sets of hyper-
graphs encoded by hierarchical FA (i.e., to safely approximate the test JFK ⊆ JF ′K

for hierarchical FA F , F ′). This turns out to be sufficient for all our case studies
(cf. Section 6). Moreover, the described inclusion checking is precise at least in
some cases as discussed below. A generalisation of the result to sets of hierarchical
CFA can be obtained as for ordinary SFA. Hierarchical FA that do not respect
canonicity may be algorithmically split into several hierarchical CFA, similarly as
ordinary CFA [12].

Precise Inclusion on Hierarchical FA. In many practical cases, approximating the
inclusion JFK ⊆ JF ′K by deciding L(F) ⊆ L(F ′) is actually precise. A condition
that guarantees this is the following:

Condition 1. ∀H ∈ L(F)♯ ∀H ′ ∈ L(F ′)♯ : H 6= H ′ =⇒ JHK ∩ JH ′K = ∅. Intu-
itively, this means that one cannot have two distinct hierarchical hypergraphs
representing the same plain hypergraph.

Clearly, Condition 1 holds if the following two more concrete conditions hold:

Condition 2. Nested SFA of F and F ′ represent a set of boxes X that do not

overlap.
Condition 3. Every H ∈ L(F)♯ ∪ L(F ′)♯ is maximally boxed by boxes from X.



20 Peter Habermehl et al.

The notions of maximally boxed hypergraphs and non-overlapping boxes are de-
fined as follows. A hierarchical hypergraph H is maximally boxed by boxes from
a set X iff all its nested boxes are from X, and no part of H can be “hidden” in
a box from X, this is, there is no hypergraph G and no component C ∈ B,B ∈ X

such that G[C/e] = H for some edge e of G. Boxes from a set of boxes X over
Γ do not overlap iff for every hypergraph G over Γ , there is only one hierarchical
hypergraph H over Γ which is maximally boxed by boxes from X and such that
G ∈ JHK.

We note that the boxes represented by the nested SFA that appear in the case
studies presented in this paper satisfy Conditions 2 and 3, and so Condition 1 is
satisfied too. Hence, inclusion tests performed within our case studies are precise.

5 The Verification Procedure Based on Forest Automata

We now briefly describe our verification procedure. As already said, we consider
sequential, non-recursive C programs manipulating dynamic linked data structures
via program statements x = y, x = y->s, x = null, x->s = y, malloc(x), and free(x)
together with pointer and data equality tests and common control flow statements
as discussed in more details below8. Each allocated cell may have several next
pointer selectors and contain data from some finite domain9. We use Sel to denote
the set of all selectors and Data to denote the data domain. The cells may be
pointed by program variables whose set is denoted as Var below.

Heap Representation. As discussed in Section 2, we encode a single heap configu-
ration as a deterministic (Sel ∪Data ∪Var)-labelled hypergraph with the ranking
function being such that #(x) = 1 ⇔ x ∈ Sel and #(x) = 0 ⇔ x ∈ Data ∪ Var .
In the hypergraph, the nodes represent allocated memory cells, unary hyperedges
(labelled by symbols from Sel) represent selectors, and the nullary hyperedges (la-
belled by symbols from Data∪Var) represent data values and program variables10.
Input ports of the hypergraphs are nodes pointed to by program variables. Null and
undefined values are modelled as two special nodes null and undef. We represent
sets of heap configurations as hierarchical (Sel ∪ Data ∪ Var)-labelled SCFA.

Symbolic Execution. The symbolic computation of reachable heap configurations is
done over a control flow graph (CFG) obtained from the source program. A control
flow action a applied to a hypergraph G (i.e., to a single configuration) returns
a hypergraph a(G) that is obtained from G as follows. Non-destructive actions
x = y, x = y->s, or x = null remove the x-label from its current position and label
with it the node pointed by y, the s-successor of that node, or the null node,
respectively. The destructive action x->s = y replaces the edge (vx, s, v) by the
edge (vx, s, vy) where vx and vy are the nodes pointed to by x and y, respec-
tively. Further, malloc(x) moves the x-label to a newly created node, free(x) re-
moves the node pointed to by x (and links x and all aliased variables with undef),

8 Most C statements for pointer manipulation can be translated to these statements, includ-
ing most type casts and restricted pointer arithmetic.

9 No abstraction for such data is considered.
10 Below, to simplify the informal description, we say that a node is labelled by a variable
instead of saying that the variable labels a nullary hyperedge leaving from that node.



Forest Automata for Verification of Heap Manipulation 21

and x->data = dnew replaces the edge (vx, dold ) by the edge (vx, dnew ). Evaluating
a guard g applied on G amounts to a simple test of equality of nodes or equality of
data fields of nodes. Dereferences of null and undef are of course detected (as an
attempt to follow a non-existing hyperedge) and an error is announced. Emergence
of garbage is detected iff a(G) is not well-connected.11

We, however, compute not on single hypergraphs representing particular heaps
but on sets of them represented by hierarchical SCFA. For now, we assume the
nested SCFA used to be provided by the user. For a given control flow action (or
guard) x and a hierarchical SCFA S, we need to symbolically compute an SCFA
x(S) s.t. Jx(S)K equals {x(G) | G ∈ JSK} if x is an action and {G ∈ JSK | x(G)} if x
is a guard.

Derivation of the SCFA x(S) from S involves several steps. The first phase
is materialisation where we unfold nested SFA representing boxes that hide data
values or pointers referred to by x. We note that we are unfolding only SFA in the
closest neighbourhood of the involved pointer variables; thus, on the level of TA,
we touch only nested SFA adjacent to root-points. In the next phase, we introduce
additional root-points for every node referred to by x to the forest representation.
Third, we perform the actual update, which due to the previous step amounts to
manipulation with root-points only [12]. Last, we repeatedly fold (apply) boxes and
normalise (transform the obtained SFA into a canonicity respecting form) until no
further box can be applied, so that we end up with an SCFA. We note that like
the operation of unfolding, folding is also done only in the closest neighbourhood
of root-points.

Unfolding is, loosely speaking, done by replacing a TA rule labelled by a nested
SFA by the nested SFA itself (plus the appropriate binding of states of the top-
level SFA to ports of the nested SFA). Folding is currently based on detecting
isomorphism of a part of the top-level SFA and a nested SFA. The part of the top-
level SFA is then replaced by a single rule labelled by the nested SFA. Note that
this may be further improved by using language inclusion instead of isomorphism
of automata.

A simplified example of a symbolic execution is provided in Figure 4. In the
left part of the figure, we provide concrete heaps (the dashed edges represent
sequences of one or more edges linked into a linked-list), and in the right part, we
provide their forest automata representation (for a better readability, top-down
tree automata are used). The initial configuration is depicted in Fig. 4(a), and
Figure (b), (c), and (d) represent the sets of heaps obtained after successively
applying the statements x = y->next, x->next = z, and z = x.

The Fixpoint Computation. The verification procedure performs a classical (for-
ward) control-flow fixpoint computation over the CFG where flow values are hi-
erarchical SCFA that represent sets of possible heap configurations at particular
program locations. We start from the input location with the SCFA represent-
ing an empty heap with all variables undefined. The join operator is the union
of SCFA. With every edge from a source location l labelled by x (an action or
a guard), we associate the flow transfer function fx. The function fx takes the

11 Further, we note that we also handle a restricted pointer arithmetic. This is basically done
by indexing elements of Sel by integers to express that the target of a pointer is an address
of a memory cell plus or minus a certain offset. The formalism described in the paper may be
easily adapted to support this feature.



22 Peter Habermehl et al.

(a) A set of initial configurations

z

x,y
next

next+

next+

⊥

next next+

〈next〉 〈next〉

q1

qf

TA 2 (z) TA 3

〈next〉

r1

rfpf

p1

p2 q2

TA 1 (x,y)

〈next〉

ref.3

〈next〉

〈next〉〈next〉

ref.3

〈next〉

⊥

(b) The effect of y = x->next

z

x y
next

next+

next+

⊥

next+next

〈next〉

qfpf

r1

rf

TA 1 (x) TA 2 (z) TA 3

p1

q2

q1

TA 4 (y)

p2

sf

〈next〉

〈next〉

ref.4

〈next〉

〈next〉

ref.3

〈next〉

⊥

〈next〉

ref.3

〈next〉

(c) The effect of x->next = z

z

x y

next+

next+

⊥

next+next

next

〈next〉

qfpf

r1

rf

TA 1 (x) TA 2 (z) TA 3

p1

q2

q1 p2

sf

TA 4 (y)

ref.2

〈next〉 〈next〉

〈next〉

ref.3

〈next〉

〈next〉 ⊥

〈next〉

ref.3

〈next〉

(d) The effect of z = x

x,z y

next+

next+

⊥

next+next

next

〈next〉

pf

r1

rf

TA 1 (x,z) TA 3

p1

q2

q1 p2

sf

TA 4 (y)

〈next〉

〈next〉

ref.3

〈next〉

〈next〉 ⊥

〈next〉

ref.3〈next〉

〈next〉

Fig. 4 A concrete (on the left) and symbolic execution (on the right) of statements
y = x->next, x->next = z, and z = x. For the sake of simplicity, the presented FA are not
strictly in their canonical form.

flow value (SCFA) S at l as its input and (1) computes the SCFA x(S), (2) applies
abstraction to x(S), and returns the result.

The abstraction may be implemented by applying the general techniques de-
scribed in the framework of abstract regular tree model checking [6] to the in-
dividual TA inside FA. Particularly, the abstraction collapses states with similar
languages (based on their languages up-to certain tree depth or using predicate
languages).



Forest Automata for Verification of Heap Manipulation 23

To detect spurious counterexamples and to refine abstraction, one can use
a backward run similarly as in [6]. This is possible since the steps of the symbolic
execution may be reversed, and it is also possible to safely approximate intersec-
tions of hierarchical SFA. More precisely, given SCFA S1 and S2, one can compute
an SCFA S such that JSK ⊆ JS1K ∩ JS2K. This under-approximation is safe since
it can lead neither to false positives nor to false negatives (it can only cause the
computation not to terminate). Moreover, for the SCFA that appear in the case
studies in this paper, the intersection we compute is actually precise. More details
can be found in [12].

6 Implementation and Experimental Results

We have implemented the proposed approach in a prototype tool called Forester,
having the form of a gcc plug-in. The core of the tool is our own library of TA
that uses the recent technology for handling nondeterministic automata (partic-
ularly, methods for reducing the size of TA and for testing language inclusion on
them [2,3]). The fixpoint computation is accelerated by the so-called finite height
abstraction that is based on collapsing states of TA that have the same languages
up to certain depth [6].

Although our implementation is a prototype, the results are very encouraging
with regard to the generality of structures the tool can handle, precision of the
generated invariants as well as the running times. We tested the tool on sample
programs with various types of lists (singly-linked, doubly-linked, cyclic, nested),
trees, and their combinations. Basic memory safety properties—in particular, ab-
sence of null and undefined pointer dereferences, double free operations, and ab-
sence of garbage—were checked.

We have compared the performance of our tool with that of Space Invader [4],
the first fully automated tool based on separation logic, Predator [10], a new fully
automated tool based in principle on separation logic (although it represents sets of
heaps using graphs), and also with the ARTMC tool [7] based on abstract regular
tree model checking12. The comparison with Space Invader and Predator was done
on examples with lists only since Invader and Predator do not handle trees. The
higher flexibility of our automata abstraction shows up, for example, in the test
case with a list of sublists of lengths 0 or 1 (discussed already in the introduction)
for which Space Invader does not terminate. Our technique handles this example
smoothly (without any need to add special inductive predicates that could decrease
the performance or generate false alarms). Predator can also handle this test case,
but to achieve that, the algorithms implemented in it must have been manually
extended to use a new kind of list segment of length 0 or 1, together with an
appropriate modification of the implementation of Predator’s join and abstraction
operations13. On the other hand, the ARTMC tool can, in principle, handle more
general structures than we can currently handle such as trees with linked leaves.
However, the used representation of heap configurations is much heavier which
causes ARTMC not to scale that well.

Table 1 summarises running times (in seconds) of the four tools on our case
studies. The value T means that the running time exceeded 30 minutes, o.o.m.

12 Since it is quite difficult to encode the input for ARTMC, we have tried it on some inter-
esting cases only.
13 The operations were carefully tuned not to easily generate false alarms, but the risk of
generating them has anyway been increased.



24 Peter Habermehl et al.

Table 1 Experimental results

Example Forester Invader Predator ARTMC

SLL (delete) 0.01 < 0.10 0.01 < 0.50
SLL (reverse) < 0.01 0.03 < 0.01
SLL (bubblesort) 0.02 Err 0.02
SLL (insertsort) 0.02 0.10 0.01
SLL (mergesort) 0.07 Err 0.13
SLL of CSLLs 0.07 T 0.12
SLL+head 0.01 0.06 0.01
SLL of 0/1 SLLs 0.02 T 0.03
SLLLinux < 0.01 T < 0.01
DLL (insert) 0.02 0.08 0.03 0.40
DLL (reverse) 0.01 0.09 0.01 1.40
DLL (insertsort1) 0.20 0.18 0.15 1.40
DLL (insertsort2) 0.06 Err 0.03
CDLL < 0.01 0.09 < 0.01
DLL of CDLLs 0.18 T 0.13
SLL of 2CDDLsLinux 0.03 T 0.19
tree 0.06 3.00
tree+stack 0.02
tree+parents 0.10
tree (DSW) 0.16 o.o.m

means that the tool ran out of memory, and the value Err stands for a failure of
symbolic execution. The names of experiments in the table contain the name of
the data structure handled by the program. In particular, “SLL” stands for singly-
linked lists, “DLL” for doubly linked lists (the prefix “C” means cyclic), “tree” for
binary trees, “tree+parents” for trees with parent pointers. Nested variants of SLL
are named as “SLL of” and the type of the nested list. In particular, “SLL of 0/1
SLLs” stands for SLL of nested SLL of length 0 or 1. “SLL+head” stands for a list
where each element points to the head of the list, “SLL of 2CDLLs” stands for
SLL whose implementation of lists used in the Linux kernel with restricted pointer
arithmetic [10] which we can also handle. All experiments start with a random cre-
ation and end with a disposal of the specified structure. If some further operation
is performed in between the creation phase and the disposal phase, it is indicated
in brackets. In the experiment “tree+stack”, a randomly created tree is disposed
using a stack in a top-down manner such that we always dispose a root of a subtree
and save its subtrees into the stack. “DSW” stands for the Deutsch-Schorr-Waite
tree traversal (the Lindstrom variant). We have run our tests on a machine with
Intel T9600 (2.8GHz) CPU and 4GiB of RAM.

7 Conclusion

We have proposed hierarchically nested forest automata as a new means of encod-
ing sets of heap configurations when verifying programs with dynamic linked data
structures. The proposal brings the principle of separation from separation logic
into automata, allowing us to combine some advantages of automata (generality,
less rigid abstraction) with a better scalability stemming from local heap manipu-
lation. We have shown some interesting properties of our representation from the
point of view of inclusion checking. We have implemented and tested the approach
on multiple non-trivial cases studies, demonstrating the approach to be promising.



Forest Automata for Verification of Heap Manipulation 25

In the future, we plan to improve the implementation of our tool Forester,
including a support for predicate language abstraction within abstract regular
tree model checking [6]. We also plan to implement the automatic learning of
nested FA. From a more theoretical perspective, it is interesting to show whether
inclusion checking is or is not decidable for the full class of nested FA. Another
interesting direction is then a possibility of allowing truly recursive nesting of FA,
which would allow us to handle very general structures such as trees with linked
leaves.

References

1. P.A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziza, and A. Rezine. Monotonic Ab-
straction for Programs with Dynamic Memory Heaps. In Proc. of CAV’08, LNCS 5123,
Springer, 2008.

2. P.A. Abdulla, A. Bouajjani, L. Hoĺık, L. Kaati, and T. Vojnar. Computing Simulations
over Tree Automata: Efficient Techniques for Reducing TA. In Proc. of TACAS’08, LNCS

4963, 2008.
3. P.A. Abdulla, Y.-F. Chen, L. Hoĺık, R. Mayr, and T. Vojnar. When Simulation Meets

Antichains (On Checking Language Inclusion of NFAs). In Proc. of TACAS’10, LNCS
6015, Springer, 2010.

4. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and H. Yang.
Shape Analysis for Composite Data Structures. In Proc. CAV’07, LNCS 4590, Springer,
2007.

5. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with
Lists are Counter Automata. In Proc. of CAV’06, LNCS 4144, Springer, 2006.

6. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model
Checking. ENTCS 149(1), Elsevier, 2006.

7. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In Proc. of SAS’06, LNCS 4134, Springer,
2006.

8. C. Calcagno, D. Distefano, P.W. O’Hearn, and H. Yang. Compositional Shape Analysis
by Means of Bi-abduction. In Proc. of POPL’09, ACM Press, 2009.

9. J.V. Deshmukh, E.A. Emerson, and P. Gupta. Automatic Verification of Parameterized
Data Structures. In Proc. of TACAS’06, LNCS 3920, Springer, 2006.

10. K. Dudka, P. Peringer, and T. Vojnar. Predator: A Practical Tool for Checking Manip-
ulation of Dynamic Data Structures Using Separation Logic. In Proc. of CAV’11, LNCS

6806, Springer, 2011.
11. B. Guo, N. Vachharajani, and D.I. August. Shape Analysis with Inductive Recursion

Synthesis. In Proc. of PLDI’07, ACM Press, 2007.
12. P. Habermehl, L. Hoĺık, A. Rogalewicz, J. Šimáček, and T. Vojnar. Forest Automata for

Verification of Heap Manipulation. Technical Report FIT-TR-2011-01, FIT BUT, Czech
Republic, 2011. http://www.fit.vutbr.cz/~isimacek/pub/FIT-TR-2011-01.pdf

13. P. Madhusudan, G. Parlato, and X. Qiu. Decidable Logics Combining Heap Structures
and Data. In Proc. of POPL’11, ACM Press, 2011.

14. A. Møller and M. Schwartzbach. The Pointer Assertion Logic Engine. In Proc. of PLDI’01,
ACM Press, 2001.

15. H. H. Nguyen, C. David, S. Qin, and W. N. Chin Automated Verification of Shape and
Size Properties via Separation Logic. In Proc. of VMCAI’07, LNCS 4349, Springer, 2007.

16. J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc.

of LICS’02, IEEE CS, 2002.
17. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-valued Logic.

TOPLAS, 24(3), 2002.
18. H. Yang, O. Lee, C. Calcagno, D. Distefano, and P.W. O’Hearn. On Scalable Shape

Analysis. Technical report RR-07-10, Queen Mary, University of London, 2007.
19. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P.W. O’Hearn.

Scalable Shape Analysis for Systems Code. In Proc. of CAV’08, LNCS 5123, Springer,
2008.

20. K. Zee, V. Kuncak, and M. Rinard. Full Functional Verification of Linked Data Structures.
In Proc. of PLDI’08, ACM Press, 2008.


